JPH09190202A - Cascade controller - Google Patents

Cascade controller

Info

Publication number
JPH09190202A
JPH09190202A JP162496A JP162496A JPH09190202A JP H09190202 A JPH09190202 A JP H09190202A JP 162496 A JP162496 A JP 162496A JP 162496 A JP162496 A JP 162496A JP H09190202 A JPH09190202 A JP H09190202A
Authority
JP
Japan
Prior art keywords
control system
output
adjustment calculation
limit
pid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP162496A
Other languages
Japanese (ja)
Inventor
Kazuo Hiroi
和男 広井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP162496A priority Critical patent/JPH09190202A/en
Publication of JPH09190202A publication Critical patent/JPH09190202A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent reset winding up. SOLUTION: Thus cascade controller is provided with a primary control system 10 and a secondary control system 30. When the characteristic of the operation terminal 6 of the primary control system 10 is an inverse operation, a limit deviation signal output means 19 in which either upper/lower limit values or a change rate limit value or both values are set, whether operation signals being the outputs of PID (proportional integration differentiation) control operation means (12 and 13) in the primary control system 10 exceed the upper/lower limit values and the change rate limit value or not is judged and a limit deviation signal is outputted when they exceed them is provided for the primary control system 10. The secondary control system 30 is provided with integration control means (35, 43 and 44) discriminating the code of the limit deviation signal with that of speed-type I control operation output in the PID control operation means (32 and 33) of the secondary control system 30 and stopping the integration operation of the PID control operation means 32 and 33 in the secondary control system 30 when they are same codes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種産業の制御シ
ステムなどに利用されるカスケード制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cascade control device used in control systems of various industries.

【0002】[0002]

【従来の技術】PID(P:比例,I:積分,D:微
分)調節装置は、プロセス制御の歴史が始まって以来、
あらゆる産業分野で広く利用されており、いまや各種産
業分野の制御システムにはPID調節装置無しには成り
立たなくなっている。
2. Description of the Related Art PID (P: proportional, I: integral, D: derivative) regulators have been used since the history of process control began.
It is widely used in all industrial fields, and nowadays it is not possible without control systems in various industrial fields without a PID controller.

【0003】ところで、このPID調節装置を用いてプ
ロセスの制御性を向上させる方法の1つとして、複数の
PID調節装置を組み合せてなるカスケード制御装置が
ある。このカスケード制御装置は、1つ以上の1次制御
系の目標値を、他の1つの2次制御系の出力で支配する
ような構成であって、このようなカスケード制御を採用
する理由は、外乱を1次制御系で吸収することにより、
2次制御系の制御を容易にし、全体の制御性を向上させ
ることにある。
By the way, as one of the methods for improving the controllability of a process using this PID adjusting device, there is a cascade control device which is a combination of a plurality of PID adjusting devices. This cascade control device is configured such that the target value of one or more primary control systems is controlled by the output of another secondary control system. The reason for adopting such cascade control is as follows. By absorbing the disturbance with the primary control system,
It is to facilitate the control of the secondary control system and improve the overall controllability.

【0004】図5は炉内温度制御に適用した従来のカス
ケード制御装置の構成図である。このカスケード制御装
置は、被加熱物を加熱するバーナー1を取り付けた炉2
が設置され、この炉1には1次制御系3および2次制御
系4が設けられている。
FIG. 5 is a block diagram of a conventional cascade control device applied to temperature control in a furnace. This cascade control device includes a furnace 2 equipped with a burner 1 for heating an object to be heated.
The furnace 1 is provided with a primary control system 3 and a secondary control system 4.

【0005】この1次制御系3は、バーナー1に供給す
る燃料流量を測定する燃料流量測定手段5と、バーナー
1に供給する燃料流量を調節する燃料流量調節弁6と、
目標値SV1 と燃料流量測定手段5の燃料流量測定信号
PV1 とを比較し、その偏差が零となるようにPID調
節演算を実行し操作信号MV1 を求めて燃料流量調節弁
6に印加して燃料流量を操作する1次PID調節演算手
段7とで構成され、一方、2次制御系4においては、炉
内温度を測定する炉内温度測定手段8と、この炉内温度
測定手段8で測定された炉内温度測定信号PV2 と炉内
温度目標値SV2 との偏差が零となるようにPID調節
演算を実行し操作信号MV2 を出力し、1次制御系3の
目標値SV1 とする2次PID調節演算手段9とによっ
て構成されている。
The primary control system 3 includes a fuel flow rate measuring means 5 for measuring the flow rate of fuel supplied to the burner 1, a fuel flow rate control valve 6 for adjusting the flow rate of fuel supplied to the burner 1.
The target value SV 1 is compared with the fuel flow rate measurement signal PV 1 of the fuel flow rate measuring means 5, PID adjustment calculation is executed so that the deviation becomes zero, and an operation signal MV 1 is obtained and applied to the fuel flow rate adjustment valve 6. In addition, in the secondary control system 4, the in-reactor temperature measuring means 8 for measuring the in-reactor temperature and the in-reactor temperature measuring means 8 are provided. in the measured furnace deviation between the temperature measurement signal PV 2 and furnace temperature target value SV 2 executes a PID adjustment operation so that the zero outputs an operation signal MV 2, the target value of the primary control system 3 It is constituted by the secondary PID adjustment calculation means 9 for SV 1 .

【0006】このような構成のカスケード制御装置によ
れば、先ず、1次制御系3としては、1次PID調節手
段7を用いて燃料流量測定手段5の燃料流量測定信号P
が目標値SV に一致するようにPID調節演算
を実行し、この演算によって得られる操作信号MV1
燃料流量調節弁6に印加する。一方、2次制御系4で
は、2次PID調節演算手段9を用いて炉内温度測定手
段8の炉内温度測定信号PV2 が炉内温度目標値SV2
に一致するようにPID調節演算を実行し、この演算に
よって得られる操作信号MV2 を1次制御系3の1次P
ID調節演算手段7の目標値SV1 を支配するように制
御する。
According to the cascade control device having such a configuration, first, as the primary control system 3, the primary PID adjusting means 7 is used and the fuel flow rate measuring signal P of the fuel flow rate measuring means 5 is obtained.
The PID adjustment calculation is executed so that V 1 matches the target value SV 1, and the operation signal MV 1 obtained by this calculation is applied to the fuel flow rate adjustment valve 6. On the other hand, in the secondary control system 4, the in-furnace temperature measurement signal PV 2 of the in-furnace temperature measuring means 8 is sent to the in-furnace temperature target value SV 2 by using the secondary PID adjustment calculating means 9.
PID adjustment calculation is performed so that the operation signal MV 2 obtained by this calculation is the primary P of the primary control system 3.
The target value SV 1 of the ID adjustment calculation means 7 is controlled so as to dominate.

【0007】従って、このようなカスケード制御装置で
は、燃料圧力が変動しても、燃料流量を制御できる範囲
内では燃料圧力変動の影響を1次制御系3で完全に吸収
し、2次制御系4の炉内温度に対する影響を防止でき
る。
Therefore, in such a cascade control device, even if the fuel pressure fluctuates, the effect of fuel pressure fluctuation is completely absorbed by the primary control system 3 within the range where the fuel flow rate can be controlled, and the secondary control system It is possible to prevent the effect of No. 4 on the temperature in the furnace.

【0008】しかし、実際のプラント運転においては、
例えば燃料圧力が大きく変化する,いわゆる外乱の発生
時、燃料流量の制御不能領域に達するケースがしばしば
発生する。このような外乱発生時、1次制御系3と2次
制御系4との間に情報交換をもたない従来形のカスケー
ド制御装置では種々の問題が生じる。
However, in actual plant operation,
For example, when a so-called disturbance occurs in which the fuel pressure greatly changes, a case where the fuel flow rate reaches an uncontrollable region often occurs. When such a disturbance occurs, various problems occur in the conventional cascade control device having no information exchange between the primary control system 3 and the secondary control system 4.

【0009】この問題について図6を用いて説明する。
なお、同図において英小文字の符号は従来装置(図5)
の特性を意味し、英小文字にダッシュを付した符号は後
述する本発明装置の特性を意味する。
This problem will be described with reference to FIG.
In the figure, letters in lowercase letters refer to conventional equipment (Fig. 5).
And the reference numeral with a dash in English lowercase means the characteristic of the device of the present invention described later.

【0010】今、図示イ時点において燃料圧力が大きく
急低下すると、1次PID調節手段7は、図示aのよう
に燃料流量PV1 が低下するので、燃料流量PV1 を目
標値SV1 に一致させるために図示bのように操作信号
MV1 を増加させる。その結果、操作信号MV1 は、上
限制限値である100%に達するが、燃料圧力が低いた
めに燃料流量PV1 は図示aのごとき目標値SV1 に達
せずに低い状態を推移し、炉内温度に影響を及ぼす。つ
まり、2次PID調節演算手段4に属する炉内温度PV
2 が図示cのように目標値温度SV2 よりも低いままの
状態を推移する。このような推移の過程では、炉内温度
PV2 を目標値温度SV2 に一致させるために、2次P
ID調節演算手段9の出力である操作信号MV2 は図示
dのように積分動作によって徐々に増加させていき、操
作量MV2 が頭打ち(100%)の状態になるが、依然
として積分動作だけが進行するので、いわゆるリセット
・ワインドアップの状態となる。
[0010] Now, when the fuel pressure is increased abruptly decreases in the illustrated Lee time, the primary PID adjusting means 7, the fuel flow rate PV 1 is lowered as shown a, consistent fuel flow PV 1 to the target value SV 1 To do so, the operation signal MV 1 is increased as shown in FIG. As a result, the operation signal MV 1 reaches the upper limit value of 100%, but the fuel flow rate PV 1 does not reach the target value SV 1 as shown in FIG. Affects internal temperature. That is, the furnace temperature PV belonging to the secondary PID adjustment calculation means 4
2 is kept lower than the target value temperature SV 2 as shown in FIG. In the course of such a transition, in order to match the furnace temperature PV 2 with the target value temperature SV 2 , the secondary P
The operation signal MV 2 which is the output of the ID adjustment calculation means 9 is gradually increased by the integration operation as shown by d, and the operation amount MV 2 reaches a peak (100%), but only the integration operation is still performed. As it progresses, it will be in a so-called reset windup state.

