JPH09198917A - Gold alloy thin wire for semiconductor element - Google Patents

Gold alloy thin wire for semiconductor element

Info

Publication number
JPH09198917A
JPH09198917A JP776096A JP776096A JPH09198917A JP H09198917 A JPH09198917 A JP H09198917A JP 776096 A JP776096 A JP 776096A JP 776096 A JP776096 A JP 776096A JP H09198917 A JPH09198917 A JP H09198917A
Authority
JP
Japan
Prior art keywords
wire
weight
gold alloy
gold
alloy thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP776096A
Other languages
Japanese (ja)
Other versions
JP3639662B2 (en
Inventor
Tomohiro Uno
智裕 宇野
Kohei Tatsumi
宏平 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP776096A priority Critical patent/JP3639662B2/en
Priority to TW86110146A priority patent/TW380303B/en
Publication of JPH09198917A publication Critical patent/JPH09198917A/en
Application granted granted Critical
Publication of JP3639662B2 publication Critical patent/JP3639662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/38Effects and problems related to the device integration
    • H01L2924/386Wire effects
    • H01L2924/3861Sag
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/38Effects and problems related to the device integration
    • H01L2924/386Wire effects
    • H01L2924/3862Sweep

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gold alloy thin wire whose deformation in sealing with resin is reduced, can manage well with improved construction with a narrower pitch and a longer span, and is suitable for high-density mounting on a circuit board. SOLUTION: A gold alloy thin wire contains 0.015-1.0wt.% Cu, 0.0002-0.02wt.% Ca, and gold and associated impurities inevitable as the remainder. To this, one or more of Pt, Pd, In is added in a total amount of 0.002-3.0 in wt.%. To the obtained mixture, one or more of Y, La, Ce is added in a total amount of 0.0003-0.03 in wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子上の電極と
外部リードを電気的接続するためのボンディングに使用
される半導体素子用金合金細線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gold alloy thin wire for a semiconductor element used for bonding to electrically connect an electrode on a semiconductor element and an external lead.

【0002】[0002]

【従来の技術】現在半導体素子上の回路配線電極と外部
リードとの間の電気的接続としては、ワイヤボンディン
グ方法が主として使用されている。最近、半導体の高集
積化、多機能化が進み、さらにICチップの小型化、薄
型化の要求も高まる中で、半導体実装の高密度化に対す
るニーズが高まっている。端子数が増加する多ピン化を
実現するためには、インナーリード部がシリコンチップ
に対して後退するため、ワイヤの接合間(スパン)が長
くなる傾向にある。スパンが5mm以上のロングスパン
になると、直線性の確保、ばらつきの低減などループ形
状を厳密に制御することが必要である。また、多ピン化
に伴い、電極間隔が減少する狭ピッチ化が要求され、ワ
イヤ間の最小ピッチが100μm以下のものまで所望さ
れており、ワイヤも細線化が望まれている。こうした多
ピン化、狭ピッチ化を達成するために、ボンディング装
置の改善、ルーピング性に優れたワイヤの開発などが進
められている。
2. Description of the Related Art At present, a wire bonding method is mainly used for electrical connection between a circuit wiring electrode on a semiconductor element and an external lead. Recently, as semiconductors have become highly integrated and multifunctional, and the demands for smaller and thinner IC chips have also increased, there has been an increasing need for higher density semiconductor packaging. In order to increase the number of terminals and increase the number of pins, the inner lead portion recedes with respect to the silicon chip, so that the wire joining interval (span) tends to be long. When the span is a long span of 5 mm or more, it is necessary to strictly control the loop shape such as ensuring linearity and reducing variations. Further, with the increase in the number of pins, there is a demand for a narrower pitch in which the electrode spacing is reduced, a minimum pitch between wires of 100 μm or less is desired, and a thin wire is also desired. In order to achieve such a large number of pins and a narrow pitch, improvement of a bonding device, development of a wire excellent in looping property, and the like are being advanced.

【0003】[0003]

【発明が解決しようとする課題】半導体実装の高密度化
において、スパンが5mm以上のロングスパンになる
と、ワイヤの多ピン化、狭ピッチ化に対応するために
は、隣接ワイヤ間の接触や、ワイヤとチップまたはイン
ナーリード部との接触などに伴う不良発生を抑えること
が最大の課題である。ロングスパンになると、ループ高
さの確保や垂れの防止のために、さまざまなルーピング
制御がなされるが、ボンディングの際にループ曲がりが
発生する確率が高くなる。また、粘性の高いエポキシ樹
脂による封止時に、ワイヤが変形して流れるが、スパン
が長くなるほど、この流れ量が増大するため、隣接ワイ
ヤ間の接触不良が発生しやすくなる。
In the high density packaging of semiconductors, when the span becomes a long span of 5 mm or more, in order to cope with the increase in the number of pins of the wire and the narrow pitch, contact between adjacent wires, The most important issue is to suppress the occurrence of defects due to contact between the wire and the chip or inner lead portion. In the long span, various looping controls are performed to secure the loop height and prevent sagging, but there is a high probability that loop bending will occur during bonding. Further, when the wire is deformed and flows at the time of sealing with the highly viscous epoxy resin, the longer the span, the larger the flow amount, and thus the poor contact between the adjacent wires is likely to occur.

