JPH05332532A - Combustion controller - Google Patents

Combustion controller

Info

Publication number
JPH05332532A
JPH05332532A JP14421292A JP14421292A JPH05332532A JP H05332532 A JPH05332532 A JP H05332532A JP 14421292 A JP14421292 A JP 14421292A JP 14421292 A JP14421292 A JP 14421292A JP H05332532 A JPH05332532 A JP H05332532A
Authority
JP
Japan
Prior art keywords
flow rate
integral
fuel flow
signal
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14421292A
Other languages
Japanese (ja)
Inventor
Kazuo Hiroi
和男 広井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14421292A priority Critical patent/JPH05332532A/en
Publication of JPH05332532A publication Critical patent/JPH05332532A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve control characteristics at the time of abrupt change of a combustion amount due to load change, a target value change, etc., while maintaining an optimum combustion zone by stopping an integral operation when signs of a limit deviation presence signal and an integral regulation signal are equal. CONSTITUTION:Integral trend judging means 32 judges that an integral operation output DELTAI is in a direction for releasing a limit if the relationship between an output of a limit deviation judging means 31 and a speed type integral regulation calculation signal DELTAI of speed type integral calculating means 23, i.e., both have different signs, and maintains an ON state of switch means 25, thereby conducting a normal integration. On the contrary, if both have equal signs, it judges that the output 61 is in a direction for increasing a limit, and turns OFF the means 25, thereby forcibly stopping the integral operation. Thus, a stable combustion can be obtained, and controllability at the time of a combustion amount change due to load change, a target value change, etc., can be improved while maintaining an optimum combustion zone.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、産業用ボイラや鉄鋼用
加熱炉,化学用加熱炉などの各種燃焼炉等に利用される
燃焼制御装置に係わり、特に負荷変化や目標値変更等に
伴う燃焼量変化の過度応答特性を改善する燃焼制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control device used in various combustion furnaces such as an industrial boiler, a steel heating furnace, a chemical heating furnace, and the like, and particularly in connection with load changes and target value changes. The present invention relates to a combustion control device that improves transient response characteristics of changes in combustion amount.

【0002】[0002]

【従来の技術】一般に、産業用ボイラ、各種の燃焼炉等
においては、燃料と空気とを混合して燃焼を行っている
が、この燃焼状態は、燃料と空気が密接に関係している
ことから、燃料と空気との比率(以下、空燃比または空
気過剰率などで指称する)によって大きく変化する。一
般に、空気過剰率μは、燃料の理論的な完全燃焼条件の
理論空気量を基準として、 空気過剰率μ=実際空気量/理論空気量 なる演算式で表され、実際空気量の大小により、換言す
れば空気過剰率μの大小によって燃焼状態が大きく変化
する。
2. Description of the Related Art Generally, in an industrial boiler, various combustion furnaces, etc., fuel and air are mixed and burned. In this combustion state, the fuel and air are closely related. Therefore, it greatly changes depending on the ratio of fuel to air (hereinafter referred to as an air-fuel ratio or an excess air ratio). Generally, the excess air ratio μ is expressed by an arithmetic expression of excess air ratio μ = actual air amount / theoretical air amount based on the theoretical air amount under the theoretical complete combustion condition of fuel, and depending on the actual air amount, In other words, the combustion state changes greatly depending on the magnitude of the excess air ratio μ.

【0003】ところで、実際の燃焼状態では、μ=1.
02〜1.10程度のときに最適燃焼ゾーンにあると言
える。ゆえに、空気過剰率μが最適燃焼ゾーン相当値よ
りも大きくなると、燃焼に関与しない加熱空気がそのま
ま煙突から排出するために排ガス熱損失が大きくなり、
これに伴って燃焼効率が低下する一方、NOx 等の影響
による公害が発生する。逆に、空気過剰率μが最適燃焼
ゾーン相当値よりも小さくなると、不完全燃焼による熱
損失が大きくなり、同様に燃焼効率が低下すると共に公
害面では黒煙が発生することになる。
By the way, in an actual combustion state, μ = 1.
It can be said that it is in the optimum combustion zone when it is about 02 to 1.10. Therefore, when the excess air ratio μ becomes larger than the optimum combustion zone equivalent value, the exhaust gas heat loss becomes large because the heated air that is not involved in combustion is discharged from the chimney as it is,
Along with this, the combustion efficiency decreases, but pollution due to the influence of NOx and the like occurs. On the contrary, when the excess air ratio μ becomes smaller than the optimum combustion zone equivalent value, the heat loss due to incomplete combustion becomes large, and the combustion efficiency also decreases and black smoke is generated in terms of pollution.

【0004】従って、この種の燃焼炉の燃焼は、定常時
或いは過度状態に拘らず、常に最適な燃焼ゾーンを逸脱
しないように,すなわち空気過剰率μが常に所定の範囲
内を維持するように制御する必要がある。図3は以上の
ような考えの下に実現した従来の加熱炉燃焼制御装置の
構成を示す図である。
Therefore, the combustion of the combustion furnace of this kind should not always deviate from the optimum combustion zone regardless of the steady state or the excessive state, that is, the excess air ratio μ should always be maintained within a predetermined range. Need to control. FIG. 3 is a diagram showing a configuration of a conventional heating furnace combustion control device realized based on the above idea.

【0005】この装置は、加熱炉1の所定の壁部にバー
ナ1aが設置され、燃料供給路2および空気供給路3か
らそれぞれ燃料および空気をバーナ(燃焼発生体)1a
が供給され、ここで燃料および空気の混合によって燃焼
を行って加熱炉1内の被加熱対象1bを加熱し、例えば
配管4内の原料を加熱した後、図示しない次工程に導い
ている。
In this apparatus, a burner 1a is installed on a predetermined wall portion of a heating furnace 1, and burner (combustion generator) 1a is supplied with fuel and air from a fuel supply passage 2 and an air supply passage 3, respectively.
Is supplied to heat the object to be heated 1b in the heating furnace 1 by mixing the fuel and air to heat the material to be heated 1b, for example, to heat the raw material in the pipe 4, and then to the next step (not shown).

【0006】このとき、原料の加熱炉出口温度を温度検
出器5で検出した後、この検出温度をフイードバック信
号PVとして温度調節手段6に導き、ここで目標温度S
Vとフイードバック信号PVとの偏差(SV−PV)を
算出する。そして、この偏差が零となるようにPI(比
例・積分)またはPID(比例・積分・微分)の調節演
算を実行し、この調節演算信号を燃料流量および空気流
量の指令信号Aとして燃料流量制御系および空気流量制
御系に供給する。なお、この調節演算信号に原料流量変
化に伴うフィードフォワード制御信号を加算合成した信
号を指令信号Aとするケースも多くある。前記燃料流量
制御系および空気流量制御系はダブルクロスリミット制
御方式を採用している。
At this time, after the temperature of the raw material heating furnace outlet is detected by the temperature detector 5, the detected temperature is guided to the temperature adjusting means 6 as a feedback signal PV, where the target temperature S is set.
The deviation (SV-PV) between V and the feedback signal PV is calculated. Then, a PI (proportional / integral) or PID (proportional / integral / derivative) adjustment calculation is executed so that this deviation becomes zero, and the adjustment calculation signal is used as a command signal A of the fuel flow rate and the air flow rate to control the fuel flow rate. System and air flow control system. In many cases, the command signal A is a signal obtained by adding and synthesizing the feedforward control signal associated with the change in the raw material flow rate to the adjustment calculation signal. The fuel flow rate control system and the air flow rate control system employ a double cross limit control method.