【0011】その後、図示ロ時点において燃料圧力が回
復したと仮定する。このとき、2次PID調節演算手段
9の出力である操作信号MV2 は図示するように上限制
限値(100%)を越えて頭打ちの状態になっているの
で、1次PID調節演算手段7では、前記操作信号MV
2 を取り込んで用いている目標値SV1 も図示eのよう
に上限制限値(100%)を越えた状態となっており、
これに伴って1次PID調節演算手段7の操作信号MV
1 も図示bのごとき上限制限値を越えた状態となってい
る。
After that, it is assumed that the fuel pressure has recovered at the time point B in the figure. At this time, the operation signal MV 2 which is the output of the secondary PID adjustment calculation means 9 exceeds the upper limit value (100%) and reaches a peak as shown, so that the primary PID adjustment calculation means 7 , The operation signal MV
The target value SV 1 used by incorporating 2 is also in a state of exceeding the upper limit value (100%) as shown in the figure e,
Along with this, the operation signal MV of the primary PID adjustment calculation means 7
1 also exceeds the upper limit value as shown in FIG.

【0012】その結果、燃料流量PV1 が図示aに示す
ように100%に増加し、これに伴って図示cのごとく
炉温が上昇し、図示ハ時点を過ぎたときに図示dのよう
に操作信号MV2 が減少し初め、前述するリセット・ワ
インドアップ分を切り崩して暫くして正常値に落ち着
く。しかし、この間に炉内温度PV2 が目標値SV2
大きく越えてオーバーシュート(行き過ぎ)減少が生じ
る。
[0012] As a result, the fuel flow rate PV 1 is increased to 100%, as shown in the drawing a, which furnace temperature as shown in the drawing c is increased with, as shown d when only the illustrated Ha time The operation signal MV 2 begins to decrease, and the reset windup amount is cut off and settles to a normal value for a while. However, during this time, the furnace temperature PV 2 greatly exceeds the target value SV 2 and overshoot (overshoot) decreases.

【0013】[0013]

【発明が解決しようとする課題】従って、以上のように
従来のカスケード制御装置においては、1次制御系3に
大きな外乱が入ったとき、制御量が頭打ちとなり、この
間にリセット・ワインドアップが発生し、外乱の消失後
でもリセット・ワインドアップのために、2次制御系4
の制御量PV2 が大きくオーバーシュートしてしまう問
題がある。 (1) その結果、一般に、制御量がオーバーシュート
すると、例えば製品となる被加熱物の品質が低下した
り、また被加熱物の中には絶対にオーバーシュートさせ
てはならない製品もある。 (2) また、外乱の解消時、リセット・ワインドアッ
プ分を切り崩す間、燃焼量の過大期間が長く継続するた
めに、炉等の関連機器の劣化が促進し、かつ、無駄なエ
ネルギーを消費し、公害の原因にもなる。
Therefore, as described above, in the conventional cascade control device, when a large disturbance is introduced into the primary control system 3, the control amount reaches a peak, and reset windup occurs during this period. However, in order to reset and wind up even after the disturbance disappears, the secondary control system 4
There is a problem in that the control amount PV 2 of 1 above largely overshoots. (1) As a result, in general, when the control amount overshoots, for example, the quality of the product to be heated deteriorates, and some products to be heated must never be overshot. (2) In addition, when the disturbance is eliminated and the reset / windup portion is cut off, the excessive combustion period continues for a long time, which accelerates deterioration of related equipment such as the furnace and consumes unnecessary energy. It also causes pollution.

【0014】本発明は、上記実情に鑑みてなされたもの
で、1次制御系の出力情報を迅速に2次制御系で取り込
み、2次制御系の積分動作を適切に制御することによ
り、リセット・ワインドアップを防止するカスケード制
御装置を提供することにある。
The present invention has been made in view of the above circumstances, and the output information of the primary control system is promptly taken in by the secondary control system, and the integration operation of the secondary control system is appropriately controlled to reset. -To provide a cascade control device that prevents windup.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に対応する発明は、1次制御系の目標値
を、2次制御系の出力で支配するように構成したカスケ
ード制御装置において、前記1次制御系の操作端の特性
が逆作動の場合、前記1次制御系は、予め上・下限制限
値および変化率制限値の何れか一方または両方が設定さ
れ、前記1次制御系のPID調節演算手段の出力である
操作信号が前記上・下限制限値,変化率制限値を越えた
か否かを判断し、越えた時には制限逸脱信号を出力する
制限逸脱信号出力手段を設け、前記2次制御系は、前記
制限逸脱信号と当該2次制御系のPID調節演算手段の
中の速度形I調節演算出力との符号を判別し、同符号の
ときに前記2次制御系のPID調節演算手段の積分動作
を停止する積分制御手段を設けたカスケード制御装置で
ある。
In order to solve the above problems, the invention according to claim 1 is directed to a cascade control in which a target value of a primary control system is controlled by an output of a secondary control system. In the apparatus, when the characteristic of the operating end of the primary control system is reverse operation, one or both of the upper / lower limit limit value and the change rate limit value are set in advance in the primary control system, A limit deviation signal output means is provided for judging whether or not the operation signal output from the PID adjustment calculation means of the control system exceeds the upper / lower limit limit value and the change rate limit value, and when it exceeds the limit deviation signal. The secondary control system determines the sign of the limit deviation signal and the speed type I adjustment operation output in the PID adjustment operation means of the secondary control system. Integral control for stopping the integral operation of the PID adjustment calculation means Stage is a cascade control device provided with a.

【0016】この請求項1に対応する発明は、以上のよ
うな手段を講じたことにより、1次制御系の操作端の特
性が逆作動の場合、1次制御系のPID調節演算手段の
出力である操作信号が予め定めた上・下限制限値等を越
えたとき、制限逸脱信号を2次制御系に送出する。
In the invention corresponding to claim 1, when the characteristics of the operating end of the primary control system are reverse operation, the output of the PID adjustment computing means of the primary control system is provided by taking the above means. When the operation signal exceeds a predetermined upper / lower limit value or the like, a limit deviation signal is sent to the secondary control system.

【0017】この2次制御系は、1次制御系の制限逸脱
信号と2次制御系の速度形I調節演算出力との符号から
同符号の場合には2次制御系の積分動作が1次制御系の
出力である操作信号を拡大する方向にあると判断し、2
次制御系の積分動作を停止するので、2次PID調節演
算手段のリセット・ワインドアップを防止できる。
In this secondary control system, when the sign of the limit deviation signal of the primary control system and the output of the speed type I adjustment calculation of the secondary control system have the same sign, the integral operation of the secondary control system is the first order. It is judged that there is a direction to expand the operation signal which is the output of the control system, and 2
Since the integral operation of the secondary control system is stopped, the reset / windup of the secondary PID adjustment computing means can be prevented.

【0018】次に、請求項2に対応する発明は、1次制
御系の操作端の特性が逆作動の場合、前記1次制御系
は、予め上・下限制限値および変化率制限値の何れか一
方または両方が設定され、前記1次制御系のPID調節
演算手段の出力である操作信号が前記上・下限制限値,
変化率制限値を越えた否かの信号を出力する操作信号状
態出力手段を設け、前記2次制御系は、前記操作信号状
態出力手段の出力から前記操作信号が前記上・下限制限
値,変化率制限値を越えていないとき、または当該操作
信号が前記上・下限制限値を越えているときの信号と前
記2次制御系のPID調節演算手段の中の速度形I調節
演算出力との符号が異符号のときに前記2次制御系のP
ID調節演算手段の積分動作を実行する積分制御手段を
設けたカスケード制御装置である。
Next, in the invention corresponding to claim 2, when the characteristic of the operating end of the primary control system is reverse operation, the primary control system preliminarily determines which of the upper / lower limit limit value and the change rate limit value. Either or both of them are set, and the operation signal output from the PID adjustment calculation means of the primary control system is the upper / lower limit limit value,
An operation signal state output means for outputting a signal indicating whether or not the change rate limit value is exceeded is provided, and the secondary control system changes the operation signal from the output of the operation signal state output means to the upper / lower limit value or change. Sign of the signal when the rate limit value is not exceeded or when the operation signal exceeds the upper / lower limit values and the speed type I adjustment operation output in the PID adjustment operation means of the secondary control system Is a different sign, P of the secondary control system
It is a cascade control device provided with an integration control means for executing the integration operation of the ID adjustment calculation means.

【0019】この請求項2に対応する発明は、以上のよ
うな手段を講じたことにより、1次制御系においてPI
D調節演算手段の操作信号が予め定めた上・下限制限値
等を越えた否かの信号を出力し、2次制御系に送出す
る。
In the invention corresponding to claim 2, the PI is used in the primary control system by taking the above means.
A signal indicating whether or not the operation signal of the D adjustment calculation means exceeds a predetermined upper / lower limit value or the like is output and sent to the secondary control system.