【0004】狭ピッチ化の実現のためにワイヤは細線化
する傾向にあり、ワイヤ径の2乗で強度が低下すること
から予想されるように、ループ形成時のワイヤ曲がり
と、ワイヤの樹脂流れの問題はより一層深刻となる。こ
の狭ピッチ化のためにはボール径も小さくしなくてはな
らず、ボール部の接合性を確保することも困難となる。
細線化、接合性などを考慮して、金合金細線における元
素添加の効果が調査されており、例えば、特願昭63−
109587号には添加元素としてCu元素が有効であ
ることが示されているが、十分な効果を得るためには1
〜5重量%の含有が必要となり、高濃度ではボール部の
形状不良および硬化などが懸念される。また、金ワイヤ
中への所定範囲量のCu元素の添加に関して特開平2−
215140号公報に開示されているが、Au/Al接
合部における化合物成長の抑制効果に関するものであ
る。
The wire tends to be thinned to realize a narrow pitch, and as expected from the fact that the strength decreases with the square of the wire diameter, the wire bends during loop formation and the resin flow of the wire. Will become even more serious. In order to reduce the pitch, it is necessary to reduce the ball diameter, and it becomes difficult to secure the bondability of the ball portion.
The effect of element addition in gold alloy thin wires has been investigated in consideration of thinning, bondability, and the like.
No. 109587 shows that Cu element is effective as an additional element, but in order to obtain a sufficient effect, 1
A content of up to 5% by weight is required, and at a high concentration, there is a concern that the shape of the ball portion will be defective and the ball portion will be cured. Also, regarding the addition of a predetermined amount of Cu element into a gold wire, the method described in JP-A-2-
As disclosed in Japanese Patent Publication No. 215140, the present invention relates to the effect of suppressing the compound growth at the Au / Al junction.

【0005】本発明は、樹脂封止時のワイヤ変形を低減
して、狭ピッチ化および細線化に対応できる、高密度実
装に適した半導体素子用金合金細線を提供することを目
的としている。
An object of the present invention is to provide a gold alloy fine wire for a semiconductor element, which is suitable for high density mounting and which is capable of reducing wire deformation at the time of resin encapsulation and corresponding to a narrow pitch and a fine wire.

【0006】[0006]

【課題を解決するための手段】本発明者等は、以上の点
を鑑み、高密度実装に適したワイヤとして要求される特
性について調査を行った結果、特にループ形成時および
樹脂流れ時におけるワイヤ変形を低減することが最大の
技術課題であることの見解を得た。さらに、金合金細線
中の元素添加と、ループ直線性および樹脂流れ性との関
係について研究したところ、CuとCaの複合添加が流
れ性の抑制に有用であることを初めて見出した。さらに
後述するようにPt、Pd、In元素の添加によりボー
ル近傍部の熱影響部の強度が増加すること、また、Y、
La、Ceの添加により樹脂封止時の耐流れ性がさらに
向上することを見出した。
In view of the above points, the inventors of the present invention investigated the characteristics required as a wire suitable for high-density packaging, and found that the wire was formed especially during loop formation and during resin flow. We obtained the view that reducing deformation is the biggest technical issue. Furthermore, when the relationship between the addition of elements in the gold alloy thin wire and the loop linearity and resin flowability was studied, it was found for the first time that the combined addition of Cu and Ca was useful for suppressing the flowability. Further, as will be described later, addition of Pt, Pd, and In elements increases the strength of the heat-affected zone in the vicinity of the ball.
It has been found that the flow resistance during resin encapsulation is further improved by adding La and Ce.

