JPH0637972B2 - Combustion control device - Google Patents

Combustion control device

Info

Publication number
JPH0637972B2
JPH0637972B2 JP62221407A JP22140787A JPH0637972B2 JP H0637972 B2 JPH0637972 B2 JP H0637972B2 JP 62221407 A JP62221407 A JP 62221407A JP 22140787 A JP22140787 A JP 22140787A JP H0637972 B2 JPH0637972 B2 JP H0637972B2
Authority
JP
Japan
Prior art keywords
fuel flow
flow rate
output
limiting
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62221407A
Other languages
Japanese (ja)
Other versions
JPS6463713A (en
Inventor
和男 広井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62221407A priority Critical patent/JPH0637972B2/en
Publication of JPS6463713A publication Critical patent/JPS6463713A/en
Publication of JPH0637972B2 publication Critical patent/JPH0637972B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、各種の加熱炉等の自然通風式燃焼制御装置に
係わり、特に負荷変更等の過度状態でも燃焼効率を高く
維持できる燃焼制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a naturally ventilated combustion control device for various heating furnaces, etc., and particularly has a high combustion efficiency even in an excessive state such as load change. A combustion control device that can be maintained.

(従来の技術) この種の燃焼制御装置は省エネルギーおよび公害防止の
改善を図ることが要望されている。前者の改善目的は所
要とする空気量を供給し完全燃焼を行って燃焼効率を高
めることにより燃焼コストを低減化することにあり、後
者の改善目的は黒煙防止つまりNOx,SOxの発生量
を少なくして環境汚染を極力低減化することにある。そ
こで、上記2つの要望を満足させるには、定常状態のみ
ならず、負荷変化または設定値変更等の過度状態におい
ても空燃比を所定の値に制御することが必要である。
(Prior Art) This type of combustion control device is required to save energy and improve pollution prevention. The former objective is to reduce the combustion cost by supplying the required amount of air and performing complete combustion to improve the combustion efficiency. The latter objective is to prevent black smoke, that is, the amount of NOx and SOx generated. The aim is to reduce environmental pollution as much as possible. Therefore, in order to satisfy the above two requirements, it is necessary to control the air-fuel ratio to a predetermined value not only in a steady state but also in a transient state such as load change or set value change.

ところで、従来の自然通風式燃焼制御装置には、燃料流
量に対し炉内圧力を独立に所定値となる様に制御する
か、あるいは燃料指令値に対し特定の関数演算を行って
炉内圧力設定値を求めた後、炉内圧力を前記炉内圧力設
定値となる様に制御するものがある。従って、これらの
燃焼制御装置は何れも負荷一定と見なし、特に負荷変更
等の状態を考慮することなく燃焼制御を行っている。
By the way, in the conventional natural ventilation combustion control device, the pressure inside the furnace is controlled to a predetermined value independently of the fuel flow rate, or a specific function operation is performed on the fuel command value to set the pressure inside the furnace. After obtaining the value, there is a method in which the furnace pressure is controlled so as to reach the furnace pressure set value. Therefore, all of these combustion control devices regard the load as constant and perform combustion control without considering the state of load change or the like.

(発明が解決しようとする問題点) しかし、以上のような従来装置は、負荷が常に一定の状
態にあれば問題はないが、負荷変更や設定値変更等に伴
う過度状態の場合には空燃比が大きく変動し、その結
果、燃焼効率の低下を招き、かつ、公害を発生させ、燃
焼系として致命的な欠陥を露呈する。特に、近年の時代
的要請では必要な製品を必要な品質で必要な量だけ製造
すること、また起動および停止の自動化を行うこと等に
あり、益々負荷の変動が激しくなって行くことは必至で
あり、この場合には上記のような従来装置では全く対応
できない。
(Problems to be Solved by the Invention) However, the conventional device as described above does not have a problem if the load is always constant, but is empty in the case of an excessive state due to load change or setting value change. The fuel ratio fluctuates greatly, resulting in a reduction in combustion efficiency, causing pollution, and exposing a fatal defect in the combustion system. In particular, in recent years, it is necessary to manufacture the required products in the required quality in the required amount, and to automate the start and stop, and it is inevitable that the load will become more and more fluctuating. In this case, the conventional device as described above cannot cope with the problem at all.

本発明は上記実情に鑑みてなされたもので、負荷変更等
に伴う過度状態であってもそれに十分対処して燃焼効率
を高め得、かつ、公害原因物質の発生を低減化し得る燃
焼制御装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and a combustion control device that can sufficiently improve the combustion efficiency by coping with it even in an excessive state due to load change, and can reduce the generation of pollution-causing substances. The purpose is to provide.