【0020】この2次制御系は、1次制御系から送られ
てくる信号から上・下限制限値等を越えていないとき、
または1次制御系から送られてくる信号と2次制御系の
速度形I調節演算出力との符号が異符号のとき、2次P
ID調節手段のリセット・ワインドアップを発生させる
条件がないと判断し、2次制御系のPID調節演算手段
の積分動作を実行させる。
This secondary control system, when the signal sent from the primary control system does not exceed the upper and lower limit values,
Alternatively, if the sign of the signal sent from the primary control system and the sign of the speed type I adjustment calculation output of the secondary control system are different, the secondary P
It is determined that there is no condition for causing the reset / windup of the ID adjusting means, and the integrating operation of the PID adjusting calculating means of the secondary control system is executed.

【0021】次に、請求項3に対応する発明は、1次制
御系の目標値を、2次制御系の出力で支配するように構
成したカスケード制御装置において、前記1次制御系の
操作端の特性が正作動の場合、前記1次制御系は、予め
上・下限制限値および変化率制限値の何れか一方または
両方が設定され、前記1次制御系のPID調節演算手段
の出力である操作信号が前記上・下限制限値,変化率制
限値を越えたか否かを判断し、越えた時には制限逸脱信
号を出力する制限逸脱信号出力手段を設け、前記2次制
御系は、前記制限逸脱信号と当該2次制御系のPID調
節演算手段の中の速度形I調節演算出力との符号を判別
し、異符号のときに前記2次制御系のPID調節演算手
段の積分動作を停止する積分制御手段を設けたカスケー
ド制御装置である。
Next, the invention according to claim 3 is a cascade control device configured such that the target value of the primary control system is controlled by the output of the secondary control system. If the characteristic of is positive operation, one or both of the upper / lower limit limit value and the change rate limit value are set in advance in the primary control system, and this is the output of the PID adjustment computing means of the primary control system. A limit deviation signal output means is provided for judging whether or not the operation signal exceeds the upper / lower limit limit value and the change rate limit value, and outputs a limit deviation signal when the operation signal exceeds the limit value. An integral that determines the sign of the signal and the speed type I adjustment calculation output in the PID adjustment calculation means of the secondary control system, and stops the integration operation of the PID adjustment calculation means of the secondary control system when the sign is different. It is a cascade control device provided with control means.

【0022】この請求項3に対応する発明は、請求項1
に対応する発明と比較し、1次制御系の操作端の特性が
全く逆の場合であって、それによる構成および作用を除
けば、請求項1に対応する発明と全く同様の作用を有す
る。
The invention corresponding to claim 3 is claim 1
When the characteristics of the operating end of the primary control system are completely opposite to those of the invention corresponding to the above, the present invention has exactly the same operation as the invention corresponding to claim 1 except for the configuration and operation.

【0023】さらに、請求項4に対応する発明は、1次
制御系の操作端の特性が正作動の場合、前記1次制御系
は、予め上・下限制限値および変化率制限値の何れか一
方または両方が設定され、前記1次制御系のPID調節
演算手段の出力である操作信号が前記上・下限制限値,
変化率制限値を越えた否かの信号を出力する操作信号状
態出力手段を設け、前記2次制御系は、前記操作信号状
態出力手段の出力から前記操作信号が前記上・下限制限
値,変化率制限値を越えていないとき、または当該操作
信号が前記上・下限制限値を越えているときの信号と前
記2次制御系のPID調節演算手段の中の速度形I調節
演算出力との符号が同符号のときに前記2次制御系のP
ID調節演算手段の積分動作を実行する積分制御手段を
設けたカスケード制御装置である。
Further, in the invention according to claim 4, when the characteristic of the operating end of the primary control system is a positive operation, the primary control system preliminarily sets one of the upper / lower limit limit value and the change rate limit value. One or both of them are set, and the operation signal output from the PID adjustment computing means of the primary control system is the upper / lower limit limit value,
An operation signal state output means for outputting a signal indicating whether or not the change rate limit value is exceeded is provided, and the secondary control system changes the operation signal from the output of the operation signal state output means to the upper / lower limit value or change. Sign of the signal when the rate limit value is not exceeded or when the operation signal exceeds the upper / lower limit values and the speed type I adjustment operation output in the PID adjustment operation means of the secondary control system Are of the same sign, P of the secondary control system
It is a cascade control device provided with an integration control means for executing the integration operation of the ID adjustment calculation means.

【0024】この請求項4に対応する発明も、請求項2
に対応する発明と比較し、1次制御系の操作端の特性が
全く逆の場合であって、それによる構成および作用を除
けば、請求項2に対応する発明と全く同様の作用を有す
る。
The invention corresponding to claim 4 is also defined in claim 2.
When the characteristics of the operating end of the primary control system are completely opposite to those of the invention corresponding to the above, the same operation as that of the invention according to claim 2 is achieved except for the configuration and the operation by it.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1は請求項1に係わるカ
スケード制御装置の一実施形態を示す構成図である。な
お、従来装置である図5と同一部分には同一符号を付
し、その詳しい説明は省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing an embodiment of a cascade control device according to claim 1. The same parts as those in the conventional device shown in FIG. 5 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0026】このカスケード制御装置の制御系は、1次
PID制御系10および2次PID制御系30によって
構成されている。この1次PID制御系10は、目標値
信号SV1nと燃料流量測定手段2からの制御量PV1n
の偏差e1n(=SV1n−PV1n)を求める偏差演算手段
11と、この偏差e1nを用いて速度形(P+D)調節演
算を実行し、△(P+D)1nを出力する速度形(P+
D)調節演算手段12と、前記偏差e1nを用いて速度形
I調節演算を実行し、△I1nを出力する速度形I調節演
算手段13と、この速度形I調節演算手段13の出力系
に設けられたスイッチ手段14と、このスイッチ手段1
4を経由してくるI調節演算出力△I1nと前記速度形
(P+D)調節演算手段12の調節演算出力△(P+
D)1nとを加算合成する加算手段15と、この加算手段
15で加算合成された速度形PID調節出力信号を位置
形PID調節出力信号MV1nに変換する信号変換手段1
6と、この信号変換手段16の位置形PID調節出力信
号MV1nを上・下限制限値H・Lで制限する上下限制限
手段17と、この上下限制限手段17の出力を変化率制
限を課して操作信号MV′1nとして発信する変化率制限
手段18とが設けられている。
The control system of this cascade control device comprises a primary PID control system 10 and a secondary PID control system 30. The primary PID control system 10 includes a deviation calculating means 11 for obtaining a deviation e 1n (= SV 1n −PV 1n ) between the target value signal SV 1n and the control amount PV 1n from the fuel flow rate measuring means 2, and the deviation e. Speed type (P + D) adjustment calculation is executed using 1n and Δ (P + D) 1n is output.
D) Adjustment calculation means 12, speed type I adjustment calculation means 13 that executes speed type I adjustment calculation using the deviation e 1n , and outputs ΔI 1n, and output system of this speed type I adjustment calculation means 13 Switch means 14 provided in the
4 I adjustment calculation output ΔI 1n and the speed type (P + D) adjustment calculation means 12 adjustment calculation output Δ (P +
An adding means 15 for adding combines the D) 1n, signal conversion means 1 for converting the velocity-type PID controller output signal added synthesized by this adding means 15 into position type PID regulation output signal MV 1n
6, an upper / lower limit limiting means 17 for limiting the position type PID adjustment output signal MV 1n of the signal converting means 16 with upper / lower limit limiting values H / L, and a change rate limitation for the output of the upper / lower limit limiting means 17. Then, the change rate limiting means 18 for transmitting as the operation signal MV ′ 1n is provided.

【0027】また、1次PID制御系10においては、
信号変換手段16の出力側と変化率制限手段18の出力
側との間に設けられ、信号変換手段16の位置形PID
調節出力信号MV1nの前回値MV1n-1と変化率制限手段
18の出力信号MV1n′の前回値MV1n-1′との差,つ
まり前回の制限を越えている量を求めて2次制御系30
に送出する制限逸脱信号出力手段19と、この制限逸脱
信号出力手段19の出力と前記速度形I調節演算手段1
3の出力とを乗算する乗算手段20と、この乗算手段2
0の出力から符号を判別し、正符号,つまり両者が同符
号と判別したときには積分動作によって益々逸脱量が拡
大する方向にあると判断し前記スイッチ手段14をオフ
状態に設定し積分動作を停止させる符号判別手段21と
が設けられている。
Further, in the primary PID control system 10,
The position type PID of the signal converting means 16 is provided between the output side of the signal converting means 16 and the output side of the change rate limiting means 18.
The difference between the previous value MV 1n-1 of the adjustment output signal MV 1n and the previous value MV 1n-1 ′ of the output signal MV 1n ′ of the rate -of- change limiting means 18, that is, the amount exceeding the previous limit is calculated to obtain the secondary value. Control system 30
Limit deviation signal output means 19 for sending to the vehicle, the output of the limit deviation signal output means 19 and the speed type I adjustment calculation means 1
3 and the multiplication means 2 for multiplying the output of
The sign is discriminated from the output of 0, and when it is a positive sign, that is, when both are discriminated to be the same sign, it is judged that the deviation amount is further increased by the integral operation, and the switch means 14 is set to the off state to stop the integral operation. A code discriminating means 21 is provided.