【0007】すなわち、本発明の要旨とするところは下
記の通りである。 (1) Cuを0.015〜1.0重量%の範囲で含有
すると共に、Caを0.0002〜0.02重量%の範
囲で含有し、残部は金およびその不可避不純物からなる
ことを特徴とする半導体素子用金合金細線。 (2) Cuを0.015〜1.0重量%の範囲で含有
すると共に、Caを0.0002〜0.02重量%の範
囲で含有し、さらにPt、Pd、Inの1種または2種
以上を総計で0.002〜3.0重量%の範囲で含有
し、残部は金およびその不可避不純物からなることを特
徴とする半導体素子用金合金細線。
That is, the gist of the present invention is as follows. (1) Cu is contained in the range of 0.015 to 1.0% by weight, Ca is contained in the range of 0.0002 to 0.02% by weight, and the balance is composed of gold and its unavoidable impurities. Fine wire for semiconductor devices. (2) Cu is contained in the range of 0.015 to 1.0% by weight, Ca is contained in the range of 0.0002 to 0.02% by weight, and one or two kinds of Pt, Pd and In are further contained. A gold alloy fine wire for a semiconductor device, characterized by containing the above in a total amount of 0.002 to 3.0% by weight, and the balance being gold and its unavoidable impurities.

【0008】(3) Cuを0.015〜1.0重量%
の範囲で含有すると共に、Caを0.0002〜0.0
2重量%の範囲で含有し、さらにY、La、Ceの1種
または2種以上を総計で0.0003〜0.03重量%
の範囲で含有し、残部は金およびその不可避不純物から
なることを特徴とする半導体素子用金合金細線。 (4) Cuを0.015〜1.0重量%の範囲で含有
すると共に、Caを0.0002〜0.02重量%の範
囲で含有し、Pt、Pd、Inの1種または2種以上を
総計で0.002〜3.0重量%の範囲で含有し、さら
にY、La、Ceの1種または2種以上を総計で0.0
003〜0.03重量%の範囲で含有し、残部は金およ
びその不可避不純物からなることを特徴とする半導体素
子用金合金細線。
(3) 0.015 to 1.0% by weight of Cu
In the range of 0.0002 to 0.0
It is contained in the range of 2% by weight, and further contains one or more of Y, La, and Ce in a total amount of 0.0003 to 0.03% by weight.
A gold alloy thin wire for a semiconductor device, characterized in that it is contained in the range of 10 and the balance consists of gold and its unavoidable impurities. (4) Cu in an amount of 0.015 to 1.0% by weight and Ca in an amount of 0.0002 to 0.02% by weight, and one or more of Pt, Pd, and In. In the range of 0.002 to 3.0% by weight in total, and one or more of Y, La, and Ce in 0.0 in total.
A gold alloy fine wire for a semiconductor device, characterized in that it is contained in the range of 003 to 0.03% by weight, and the balance comprises gold and its unavoidable impurities.

【0009】[0009]

【作用】以下に、半導体素子用金合金細線に関する本発
明の構成についてさらに説明する。ループ直線性および
樹脂封止時の流れ性を評価するには、金属細線を用いて
ボンディングを行い、ループ形状における変形量の測
定、そのボンディングされた試料の樹脂封止を行った後
に、金属細線の流れ量の測定を行う必要がある。これら
のループ変形または樹脂封止時の流れ性に関しては、ボ
ンディング装置または樹脂封止装置の設定状態または実
験条件、封止樹脂の種類などに大きく依存するため、金
属細線の材料特性に起因する要因のみを抽出して評価す
ることは困難である。
The structure of the present invention relating to the gold alloy thin wire for semiconductor device will be further described below. To evaluate loop linearity and flowability during resin encapsulation, bonding is performed using a metal thin wire, the amount of deformation in the loop shape is measured, and the bonded sample is resin-encapsulated. It is necessary to measure the flow rate of The loop deformation or the flowability during resin encapsulation depends largely on the setting conditions or experimental conditions of the bonding equipment or resin encapsulation equipment, the type of encapsulation resin, etc. It is difficult to extract and evaluate only.

【0010】そこで、ループ直線性および樹脂封止時の
流れ性に関して、金属細線の機械的特性として引張強
度、弾性率、降伏強度などとの相関について調査したと
ころ、引張試験により測定した破断強度が高いほど、ル
ープ直線性が向上し、さらに樹脂封止時の流れ性も抑制
されていることが確認された。厳密な解析には、弾性
率、降伏強度、曲げ弾性などの特性値も加味する必要は
あるものの、金属細線が狭ピッチ化および細線化に対す
る適性を評価する手法として、簡便に測定可能な引張強
度を採用することとする。
Therefore, with respect to the loop linearity and the flowability at the time of resin sealing, the mechanical properties of the thin metal wire were examined for correlation with tensile strength, elastic modulus, yield strength and the like. It was confirmed that the higher the loop linearity, the more the loop linearity was improved and the flowability during resin sealing was suppressed. Although it is necessary to take into account characteristic values such as elastic modulus, yield strength, and bending elasticity for rigorous analysis, tensile strength that can be easily measured as a method for evaluating the suitability of thin metal wires for narrow pitches and thinning. Will be adopted.