[発明の構成] (問題点を解決するための手段) 本発明による燃焼制御装置は、燃焼制御量を検出しこの
検出燃焼制御量に基づいて燃料流量指令信号を求める調
節手段と、前記炉内圧力計の出力に関連した予定の少な
くとも上限を有し、前記調節手段からの指令信号を制限
する第1の制限手段と、前記燃料流量計の出力に関連し
た予定の少なくとも下限を有し、前記調節手段からの指
令信号を制限する第2の制限手段と、前記第1の制限手
段の出力と前記燃料流量計の出力を受けて燃料流量操作
端を制御する燃料流量制御手段と、前記第2の制限手段
の出力から全排ガス量を排出するに必要な炉内圧力設定
値を求め、この炉内圧力設定値と炉内圧力計の出力を受
けて前記炉内圧力操作端を制御する炉内圧力制御手段と
を備えたものである。
[Composition of the Invention] (Means for Solving Problems) A combustion control device according to the present invention includes an adjusting means for detecting a combustion control amount and obtaining a fuel flow rate command signal based on the detected combustion control amount; A first limiting means having at least an upper limit associated with the output of the pressure gauge for limiting the command signal from the adjusting means, and at least a lower limit intended with respect to the output of the fuel flow meter, Second limiting means for limiting the command signal from the adjusting means; fuel flow rate control means for controlling the fuel flow rate operation end by receiving the output of the first limiting means and the output of the fuel flow meter; In the furnace for controlling the in-reactor pressure operating end by obtaining the in-reactor pressure set value required to discharge the total amount of exhaust gas from the output of the limiting means, and receiving the in-reactor pressure set value and the output of the in-reactor pressure gauge. And a pressure control means.

(作用) 従って、本発明は、以上のような手段とすることによ
り、前記調節手段からの燃料流量指令信号に対し前記炉
内圧力計の出力から求めた許容燃料流量信号に係数(1
+k)を乗じて求めた値を上限とし、係数(1−
)を乗じた値を下限とする制限を加え、この制限さ
れた燃料流量指令信号を設定値として前記燃料流量制御
手段が燃料流量を制御する。一方、全排ガス流量につい
ては、前記燃料流量指令信号に対し、前記燃料流量計の
出力に係数(1+k)を乗じた値を下限とし、係数
(1+k)を乗じた値を上限とする制限を加え、この
制限された燃料流量指令信号から総排ガス流量信号を求
め、この総排ガス流量を排出するに必要な差圧を求め、
これを炉内圧力設定値として炉内圧力を制御するもので
ある。
(Operation) Therefore, according to the present invention, by adopting the above-mentioned means, the coefficient (1
+ K 1 ) as the upper limit, and the coefficient (1-
The lower limit is set to a value obtained by multiplying by k 2 ) and the fuel flow rate control means controls the fuel flow rate with the limited fuel flow rate command signal as a set value. On the other hand, regarding the total exhaust gas flow rate, the lower limit is a value obtained by multiplying the fuel flow rate command signal by the output of the fuel flow meter by a coefficient (1 + k 3 ), and the upper limit is a value obtained by multiplying the coefficient (1 + k 4 ). Then, the total exhaust gas flow rate signal is obtained from this limited fuel flow rate command signal, and the differential pressure necessary to discharge this total exhaust gas flow rate is obtained.
This is used as a set value for the pressure in the furnace to control the pressure in the furnace.

(実施例) 以下、本発明装置の一実施例について第1図を参照して
説明する。同図において1は燃焼炉であり、この炉内に
は被加熱物原料パイプ2が設けられている。また、燃焼
炉1にはバーナ3が設けられ、これに燃料パイプ4より
燃料流量計5および燃料流量操作端を形成する燃料流量
調節弁6を経て燃料が供給され、またダンパ7の開度調
整によりバーナ3の周辺から自然に空気が吸引されるよ
うになっている。8は温度検出器であって燃焼炉1の制
御量である原料の燃焼炉出口温度を検出する。なお、燃
焼炉1がボイラに適用する場合には上記制御量は蒸気圧
力あるいは蒸気流量であってもよい。
(Embodiment) An embodiment of the device of the present invention will be described below with reference to FIG. In the figure, 1 is a combustion furnace, and a material pipe 2 to be heated is provided in the furnace. Further, the combustion furnace 1 is provided with a burner 3 to which fuel is supplied from a fuel pipe 4 via a fuel flow meter 5 and a fuel flow rate control valve 6 forming a fuel flow rate operation end, and an opening degree of a damper 7 is adjusted. As a result, air is naturally sucked from around the burner 3. Reference numeral 8 denotes a temperature detector that detects the combustion furnace outlet temperature of the raw material, which is a controlled variable of the combustion furnace 1. When the combustion furnace 1 is applied to a boiler, the control amount may be steam pressure or steam flow rate.