【0028】一方、2次PID制御系30は、炉内温度
測定手段8の炉内温度測定信号PV2nと炉内温度目標値
SV2nとの偏差e2n(=SV2n−PV2n)を求める偏差
演算手段31と、この偏差e2nを用いて速度形(P+
D)調節演算を実行し、△(P+D)2nを出力する速度
形(P+D)調節演算手段32と、前記偏差e2nを用い
て速度形I調節演算を実行し、△I2nを出力する速度形
I調節演算手段33と、この速度形I調節演算手段33
の出力系にシリアルに設けられたスイッチ手段34、3
5と、これらスイッチ手段34,35を経由してくるI
調節演算出力△I2nと前記速度形(P+D)調節演算手
段32の調節演算出力△(P+D)2nとを加算合成する
加算手段36と、この加算手段36で加算合成された速
度形PID調節出力信号を位置形PID調節出力信号M
2nに変換する信号変換手段37と、この信号変換手段
37の位置形PID調節出力信号MV2nを上・下限制限
値H・Lで制限する上下限制限手段38と、この上下限
制限手段38の出力を変化率制限を課して操作信号MV
2n′として発信する変化率制限手段39とが設けられて
いる。
On the other hand, the secondary PID control system 30 obtains the deviation e 2n (= SV 2n -PV 2n ) between the furnace temperature measurement signal PV 2n of the furnace temperature measuring means 8 and the furnace temperature target value SV 2n. By using the deviation calculating means 31 and this deviation e 2n , the velocity type (P +
Speed D) running adjusting operation, run △ and (P + D) rate type that outputs a 2n (P + D) adjusting operation means 32, the velocity type I regulatory calculation using the deviation e 2n, and outputs the △ I 2n Type I adjustment calculation means 33 and this speed type I adjustment calculation means 33
Switch means 34, 3 serially provided in the output system of
5 and I coming through these switch means 34 and 35
Regulation computation output △ I 2n and the velocity type and (P + D) adjusting the calculated output △ (P + D) adding means 36 for adding combines the 2n adjustment calculation means 32, adds the synthesized velocity type PID regulation output from this adding means 36 Signal is position type PID control output signal M
V 2n signal converting means 37, position type PID adjustment output signal MV 2n of the signal converting means 37 is limited by upper and lower limit limiting values H and L, and upper and lower limit limiting means 38. Of the output of the control signal MV
A change rate limiting means 39 for transmitting as 2n 'is provided.

【0029】さらに、2次PID制御系30において
は、信号変換手段37の出力側と変化率制限手段39の
出力側との間に設けられ、信号変換手段37の位置形P
ID調節出力信号MV2nの前回値MV2n-1と変化率制限
手段39の出力信号MV2n′の前回値MV2n-1′との
差,つまり前回の制限を越えている量を求める制限逸脱
量取得手段40と、この制限逸脱量取得手段40の出力
と前記速度形I調節演算手段33の出力とを乗算する第
1の乗算手段41と、この第1の乗算手段41の出力か
ら符号を判別し、正符号,つまり両者が同符号と判別し
たとき前記スイッチ手段34をオフ状態に設定し積分動
作を停止させる第1の符号判別手段42と、前記1次P
ID制御系10を構成する制限逸脱信号出力手段19の
出力を取り込み、この制限逸脱信号出力手段19の出力
と速度形I調節演算手段33の出力とを乗算する第2の
乗算手段43と、この第2の乗算手段43の出力から符
号を判別し、正符号の場合にスイッチ手段35をオフ状
態に設定し2次PID制御系30の積分動作を停止する
第2の符号判別手段44とが設けられている。
Further, in the secondary PID control system 30, it is provided between the output side of the signal converting means 37 and the output side of the change rate limiting means 39, and the position type P of the signal converting means 37 is provided.
The difference between the previous value MV 2n-1 of the ID adjustment output signal MV 2n and the previous value MV 2n-1 ′ of the output signal MV 2n ′ of the rate -of- change limiting means 39, that is, the limit deviation for obtaining the amount exceeding the previous limit An amount acquisition means 40, a first multiplication means 41 for multiplying the output of the limit deviation amount acquisition means 40 and an output of the speed type I adjustment calculation means 33, and a code from the output of the first multiplication means 41 If the positive sign, that is, the both signs are the same sign, the switch means 34 is set to the off state to stop the integral operation, and the primary P and the primary P.
Second multiplication means 43 for taking in the output of the limit deviation signal output means 19 constituting the ID control system 10 and multiplying the output of the limit deviation signal output means 19 with the output of the speed type I adjustment calculation means 33, There is provided a second sign discriminating means 44 for discriminating the sign from the output of the second multiplying means 43 and setting the switch means 35 in the off state to stop the integrating operation of the secondary PID control system 30 when the sign is a positive sign. Has been.

【0030】次に、以上のように構成されたカスケード
制御装置の動作について説明するに先立ち、先ず、連続
時間系におけるPID制御について述べる。このPID
制御の基本式は、 C(s)=KP [1+{1/(TI ・s)} +{TD ・s/(1+ηTD ・s)}] ……(1) で表せる。但し、KP :比例ゲイン、TI :積分時間、
D :微分時間、s:ラプラス演算子、η:微分係数
(1/η:微分ゲイン)である。
Before explaining the operation of the cascade control device configured as described above, first, PID control in a continuous time system will be described. This PID
The basic control formula can be expressed by C (s) = K P [1+ {1 / (T I · s)} + {T D · s / (1 + ηT D · s)}] (1). However, K P : proportional gain, T I : integration time,
T D: derivative time, s: Laplace operator, eta: a: (differential gain 1 / eta) derivative.

【0031】そこで、以上のようなPID制御の基本式
をディジタル速度形PID演算式に変換すると、下記式
のようになる。 △MVn =KP {(en −en-1 )+(△t/TI )・en +△dn } …… (2) ここで、 △dn =dn-1 +[{TD /(△t+ηTD )}・(en −en-1 )] −{△t/(△t+ηTD )}・dn-1 …… (3) であり、また、 MVn =MVn-1 +△MVn …… (4) で表すことができる。
Therefore, when the above basic expression of PID control is converted into a digital speed type PID arithmetic expression, the following expression is obtained. △ MV n = K P {( e n -e n-1) + (△ t / T I) · e n + △ d n} ...... (2) where, △ d n = d n- 1 + [ {T D / (△ t + ηT D)} · (e n -e n-1)] - a {△ t / (△ t + ηT D)} · d n-1 ...... (3), also, MV n = MV n-1 + ΔMV n can be expressed by (4).

【0032】但し、上式においてMVn :操作信号の現
在値、△MVn :操作信号の変化分、MVn-1 :操作信
号の前回値、en :偏差の現在値、en-1 :偏差の前回
値、△t:制御周期、△dn :速度形微分調節演算出
力、dn-1 :微分調節演算出力の前回値である。
However, in the above equation, MV n : current value of operation signal, ΔMV n : change of operation signal, MV n-1 : previous value of operation signal, e n : current value of deviation, e n-1 : Previous value of deviation, Δt: control cycle, Δd n : speed type differential adjustment calculation output, d n-1 : previous value of differential adjustment calculation output.

【0033】そして、後の説明のために、前記(2)式
〜(4)式から次のような式を定義することができる。 速度形(P+D)調節演算信号△(P+D)n =KP {(en −en-1 )+△dn } …… (5) 速度形I(積分)調節演算信号△In =KP (△t/TI )・en …… (6) 以下、本発明に係わるカスケード制御装置の動作に関
し、以上の各関係式を前提として説明する。
For the following description, the following equations can be defined from the equations (2) to (4). Velocity type (P + D) adjusting operation signal △ (P + D) n = K P {(e n -e n-1) + △ d n} ...... (5) velocity type I (integral) adjusting operation signal △ I n = K P (△ t / T I) · e n ...... (6) below, relates to the operation of the cascade control system according to the present invention will be described on the assumption above each relation.

【0034】今、図1に示す1次PID調節手段10の
偏差演算手段11は、目標値信号SV1nと燃料流量測定
手段2の燃料流量測定信号(制御量)PV1nとの偏差e
1n(=SV1n−PV1n)を求めた後、この偏差e1nを速
度形(P+D)調節演算手段12および速度形I調節演
算手段13に供給する。ここで、速度形(P+D)調節
演算手段12は、偏差e1nに基づいてPD調節演算を実
行し、 △(P+D)1n=KP {(e1n−e1n-1)+△d1n} …… (7) なるPD調節演算出力△(P+D)1nを求め、一方、速
度形I調節演算手段13は、偏差e1nに基づいてI調節
演算を実行し、 △I1n=KP (△t/TI )・e1n …… (8) なるI調節演算出力△I1nを求める。
Now, the deviation calculating means 11 of the primary PID adjusting means 10 shown in FIG. 1 is a deviation e between the target value signal SV 1n and the fuel flow rate measuring signal (control amount) PV 1n of the fuel flow rate measuring means 2.
After obtaining 1n (= SV 1n −PV 1n ), this deviation e 1n is supplied to the speed type (P + D) adjustment calculation means 12 and the speed type I adjustment calculation means 13. Here, the speed type (P + D) adjustment calculation means 12 executes the PD adjustment calculation based on the deviation e 1n , and Δ (P + D) 1n = K P {(e 1n −e 1n-1 ) + Δd 1n }. (7) The PD adjustment calculation output Δ (P + D) 1n is obtained, while the speed type I adjustment calculation means 13 executes the I adjustment calculation based on the deviation e 1n, and ΔI 1n = K P (Δ t / T I ) · e 1n (8) Obtain the I adjustment calculation output ΔI 1n .