【0011】金合金細線の引張強度の増加には、Cu元
素とCa元素の併用添加が有効である。Cuの単独添加
では、常温での強度を上昇させるものの、その効果は小
さい。Cuの単独添加では高密度実装用途としての特性
を満足するものではなかった。一方、Caの添加では強
度は増加することは確認されていたが、添加量が増加す
るとCa元素の酸化に起因するボール部形成時の形状不
良の原因となる。ボール形成性から添加量の上限が決ま
り、Caの単独添加では細線化のための十分な強度を達
成するのは困難であった。
In order to increase the tensile strength of the gold alloy fine wire, it is effective to add Cu element and Ca element together. Although Cu alone increases the strength at room temperature, its effect is small. The addition of Cu alone did not satisfy the characteristics for high-density mounting. On the other hand, although it has been confirmed that the strength increases with the addition of Ca, an increase in the addition amount causes a defective shape at the time of forming the ball portion due to the oxidation of the Ca element. The upper limit of the addition amount is determined by the ball-forming property, and it is difficult to achieve sufficient strength for thinning by adding Ca alone.

【0012】CuとCaの添加による引張強度の影響に
ついて示したのが表1である。線径24μmのワイヤを
横型炉中を通過させながら連続的に焼鈍した後、ワイヤ
の引張試験を行い、破断強度を示した。汎用の半導体素
子用金属細線においては、破断伸びは3から5%の範囲
が主流であるため、伸びが4%程度になるように焼鈍温
度を選定した。Cu元素の適量添加、またはCa元素の
適量添加と比較しても、両者を同時に含有させると、破
断強度がさらに3割から6割程度まで顕著に増加してい
ることが判る。ワイヤ長が5mm程度のロングスパンに
おける金属細線の耐流れ性の点からは、引張強度が14
gf以上であれば、流れを実用上問題にならない程度ま
で低減できる結果が得られており、表1のCuとCaの
複合添加はその条件を満足するものであった。
Table 1 shows the effect of tensile strength due to the addition of Cu and Ca. After continuously annealing a wire having a wire diameter of 24 μm in a horizontal furnace, a tensile test of the wire was performed to show the breaking strength. In general-purpose metal thin wires for semiconductor devices, the breaking elongation is mainly in the range of 3 to 5%, so the annealing temperature was selected so that the elongation would be about 4%. It can be seen that the breaking strength is remarkably increased from about 30% to about 60% when both of them are contained at the same time as compared with the addition of an appropriate amount of Cu element or the addition of an appropriate amount of Ca element. From the viewpoint of the flow resistance of a thin metal wire in a long span with a wire length of about 5 mm, the tensile strength is 14
If it is at least gf, the result is that the flow can be reduced to such an extent that it does not pose a practical problem, and the combined addition of Cu and Ca in Table 1 satisfies the condition.

【0013】これらの元素による特性発現の機構につい
ては不明な点もあるが、Cu元素とCa元素が相互作用
を及ぼしあって、Au中で析出または化合物相が生成す
ることにより、機械的特性を向上させていると思われ
る。
[0013] Although there are some unclear points about the mechanism of characteristic development by these elements, Cu element and Ca element interact with each other to cause precipitation or a compound phase in Au, whereby mechanical characteristics are improved. Seems to be improving.

【0014】[0014]

【表1】 [Table 1]

【0015】ここで、CuとCaの添加量を上記範囲と
定めたのは、Cuを0.015重量%未満またはCaが
0.0002重量%未満では上記効果が小さいためであ
る。一方Caが0.02重量%超では、ボール先端部に
引け巣が生成したり、真球性が低下するなどの不良が発
生するためであり、Cuを1.0重量%超含有すると、
伸線時の加工強度の増加が著しくなるため、ワイヤ製造
時に伸線ダイスの摩耗が激しくなり、しかも伸線材のワ
イヤ曲がりが発生し易くなり、特に細線化されるほど顕
著となる。この対策には数回の中間焼鈍で対応できるも
のの、工程が複雑化することが問題である。
The reason why the addition amounts of Cu and Ca are set in the above range is that the above effect is small when Cu is less than 0.015% by weight or Ca is less than 0.0002% by weight. On the other hand, if Ca is more than 0.02% by weight, defects such as shrinkage cavities are formed at the tip of the ball or the sphericity is deteriorated. If Cu is contained more than 1.0% by weight,
Since the working strength during wire drawing increases remarkably, the wire drawing die is abraded at the time of wire production, and the wire bending of the wire drawing material is likely to occur. Although this measure can be dealt with by performing intermediate annealing several times, the process is complicated.