前記温度検出器8の出力は温度調節手段9に導入され
る。この温度調節手段9は温度検出器8からの燃焼炉出
口温度と温度目標値とを比較し調節演算を行って燃料流
量指令信号A,つまり燃焼量指令のマスタ信号を得る。
そして、この燃料流量指令信号はそれぞれ第1および第
2の制限手段10,11に供給される。この第1の制限
手段10は、低位信号選択手段10a,高位信号選択手
段10bおよび係数手段10c,10d等で構成され、
ここで燃料流量設定値を求めて燃料流量制御手段へ送出
する。この燃料流量制御手段は、燃料流量調節手段12
を有し、前記燃料流量設定値と燃料流量計5の出力とを
比較し燃料流量の操作出力を求めるものである。前記第
2の制限手段11は、高位信号選択手段11a,低位信
号選択手段11bおよび係数手段11c,11d等で構
成され、ここで選択された信号は乗算手段13に送られ
る。14は乗算手段、15は炉内圧力制御手段として構
成される炉内圧力調節手段である。16は単位総排ガス
量演算手段、17は炉内圧力計、18は開平演算手段、
19は除算手段である。
The output of the temperature detector 8 is introduced into the temperature adjusting means 9. The temperature adjusting means 9 compares the combustion furnace outlet temperature from the temperature detector 8 with a temperature target value and performs an adjustment calculation to obtain a fuel flow rate command signal A, that is, a master signal of a combustion amount command.
Then, the fuel flow rate command signal is supplied to the first and second limiting means 10 and 11, respectively. The first limiting means 10 is composed of low-order signal selecting means 10a, high-order signal selecting means 10b, coefficient means 10c, 10d, etc.,
Here, the fuel flow rate set value is obtained and sent to the fuel flow rate control means. This fuel flow rate control means is the fuel flow rate control means 12
The fuel flow rate setting value is compared with the output of the fuel flow meter 5 to obtain the operation output of the fuel flow rate. The second limiting means 11 is composed of high-order signal selecting means 11a, low-order signal selecting means 11b, coefficient means 11c, 11d, etc., and the signal selected here is sent to the multiplying means 13. Reference numeral 14 is a multiplying means, and 15 is a furnace pressure adjusting means configured as a furnace pressure control means. 16 is a unit total exhaust gas amount calculation means, 17 is a furnace pressure gauge, 18 is a square root calculation means,
Reference numeral 19 is a dividing means.

次に、以上のように構成された装置の動作を説明する。
燃焼炉1の制御量である温度検出器8の出力は温度調節
手段9に導入され、ここで燃料流量目標量と比較されて
燃料流量指令信号Aが求められ、第1の制限手段10を
経て燃料流量調節手段12に与えられる。この燃料流量
調節手段12は第1の制限手段10の出力を目標値と
し、燃料流量計5の出力信号をフィートバック信号とし
て比較調節演算を行い、燃料流量調節弁6の開度を変化
させて燃料流量を制御する。
Next, the operation of the apparatus configured as described above will be described.
The output of the temperature detector 8 which is the controlled variable of the combustion furnace 1 is introduced into the temperature adjusting means 9, where it is compared with the fuel flow rate target quantity to obtain the fuel flow rate command signal A, and passed through the first limiting means 10. It is provided to the fuel flow rate adjusting means 12. The fuel flow rate adjusting means 12 uses the output of the first limiting means 10 as a target value, performs comparison adjustment calculation by using the output signal of the fuel flow meter 5 as a footback signal, and changes the opening degree of the fuel flow rate adjusting valve 6. Control the fuel flow rate.