【0035】そして、速度形(P+D)調節演算手段1
2の出力であるPD調節演算出力△(P+D)1nはその
まま加算手段15に導き、一方、速度形I調節演算手段
13の出力であるI調節演算出力△I1nはスイッチ手段
14による積分処理を介して加算手段15に導き、ここ
で両出力を用いて、 速度形PID調節演算出力△MV1n=△(P+D)1n+処理後の△I1n …… (9) なる加算合成を実行し、速度形−位置形信号変換手段1
6に供給する。
Then, the speed type (P + D) adjustment calculation means 1
The PD adjustment calculation output Δ (P + D) 1n which is the output of No. 2 is directly led to the adding means 15, while the I adjustment calculation output ΔI 1n which is the output of the speed type I adjustment calculation means 13 is integrated by the switch means 14. It is led to the addition means 15 via this, and using both outputs, the velocity type PID adjustment calculation output ΔMV 1n = Δ (P + D) 1n + processed ΔI 1n (9) is executed, Velocity-type signal conversion means 1
6

【0036】この信号変換手段16では、 MV1n=MV1n-1+△MV1n ……(10) なる演算を実行し、速度形PID調節演算出力△MV1n
を位置形PID調節演算出力MV1nに変換する。この位
置形PID調節演算出力MV1nは、上下限制限手段17
および変化率制限手段18を経て最終的な操作信号MV
1n′となり、燃料流量調節弁6に印加される。
The signal converting means 16 executes the calculation of MV 1n = MV 1n -1 + ΔMV 1n (10) and outputs the speed type PID adjustment calculation output ΔMV 1n.
To the position type PID adjustment calculation output MV 1n . The position type PID adjustment calculation output MV 1n is used as the upper / lower limit limiting means 17.
And the final operation signal MV through the change rate limiting means 18.
1n ′, which is applied to the fuel flow rate control valve 6.

【0037】このとき、制限逸脱信号出力手段19は、
位置形PID調節演算出力MV1nの前回値MV1n-1と最
終的な操作信号MV1n′の前回値MV1n-1′とを用い
て、下記する(11)式に従って制限逸脱信号△L1n-1
を求める。
At this time, the limit deviation signal output means 19 is
By using the previous value MV 1n-1 position type PID regulation computation output MV 1n and the final and 'previous value MV 1n-1 of the' operation signal MV 1n, limit deviation signal △ L 1n accordance with the following for (11) -1
Ask for.

【0038】 △L1n-1=MV1n-1−V1n-1′ ……(11) そして、1次PID制御系10側では、乗算手段20が
制限逸脱信号出力手段19の出力△L1n-1と速度形I調
節演算出力△I1nとを乗算し、 δ1n=△L1n-1・△I1n ……(12) なる乗算結果を求めた後、これを符号判別手段21に導
入する。この符号判別手段21は、乗算手段20による
乗算結果δ1nの符号が異符号の場合にはスイッチ手段1
4をオン状態のままにして積分動作を続行させ、一方、
正符号の場合にはスイッチ手段14をオフ状態に設定し
積分動作を停止させる。
ΔL 1n-1 = MV 1n-1 −V 1n-1 ′ (11) Then, on the primary PID control system 10 side, the multiplication means 20 outputs the output ΔL 1n of the limit deviation signal output means 19. -1 is multiplied by the velocity type I adjustment calculation output ΔI 1n to obtain a multiplication result of δ 1n = ΔL 1n-1 · ΔI 1n (12), and then this is introduced into the code discriminating means 21. To do. This sign discriminating means 21 is a switch means 1 when the sign of the multiplication result δ 1n by the multiplying means 20 is a different sign.
4 is left in the ON state to continue the integration operation, while
In the case of a plus sign, the switch means 14 is set to the off state and the integration operation is stopped.

【0039】ここで、積分動作を制御する意義を説明す
る。今、前記(12)式から得られる乗算結果δ1nが正
符号の場合について考えると、δ1n=△L1n-1・△I1n
>0なる関係となっており、この関係から少なくともP
ID調節演算出力が上・下限制限値に引っかかってお
り、かつ、速度形I調節演算が行われており、しかも速
度形I調節演算出力が制限値を越えて拡大する方向にあ
るので、このような条件のときには積分動作を停止さ
せ、一方、負符号の場合には速度形I調節演算出力が制
限値オーバを縮小する方向に作用していると判定し、ス
イッチ手段14をオン状態のままにして積分動作を続行
させる。
Here, the significance of controlling the integration operation will be described. Considering now the case where the multiplication result δ 1n obtained from the above equation (12) is a positive sign, δ 1n = ΔL 1n−1 · ΔI 1n
> 0, and at least P
Since the ID adjustment calculation output is caught by the upper and lower limit values, the speed type I adjustment calculation is performed, and the speed type I adjustment calculation output is in the direction of expanding beyond the limit value, Under these conditions, the integral operation is stopped, while in the case of a negative sign, it is determined that the speed type I adjustment calculation output is acting in a direction to reduce the limit value over, and the switch means 14 is kept in the ON state. To continue the integration operation.

【0040】一方、2次PID制御系30における乗算
手段41、符号判別手段42およびスイッチ手段34等
においては、1次PID制御系10とほぼ同様な構成お
よび機能を有しており、2次PID制御系30の出力状
態から積分動作を制御しているが、特に1次PID制御
系10と異なる乗算手段43、符号判別手段44および
スイッチ手段35では、1次PID制御系10のPID
調節演算出力,つまり1次側の制限逸脱信号出力手段1
9から得られる前回の制限逸脱信号△L1n-1と2次PI
D制御系30の速度形I調節演算出力△I2nとを乗算
し、 δ2n′=△L1n-1・△I2n ……(13) なる乗算結果δ2nを得た後、符号判別手段44にて乗算
結果δ2n′が正符号であるとき、スイッチ手段35をオ
フ状態に設定し、2次PID制御系30の積分動作を停
止するものである。
On the other hand, the multiplying means 41, the sign discriminating means 42, the switch means 34, etc. in the secondary PID control system 30 have substantially the same configuration and function as the primary PID control system 10, and the secondary PID Although the integral operation is controlled from the output state of the control system 30, the PID of the primary PID control system 10 is particularly controlled by the multiplication means 43, the code determination means 44 and the switch means 35 which are different from the primary PID control system 10.
Control calculation output, that is, the limit deviation signal output means 1 on the primary side
Limit deviation signal ΔL 1n-1 and secondary PI obtained from 9
After multiplying the speed type I adjustment operation output ΔI 2n of the D control system 30 to obtain a multiplication result δ 2n of δ 2n ′ = ΔL 1n−1 · ΔI 2n (13), the code discrimination means When the multiplication result δ 2n ′ is a positive sign at 44, the switch means 35 is set to the off state and the integration operation of the secondary PID control system 30 is stopped.

【0041】ここで、δ2n′=△L1n-1・△I2n>0な
る関係を有することは、1次PID制御系10の出力が
制限値に引っかかっており、かつ、2次PID制御系3
0の速度形I調節演算出力△I2nが存在し、さらに2次
PID制御系30の速度形I調節演算出力△I2nが1次
PID制御系10の制限値オーバを拡大する方向にある
ことを示しているので、δ2n′=△L1n-1・△I2n>0
なる条件のとき、2次PID制御系30の積分動作を停
止する。
Here, the relationship of δ 2n ′ = ΔL 1n−1 · ΔI 2n > 0 means that the output of the primary PID control system 10 is caught at the limit value and the secondary PID control is performed. System 3
0 velocity type I regulatory operation output of △ I 2n is present and further secondary PID control system 30 velocity type I regulatory operation output △ I 2n of is in a direction to expand the limit value over a primary PID control system 10 Δ 2n ′ = ΔL 1n−1 · ΔI 2n > 0
Under these conditions, the integration operation of the secondary PID control system 30 is stopped.

【0042】従って、以上のような構成の実施形態によ
れば、1次,2次PID制御系10,30内の操作出力
状態を個別に監視し、当該操作出力状態が予め上・下限
制限値,変化率等を越えたとき、自身の速度形I調節演
算出力が制限逸脱信号を益々拡大する方向にあれば、自
身の積分動作を停止し、その拡大するのを防止する。こ
れによって、1次PID制御系10が制限値に引っかか
って頭打ちとなったことによって生じる2次PID制御
系30のリセット・ワインドアップを完全に防止でき、
カスケード制御装置の制御性および安全性を大きく改善
できる。
Therefore, according to the embodiment having the above-mentioned configuration, the operation output states in the primary and secondary PID control systems 10 and 30 are individually monitored, and the operation output states are preset to the upper and lower limit values. When the output of the speed type I adjustment operation of the self is in the direction of further expanding the limit deviation signal when the rate of change is exceeded, the integral operation of the self is stopped to prevent the expansion. As a result, it is possible to completely prevent the reset windup of the secondary PID control system 30 caused by the primary PID control system 10 being caught at the limit value and reaching its peak.
The controllability and safety of the cascade control device can be greatly improved.

【0043】因みに、図1に示す制御装置における動作
特性について図6を参照して説明する。図6に示すよう
に、図示イ時点において燃料圧力が大きく急低下する
と、1次PID制御系10の燃料流量PV1 は図示a′
のように低下するので、当該PV1 を目標値SV1 に一
致させるために操作信号を図示b′のように増加させ
る。その結果、操作信号MV1 は、上限制限値である1
00%に達するが、燃料圧力が低いために燃料流量PV
1 は図示a′のごとき目標値SV1 に達せずに低い状態
を推移し、炉内温度に影響を及ぼす。つまり、2次PI
D調節演算手段4に属する炉内温度PV2 が図示c′の
ように目標値温度SV2 よりも低いままの状態を推移す
る。
The operating characteristics of the control device shown in FIG. 1 will be described with reference to FIG. As shown in FIG. 6, when the fuel pressure drops sharply at the time point a in the figure, the fuel flow rate PV 1 of the primary PID control system 10 becomes a ′ in the figure.
Therefore, the operation signal is increased as indicated by b'in the figure in order to bring the PV 1 into agreement with the target value SV 1 . As a result, the operation signal MV 1 is 1 which is the upper limit value.
Although it reaches 00%, the fuel flow rate PV due to the low fuel pressure
1 changes to a low state without reaching the target value SV 1 as shown in a ', and affects the temperature in the furnace. That is, the secondary PI
The in-furnace temperature PV 2 belonging to the D adjustment calculation means 4 remains lower than the target temperature SV 2 as shown in c '.