【0007】そのうち、燃料流量制御系側は、中間値選
択手段7aおよび2つの係数手段7b,7cをもつ燃料
流量制限手段7を有し、ここで燃料流量指令信号Aを受
けると、燃料流量指令信号Aと、空気流量に比例した空
気流量検出信号FA を除算手段8にて予定空燃比μs で
除して得られる信号に係数手段7bの係数(1+K1
を乗算して得た信号Bと、同じく除算手段8の出力信号
に係数手段7cの係数(1−K2 )を乗算して得た信号
Cとの中から中間値Dを選択し、この中間値Dを目標燃
料流量Dとして燃料流量調節手段9に供給する。
Among them, the fuel flow rate control system side has a fuel flow rate limiting means 7 having an intermediate value selecting means 7a and two coefficient means 7b and 7c. The signal A and the air flow rate detection signal F A proportional to the air flow rate are divided into the signal obtained by dividing the predetermined air-fuel ratio μs by the dividing means 8 into the coefficient (1 + K 1 ) of the coefficient means 7b.
The intermediate value D is selected from the signal B obtained by multiplying the output signal of the dividing means 8 and the signal C obtained by multiplying the output signal of the dividing means 8 by the coefficient (1-K 2 ) of the coefficient means 7c. The value D is supplied to the fuel flow rate adjusting means 9 as the target fuel flow rate D.

【0008】この燃料流量調節手段9では、燃料流量制
限手段7にて制限された目標燃料流量Dと燃料流量検出
器10で検出された燃料流量FF との偏差が零になるよ
うに調節演算を実行し、得られた調節演算信号を燃料供
給路2に設けた燃料操作端である流量調節弁(電磁弁或
いは可変速ポンプ等でもよい)11に印加し、燃料流量
を可変調整している。
In the fuel flow rate adjusting means 9, adjustment calculation is performed so that the deviation between the target fuel flow rate D limited by the fuel flow rate limiting means 7 and the fuel flow rate F F detected by the fuel flow rate detector 10 becomes zero. Is executed, and the obtained adjustment calculation signal is applied to a flow rate adjusting valve (which may be a solenoid valve or a variable speed pump or the like) 11 which is a fuel operating end provided in the fuel supply path 2 to variably adjust the fuel flow rate. ..

【0009】一方、空気流量制御系側は、同じく中間値
選択手段13aおよび2つの係数手段13b,13cを
もつ空気流量制限手段13を有し、ここで空気流量指令
信号Aを受けると、空気流量指令信号Aと、前記燃料流
量検出器10からの燃料流量信号FF に係数手段13b
の係数(1+K4 )を乗算して得た信号Eと、同じく燃
料流量信号FF に係数手段13cの係数(1−K3 )を
乗算して得た信号Gとの中の中間値Hを選択し、かつ、
この中間値Hに係数手段14の予定空気過剰率μs を乗
算して得られた信号Mを目標空気流量として空気流量調
節手段15に供給する。
On the other hand, the air flow rate control system side has an air flow rate limiting means 13 which also has an intermediate value selecting means 13a and two coefficient means 13b and 13c. The coefficient means 13b is added to the command signal A and the fuel flow rate signal F F from the fuel flow rate detector 10.
The intermediate value H between the signal E obtained by multiplying the coefficient (1 + K 4 ) of the above and the signal G obtained by multiplying the fuel flow rate signal F F by the coefficient (1-K 3 ) of the coefficient means 13c similarly. Select and
A signal M obtained by multiplying the intermediate value H by the planned excess air ratio μs of the coefficient means 14 is supplied to the air flow rate adjusting means 15 as a target air flow rate.

【0010】この空気流量調節手段15では、空気流量
制限手段13にて制限され、かつ、予定空気過剰率μs
を掛けた得られた目標空気流量Mと空気流量検出器16
で検出された空気流量を開平演算手段17を介して得ら
れる空気流量に比例した信号FF との偏差が零になるよ
うに調節演算を実行し、得られた調節演算信号を燃料供
給路3に設けた空気操作端である流量調節弁(電磁弁或
いは可変速ポンプ等でもよい)18に印加し、空気流量
を可変調整している。以下、燃料流量制限手段7および
空気流量制限手段13の機能について具体的に述べる。
In this air flow rate adjusting means 15, the planned air excess rate μs is limited by the air flow rate limiting means 13.
The target air flow rate M and the air flow rate detector 16
The adjustment calculation is executed so that the deviation from the signal F F proportional to the air flow obtained through the square root calculation means 17 becomes zero, and the obtained adjustment calculation signal is used as the fuel supply path 3 The air flow rate is variably adjusted by applying it to a flow rate control valve (which may be a solenoid valve or a variable speed pump or the like) 18 which is an air operation end provided in the. The functions of the fuel flow rate limiting means 7 and the air flow rate limiting means 13 will be specifically described below.

【0011】燃料流量制限手段7は、2つの係数手段7
b,7cをもっているが、そのうち係数手段7bは係数
(1+K1 )(但し、K1 >0)、係数手段7cは係数
(1−K2 )(但し、K2 >0)の関係をもっている。
これら係数手段7b,7cには空気流量信号FA を除算
手段8にて予定空燃比μs で除して得られる信号がそれ
ぞれ入力されている。従って、係数手段7bの出力信号
B、係数手段7cの出力信号Cは次式で表される。 B=(1+K1 )・FA /μs …… (1) C=(1−K2 )・FA /μs …… (2)
The fuel flow rate limiting means 7 is composed of two coefficient means 7.
b, but have 7c, of which the coefficient unit 7b coefficient (1 + K 1) (where, K 1> 0), the coefficient unit 7c coefficient (1-K 2) (where, K 2> 0) has a relationship.
Signals obtained by dividing the air flow rate signal F A by the planned air-fuel ratio μs by the dividing means 8 are input to the coefficient means 7b and 7c, respectively. Therefore, the output signal B of the coefficient means 7b and the output signal C of the coefficient means 7c are expressed by the following equations. B = (1 + K 1 ) · F A / μs …… (1) C = (1-K 2 ) · F A / μs …… (2)

【0012】そこで、中間値選択手段7aでは、燃料流
量指令信号Aと出力信号Bと出力信号Cとを比較し、こ
れらの中から中間値に相当するものを制限された信号D
として出力する。すなわち、 (a) C≦A≦Bの時、D=A (b) C<B<Aの時、D=B (c) A<C<Bの時、D=C
Therefore, in the intermediate value selecting means 7a, the fuel flow rate command signal A, the output signal B and the output signal C are compared, and the signal D corresponding to the intermediate value is restricted.
Output as. That is, (a) when C ≦ A ≦ B, D = A (b) when C <B <A, D = B (c) when A <C <B, D = C

【0013】となる。このことは、燃料流量指令信号A
は予定の上限制限値Bと下限制限値Cとにより制限され
ることを意味する。ここで、FA /μs は空気流量から
計算した理論燃料流量を示し、燃料流量指令信号Aがか
かる理論燃料流量に対する所定の上下限制限値内で制限
されることを意味する。
[0013] This means that the fuel flow rate command signal A
Means that it is limited by the planned upper limit value B and lower limit value C. Here, F A / μs indicates the theoretical fuel flow rate calculated from the air flow rate, which means that the fuel flow rate command signal A is limited within a predetermined upper and lower limit value for the theoretical fuel flow rate.