一方、温度調節手段9の出力である燃料流量指令信号A
は第2の制限手段11に導入される。この第2の制限手
段11では、高位信号選択手段11aに対応する係数手
段11cの係数を(1−k),k>0と定め、か
つ、低位信号選択手段11bに対応する係数手段11d
の係数を(1+k),k>0と定め、各係数手段1
1c,11dへの入力信号をFfとすると、各係数手段
11c,11dからは E=(1−k)・Ff……(1) G=(1+k)・Ff……(2) なる出力E,Gが取り出される。そこで、低位信号選択
手段11bは信号AとGとを比較し両者のうち低レベル
の信号を選択して出力し、一方、高位信号選択手段11
aでは前記低位選択信号と信号Eとを比較し両者のうち
高レベルの信号を選択して出力する。
On the other hand, the fuel flow rate command signal A which is the output of the temperature control means 9
Are introduced into the second limiting means 11. In the second restriction means 11, the coefficient of the coefficient unit 11c corresponding to the high signal selecting means 11a (1-k 3), defined as k 3> 0, and the coefficient unit 11d corresponding to the lower signal selecting means 11b
The coefficient of (1 + k 4 ), k 4 > 0 is defined, and each coefficient means 1
1c, when the Ff input signals to 11d, each coefficient unit 11c, from 11d E = (1-k 3 ) · Ff ...... (1) G = (1 + k 4) · Ff ...... (2) becomes Output E and G are taken out. Therefore, the low-order signal selection means 11b compares the signals A and G and selects and outputs the low-level signal of the two signals, while the high-order signal selection means 11 is selected.
In a, the low-order selection signal and the signal E are compared, and the high-level signal of both is selected and output.

このようにして第2の制限手段11で選択された信号H
は乗算手段13に与えられる。この乗算手段13には、
燃料に対する単位排ガス量をG、単位理論空気量をA
、設定空気過剰率をμs、係数をβ、単位総排ガス量
をfdsとすると、単位総排ガス量演算手段16から、 K=β・fds =β〔G+(μs−1)A〕 なる演算出力Kが供給されている。従って、乗算手段1
3は、第2の制限手段11の出力Hと単位総排ガス量演
算手段16の出力Kとを乗算し、総排ガス流量設定値信
号Fdsに比例した信号β・Fdsを求める。
In this way, the signal H selected by the second limiting means 11
Is given to the multiplication means 13. In this multiplication means 13,
Unit exhaust gas amount for fuel is G 0 , unit theoretical air amount is A
0 , the set excess air ratio is μs, the coefficient is β, and the unit total exhaust gas amount is fds, K = β · fds = β [G 0 + (μs-1) A 0 ] from the unit total exhaust gas amount calculation means 16. The following calculation output K is supplied. Therefore, the multiplication means 1
3 multiplies the output H of the second limiting means 11 and the output K of the unit total exhaust gas amount calculating means 16 to obtain a signal β · Fds proportional to the total exhaust gas flow rate set value signal Fds.

K・H=β・fds・H=β・Fds そして、この総排ガス流量設定値信号Fdsに比例した
信号β・Fdsを乗算手段14に導入し、ここで自乗し
て炉内圧設定値信号Psを得、炉内圧力調節手段15に
供給する。
K · H = β · fds · H = β · Fds Then, the signal β · Fds proportional to the total exhaust gas flow rate setting value signal Fds is introduced into the multiplying means 14, where it is squared to obtain the furnace internal pressure setting value signal Ps. Obtained and supplied to the in-furnace pressure adjusting means 15.

ここで、総排ガス流量設定値信号Fdsと炉内圧設定値
信号Psとの関係は、 となる。ここで、Fdsは次の式で表される。
Here, the relationship between the total exhaust gas flow rate setting value signal Fds and the furnace internal pressure setting value signal Ps is Becomes Here, Fds is represented by the following formula.