【0016】細線の強度は線径の2乗に比例するため、
線径が細くなるほど、樹脂流れ低減のために細線の高強
度化が必要となる。現在主流である線径が25〜30μ
mの細線では80μm以下の狭ピッチ実装に利用するこ
とは困難である。CuとCaを含有して強度向上した細
線は、従来材よりも細線化した線径が25μm以下で使
用することが有効である。特に、25μmに対して2割
以上の高強度化が望まれる、線径が23μm以下におい
ては、CuとCaの複合添加による高強度化は高い効果
が望まれる。
Since the strength of a thin wire is proportional to the square of the wire diameter,
The thinner the wire diameter, the higher the strength of the thin wire is required to reduce the resin flow. The current mainstream wire diameter is 25-30μ
It is difficult to use a fine wire of m for a narrow pitch mounting of 80 μm or less. It is effective to use a fine wire containing Cu and Ca, which has improved strength, and has a wire diameter of 25 μm or less, which is thinner than the conventional material. In particular, it is desired to increase the strength by 20% or more with respect to 25 μm, and when the wire diameter is 23 μm or less, it is desired that the effect of increasing the strength by the combined addition of Cu and Ca is high.

【0017】狭ピッチ実装のためにはリードフレームの
インナーリード部も細くなっており、搬送時の振動に起
因する問題が発生しやすい。耐振動性の点からは、ボー
ル直上のネック部における強度が高いことが望ましく、
熱影響による再結晶粒の粗大化を抑制する必要がある。
前述したCuとCaの添加に加えて、さらにPt、P
d、Inの1種または2種以上を含有することにより、
ネック部の結晶が細粒化して、ネック部の強度が増加す
る。In、Pt、Pdの元素群の添加のみでは、再結晶
挙動の抑制効果は不十分であり、CuとCaの含有との
相乗作用により、ネック部の強度を上昇する効果が高め
られる。ここで、Pt、Pd、Inの添加が、0.00
2重量%未満では上記効果が小さく、一方3.0重量%
超では、ボール部が偏平となり真球性が低下するため、
狭ピッチ接続のための小ボール形成が困難であり、さら
にボール部が硬化するため、接合時にシリコンチップへ
の損傷の原因となる。
Since the inner lead portions of the lead frame are thin for mounting at a narrow pitch, problems due to vibration during transportation tend to occur. From the viewpoint of vibration resistance, it is desirable that the strength of the neck part directly above the ball is high,
It is necessary to suppress the coarsening of recrystallized grains due to the influence of heat.
In addition to the addition of Cu and Ca described above, Pt, P
By containing one or more of d and In,
Crystals in the neck portion become finer and the strength of the neck portion increases. The effect of suppressing the recrystallization behavior is insufficient only by adding the element group of In, Pt, and Pd, and the effect of increasing the strength of the neck portion is enhanced by the synergistic effect of the inclusion of Cu and Ca. Here, the addition of Pt, Pd, and In is 0.00
If it is less than 2% by weight, the above effect is small, while 3.0% by weight.
Above this, the ball portion becomes flat and the sphericity decreases,
It is difficult to form small balls for a narrow pitch connection, and the balls are hardened, which causes damage to the silicon chips during bonding.

【0018】樹脂封止工程では、150〜200℃の範
囲に加熱されたモールド金型中に粘性の高い熱硬化性樹
脂が高速で注入されることにより、ワイヤは変形する。
このワイヤの樹脂流れ性に対しては、ワイヤの機械的特
性、特に高温特性が支配的である。Y、La、Ceの1
種または2種以上を0.0003〜0.03重量%の範
囲で含有すると、ワイヤの高温強度が上昇する。しかし
Y、La、Ceの添加のみでは、常温での機械的特性の
向上は小さいため、CuとCaの添加との併用が必要と
なる。Y、La、Ceの総含有量を上記範囲と設定した
のは、0.0003重量%未満では、十分な高温特性は
得られず、0.03重量%超では、ボール形成時の引け
巣の生成、または真球性の低下が問題となるためであ
る。
In the resin sealing step, the wire is deformed by injecting a highly viscous thermosetting resin at a high speed into the molding die heated to the range of 150 to 200 ° C.
The mechanical characteristics of the wire, especially the high temperature characteristics, dominate the resin flowability of the wire. 1 for Y, La, Ce
If one or more kinds are contained in the range of 0.0003 to 0.03% by weight, the high temperature strength of the wire is increased. However, the addition of Y, La, and Ce alone does not significantly improve the mechanical properties at room temperature, so that it is necessary to use Cu and Ca together. The total content of Y, La, and Ce is set to the above range because when it is less than 0.0003% by weight, sufficient high temperature characteristics cannot be obtained, and when it exceeds 0.03% by weight, shrinkage cavities at the time of ball formation are formed. This is because generation or deterioration of sphericity becomes a problem.