【0014】一方、空気流量制限手段13は、2つの係
数手段13b,13cをもっているが、そのうち係数手
段13bは係数(1+K4 )(但し、K4 >0)、係数
手段13cは係数(1−K3 )(但し、K3 >0)の関
係をもっている。これら係数手段13b,13cには燃
料流量検出器10からの燃料流量信号FF がそれぞれ入
力されている。従って、係数手段13bの出力信号E、
係数手段13cの出力信号Gは次式で表される。 E=(1+K4 )・FF …… (3) G=(1−K3 )・FF …… (4)
On the other hand, the air flow rate limiting means 13 has two coefficient means 13b and 13c. Among them, the coefficient means 13b has a coefficient (1 + K 4 ) (where K 4 > 0) and the coefficient means 13c has a coefficient (1- K 3 ) (however, K 3 > 0). The fuel flow rate signal F F from the fuel flow rate detector 10 is input to these coefficient means 13b and 13c, respectively. Therefore, the output signal E of the coefficient means 13b,
The output signal G of the coefficient means 13c is expressed by the following equation. E = (1 + K 4 ) · F F …… (3) G = (1−K 3 ) · F F …… (4)

【0015】そこで、中間値選択手段13aでは、空気
流量指令信号Aと出力信号Eと出力信号Gとを比較し、
これらの中から中間値に相当するものを制限された信号
Hとして出力する。すなわち、 (d) G≦A≦Eの時、H=A (b) G<E<Aの時、H=E (c) A<G<Eの時、H=G
Therefore, in the intermediate value selecting means 13a, the air flow rate command signal A, the output signal E and the output signal G are compared,
Among these, the one corresponding to the intermediate value is output as the limited signal H. That is, (d) when G ≦ A ≦ E, H = A (b) when G <E <A, H = E (c) when A <G <E, H = G

【0016】となる。このことは、空気流量指令信号A
は燃料流量信号FF に比例した上限制限値Eと下限制限
値Gとにより制限され、これに予定空気過剰率μs を乗
じて得られる空気流量の目標空気流量信号Mも同様に制
限されることを示す。
[0016] This means that the air flow rate command signal A
Is limited by the upper limit value E and the lower limit value G proportional to the fuel flow rate signal F F , and the target air flow rate signal M of the air flow rate obtained by multiplying the upper limit value E and the lower limit value G is also limited. Indicates.

【0017】図4は定常状態における各信号A,B,
C,E,Gの大小関係を示す図である。この図から明ら
かなように、定常状態時には燃料流量中間値選択部7、
空気流量中間値選択部13では燃料流量および空気流量
指令信号Aを選択していることを示している。
FIG. 4 shows the signals A, B, and
It is a figure which shows the magnitude relationship of C, E, and G. As is clear from this figure, in the steady state, the fuel flow rate intermediate value selection unit 7,
It is shown that the air flow rate intermediate value selection unit 13 selects the fuel flow rate and the air flow rate command signal A.

【0018】次に、図5は、図4においてK1 =K3
2 =K4 とし、燃料供給系の応答が空気供給系の応答
よりも若干速い場合の空気過剰率μの時間的変化を示す
図である。
Next, FIG. 5 shows that in FIG. 4, K 1 = K 3 ,
And K 2 = K 4, the response of the fuel supply system is a diagram showing the temporal change in the excess air ratio μ when slightly faster than the response of the air supply system.

【0019】すなわち、定常状態の空気過剰率μは、予
定空気過剰率μs に制御されているが、目標値の急変ま
たは原料流量(負荷)の急変によって例えば時刻t1
燃料流量および空気流量の指令信号Aが急増したとき、
空燃比は過度的に(μs −K1 )まで低下し、その後、
しばらくしてから再び定常状態に戻る。
That is, the steady state excess air ratio μ is controlled to the planned excess air ratio μs, but due to a sudden change in the target value or a sudden change in the raw material flow rate (load), for example, at time t 1 , the fuel flow rate and the air flow rate are changed. When the command signal A suddenly increases,
The air-fuel ratio decreases excessively to (μs-K 1 ) and then
After a while, it returns to the steady state again.

【0020】また、時刻t2 において燃料流量および空
気流量の指令信号Aが急減したとき、空気過剰率μは過
度的に(μs +K2 )まで上昇し、その後、しばらくし
てから再び定常状態に戻る。
When the command signal A for the fuel flow rate and the air flow rate suddenly decreases at time t 2 , the excess air ratio μ rises excessively to (μs + K 2 ), and after a while, it returns to the steady state. Return.

【0021】一方、燃料供給系の応答が空気供給系の応
答よりも若干遅い場合、空気過剰率μの時間的変化は図
5の逆になるが、何れにせよ、空気過剰率μは予定空気
過剰率μs の上下の所定の範囲内に制限されるものであ
る。
On the other hand, when the response of the fuel supply system is slightly slower than the response of the air supply system, the temporal change of the excess air ratio μ is the opposite of that of FIG. 5, but in any case, the excess air ratio μ is the planned air. It is limited within a predetermined range above and below the excess rate μs.

【0022】[0022]

【発明が解決しようとする課題】ところで、最近のプラ
ントの運転は、フレキシブル化,高速化が非常に重要な
ポイントになってきており、燃焼制御装置においても負
荷変化や目標値変化などに対して速応できることが要請
され、製品の品質等との関連から速応の限界を極めるこ
とが強く要望されている。
By the way, in recent plant operation, flexibility and speedup are becoming very important points, and even in the combustion control device, it is possible to cope with load change and target value change. It is demanded to be able to respond quickly, and it is strongly demanded that the limit of response be maximized in relation to the quality of products.