Fds=fds・H ={G+(μs−1)A}・H……(4) となる。この(4)式を(3)式に代入すると、 Ps=β{G+(μs−1)A・H ……(5) で表わされる。ここで、βはレンジ補正係数であって、 β=Ff(max)/Fd(max) となる。Ff(max)は燃料のレンジ最大流量、Fd(m
ax)は炉内圧力のレンジ最大のときの排ガス流量であ
る。ここで、(1)式,(2)式,(5)式と第2の制
御手段11の動作を重ね合せると、 (イ)E<A<Gのとき、H=Aとなり、 Ps=〔β{G+(μs−1)A}・A〕……
(6) (ロ)A≦Eのとき H=E=(1−k)・Ffとなり、 Ps=〔β{G+(μs−1)A} ・(1−k)・Ff〕……(7) (ハ)G≦Aのとき H=G=(1−k)・Ffとなり、 Ps=〔β{G+(μs−1)A} ・(1−k)・Ff〕……(8) となり、炉内圧力設定信号Psは燃料流量Ffに比例し
た上限Gおよび下限Eにより制限されることになる。こ
のように制限された炉内圧力設定信号Psが炉内圧力調
節手段15に導入される。この炉内圧力調節手段15は
炉内圧力設定信号Psを目標値とし、炉内圧力計17の
出力信号Pをフィードバック信号として比較調節演算を
行い、ダンパ7の開度を変化させて炉内圧力を制御す
る。
Fds = fds · H = {G 0 + (μs−1) A 0 } · H (4) By substituting this equation (4) into the equation (3), it is represented by Ps = β 2 {G + (μs−1) A 0 } 2 · H 2 (5). Here, β is a range correction coefficient, and β = Ff (max) / Fd (max). Ff (max) is the maximum fuel flow rate, Fd (m
ax) is the exhaust gas flow rate at the maximum furnace pressure range. Here, when the expressions (1), (2), and (5) and the operation of the second control means 11 are superposed, (a) when E <A <G, H = A, and Ps = [ β {G 0 + (μs-1) A 0 } · A] 2 ......
(6) (b) When A ≦ E, H = E = (1-k 3 ) · Ff, and Ps = [β {G 0 + (μs−1) A 0 } · (1-k 3 ) · Ff ] 2 (7) (C) When G ≦ A, H = G = (1-k 4 ) · Ff, and Ps = [β {G 0 + (μs−1) A 0 } · (1-k 4 ) · Ff] 2 (8), and the in-reactor pressure setting signal Ps is limited by the upper limit G and the lower limit E proportional to the fuel flow rate Ff. The in-furnace pressure setting signal Ps thus limited is introduced into the in-furnace pressure adjusting means 15. The in-furnace pressure adjusting means 15 uses the in-reactor pressure setting signal Ps as a target value, and uses the output signal P of the in-reactor pressure gauge 17 as a feedback signal to perform a comparative adjustment calculation to change the opening degree of the damper 7 to change the in-reactor pressure. To control.

次に、燃料流量制御系について述べる。炉内圧力計17
により検出された実測炉内圧力Pから理論燃料流量Ffp
を求めると、 で表わされる。そこで、この(9)式にしたがって炉内
圧力計17で検出された検出圧力Pを開平演算手段18
で開平した後、除算手段19に導いて単位総排ガス量演
算手段16の出力Kで除すると、 が得られ、これは(9)式と同じとなり推定燃料流量F
fpを求めることができる。
Next, the fuel flow rate control system will be described. Furnace pressure gauge 17
Theoretical fuel flow rate Ffp from measured reactor pressure P detected by
And ask It is represented by. Therefore, the square root calculation means 18 calculates the detected pressure P detected by the in-furnace pressure gauge 17 according to the equation (9).
After square rooting at, and leading to the dividing means 19 and dividing by the output K of the unit total exhaust gas amount calculating means 16, Is obtained, which is the same as equation (9) and the estimated fuel flow rate F
fp can be calculated.

しかして、以上のようにして求められた推定燃料流量F
fpは第1の制限手段10に送出される。この第1の制限
手段10は、低位信号選択手段10aに対応する係数手
段10cの係数を(1−k),k>0と定め、か
つ、高位信号選択手段10bに対応する係数手段10d
の係数を(1−k),k>0と定めると、各係数手
段10c,10dからは、 B=(1+k)・Ffp……(11) C=(1−k)・Ffp……(12) が出力される。そこで、高位信号選択手段10bは信号
AとCとを比較し両者のうち高レベルの信号を選択出力
する。また、低位信号選択手段10aは上記高い方の信
号とBとを比較し両者のうち低レベルの信号を選択して
出力する。つまり、 (イ)C<A<Bのとき Fs=A (ロ)B<Aのとき Fs=B (ハ)A<Cのとき Fs=C を選択する。このことは燃料流量指令信号Aが予定の上
限Bおよび下限Cにより制限されることを示す。ここ
に、BおよびCにおけるFfpは炉内圧力から計算された
理論燃料流量を示し、燃料流量指令信号Aが理論燃料流
量に対する所定の上下限内に制限されることを意味して
いる。
Then, the estimated fuel flow rate F obtained as described above
fp is sent to the first limiting means 10. The first limiting means 10 sets the coefficient of the coefficient means 10c corresponding to the low-order signal selecting means 10a to (1-k 1 ), k 1 > 0, and the coefficient means 10d corresponding to the high-order signal selecting means 10b.
If the coefficients of (1−k 2 ), k 2 > 0 are set, then B = (1 + k 1 ) · Ffp (11) C = (1-k 2 ) · Ffp from each coefficient means 10c and 10d. (12) is output. Therefore, the high-order signal selection means 10b compares the signals A and C and selects and outputs the high-level signal of both. Further, the low-order signal selecting means 10a compares the higher signal with B and selects and outputs the low-level signal of the both. That is, (a) when C <A <B, Fs = A (b) when B <A, Fs = B (c) when A <C, Fs = C is selected. This indicates that the fuel flow rate command signal A is limited by the predetermined upper limit B and lower limit C. Here, Ffp in B and C indicates the theoretical fuel flow rate calculated from the pressure in the furnace, which means that the fuel flow rate command signal A is limited within a predetermined upper and lower limit with respect to the theoretical fuel flow rate.