【0044】このとき、2次PID制御系30の調節演
算出力は、1次PID制御系10の操作信号MV1 が上
限制限値の100%に達した瞬間に制限逸脱信号出力手
段19から制限逸脱信号が2次PID制御系30に送出
するので、この正の制限逸脱信号と2次PID制御系3
0のI調節演算出力とが同符号となるので、符号判別手
段44によってスイッチ手段35がオフ状態に設定さ
れ、2次PID制御系30の積分動作が停止するので、
操作信号MV2 が図示d′のようになり、いわゆる操作
信号が頭打ちの間に積分動作の進行によってリセット・
ワインドアップは防止できる。
At this time, the regulation calculation output of the secondary PID control system 30 deviates from the limitation deviation signal output means 19 at the moment when the operation signal MV 1 of the primary PID control system 10 reaches 100% of the upper limit value. Since the signal is sent to the secondary PID control system 30, this positive limit deviation signal and the secondary PID control system 3
Since the I adjustment calculation output of 0 has the same sign, the sign judging means 44 sets the switch means 35 to the off state, and the integration operation of the secondary PID control system 30 is stopped.
The operation signal MV 2 becomes as shown in d'in the figure, and the so-called operation signal is reset / reset due to the progress of the integration operation while the peak value is reached.
Windup can be prevented.

【0045】その後、図示ロ時点において燃料圧力が回
復すると、1次PID制御系10の操作信号は100%
となっている状態から、先ず、燃料流量PV1 が図示
a′のように増加し、これに伴って炉温が上昇し、全く
通常の制御によって正常動作に落ち着く。このように炉
内温度PV2 は図示c′のように速かに目標値に達し、
オーバーシュート(行き過ぎ)は発生しない。
Thereafter, when the fuel pressure is restored at the time point B in the figure, the operation signal of the primary PID control system 10 is 100%.
From the above state, first, the fuel flow rate PV 1 increases as shown in a ', the furnace temperature rises accordingly, and the normal operation is stabilized by completely normal control. In this way, the furnace temperature PV 2 quickly reaches the target value as shown by c ′ in the figure,
No overshoot occurs.

【0046】次に、図2は請求項2に係わるカスケード
制御装置の一実施形態を示す構成図である。なお、同図
において図1と同一部分には同一符号を付してその詳し
い説明は省略し、以下、特に図1と比較して異なる部分
について説明する。
Next, FIG. 2 is a block diagram showing an embodiment of the cascade control device according to the present invention. In the figure, the same parts as those in FIG. 1 are designated by the same reference numerals and the detailed description thereof will be omitted, and hereinafter, different parts will be described particularly in comparison with FIG.

【0047】この制御装置は、1次PID制御系10に
制限逸脱信号出力手段19に代えて、操作信号MV1n
上・下限制限値,変化率制限値を越えていないとき、ま
たは当該操作信号MV1nが前記上・下限制限値を越えて
いるときの何れの信号も出力する操作信号状態出力手段
22を設け、また2次PID制御系30を構成する各乗
算手段41,43の出力側に、当該乗算手段41,43
による乗算結果の符号が負の場合または乗算結果がゼロ
の場合を判別したとき、スイッチオン信号を出力する符
号判別手段46,47と、前記速度形I調節演算手段3
3の出力側に各符号判別手段46,47に対応してシリ
アルに設けられ、符号判別手段46,47からスイッチ
オン信号を受けてオン状態に設定されるスイッチ手段4
8,49とを設けた構成である。
In this control device, instead of the limit deviation signal output means 19 in the primary PID control system 10, when the operation signal MV 1n does not exceed the upper / lower limit limit value or the change rate limit value, or the operation signal concerned. An operation signal state output means 22 for outputting any signal when MV 1n exceeds the upper and lower limit values is provided, and the output side of each of the multiplication means 41, 43 constituting the secondary PID control system 30 is provided. , The multiplication means 41, 43
When it is determined that the sign of the result of multiplication by N.sub.2 is negative or the result of multiplication is zero, sign determining means 46, 47 for outputting a switch-on signal and the speed type I adjustment calculating means 3 are provided.
The switch means 4 is provided on the output side of 3 serially corresponding to the respective code discriminating means 46 and 47, and receives the switch-on signal from the code discriminating means 46 and 47 and is set to the ON state.
8 and 49 are provided.

【0048】次に、以上のように構成された制御装置の
動作について説明する。1次PID調節手段10を構成
する減算機能をもつ操作信号状態出力手段22の出力が
乗算手段43に導入されると、この乗算手段43では、
操作信号状態出力手段22の出力△L1n-1と2次PID
制御系30の速度形I調節演算出力△I2nとを乗算し、
この乗算出力δ2n′(=△L1n-1・△I2n)を符号判別
手段47に導く。この符号判別手段47は、乗算出力δ
2n′がゼロまたは負符号のときにはスイッチオン信号を
出力してスイッチ手段49をオン状態に設定し、2次P
ID制御系30の積分動作を実行する。
Next, the operation of the control device configured as described above will be described. When the output of the operation signal state output means 22 having the subtraction function which constitutes the primary PID adjustment means 10 is introduced into the multiplication means 43, the multiplication means 43
The output ΔL 1n-1 of the operation signal status output means 22 and the secondary PID
The speed type I adjustment calculation output ΔI 2n of the control system 30 is multiplied,
This multiplication output δ 2n ′ (= ΔL 1n−1 · ΔI 2n ) is guided to the code discriminating means 47. The sign discriminating means 47 outputs the multiplication output δ.
When 2n 'is zero or a negative sign, a switch-on signal is output to set the switch means 49 to the on-state, and the secondary P
The integration operation of the ID control system 30 is executed.

【0049】そこで、δ2n′=△L1n-1・△I2n≦0の
意味およびかかる条件下の処理について説明する。 (1) δ2n′=△L1n-1・△I2n<0のとき。
The meaning of δ 2n ′ = ΔL 1n−1 · ΔI 2n ≦ 0 and the processing under such conditions will be described. (1) When δ 2n ′ = ΔL 1n−1 · ΔI 2n <0.

【0050】この場合には、△L1n-1と△I2nとがある
値をもち、互いに異なる符号をもっていることを意味す
る。△L1n-1がある値をもっているということは、1次
PID制御系10の出力である操作信号が制限値(上下
限制限値または変化率制限値)に引っかかっていること
を意味し、また△I2nがある値をもっているということ
は、2次PID制御系30の速度形I調節演算出力が存
在していることを意味し、さらにこれら両者の符号が異
なる符号となっていることは、2次PID制御系30の
速度形I調節演算出力が1次PID制御系10の出力で
ある操作信号の制限逸脱を解消する方向にあることを意
味する。
In this case, it means that ΔL 1n-1 and ΔI 2n have certain values and have different signs. ΔL 1n-1 having a certain value means that the operation signal which is the output of the primary PID control system 10 is caught at the limit value (upper / lower limit limit value or change rate limit value), and The fact that ΔI 2n has a certain value means that the speed type I adjustment calculation output of the secondary PID control system 30 exists, and that the signs of these two are different, This means that the speed type I adjustment calculation output of the secondary PID control system 30 is in the direction of eliminating the limit deviation of the operation signal which is the output of the primary PID control system 10.

【0051】そこで、このような条件下のとき、スイッ
チ手段49をオン状態に設定することにより、2次PI
D制御系30の積分動作を実行し、結果として速度形I
調節演算出力△I2nによってリセット・ワインドアップ
の発生を防止するものである。 (2) δ2n′=△L1n-1・△I2n=0のとき。 (イ) △L1n-1=△I2n=0のとき、速度形I調節演
算出力△I2nがゼロであるためにリセット・ワインドア
ップを発生させることがないので、スイッチ手段49を
オン状態に設定し、2次PID制御系30の積分動作を
実行する。 (ロ) △L1n-1≠0で、かつ、△I2n=0のときは、
前記(イ)と同様に速度形I調節演算出力△I2nがゼロ
であるためにリセット・ワインドアップを発生させるこ
とがないので、スイッチ手段49をオン状態に設定し、
2次PID制御系30の積分動作を実行する。 (ハ) △L1n-1=0で、かつ、△I2n≠0のときは、
1次PID制御系10の出力である操作信号が制限値に
引っかかっていないことおよび2次PID制御系30の
速度形I調節演算出力△I2nが存在することを意味す
る。この条件下では、リセット・ワインドアップを発生
させないので、スイッチ手段49をオン状態に設定し、
2次PID制御系30の積分動作を実行する。
Therefore, under such a condition, by setting the switch means 49 to the ON state, the secondary PI is
The integral operation of the D control system 30 is executed, and as a result, the velocity type I
The adjustment calculation output ΔI 2n prevents the occurrence of reset windup. (2) When δ 2n ′ = ΔL 1n−1 · ΔI 2n = 0. (B) When ΔL 1n-1 = ΔI 2n = 0, reset windup does not occur because the speed type I adjustment calculation output ΔI 2n is zero, so the switch means 49 is turned on. And the integration operation of the secondary PID control system 30 is executed. (B) When ΔL 1n-1 ≠ 0 and ΔI 2n = 0,
As in (a) above, since the speed type I adjustment calculation output ΔI 2n is zero, reset windup does not occur, so the switch means 49 is set to the ON state.
The integration operation of the secondary PID control system 30 is executed. (C) When ΔL 1n-1 = 0 and ΔI 2n ≠ 0,
It means that the operation signal which is the output of the primary PID control system 10 is not caught by the limit value and that the speed type I adjustment calculation output ΔI 2n of the secondary PID control system 30 exists. Under this condition, since reset windup does not occur, the switch means 49 is set to the ON state,
The integration operation of the secondary PID control system 30 is executed.