【0023】しかしながら、従来の燃焼制御装置におい
ては、前述したように定常状態や負荷変化が小さい場
合、或いは負荷変化や目標値変化がゆっくり変化してい
る場合には、空燃比を所定範囲内に維持させつつ燃焼効
率を上げ、公害の少ない燃焼を実現することができる
が、負荷変化や目標値変化の急変によって燃料流量およ
び空気流量の指令信号Aが大きく変化した場合には加熱
炉出口温度が大きくオーバーシュートし、制御性を大き
く損なう問題がある。
However, in the conventional combustion control device, as described above, when the steady state or the load change is small, or when the load change or the target value change is changing slowly, the air-fuel ratio falls within the predetermined range. The combustion efficiency can be increased while maintaining the combustion efficiency, and combustion with less pollution can be realized. However, when the command signal A for the fuel flow rate and the air flow rate changes significantly due to a sudden change in load change or target value change, the heating furnace outlet temperature is There is a problem that the overshoot greatly occurs and the controllability is greatly impaired.

【0024】その理由は、燃料流量および空気流量の指
令信号Aが大きく急変したとき、燃料流量制御系と空気
流量制御系とが互いに相手の実測値FA ,FF に上下限
制限を加えつつ、前記指令信号Aに追従していくように
なるので、制限手段7,13の制限動作に引っ掛かる
と、温度調節計6から見たときに燃焼系の特性が変化す
ることになる。従って、温度調節手段6は、何ら特性の
変化を知らずに前記制限に引っ掛かっている間にPIま
たはPID調節演算を行っていると、PIまたはPID
の中のI(積分)動作による蓄積効果が働き、偏差が零
になっても積分動作による蓄積分は切り崩せない。その
結果、温度調節手段6の操作出力である指令信号Aが増
大し、これに伴って原料の温度がオーバシュートするた
めである。
The reason is that, when the command signal A for the fuel flow rate and the air flow rate changes abruptly, the fuel flow rate control system and the air flow rate control system impose upper and lower limits on the measured values F A and F F of the other party. As it follows the command signal A, if the limiting operation of the limiting means 7 and 13 is caught, the characteristics of the combustion system will change when viewed from the temperature controller 6. Therefore, if the temperature adjusting means 6 performs the PI or PID adjustment calculation while being caught in the limit without knowing any change in the characteristics, the PI or PID is calculated.
The accumulation effect by the I (integration) operation in the above works, and even if the deviation becomes zero, the accumulated amount by the integration operation cannot be cut off. As a result, the command signal A, which is the operation output of the temperature adjusting means 6, increases, and the temperature of the raw material overshoots accordingly.

【0025】従って、以上のような燃焼制御装置は、特
に目標値や負荷の大きな急変に対して制御性が大きく低
下する問題があり、燃焼上の制御特性を改善することが
強く要望されている。
Therefore, the above-mentioned combustion control device has a problem that the controllability is greatly deteriorated especially when the target value or the load is changed abruptly, and it is strongly demanded to improve the combustion control characteristics. ..

【0026】本発明は上記実情に鑑みてなされたもの
で、安全、かつ、安定な燃焼を確保しつつ、最適な燃焼
ゾーンを維持しながら、負荷変化や目標値変化等に伴う
燃焼量の急変時の制御特性を改善し、信頼性の高い燃焼
制御装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and while ensuring safe and stable combustion and maintaining an optimum combustion zone, a rapid change in the combustion amount due to a load change, a target value change, etc. An object of the present invention is to provide a highly reliable combustion control device with improved control characteristics at the time.

【0027】[0027]

【課題を解決するための手段】請求項1に対応する発明
は上記課題を解決するために、燃料供給源から供給され
る燃料と空気供給源から供給される空気とを混合し燃焼
させて被加熱対象を加熱する燃焼制御装置において、
In order to solve the above-mentioned problems, the invention corresponding to claim 1 mixes the fuel supplied from the fuel supply source and the air supplied from the air supply source and burns them. In the combustion control device that heats the heating target,

【0028】被加熱対象の検出温度と目標温度との偏差
を零とするように比例・積分または比例・積分・微分調
節演算を実行し、得られた調節演算信号を燃料流量およ
び空気流量の指令信号として出力する調節手段と、互い
に逆の制御対象となる空気流量,燃料流量に関係する信
号から得られた上・下限制限値が与えられ、前記調節手
段から受ける指令信号を前記上・下限制限値で制限しな
がら出力する燃料流量制限手段および空気流量制限手段
と、これら燃料流量制限手段および空気流量制限手段の
出力と前記燃料流量、空気流量に関係する信号とを用い
てそれぞれ対応する燃料流量、空気流量を可変調整する
燃料流量調節手段および空気流量調節手段と、前記燃料
流量制限手段および空気流量制限手段の何れか一方また
は両方の入・出力端間に設けられ、当該制限手段の入・
出力信号に基づいて前記指令信号が上・下限制限値を逸
脱したか否かを判断する制限逸脱判断手段と、この制限
逸脱判断手段の出力と前記積分調節演算信号との符号関
係から積分動向を判断し、同符号のときに積分動作を停
止させる積分動向判断手段とを設けた燃焼制御装置であ
る。
Proportional / integral or proportional / integral / differential adjustment calculation is executed so that the deviation between the detected temperature of the object to be heated and the target temperature is zero, and the obtained adjustment calculation signal is used to command the fuel flow rate and the air flow rate. An upper limit / lower limit limit value obtained from the adjusting means outputting as a signal and signals related to the air flow rate and the fuel flow rate, which are control objects opposite to each other, is given, and the command signal received from the adjusting means is limited to the upper / lower limit value. The fuel flow rate limiting means and the air flow rate limiting means that output while limiting the value, and the corresponding fuel flow rate using the outputs of the fuel flow rate limiting means and the air flow rate limiting means and the signals related to the fuel flow rate and the air flow rate, respectively. , Fuel flow rate adjusting means and air flow rate adjusting means for variably adjusting the air flow rate, and input / output of one or both of the fuel flow rate limiting means and the air flow rate limiting means It provided between, the input and of the limiting means
Limit deviation determining means for determining whether or not the command signal deviates from the upper / lower limit limit value based on the output signal, and an integration trend from the sign relationship between the output of the limit deviation determining means and the integral adjustment calculation signal. The combustion control device is provided with an integration trend determination means for making a determination and stopping the integration operation when the signs are the same.

【0029】[0029]

【作用】従って、請求項1に対応する発明は以上のよう
な手段を講じたことにより、燃料流量および空気流量の
指令信号の変化が小さい場合やゆっくり変化している場
合には前記指令信号が前記制限手段の上・下限制限値に
引っ掛からないので、例えば前記制限手段の入・出力差
の信号が零となり、その結果、前記調節手段の積分動作
が停止されることなく、正常の調節動作を続行する。
Therefore, the invention according to claim 1 takes the above-mentioned means, so that when the change of the command signal of the fuel flow rate and the change of the air flow rate is small or the change is slow, the command signal is changed. Since the upper and lower limit values of the limiting means are not caught, for example, the input / output difference signal of the limiting means becomes zero, and as a result, the normal adjusting operation is performed without stopping the integrating operation of the adjusting means. continue.