第2図は定常状態における燃料流量指令信号Aおよび制
限手段10,11の各部信号の大小関係を表わす。この
状態では第1の制限手段10と第2の制限手段11は燃
料流量指令信号Aを選択していることを示す。
FIG. 2 shows the magnitude relationship between the fuel flow rate command signal A and the signals of the respective parts of the limiting means 10 and 11 in the steady state. In this state, the first limiting means 10 and the second limiting means 11 indicate that the fuel flow rate command signal A is selected.

次に、空気過剰率μが過度的にどのようになるかを考え
てみる。今、燃料流量設定値信号Fsは(11)式,
(12)式と第1の制限手段10の動作により C≦Fs≦Bつまり、 (1−k)・Ffp≦Fs≦(1+k)・Ffp……
(13) と表わせる。そこで、(13)式に対し、 Ffp・A・μs=Fa,Fs・A・μ=Faなる関
係を代入すると、 {(1−k)/μs}≦1/μ≦{(1+k)/μs}とな
り、これを変形すると {μs/(1+k)}≦μ≦{μs/(1−k)}とな
る。ここで、k《1,k《1とすると {(1−k)μs}≦μ≦{(1+k)μs}……
(14) となる。すなわち、第1の制限手段10によって空気過
剰率μは設定空気過剰率μsの(1−k)倍から(1
+k)倍の範囲内に閉じ込められる。
Next, let us consider how the excess air ratio μ becomes excessive. Now, the fuel flow rate set value signal Fs is expressed by equation (11),
By the equation (12) and the operation of the first limiting means 10, C ≦ Fs ≦ B, that is, (1-k 2 ) · Ffp ≦ Fs ≦ (1 + k 1 ) · Ffp.
It can be expressed as (13). Then, by substituting the relations of Ffp · A 0 · μs = Fa and Fs · A 0 · μ = Fa into the equation (13), {(1-k 2 ) / μs} ≦ 1 / μ ≦ {(1 + k 1 ) / μs}, which is transformed into {μs / (1 + k 1 )} ≦ μ ≦ {μs / (1-k 2 )}. Here, assuming k 1 << 1, k 2 << 1, {(1-k 1 ) μs} ≦ μ ≦ {(1 + k 2 ) μs} ...
(14) That is, the excess air ratio μ is set to (1−k 1 ) times the set excess air ratio μs by the first limiting means 10.
+ K 2 ) times the range.

次に、第2の制限手段11の動作について説明する。
今、(1)式,(2)式と第2の制限手段11の動作に
より、第2の制限手段11の出力Hは、 E≦H≦Gから (1−k)・Ff≦H≦(1+k)・Ff……(1
5) で表わされる。そこで、(15)に対応す排ガス量を計
算すると、燃料流量Ffに対する単位総排ガス量=G
+(μs−1)A、変動するHに対する総排ガス流量
={G+(μ−1)A}・Ffで表わせるので、こ
れらの式を(15)式に代入すると、 (1−k)・{G+(μs−1)A}・Ff≦
{G+(μ−1)A}・Ff≦(1−k)・{G
+(μs−1)A}・Ff を得ることができる。この式を変形すると、 μs−k{(G/A)+μs−1}≦μ≦μs+
{(G/A)+μs−1)}……(16) となる。ここで、重油とかプロパンなどでは、G/A
1となるため(16)式は、 (1−k)μs≦μ≦(1+k)・μs……(1
7) となる。すなわち、第2の制限手段11によって空気過
剰率μは設定空気過剰率μsの(1−k)倍から(1
+k)倍の範囲に閉じ込められることになる。
Next, the operation of the second limiting means 11 will be described.
Now, by the expressions (1) and (2) and the operation of the second limiting means 11, the output H of the second limiting means 11 is from E ≦ H ≦ G to (1-k 2 ) · Ff ≦ H ≦ (1 + k 4 ) · Ff …… (1
5) is represented. Therefore, when the exhaust gas amount corresponding to (15) is calculated, the unit total exhaust gas amount for the fuel flow rate Ff = G 0
+ (Μs−1) A 0 , the total exhaust gas flow rate for varying H = {G 0 + (μ−1) A 0 } · Ff. Therefore, substituting these formulas into the formula (15) gives (1) −k 3 ) · {G 0 + (μs−1) A 0 } · Ff ≦
{G 0 + (μ-1) A 0 } · Ff ≦ (1-k 4 ) · {G
0 + (μs−1) A 0 } · Ff can be obtained. When this equation is modified, μs−k 3 {(G 0 / A 0 ) + μs−1} ≦ μ ≦ μs +
k 4 {(G 0 / A 0 ) + μs−1)} (16). Here, with heavy oil or propane, G 0 / A
Since it becomes 0 1, the formula (16) is expressed by (1-k 3 ) μs ≦ μ ≦ (1 + k 4 ) · μs (1
7) That is, the excess air ratio μ is set to (1−k 3 ) times the set excess air ratio μs by the second limiting means 11 to (1
It will be confined in the range of + k 4 ) times.