【0052】つまり、この制御装置は、2次PID制御
系30が1次PID制御系10の制限を越えている情報
を取り込むことにより、速度形I調節演算出力を有効に
利用し、1次PID制御系10の出力が制限値に引っか
かって頭打ちになったことによって生じる2次PID制
御系30のリセット・ワインドアップを完全に除去し、
制御性および安全性を改善するものである。
In other words, this control device effectively utilizes the speed type I adjustment calculation output by taking in the information that the secondary PID control system 30 exceeds the limit of the primary PID control system 10, thereby effectively using the primary PID control calculation output. Completely eliminate the reset windup of the secondary PID control system 30 caused by the output of the control system 10 getting stuck at the limit value and reaching a peak.
It improves controllability and safety.

【0053】さらに、図3は請求項3に係わるカスケー
ド制御装置の一実施形態を示す構成図である。なお、同
図において図1と同一部分には同一符号を付して、その
詳しい説明を省略し、以下、特に図1と比較して異なる
部分について説明する。
Further, FIG. 3 is a block diagram showing an embodiment of the cascade control device according to the present invention. In the figure, the same parts as those in FIG. 1 are designated by the same reference numerals, detailed description thereof will be omitted, and hereinafter, different parts will be described particularly in comparison with FIG.

【0054】請求項1に係わる発明では、操作端である
燃料調節弁6の特性が逆動作、つまり操作信号の増加時
に制御量が減少する特性をもったものに対応する発明で
あるが、この請求項3に係わる発明では、操作端である
燃料調節弁6の特性が正動作、つまり操作信号の増加時
に制御量が増加する特性をもったものに対応する発明で
ある。
The invention according to claim 1 is an invention corresponding to the one in which the characteristic of the fuel control valve 6 at the operating end has a reverse operation, that is, the control amount decreases when the operating signal increases. The invention according to claim 3 is an invention corresponding to the one in which the characteristic of the fuel control valve 6 as the operating end has a positive operation, that is, the characteristic that the control amount increases when the operation signal increases.

【0055】具体的には、1次PID制御系10を構成
する乗算手段20の出力側に図1とは逆に乗算出力の符
号が負のときにスイッチ手段14をオフ状態に設定する
符号判別手段23を設け、また2次PID制御系30を
構成する乗算手段43の出力側に同じく図1とは逆に乗
算出力の符号が負のときにスイッチ手段35をオフ状態
に設定する符号判別手段50を設けた構成である。
More specifically, on the output side of the multiplying means 20 constituting the primary PID control system 10, the sign discrimination for setting the switch means 14 to the off state when the sign of the multiplication output is negative contrary to FIG. A sign discriminating means for setting the switch means 35 to the off state when the sign of the multiplying output is negative on the output side of the multiplying means 43 constituting the secondary PID control system 30 and having the means 23. This is a configuration provided with 50.

【0056】このようなカスケード制御装置において
は、図1の対応手段の逆の符号判別を除けば、図1と同
様に動作を行う。つまり、乗算手段20の出力が負符号
のとき、符号判別手段23が1次PID制御系10の積
分動作を停止し、同様に乗算手段43の出力が負符号の
とき、符号判別手段50が2次PID制御系30の積分
動作を停止するものであって、これは前述べするように
燃料調節弁6の特性が異なるためである。
In such a cascade control device, the same operation as that of FIG. 1 is performed except for the opposite sign discrimination of the corresponding means of FIG. That is, when the output of the multiplying means 20 is a negative sign, the sign determining means 23 stops the integration operation of the primary PID control system 10, and when the output of the multiplying means 43 is a negative sign, the sign determining means 50 is 2 The integration operation of the next PID control system 30 is stopped because the characteristics of the fuel control valve 6 are different as described above.

【0057】さらに、図4は請求項4に係わるカスケー
ド制御装置の一実施形態を示す構成図である。請求項2
に係わる発明では、操作端である燃料調節弁6の特性が
逆動作、つまり操作信号の増加時に制御量が減少する特
性をもったものに対応する発明であるが、この請求項3
に係わる発明の他の実施形態では、操作端である燃料調
節弁6の特性が正動作、つまり操作信号の増加時に制御
量が増加する特性をもったものに対応する発明である。
Further, FIG. 4 is a block diagram showing an embodiment of the cascade control device according to the present invention. Claim 2
The invention according to claim 3 corresponds to the invention in which the characteristic of the fuel control valve 6 at the operating end has a reverse operation, that is, the characteristic that the control amount decreases when the operating signal increases.
Another embodiment of the invention according to the invention is an invention corresponding to the one in which the characteristic of the fuel control valve 6 which is the operation end has the characteristic of a positive operation, that is, the control amount increases when the operation signal increases.

【0058】すなわち、このカスケード制御装置の実施
形態は、1次PID制御系10を構成する制限逸脱信号
出力手段19に代えて図2のように操作信号状態出力手
段22を設け、かつ、乗算手段20の出力側に乗算出力
の符号が負のときにスイッチ手段14をオフ状態に設定
する符号判別手段23を設け、一方、2次PID制御系
30を構成する乗算手段43の出力側に乗算出力がゼロ
またはその符号が正符号ののとき、スイッチ手段49を
オン状態に設定し、積分動作を実行させる符号判別手段
51を設けた構成である。この制御装置においては、図
2とは逆の符号判別になっていることを除けば、図2と
は全く同様な動作を行うので、ここではその動作の説明
を省略する。
That is, in this embodiment of the cascade control device, an operation signal state output means 22 is provided as shown in FIG. 2 in place of the limit deviation signal output means 19 constituting the primary PID control system 10, and a multiplication means. A sign discriminating means 23 for setting the switch means 14 to the off state when the sign of the multiplication output is negative is provided on the output side of 20, while the multiplication output is provided on the output side of the multiplying means 43 constituting the secondary PID control system 30. Is a zero or its sign is a positive sign, the switch means 49 is set to the ON state, and the sign discriminating means 51 for executing the integration operation is provided. This control device performs exactly the same operation as that of FIG. 2 except that the sign discrimination opposite to that of FIG. 2 is performed, and therefore the description of the operation is omitted here.

【0059】[0059]

【発明の効果】以上説明したように本発明によれば、確
実にオーバーシュートを回避でき、製品の品質の低下お
よび規格外の不良品の発生を未然に防止できる。また、
外乱解消時、リセット・ワインドアップが解消している
ので、燃焼量が過大となっている期間が短くなり、炉の
関連機器の劣化を低減でき、無駄なエネルギーの消費を
抑制でき、ひいては公害の発生原因も低減化できる。よ
って、これからの少人数によるプラントの本格的なフレ
キシブル運転化に大きく貢献できる。
As described above, according to the present invention, it is possible to surely avoid overshoot and prevent deterioration of product quality and generation of defective products out of specification. Also,
When the disturbance is eliminated, the reset windup is eliminated, so the period of excessive combustion amount is shortened, deterioration of furnace related equipment can be reduced, wasteful energy consumption can be suppressed, and eventually pollution The cause of occurrence can also be reduced. Therefore, it can greatly contribute to full-scale flexible operation of the plant by a small number of people.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 請求項1に係わるカスケード制御装置の一実
施形態を示す構成図。
FIG. 1 is a configuration diagram showing an embodiment of a cascade control device according to claim 1.

【図2】 請求項2に係わるカスケード制御装置の一実
施形態を示す構成図。
FIG. 2 is a configuration diagram showing an embodiment of a cascade control device according to claim 2;

【図3】 請求項3に係わるカスケード制御装置の一実
施形態を示す構成図。
FIG. 3 is a configuration diagram showing an embodiment of a cascade control device according to claim 3;

【図4】 請求項4に係わるカスケード制御装置の一実
施形態を示す構成図。
FIG. 4 is a configuration diagram showing an embodiment of a cascade control device according to claim 4;

【図5】 従来のカスケード制御装置の構成を示す図。FIG. 5 is a diagram showing a configuration of a conventional cascade control device.

【図6】 従来装置と本発明装置との特性の比較図。FIG. 6 is a comparison diagram of characteristics of the conventional device and the device of the present invention.