【0030】一方、前記指令信号が前記制限手段の上・
下限制限値に引っ掛っている場合、当該制限手段の入・
出力差の信号が零以外の値となり、制限逸脱判断手段で
は前記指令信号が上限制限値または下限制限値を逸脱し
ていると判断する。この場合に積分動向判断手段では制
限逸脱判断手段の出力と前記積分調節演算信号との符号
が異符号であるとき積分動作が制限を解消する方向に向
かっていると判断し、積分動作の停止は行われず、正常
積分動作を続ける。
On the other hand, when the command signal is above the limiting means,
If the lower limit value is caught, turn on the limiting means.
The output difference signal has a value other than zero, and the limit deviation determining means determines that the command signal deviates from the upper limit value or the lower limit value. In this case, the integral trend judging means judges that the integral operation is in the direction of canceling the limitation when the sign of the output of the limit deviation judging means and the sign of the integral adjustment calculation signal are different signs, and the integral operation is not stopped. Not performed, normal integration operation continues.

【0031】しかし、指令信号が前記制限手段の制限値
に引っ掛っかり、かつ、積分動向判断手段において同符
号であるときには積分動作が制限を拡大する方向に向か
っていると判断し、積分動作を停止させる。
However, when the command signal is caught by the limit value of the limiting means and has the same sign in the integral trend judging means, it is judged that the integral operation is in the direction of expanding the limit, and the integral operation is performed. Stop.

【0032】このことは、定常状態で負荷変化や目標値
変化が小さい場合またはゆっくり変化している場合に
は、調節手段の比例・積分・微分動作が正常に行われ、
前述した従来の装置の長所が十分に生かされる。
This means that the proportional / integral / derivative operation of the adjusting means is normally performed when the load change or the target value change is small or changes slowly in the steady state.
The advantages of the conventional device described above are fully utilized.

【0033】一方、負荷や目標値の変化が大きく急変
し、指令信号が制限動作に引っ掛かった場合には、その
積分動作が制限を解消する方向にあるときには正常積分
動作を行わせ、また積分動作が制限を拡張する方向にあ
るときには正常積分動作を強制的に停止することによ
り、制限動作に引っ掛かっている間の積分動作による積
分蓄積効果を完全に防止し、これによって制御量の大き
なオーバーシュートを完全に解消でき、制御特性および
安全性を大幅に改善することができる。
On the other hand, when the load and the target value change drastically and the command signal is caught in the limiting operation, the normal integrating operation is performed when the integrating operation is in the direction of canceling the limiting operation. Is in the direction of expanding the limit, the normal integration operation is forcibly stopped to completely prevent the integral accumulation effect due to the integration operation while being caught in the limit operation, thereby preventing a large overshoot of the control amount. It can be completely eliminated, and the control characteristics and safety can be greatly improved.

【0034】[0034]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1は例えば加熱炉出口温度制御装置に適
用した場合の一構成例を示すブロック図であり、図3と
同一部分には同一符号を付してその詳しい説明は省略
し、以下、特に異なる部分について説明する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a configuration example in the case of being applied to, for example, a heating furnace outlet temperature control device, the same parts as those in FIG. 3 are denoted by the same reference numerals, and detailed description thereof will be omitted. Will be described.

【0035】その第1は、燃料流量制御系および空気流
量制御系の指令信号Aを取得するための温度調節手段2
0に工夫を講じたこと。つまり、この温度調節手段20
は、速度形PIまたは速度形PID調節演算機能を持た
せる一方、これらPIまたはPID動作を分離すること
によりI動作の性質を有効に生かつつ調節演算を実行す
ることにある。
First, the temperature adjusting means 2 for obtaining the command signal A of the fuel flow rate control system and the air flow rate control system.
0 has been devised. That is, the temperature adjusting means 20
Is to provide a speed type PI or speed type PID adjustment calculation function, while separating the PI or PID operation to execute the adjustment operation while effectively utilizing the property of the I operation.

【0036】具体的には、温度検出器5からの検出温度
PVn と炉出口目標温度SVn との偏差を求める偏差演
算手段21と、この偏差演算手段21によって得られた
偏差en をそれぞれ個別にP、IまたはP、I、D調節
演算を実行する速度形比例演算手段22、速度形積分演
算手段23および速度形微分演算手段24と、この速度
形積分演算手段23の出力側に接続され外部からのオン
・オフ制御信号を受けてオン・オフ動作するスイッチ手
段25と、このスイッチ手段25を介して取り出される
速度形積分調節演算信号△Iと速度形比例演算手段22
の出力である速度形比例調節演算信号△Pと速度形微分
演算手段24の出力である速度形微分調節演算信号△D
とを加算して速度形調節信号△MVn を出力する加算手
段26と、この加算手段26によって得られた速度形調
節信号△MVn を位置形操作出力である燃料流量および
空気流量の指令信号Aを得る速度形−位置形信号変換手
段27とによって構成されている。
Specifically, the deviation calculating means 21 for obtaining the deviation between the detected temperature PV n from the temperature detector 5 and the furnace outlet target temperature SV n, and the deviation e n obtained by this deviation calculating means 21 are respectively set. Speed type proportional calculation means 22, speed type integral calculation means 23 and speed type differential calculation means 24 for individually performing P, I or P, I, D adjustment calculation, and connection to the output side of this speed type integration calculation means 23 A switch means 25 which is turned on / off by receiving an on / off control signal from the outside, and a speed type integral adjustment calculation signal ΔI and a speed type proportional calculation means 22 taken out through the switch means 25.
Output of the speed type proportional adjustment calculation signal ΔP and the output of the speed type differential calculation means 24, the speed type differential adjustment calculation signal ΔD
And adding means 26 for outputting a speed-type regulating signal △ MV n by adding the bets, fuel flow rate and air flow rate command signal is a position type manipulation outputs a speed-type regulating signal △ MV n obtained by the addition means 26 A speed type-position type signal converting means 27 for obtaining A.

【0037】第2は、燃料流量制限手段7の入出力端の
信号、つまり燃料流量指令信号Aから制限された信号D
を減算することにより、指令信号AがB−Cの範囲内に
あるか、BまたはCを逸脱しているかを判断する制限逸
脱判断手段31を設けたことにある。なお、指令信号A
がB−Cの範囲内にあれば、A=Dとなり制限逸脱判断
手段31の出力は零となる。
Second, the signal at the input / output end of the fuel flow rate limiting means 7, that is, the signal D limited from the fuel flow rate command signal A
The restriction deviation determining means 31 for determining whether the command signal A is within the range of BC or deviating from B or C is provided by subtracting. The command signal A
Is within the range of B-C, A = D and the output of the limit deviation determining means 31 becomes zero.