第3図は以上の検討を踏まえて第1図,つまり(14)
式,(17)式において、k=k,k=k
し、燃料供給系が空気供給系よりも応答が若干速い場合
の時間に関する空気過剰率μの変化を示す。つまり、定
常状態では空気過剰率μsに制限されているが、設定値
の急変たは負荷の急変により例えば時刻tで燃料流量
指令信号Aが急増したとき、過度的に空気過剰率は(μ
s−k・μs)まで低下し、しばらくして再び定常状
態に戻る。時刻tでは燃料流量指令信号Aが急減した
とすると、空気過剰率μは過度的に(μs+k・μ
s)まで上昇し、しばらくして再び定常状態に戻る。つ
まり、空気過剰率μは、 (1−k)・μs≦μ≦(1+k)・μs……(1
8) の範囲に制限される。
Fig. 3 is based on the above examination. Fig. 1, that is, (14)
In equations (17), k 1 = k 3 and k 2 = k 4, and changes in the excess air ratio μ with respect to time when the response of the fuel supply system is slightly faster than that of the air supply system are shown. That is, in the steady state, the excess air ratio is limited to μs, but when the fuel flow rate command signal A sharply increases at time t 1 due to a sudden change in the set value or a sudden change in the load, the excess air ratio becomes (μ
sk 1 · μs), and after a while, returns to the steady state. If the fuel flow rate command signal A is suddenly reduced at time t 2 , the excess air ratio μ is excessively (μs + k 2 · μ).
s), and after a while, returns to the steady state again. That is, the excess air ratio μ is (1-k 1 ) · μs ≦ μ ≦ (1 + k 2 ) · μs ... (1
It is limited to the range of 8).

従って、以上のような実施例の構成によれば、調節手段
9からの燃料流量指令信号Aに対し前記炉内圧力計17
の出力から求めた許容燃料流量信号に係数(1+k
を乗じて求めた値を上限とし、係数(1−k)を乗じ
た値を下限とする制限を加え、この制限された燃料流量
指令信号を設定値として前記燃料流量制御手段が燃料流
量を制御し、一方、全排ガス流量については、前記燃料
流量指令信号Aに対し、前記燃料流量計5の出力に係数
(1−k)を乗じた値を下限とし、係数(1+k
を乗じた値を上限とする制限を加え、この制限された燃
料流量指令信号から総排ガス流量信号を求め、この総排
ガス流量を排出するに必要な差圧を求め、これを炉内圧
力設定値として炉内圧力を制御するようにしたので、空
気過剰率μは定常状態は勿論のこと、過度状態において
も常に設定空気過剰率μsに対し次の範囲で制御され
る。つまり、k=k,k=kとすると、 μs−k{μs+(G/A)−1}≦μ≦μs+
{μs(G/A)−1}……(19) で表わすことができ、一般にk〜kが0.03〜
0.05(3〜5%)程度に設定すれば、重油,プロパ
ンなどではG/A1であるから、(19)式は μs(1−k)≦μ≦μs(1+k)……(20) で近似することができ、これによりk〜kを設定す
ることにより、プロセスの条件如何にかかわらず空気過
剰率μを非常に狭い範囲内に抑えることができ、燃焼効
率の向上による省エネルギー,公害防止を図ることがで
きる。
Therefore, according to the configuration of the above embodiment, the in-reactor pressure gauge 17 is responsive to the fuel flow rate command signal A from the adjusting means 9.
Coefficient (1 + k 1 ) to the allowable fuel flow rate signal obtained from the output of
The upper limit is the value obtained by multiplying by, and the lower limit is the value obtained by multiplying by the coefficient (1-k 2 ), and the fuel flow rate control means sets the fuel flow rate with the limited fuel flow rate command signal as a set value. On the other hand, for the total exhaust gas flow rate, the lower limit is a value obtained by multiplying the fuel flow rate command signal A by the output of the fuel flow meter 5 by a coefficient (1-k 3 ), and the coefficient (1 + k 4 ).
Add a limit to the value multiplied by, obtain the total exhaust gas flow rate signal from this limited fuel flow rate command signal, obtain the differential pressure required to discharge this total exhaust gas flow rate, and set this to the reactor pressure setting value. Since the furnace pressure is controlled as described above, the excess air ratio μ is controlled not only in the steady state but also in the following range with respect to the set excess air ratio μs at all times. That is, if k 1 = k 3 and k 2 = k 4 , then μs−k 1 {μs + (G 0 / A 0 ) −1} ≦ μ ≦ μs +
k 2 {μs (G 0 / A 0 ) −1} (19), and generally k 1 to k 4 are 0.03 to
If it is set to about 0.05 (3 to 5%), G 0 / A 0 1 for heavy oil, propane, etc., so that the equation (19) is μs (1-k 1 ) ≦ μ ≦ μs (1 + k 2 ). It can be approximated by (20), and by setting k 1 to k 4 , the excess air ratio μ can be suppressed within a very narrow range regardless of process conditions, and combustion efficiency Energy conservation and pollution prevention can be achieved by improving