【符号の説明】[Explanation of symbols]

2…炉、10…1次PID制御系、12…速度形(P+
D)調節演算手段、13…速度形I調節演算手段、14
…スイッチ手段、16…信号変換手段、17…上下限制
限手段、18…変化率制限手段、19…制限逸脱信号出
力手段、20…乗算手段、21,23…符号判別手段、
22…操作信号状態出力手段、30…2次PID制御
系、32…速度形(P+D)調節演算手段、33…速度
形I調節演算手段、34,35…スイッチ手段、37…
信号変換手段、38…上下限制限手段、39…変化率制
限手段、43…乗算手段、44,47,51…符号判別
手段、48,49…スイッチ手段。
2 ... Furnace, 10 ... Primary PID control system, 12 ... Velocity type (P +
D) Adjustment calculation means, 13 ... Speed type I adjustment calculation means, 14
... switch means, 16 ... signal conversion means, 17 ... upper / lower limit limiting means, 18 ... change rate limiting means, 19 ... limit deviation signal output means, 20 ... multiplying means 21, 23 ... sign discriminating means,
22 ... Operation signal status output means, 30 ... Secondary PID control system, 32 ... Speed type (P + D) adjustment calculation means, 33 ... Speed type I adjustment calculation means, 34, 35 ... Switch means, 37 ...
Signal converting means, 38 ... Upper and lower limit limiting means, 39 ... Change rate limiting means, 43 ... Multiplying means, 44, 47, 51 ... Sign discriminating means, 48, 49 ... Switching means.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 1次制御系の目標値を、2次制御系の出
力で支配するように構成したカスケード制御装置におい
て、 前記1次制御系の操作端の特性が逆作動の場合、 前記1次制御系は、予め上・下限制限値および変化率制
限値の何れか一方または両方が設定され、前記1次制御
系のPID調節演算手段の出力である操作信号が前記上
・下限制限値,変化率制限値を越えたか否かを判断し、
越えた時には制限逸脱信号を出力する制限逸脱信号出力
手段を設け、 前記2次制御系は、前記制限逸脱信号と当該2次制御系
のPID調節演算手段の中の速度形I調節演算出力との
符号を判別し、同符号のときに前記2次制御系のPID
調節演算手段の積分動作を停止する積分制御手段を設
け、 たことを特徴とするカスケード制御装置。
1. A cascade control device configured so that a target value of a primary control system is controlled by an output of a secondary control system, wherein when the characteristic of an operating end of the primary control system is reverse operation, In the secondary control system, one or both of the upper and lower limit limit values and the rate of change limit value are set in advance, and the operation signal output from the PID adjustment calculation means of the primary control system is the upper and lower limit limit values, Judge whether the rate of change limit has been exceeded,
A limit deviation signal output means for outputting a limit deviation signal when exceeding is provided, and the secondary control system outputs the limit deviation signal and the speed type I adjustment calculation output in the PID adjustment calculation means of the secondary control system. The sign is determined, and when the sign is the same, the PID of the secondary control system
A cascade control device comprising an integration control means for stopping the integration operation of the adjustment calculation means.
【請求項2】 1次制御系の目標値を、2次制御系の出
力で支配するように構成したカスケード制御装置におい
て、 前記1次制御系の操作端の特性が逆作動の場合、 前記1次制御系は、予め上・下限制限値および変化率制
限値の何れか一方または両方が設定され、前記1次制御
系のPID調節演算手段の出力である操作信号が前記上
・下限制限値,変化率制限値を越えた否かの信号を出力
する操作信号状態出力手段を設け、 前記2次制御系は、前記操作信号状態出力手段の出力か
ら前記操作信号が前記上・下限制限値,変化率制限値を
越えていないとき、または当該操作信号が前記上・下限
制限値を越えているときの信号と前記2次制御系のPI
D調節演算手段の中の速度形I調節演算出力との符号が
異符号のときに前記2次制御系のPID調節演算手段の
積分動作を実行する積分制御手段を設け、 たことを特徴とするカスケード制御装置。
2. A cascade control device configured such that the target value of the primary control system is controlled by the output of the secondary control system, wherein when the characteristic of the operating end of the primary control system is reverse operation, In the secondary control system, one or both of the upper and lower limit limit values and the rate of change limit value are set in advance, and the operation signal output from the PID adjustment calculation means of the primary control system is the upper and lower limit limit values, An operation signal state output means for outputting a signal indicating whether or not the change rate limit value is exceeded is provided, and the secondary control system changes the operation signal from the output of the operation signal state output means to the upper / lower limit values. When the rate limit value is not exceeded, or when the operation signal exceeds the upper / lower limit values and the PI of the secondary control system
Integral control means is provided for executing the integral operation of the PID adjustment calculation means of the secondary control system when the sign of the speed type I adjustment calculation output in the D adjustment calculation means has a different sign. Cascade controller.
【請求項3】 1次制御系の目標値を、2次制御系の出
力で支配するように構成したカスケード制御装置におい
て、 前記1次制御系の操作端の特性が正作動の場合、 前記1次制御系は、予め上・下限制限値および変化率制
限値の何れか一方または両方が設定され、前記1次制御
系のPID調節演算手段の出力である操作信号が前記上
・下限制限値,変化率制限値を越えたか否かを判断し、
越えた時には制限逸脱信号を出力する制限逸脱信号出力
手段を設け、 前記2次制御系は、前記制限逸脱信号と当該2次制御系
のPID調節演算手段の中の速度形I調節演算出力との
符号を判別し、異符号のときに前記2次制御系のPID
調節演算手段の積分動作を停止する積分制御手段を設
け、 たことを特徴とするカスケード制御装置。
3. A cascade control device configured such that the target value of the primary control system is controlled by the output of the secondary control system, wherein when the characteristic of the operating end of the primary control system is normal operation, In the secondary control system, one or both of the upper and lower limit limit values and the rate of change limit value are set in advance, and the operation signal output from the PID adjustment calculation means of the primary control system is the upper and lower limit limit values, Judge whether the rate of change limit has been exceeded,
A limit deviation signal output means for outputting a limit deviation signal when exceeding is provided, and the secondary control system outputs the limit deviation signal and the speed type I adjustment calculation output in the PID adjustment calculation means of the secondary control system. The sign is determined, and when the sign is different, the PID of the secondary control system
A cascade control device comprising an integration control means for stopping the integration operation of the adjustment calculation means.
【請求項4】 1次制御系の目標値を、2次制御系の出
力で支配するように構成したカスケード制御装置におい
て、 前記1次制御系の操作端の特性が正作動の場合、 前記1次制御系は、予め上・下限制限値および変化率制
限値の何れか一方または両方が設定され、前記1次制御
系のPID調節演算手段の出力である操作信号が前記上
・下限制限値,変化率制限値を越えた否かの信号を出力
する操作信号状態出力手段を設け、 前記2次制御系は、前記操作信号状態出力手段の出力か
ら前記操作信号が前記上・下限制限値,変化率制限値を
越えていないとき、または当該操作信号が前記上・下限
制限値を越えているときの信号と前記2次制御系のPI
D調節演算手段の中の速度形I調節演算出力との符号が
同符号のときに前記2次制御系のPID調節演算手段の
積分動作を実行する積分制御手段を設け、 たことを特徴とするカスケード制御装置。
4. A cascade control device configured such that the target value of the primary control system is controlled by the output of the secondary control system, wherein when the characteristic of the operating end of the primary control system is positive operation, In the secondary control system, one or both of the upper and lower limit limit values and the rate of change limit value are set in advance, and the operation signal output from the PID adjustment calculation means of the primary control system is the upper and lower limit limit values, An operation signal state output means for outputting a signal indicating whether or not the change rate limit value is exceeded is provided, and the secondary control system changes the operation signal from the output of the operation signal state output means to the upper / lower limit values. When the rate limit value is not exceeded, or when the operation signal exceeds the upper / lower limit values and the PI of the secondary control system
Integral control means for executing the integral operation of the PID adjustment calculation means of the secondary control system when the sign of the speed type I adjustment calculation output in the D adjustment calculation means is the same sign. Cascade controller.
JP162496A 1996-01-09 1996-01-09 Cascade controller Pending JPH09190202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP162496A JPH09190202A (en) 1996-01-09 1996-01-09 Cascade controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP162496A JPH09190202A (en) 1996-01-09 1996-01-09 Cascade controller

Publications (1)

Publication Number Publication Date
JPH09190202A true JPH09190202A (en) 1997-07-22

Family

ID=11506695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP162496A Pending JPH09190202A (en) 1996-01-09 1996-01-09 Cascade controller

Country Status (1)

Country Link
JP (1) JPH09190202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250272A (en) * 2006-03-14 2007-09-27 Nissan Motor Co Ltd Fluid control system
CN105607471A (en) * 2016-01-27 2016-05-25 中国船舶重工集团公司第七一〇研究所 Underwater vehicle suspension fixed-depth control system
DE102022127176A1 (en) 2022-10-18 2024-04-18 Lebbing automation & drives GmbH Methods for controlling printing machines

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250272A (en) * 2006-03-14 2007-09-27 Nissan Motor Co Ltd Fluid control system
CN105607471A (en) * 2016-01-27 2016-05-25 中国船舶重工集团公司第七一〇研究所 Underwater vehicle suspension fixed-depth control system
CN105607471B (en) * 2016-01-27 2018-07-31 中国船舶重工集团公司第七一〇研究所 A kind of submarine navigation device suspension Depth control system
DE102022127176A1 (en) 2022-10-18 2024-04-18 Lebbing automation & drives GmbH Methods for controlling printing machines

Similar Documents

Publication Publication Date Title
EP1040392B1 (en) Method of predicting overshoot in a control system response
KR100511670B1 (en) Control Device, Temperature Controller, and Heat Treatment Device
EP0435339B1 (en) Compound control method for controlling a system
US5452687A (en) Microprocessor-based boiler sequencer
CN114089795B (en) Fuzzy neural network temperature control system and method based on event triggering
US5119288A (en) Controlling apparatus utilized in process instrumentation system
JPH09190202A (en) Cascade controller
US7457673B2 (en) Process for rapidly controlling a process variable without overshoot using a time domain polynomial feedback controller
JPH11305803A (en) Controller
Salem et al. Enhancing cruise performance through pid controller tuned with particle swarm optimization technique
JP3571833B2 (en) Speed type PID adjustment device
JP3772340B2 (en) Valve positioner
SU1536359A1 (en) Liquid pressure regulator
KR0155382B1 (en) Method of controlling temperature of a joining area between two different strip materials in a continuous strip processing line
JPH0721723B2 (en) Fuzzy controller
JPH02105202A (en) Fuzzy controller
JPH05332532A (en) Combustion controller
JPH0833375A (en) Speed control device
JPH11345002A (en) Process controller
SU836626A1 (en) Method of control of regenerator operating mode
JPH09128037A (en) Pid controller
JPH05324005A (en) Command ff/fb controller
JPH0335922Y2 (en)
SU840840A1 (en) Temperature regulating device
JP2000010602A (en) Pid control method and its controller