【0038】さらに、第3は、制限逸脱判断手段31の
出力側と速度形積分演算手段23の出力側との間に設け
られ、これら両出力の符号が同符号か異符号か、つまり
速度形積分演算手段23の積分動作によって得られる指
令信号Aの制限逸脱に対して当該制限を解消する方向に
向かっているか、或いは当該制限を拡大する方向に向か
っているかを判断し、拡大方向に向かっているときには
スイッチ手段25をオフとすることにより積分動作を停
止する積分動向判断手段32を設けたことにある。次
に、以上のように構成された装置の動作について説明
し、以後、特に本装置装置において改良された構成部分
の動作を中心に説明する。
Thirdly, it is provided between the output side of the limit deviation judging means 31 and the output side of the speed type integral calculating means 23, and the signs of these outputs are the same sign or different signs, that is, the speed type. For the deviation of the limit of the command signal A obtained by the integration operation of the integral calculating means 23, it is judged whether the limit is canceled or the limit is expanded, and the direction is expanded. This is because there is provided an integral trend judging means 32 for stopping the integral operation by turning off the switch means 25 during the period. Next, the operation of the apparatus configured as described above will be described, and hereinafter, the operation of the improved components of the apparatus will be mainly described.

【0039】先ず、温度調節手段20は、PID調節演
算を速度形で行っている場合を示している。この速度形
PID演算では、下記(5)式および(6)式に従って
演算を実行する。 △MVn =KP {(en −en-1 )+(△t/TI )en +(TD /△t)・(en −2en-1 +en-2 )} … (5) MVn =MVn-1 −△MVn … (6)
First, the temperature adjusting means 20 shows the case where the PID adjusting operation is performed in the speed type. In this speed type PID calculation, the calculation is executed according to the following equations (5) and (6). △ MV n = K P {( e n -e n-1) + (△ t / T I) e n + (T D / △ t) · (e n -2e n-1 + e n-2)} ... (5) MV n = MV n −1 −ΔMV n (6)

【0040】但し、上式においてKP :比例ゲイン、T
I :積分時間、TD :微分時間、en :現在偏差、e
n-1 :前回偏差、en-2 :前前回偏差、△t:制御周
期、MVn-1 :前回操作量(前回指令信号A)、△MV
n :操作量変化分(速度形調節信号)、MVn :今回操
作量(今回指令信号A)である。
However, in the above equation, K P : proportional gain, T
I : integration time, T D : derivative time, en: current deviation, e
n-1 : previous deviation, e n-2 : previous previous deviation, Δt: control cycle, MV n-1 : previous operation amount (previous command signal A), ΔMV
n : change amount of operation amount (speed type adjustment signal), MV n : current operation amount (current command signal A).

【0041】従って、温度調節手段20としては、偏差
演算手段21において目標値SVnと炉出口温度PVn
との偏差en =(SVn −PVn )を求めた後、各演算
手段22〜24に供給する。ここで、速度形比例演算手
段22では、前記(5)式から、 △P=KP ・(en −en-1 ) を求め、また速度形積分演算手段23では同じく前記
(5)式から、 △I=KP ・en ・(△t/TI ) を求め、さらに速度形微分演算手段24では、同じく前
記(5)式に基づき、 △D=KP ・TD ・(en −2en-1 +en-2 )/△t を求める。
Therefore, as the temperature adjusting means 20, the deviation calculating means 21 uses the target value SV n and the furnace outlet temperature PV n.
And the deviation e n = (SV n −PV n ) is calculated and then supplied to the respective computing means 22 to 24. Here, the velocity type proportional operation unit 22, the equation (5) from, △ P = K P · ( e n -e n-1) look, also likewise the velocity type integral calculation unit 23 the (5) from, △ I = K P · e n · (△ t / T I) look, the more velocity type differential operation means 24, based on the same equation (5), △ D = K P · T D · (e n −2e n−1 + e n−2 ) / Δt is calculated.

【0042】さらに、加算手段26において各演算手段
22〜24の出力を加算合成することにより、操作量変
化分△MVn を求めた後、速度形−位置形信号変換手段
27に導入し、ここで前記(6)式の演算を行って燃料
流量および空気流量の指令信号Aを求めるものである。
Further, by adding and synthesizing the outputs of the respective computing means 22 to 24 in the adding means 26, the manipulated variable change amount ΔMV n is obtained and then introduced into the speed type / position type signal converting means 27, where The above equation (6) is calculated to obtain the command signal A for the fuel flow rate and the air flow rate.

【0043】従って、以上のようにして燃料流量および
空気流量の指令信号Aを求めるが、このとき指令信号A
の変化が小さい場合、指令信号AはB−Cの範囲内にあ
るので、燃料流量制限手段7の入力信号Aと出力信号D
とが等しくなり、制限逸脱判断手段31の出力△Lは、 △L=A−D=0
Therefore, the command signal A for the fuel flow rate and the air flow rate is obtained as described above. At this time, the command signal A
If the change in the fuel cell flow rate is small, the command signal A is in the range of BC, so the input signal A and the output signal D of the fuel flow rate limiting means 7 are
Are equal to each other, and the output ΔL of the limit deviation determining means 31 is ΔL = A−D = 0

【0044】となり、指令信号Aが制限動作に引っ掛か
っていないと判断する。その結果、積分動向判断手段3
2は、例えば△Lと△Iとを乗算すると△L・△I=0
となり、これによって積分動作の強制停止は行われず、
従来装置の長所とする機能を生かすことができる。
Therefore, it is determined that the command signal A is not caught in the limiting operation. As a result, the integral trend judging means 3
2 is, for example, when ΔL is multiplied by ΔI, ΔL · ΔI = 0
Therefore, the integral operation is not forcibly stopped,
It is possible to take advantage of the function of the conventional device.

【0045】一方、温度調節手段20からの燃料流量お
よび空気流量の指令信号Aが大きく急変したとき、当該
指令信号Aが信号BまたはCを越える制限動作に引っ掛
かる。このとき、燃料流量制限手段7は正常に動作して
いても、 △L=A−D>0または△L=A−D<0 となり、制限逸脱判断手段31で制限逸脱であると判断
し、その出力△Lが積分動向判断手段32に送られる。
On the other hand, when the command signal A of the fuel flow rate and the air flow rate from the temperature adjusting means 20 changes abruptly, the command signal A is caught in the limiting operation exceeding the signal B or C. At this time, even if the fuel flow rate limiting means 7 is operating normally, ΔL = A−D> 0 or ΔL = A−D <0, and the limit deviation determining means 31 determines that there is a limit deviation, The output ΔL is sent to the integral trend judging means 32.

【0046】ここで、積分動向判断手段32では、制限
逸脱判断手段31の出力と速度形積分演算手段23の速
度形積分調節演算信号△Iとの関係、すなわち両者が異
符号の場合には積分動作出力△Iが制限を解消する方向
にあると判断し、スイッチ手段25のオン状態をそのま
ま維持させることにより正常積分を行わせる。逆に、両
者が同符号の場合には積分動作出力△Iが制限を拡大す
る方向にあると判断し、スイッチ手段25をオフとする
ことにより、積分動作を強制的に停止させる。下記する
表1は以上のような本装置の動作をまとめたものであ
る。
Here, in the integral trend judging means 32, the relationship between the output of the limit deviation judging means 31 and the speed-type integral adjustment calculation signal ΔI of the speed-type integral calculating means 23, that is, when the two have different signs, the integration is performed. It is determined that the operation output ΔI is in the direction of eliminating the limitation, and the ON state of the switch means 25 is maintained as it is, so that the normal integration is performed. On the other hand, if the two have the same sign, it is determined that the integral operation output ΔI is in the direction of expanding the limit, and the switch means 25 is turned off to forcibly stop the integral operation. Table 1 below summarizes the operation of the present apparatus as described above.