【0019】[0019]

【実施例】以下、実施例について説明する。金純度が約
99.995重量%以上の電解金を用いて、表2、表3
(表2のつづき)、表4、表5(表4のつづき)に示す
化学成分の金合金を溶解炉で溶解鋳造し、その鋳塊を圧
延および伸線により、最終線径が24μmの金合金細線
とした後に、大気中で連続焼鈍して伸びを調整した。
EXAMPLES Examples will be described below. Using electrolytic gold having a gold purity of about 99.995% by weight or more, Table 2 and Table 3
(Continued from Table 2), Table 4 and Table 5 (Continued from Table 4) Gold alloys having the chemical composition shown in Table 4 are melt-cast in a melting furnace, and the ingot is subjected to rolling and drawing to obtain gold having a final wire diameter of 24 μm. After forming the alloy thin wire, continuous annealing was performed in the atmosphere to adjust the elongation.

【0020】ワイヤボンディングに使用される高速自動
ボンダーを使用して、アーク放電によりワイヤ先端に作
製した金合金ボールを走査型電子顕微鏡で観察し、ボー
ル形状が異常なもの、ボール先端部において収縮孔の発
生が認められるもの等半導体素子上の電極に良好な接合
ができないものを△印、良好なものを○印にて表記し
た。
Using a high-speed automatic bonder used for wire bonding, the gold alloy ball produced at the tip of the wire by arc discharge was observed with a scanning electron microscope. Those in which good bonding to the electrode on the semiconductor element, such as those in which the occurrence of the above is not observed, are indicated by Δ, and those in which good bonding is indicated by ○.

【0021】ループ形成後のネック部の強度の評価に
は、リードフレームと測定する半導体素子を冶具で固定
した後に、ボンディング後の金合金細線の中央部を引張
り、その細線破断時の引張強度を100本測定したプル
強度の平均値を求めた。ワイヤ曲がりは、ワイヤ両端の
接合距離(スパン)が4.5mmとなるようボンディン
グしたワイヤを半導体素子とほぼ垂直上方向から観察
し、ワイヤ中心部からワイヤの両端接合部を結ぶ直線
と、ワイヤの曲がりが最大の部分との垂線の距離を、投
影機を用いて80本測定した平均値で示した。
To evaluate the strength of the neck portion after loop formation, the lead frame and the semiconductor element to be measured are fixed by a jig, and then the central portion of the gold alloy thin wire after bonding is pulled to determine the tensile strength at the time of breaking the thin wire. The average value of 100 pull strengths was determined. The wire bending is observed by observing the wire bonded so that the bonding distance (span) at both ends of the wire is 4.5 mm from the upper direction substantially perpendicular to the semiconductor element, and the straight line connecting the wire both ends bonding part and the wire The distance of the perpendicular to the portion with the largest bend is shown by the average value of 80 pieces measured using a projector.

【0022】樹脂封止後のワイヤ流れの測定に関して
は、ワイヤのスパンとして4.5mmが得られるようボ
ンディングした半導体素子が搭載されたリードフレーム
を、モールディング装置を用いてエポキシ樹脂で封止し
た後に、軟X線検査装置を用いて樹脂封止した半導体素
子内部をX線投影し、前述したワイヤ曲がりと同等の手
順によりワイヤ流れが最大の部分の流れ量を80本測定
し、その平均値をワイヤのスパン長さで除算した値(百
分率)を封止後のワイヤ流れと定義した。
Regarding the measurement of the wire flow after resin encapsulation, after the lead frame on which the semiconductor element bonded so as to obtain a wire span of 4.5 mm is mounted is encapsulated with an epoxy resin using a molding device, , X-ray projection of the inside of the semiconductor element sealed with resin using a soft X-ray inspection device, the flow amount of the maximum wire flow portion was measured by the same procedure as the above-mentioned wire bending, and the average value was calculated. The value (percentage) divided by the wire span length was defined as the wire flow after sealing.

【0023】表4、表5の比較例1〜4では、樹脂封止
時のワイヤ流れは5%以上の高い値を示しており、隣接
するワイヤが接触することによる不良発生の可能性が高
く、ワイヤ曲がりも20μm以上であり、ループ形状の
ばらつきとして懸念される。これに対し、表2、表3の
実施例1〜6は本発明の請求項1記載の金合金細線に係
わるものであり、Cuを0.015〜1.0重量%の範
囲で含有させ、さらにCaを0.0002〜0.02重
量%の範囲で含有させることにより、特に樹脂流れは低
減されており、適量添加により4%以下まで抑制するこ
とが確認された。表4、表5に示す比較例5ではCuの
含有量が1.0重量%超であり、伸線強度が高くダイス
の摩耗が懸念され、さらに伸線時のワイヤ曲がりが顕著
となるため、製造工程において中間焼鈍を3回要した。
In Comparative Examples 1 to 4 of Tables 4 and 5, the wire flow at the time of resin sealing shows a high value of 5% or more, and there is a high possibility that defects will occur due to contact between adjacent wires. The wire bend is also 20 μm or more, which is a concern as a variation in loop shape. On the other hand, Examples 1 to 6 in Tables 2 and 3 relate to the gold alloy thin wire according to claim 1 of the present invention, and contain Cu in an amount of 0.015 to 1.0% by weight, Further, it has been confirmed that by containing Ca in the range of 0.0002 to 0.02% by weight, the resin flow is particularly reduced, and addition of an appropriate amount suppresses the amount to 4% or less. In Comparative Example 5 shown in Tables 4 and 5, the Cu content is more than 1.0% by weight, the wire drawing strength is high, the wear of the die is concerned, and the wire bending during wire drawing becomes remarkable, Intermediate annealing was required three times in the manufacturing process.

【0024】表2、表3の実施例7〜11は請求項2記
載の金合金細線に係わるものであり、プル強度は7gf
以上まで増加しており、破断は常にボール部直上である
ことから、ネック部の強度が向上していることが確認さ
れた。さらに、同じく実施例12〜15は請求項3記載
の金合金細線に係わるものであり、樹脂流れは3%以下
の低い値まで抑えられていることが確認された。同じく
実施例16、17は請求項4記載の金合金細線に係わる
もので、プル強度は8gf程度まで上昇しており、樹脂
流れは2.6%以下と低い値まで抑えられていることが
確認された。
Examples 7 to 11 in Tables 2 and 3 relate to the fine gold alloy wire according to claim 2, and the pull strength is 7 gf.
It has been confirmed that the strength of the neck portion is improved because the fracture is always right above the ball portion. Further, it was confirmed that Examples 12 to 15 similarly relate to the gold alloy fine wire according to claim 3, and the resin flow is suppressed to a low value of 3% or less. Similarly, Examples 16 and 17 relate to the fine gold alloy wire according to claim 4, the pull strength is increased to about 8 gf, and it is confirmed that the resin flow is suppressed to a low value of 2.6% or less. Was done.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【発明の効果】本発明の半導体素子用金合金細線は、ボ
ンディング時のワイヤ曲がりおよび樹脂封止時のワイヤ
流れを低減し、半導体の高密度実装、特に狭ピッチ接続
に対応できるものである。
The fine gold alloy wire for semiconductor device of the present invention can reduce the wire bending at the time of bonding and the wire flow at the time of resin sealing, and can be applied to high density mounting of semiconductors, especially narrow pitch connection.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Cuを0.015〜1.0重量%の範囲
で含有すると共に、Caを0.0002〜0.02重量
%の範囲で含有し、残部は金およびその不可避不純物か
らなることを特徴とする半導体素子用金合金細線。
1. Containing Cu in the range of 0.015 to 1.0% by weight and Ca in the range of 0.0002 to 0.02% by weight, with the balance being gold and its unavoidable impurities. A gold alloy thin wire for a semiconductor element, which is characterized by:
【請求項2】 Cuを0.015〜1.0重量%の範囲
で含有すると共に、Caを0.0002〜0.02重量
%の範囲で含有し、さらにPt、Pd、Inの1種また
は2種以上を総計で0.002〜3.0重量%の範囲で
含有し、残部は金およびその不可避不純物からなること
を特徴とする半導体素子用金合金細線。
2. Cu is contained in the range of 0.015 to 1.0% by weight, Ca is contained in the range of 0.0002 to 0.02% by weight, and one or more of Pt, Pd and In, or A gold alloy thin wire for a semiconductor device, comprising two or more kinds in a total amount of 0.002 to 3.0% by weight, and the balance being gold and unavoidable impurities thereof.
【請求項3】 Cuを0.015〜1.0重量%の範囲
で含有すると共に、Caを0.0002〜0.02重量
%の範囲で含有し、さらにY、La、Ceの1種または
2種以上を総計で0.0003〜0.03重量%の範囲
で含有し、残部は金およびその不可避不純物からなるこ
とを特徴とする半導体素子用金合金細線。
3. Cu in an amount of 0.015 to 1.0% by weight, Ca in an amount of 0.0002 to 0.02% by weight, and one or more of Y, La, and Ce. A gold alloy thin wire for a semiconductor device, comprising two or more kinds in a total amount of 0.0003 to 0.03% by weight, and the balance being gold and its unavoidable impurities.
【請求項4】 Cuを0.015〜1.0重量%の範囲
で含有すると共に、Caを0.0002〜0.02重量
%の範囲で含有し、Pt、Pd、Inの1種または2種
以上を総計で0.002〜3.0重量%の範囲で含有
し、さらにY、La、Ceの1種または2種以上を総計
で0.0003〜0.03重量%の範囲で含有し、残部
は金およびその不可避不純物からなることを特徴とする
半導体素子用金合金細線。
4. Cu in an amount of 0.015 to 1.0% by weight and Ca in an amount of 0.0002 to 0.02% by weight, and one or two of Pt, Pd and In. At least 0.002 to 3.0% by weight, and at least one of Y, La, and Ce at least 0.003 to 0.03% by weight. The balance is made of gold and its unavoidable impurities, and a fine gold alloy wire for semiconductor devices.
JP776096A 1996-01-19 1996-01-19 Gold alloy fine wire for semiconductor devices Expired - Lifetime JP3639662B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP776096A JP3639662B2 (en) 1996-01-19 1996-01-19 Gold alloy fine wire for semiconductor devices
TW86110146A TW380303B (en) 1996-01-19 1997-07-17 Gold alloy thin wire for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP776096A JP3639662B2 (en) 1996-01-19 1996-01-19 Gold alloy fine wire for semiconductor devices