【0047】[0047]

【表1】 [Table 1]

【0048】従って、本発明装置は、指令信号Aが燃料
流量制限手段7に引っ掛かっている間、温度調節手段2
0の積分動作による蓄積効果が解消され、温度のオーバ
ーシュートがなくなり、安全性に大きく貢献する。
Therefore, in the device of the present invention, while the command signal A is caught by the fuel flow rate limiting means 7, the temperature adjusting means 2 is used.
The accumulation effect due to the integration operation of 0 is eliminated, the temperature overshoot is eliminated, and it greatly contributes to safety.

【0049】因みに、図2は従来の温度制御装置と本発
明実施例の温度制御装置との目標値変化に対する応答比
較を行う図である。図2(a)は目標値変化に対する温
度PVの応答を示し、図2(b)は同じく目標値変化に
対する温度調節手段20の操作出力,つまり燃料流量お
よび空気流量の指令信号Aの応答を示している。
Incidentally, FIG. 2 is a diagram for comparing the responses of the conventional temperature control device and the temperature control device of the embodiment of the present invention with respect to a change in target value. FIG. 2A shows the response of the temperature PV to the change in the target value, and FIG. 2B shows the response of the operation output of the temperature adjusting means 20, that is, the command signal A of the fuel flow rate and the air flow rate, to the change in the target value. ing.

【0050】これらの図から明らかなように目標値の変
化に対し、従来装置の場合には温度特性41aが大きく
オーバーシュートし、燃料流量および空気流量の指令信
号A(42a)も大きくオーバーシュートする。
As is apparent from these figures, in the case of the conventional apparatus, the temperature characteristic 41a greatly overshoots with respect to the change of the target value, and the fuel flow rate and air flow rate command signal A (42a) also greatly overshoots. ..

【0051】これに対して、本発明実施例の温度制御装
置は、制限動作に引っ掛かったとき、温度調節手段20
の積分動作を制御することにより、積分動作による蓄積
効果が完全に解消でき、図2(a)のような温度特性4
2aが得られ、この場合にはオーバーシュートがなくな
り、制御特性が大きく改善されたことを意味する。ま
た、温度調節手段20の操作出力,つまり燃料流量の指
令信号Aは図2(b)の特性42bに示すごとく行き過
ぎという問題がなくなり、十分に安全性の高い燃焼を実
現できる。
On the other hand, in the temperature control device of the embodiment of the present invention, when the limiting operation is caught, the temperature adjusting means 20 is used.
By controlling the integration operation of, the accumulation effect due to the integration operation can be completely eliminated, and the temperature characteristic 4 as shown in FIG.
2a was obtained, which means that the overshoot disappeared and the control characteristics were greatly improved. Further, the operation output of the temperature adjusting means 20, that is, the command signal A of the fuel flow rate does not have the problem of overshooting as shown by the characteristic 42b of FIG. 2B, and sufficiently safe combustion can be realized.

【0052】従って、以上のような特性が得られること
により、今後21世紀に向けて本格的なフレキシブル時
代を迎えようとする産業界にとって大きく貢献すること
が期待できる。
Therefore, by obtaining the above characteristics, it can be expected to make a great contribution to the industrial world which is approaching the full-scale flexible era for the 21st century.

【0053】なお、本発明は上記実施例に限定されるも
のではない。上記実施例では、燃料流量制御系側に制限
逸脱判断手段31等を設けたが、これらの制限逸脱判断
手段31等を例えば空気流量制御系側に対応して設けて
もよく、或いは両方の制御系に制限逸脱判断手段31等
を設け、OR論理和によって積分動作を制御してもよ
い。
The present invention is not limited to the above embodiment. In the above embodiment, the limit deviation determining means 31 and the like are provided on the fuel flow rate control system side, but these limit deviation determining means 31 and the like may be provided, for example, corresponding to the air flow rate control system side, or both of them are controlled. The system may be provided with the limit deviation determining means 31 or the like, and the integration operation may be controlled by OR logical sum.

【0054】また、スイッチ手段25、制限逸脱判断手
段31および積分動向判断手段32等はハード構成で説
明しているが、コンピュータを用いたときにはソフトウ
エア的に処理するものである。従って、この場合にはス
イッチ手段25なしで実現可能となる場合がある。ま
た、上記実施例においては、加熱炉出口温度制御装置に
ついて適用した例を述べたが、これに限らずボイラ燃焼
制御装置などの各種の燃焼炉の燃焼制御装置についても
同様に適用できる。その他、本発明はその要旨を逸脱し
ない範囲で種々変形して実施できる。
Further, although the switch means 25, the limit deviation judging means 31, the integral trend judging means 32 and the like have been described as hardware, they are processed by software when using a computer. Therefore, in this case, it may be possible to realize without the switch means 25. Further, in the above-described embodiment, the example in which the heating furnace outlet temperature control device is applied has been described, but the present invention is not limited to this, and may be similarly applied to various combustion furnace combustion control devices such as a boiler combustion control device. Besides, the present invention can be variously modified and implemented without departing from the scope of the invention.

【0055】[0055]

【発明の効果】以上説明したように本発明によれば、燃
料流量および空気流量の指令信号に対し、予定の制限値
を与えるべく燃料流量制限手段および空気流量制限手段
の何れか一方または両方の入・出力の差信号から制限逸
脱の有無を判断し、かつ、この判断による制限逸脱有り
信号と積分調節信号との符号が同符号であるとき、積分
動作が制限を拡大する方向にあると判断し積分動作を停
止するので、安全、かつ、安定な燃焼を確保でき、最適
燃焼ゾーンを維持しながら負荷変化や目標値変化等に伴
う燃焼量変化時の制御性を改善でき、極めて信頼性の高
い燃焼制御装置を提供できる。
As described above, according to the present invention, one or both of the fuel flow rate limiting means and the air flow rate limiting means are provided to give a predetermined limit value to the command signals of the fuel flow rate and the air flow rate. Whether or not there is a limit deviation is judged from the input / output difference signal, and when the sign of the limit deviation signal and the integral adjustment signal according to this judgment are the same sign, it is judged that the integration operation is in the direction of expanding the limit. Since the integral operation is stopped, safe and stable combustion can be ensured, and the controllability when the amount of combustion changes due to load changes or target value changes, etc. can be improved while maintaining the optimum combustion zone, and extremely reliable. A high combustion control device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる燃焼制御装置の一実施例を示す
全体構成図。
FIG. 1 is an overall configuration diagram showing an embodiment of a combustion control device according to the present invention.

【図2】本発明装置と従来装置とにおける応答特性の比
較図。
FIG. 2 is a comparison diagram of response characteristics of the device of the present invention and the conventional device.

【図3】従来装置の全体構成図。FIG. 3 is an overall configuration diagram of a conventional device.