Publications (2)

Publication Number Publication Date
JPH09198917A true JPH09198917A (en) 1997-07-31
JP3639662B2 JP3639662B2 (en) 2005-04-20

Family

ID=11674653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP776096A Expired - Lifetime JP3639662B2 (en) 1996-01-19 1996-01-19 Gold alloy fine wire for semiconductor devices

Country Status (2)

Country Link
JP (1) JP3639662B2 (en)
TW (1) TW380303B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030096985A (en) * 2002-06-18 2003-12-31 헤라우스오리엔탈하이텍 주식회사 Gold alloy wire for bonding of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030096985A (en) * 2002-06-18 2003-12-31 헤라우스오리엔탈하이텍 주식회사 Gold alloy wire for bonding of semiconductor device

Also Published As

Publication number Publication date
JP3639662B2 (en) 2005-04-20
TW380303B (en) 2000-01-21

Similar Documents

Publication Publication Date Title
US20120312428A1 (en) High strength and high elongation ratio of au alloy bonding wire
US7678999B2 (en) Gold alloy wire for bonding wire having high bonding reliability, high roundness of compression ball, high straightness and high resin flowability resistance
US5989364A (en) Gold-alloy bonding wire
JP4726206B2 (en) Gold alloy wire for bonding wire with high initial bondability, high bond reliability, high roundness of crimped ball, high straightness, high resin flow resistance and low specific resistance
JP3579493B2 (en) Gold alloy wires for semiconductor devices
TWI407515B (en) Wire with gold alloy wire
JP3612179B2 (en) Gold-silver alloy fine wire for semiconductor devices
JP3426473B2 (en) Gold alloy wires for semiconductor devices
JP3612180B2 (en) Gold-silver alloy fine wire for semiconductor devices
JP3810200B2 (en) Gold alloy wire for wire bonding
JPH11186314A (en) Bonding wire
JP3639662B2 (en) Gold alloy fine wire for semiconductor devices
JPH11126788A (en) Ic-chip connecting gold alloy wire
JP3426397B2 (en) Gold alloy fine wire for semiconductor devices
JP3426399B2 (en) Gold alloy fine wire for semiconductor devices
JPH07335686A (en) Gold alloy wire for bonding
JP3669810B2 (en) Gold alloy wire for semiconductor element bonding
JP3744131B2 (en) Bonding wire
JPH0633168A (en) Bonding wire
JPH08293514A (en) Gold alloy fine wire for semiconductor element
JP4655426B2 (en) Au bonding wire for connecting semiconductor element and manufacturing method thereof
JPH06145842A (en) Bonding gold alloy thin wire
JP3059314B2 (en) Gold alloy fine wire for bonding
JP2003133362A (en) Semiconductor device and bonding wire for the same
JP5339101B2 (en) Bump wire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term