【図4】燃料流量および空気流量の指令信号に対する上
限および下限制限の関係を示す図。
FIG. 4 is a diagram showing a relationship between an upper limit and a lower limit for command signals of fuel flow rate and air flow rate.

【図5】空気過剰率の時間的な変化の一例を示す図。FIG. 5 is a diagram showing an example of a temporal change of an excess air ratio.

【符号の説明】[Explanation of symbols]

1a…燃焼発生体、1b…被加熱体、5…温度検出器、
7…燃料流量制限手段、9…燃料流量調節手段、10…
燃料流量検出器、11…流量調節弁、13…空気流量制
限手段、15…空気流量調節手段、16…空気流量検出
器、18…流量調節弁、20…温度調節手段、22…速
度形比例演算手段、23…速度形積分演算手段、24…
速度形微分演算手段、25…スイッチ手段、26…加算
手段、27…信号変換手段、31…制限逸脱判断手段、
32…積分動向判断手段。
1a ... Combustion generator, 1b ... Object to be heated, 5 ... Temperature detector,
7 ... Fuel flow rate limiting means, 9 ... Fuel flow rate adjusting means, 10 ...
Fuel flow detector, 11 ... Flow control valve, 13 ... Air flow control means, 15 ... Air flow control means, 16 ... Air flow detector, 18 ... Flow control valve, 20 ... Temperature control means, 22 ... Velocity type proportional calculation Means, 23 ... Velocity type integral calculation means, 24 ...
Speed type differential operation means, 25 ... switch means, 26 ... addition means, 27 ... signal conversion means, 31 ... limit deviation determination means,
32 ... Integral trend judging means.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料供給源から供給される燃料と空気供
給源から供給される空気とを混合し燃焼させて被加熱対
象を加熱する燃焼制御装置において、 被加熱対象の検出温度と目標温度との偏差を零とするよ
うに比例・積分または比例・積分・微分調節演算を実行
し、得られた調節演算信号を燃料流量および空気流量の
指令信号として出力する調節手段と、 互いに逆の制御対象となる空気流量,燃料流量に関係す
る信号から得られた上・下限制限値が与えられ、前記調
節手段から受ける指令信号を前記上・下限制限値で制限
しながら出力する燃料流量制限手段および空気流量制限
手段と、 これら燃料流量制限手段および空気流量制限手段の出力
と前記燃料流量、空気流量に関係する信号とを用いてそ
れぞれ対応する前記燃料流量、空気流量を可変調整する
燃料流量調節手段および空気流量調節手段と、 前記燃料流量制限手段および空気流量制限手段の何れか
一方または両方の入・出力端間に設けられ、当該制限手
段の入・出力信号に基づいて前記指令信号が上・下限制
限値を逸脱したか否かを判断する制限逸脱判断手段と、 この制限逸脱判断手段の出力と前記積分調節演算信号と
の符号関係から積分動作が制限を拡大する方向に向かっ
ているとき当該積分動作を停止させる積分動向判断手段
とを備えたことを特徴とする燃焼制御装置。
1. A combustion control device for heating an object to be heated by mixing and burning fuel supplied from a fuel supply source and air supplied from an air supply source, the detected temperature and the target temperature of the object to be heated. The control means executes proportional / integral or proportional / integral / derivative adjustment calculation so as to make the deviation of zero, and outputs the obtained adjustment calculation signal as a command signal of fuel flow rate and air flow rate, and control objects opposite to each other. And a fuel flow rate limiting means for outputting a command signal received from the adjusting means while limiting the command signal received from the adjusting means with the upper and lower limit values. Using the flow rate limiting means and the outputs of the fuel flow rate limiting means and the air flow rate limiting means and the signals relating to the fuel flow rate and the air flow rate, the corresponding fuel flow rate and air flow rate can be controlled. A fuel flow rate adjusting means and an air flow rate adjusting means for changing and adjusting, and one or both of the fuel flow rate limiting means and the air flow rate limiting means are provided between the input / output terminals, and based on the input / output signals of the limiting means. Limit deviation determining means for determining whether or not the command signal deviates from the upper / lower limit limit values, and the integral operation expands the limitation based on the sign relation between the output of the limit deviation determining means and the integral adjustment calculation signal. A combustion control device comprising: an integration trend determination means for stopping the integration operation when moving in the direction.
JP14421292A 1992-06-04 1992-06-04 Combustion controller Pending JPH05332532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14421292A JPH05332532A (en) 1992-06-04 1992-06-04 Combustion controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14421292A JPH05332532A (en) 1992-06-04 1992-06-04 Combustion controller

Publications (1)

Publication Number Publication Date
JPH05332532A true JPH05332532A (en) 1993-12-14

Family

ID=15356847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14421292A Pending JPH05332532A (en) 1992-06-04 1992-06-04 Combustion controller

Country Status (1)

Country Link
JP (1) JPH05332532A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535332A (en) * 2013-10-21 2015-12-10 キム、ウォン−モKIM,Won−mo Oxygen Lansing Combustion Control Device for Heating Furnace
US20170003024A1 (en) * 2013-07-02 2017-01-05 Sit S.P.A. Method and system for controlling the operation of a burner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170003024A1 (en) * 2013-07-02 2017-01-05 Sit S.P.A. Method and system for controlling the operation of a burner
US10139106B2 (en) * 2013-07-02 2018-11-27 Sit S.P.A. Method and system for controlling the operation of a burner
JP2015535332A (en) * 2013-10-21 2015-12-10 キム、ウォン−モKIM,Won−mo Oxygen Lansing Combustion Control Device for Heating Furnace

Similar Documents

Publication Publication Date Title
EP0435339B1 (en) Compound control method for controlling a system
JPH0571718A (en) Method of operating refuse incineration plant and controller thereof
JPH025975B2 (en)
JPH05332532A (en) Combustion controller
JP2000222005A (en) Controller for process
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JP2577443B2 (en) Combustion control device
JPH07117231B2 (en) Combustion control device
JPS5813809B2 (en) Combustion control method using low excess air
JPH07332602A (en) Steam temperature prediction control device
JPH06221506A (en) Steam temperature control method of thermal power plant and device therefor
JP3313288B2 (en) Melting furnace operation control device
JPS6021639Y2 (en) Furnace pressure control device for combustion equipment
JPH11337049A (en) Control method and apparatus for controlling mill primary air damper of a pulverized coal fired boiler
JPS5817373B2 (en) Combustion control method using oxygen concentration control in combustion furnace
JP3023252B2 (en) Combustion control device
JPH0328623A (en) Combustion controller
TWI621001B (en) A controller achieving multi-variable control using a single-variable control unit
JP2669662B2 (en) Water heater control device
JPH0637972B2 (en) Combustion control device
JPH0533088B2 (en)
SU1339383A1 (en) Method of controlling combustion of fuel in multizone continuous furnace
JPH035487B2 (en)
JPH04214118A (en) Continuous heating furnace and controller of combustion switching
JPH10318503A (en) Method and system for controlling fluidized bed incinerator