なお、上記実施例では設定空気過剰率μsを一定値とし
て説明したが、これを燃焼量,排ガスO制御,排ガス
CO制御信号により補正し、この補正後の空気過剰率で
演算処理してもよい。このようにすればより一層高度な
燃焼制御を実現できる。また、第1の制限手段10およ
び第2の制限手段11は何れも上限と下限の双方の制限
を行う構成としたが、例えば負荷変化時に黒煙を発生し
ないという基本条件を満足するのみの場合には第1の制
限手段10は炉内圧力計17の出力に関連した予定の上
限制限機能を持てばよく、また第2の制限手段11は燃
料流量計5の出力に関連した予定の下限制限機能を持て
ばよい。その他、本発明はその要旨を逸脱しない範囲で
種々変形して実施できる。
In the above embodiment, the set excess air ratio μs is described as a constant value. However, this may be corrected by the combustion amount, exhaust gas O 2 control, and exhaust gas CO control signals, and calculation processing may be performed using the corrected excess air ratio. Good. In this way, more advanced combustion control can be realized. Further, both the first limiting means 10 and the second limiting means 11 are configured to limit both the upper limit and the lower limit, but in the case where only the basic condition that black smoke is not generated when the load changes is satisfied, for example. In addition, the first limiting means 10 may have a planned upper limit limiting function related to the output of the in-core pressure gauge 17, and the second limiting means 11 may have a planned lower limit limiting related to the output of the fuel flow meter 5. You just have to have a function. In addition, the present invention can be modified in various ways without departing from the scope of the invention.

[発明の効果] 以上詳記したように本発明によれば、空気過剰率を常に
予定の上限および下限の範囲内に制御できるので、負荷
変化が有っても燃焼効率を高めることができ、公害発生
の恐れがなく、かつ、失火などの全くない安全な燃焼を
実現できる自然通風式燃焼制御装置を提供できる。
[Advantages of the Invention] As described in detail above, according to the present invention, the excess air ratio can always be controlled within the predetermined upper and lower limits, so that the combustion efficiency can be improved even when there is a load change. It is possible to provide a natural ventilation combustion control device that can realize safe combustion without the risk of pollution and without any accidental fire.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第3図は本発明に係わる燃焼制御装置の一
実施例を説明するために示したもので、第1図は本発明
装置の構成図、第2図は燃料流量指令信号と第1および
第2の制限手段の各部信号の大小関係を示す図、第3図
は空気過剰率の時間に対する変化を示す説明図である。 1……燃焼炉、3……バーナ、4……燃料パイプ、5…
…燃料流量計、6……燃料流量調節弁、7……ダンパ、
8……温度検出器、9……温度調節手段、10……第1
の制限手段、11……第2の制限手段、12……燃料流
量調節手段、13,14……乗算手段、15……炉内圧
力調節手段、16……単位総排ガス量演算手段、17…
…炉内圧力計、18……開平演算手段、19……除算手
段、10b,11a……高位信号選択手段、10a,1
1b……低位信号選択手段、10c,10d,11c,
11d……係数手段。
1 to 3 are shown for explaining one embodiment of a combustion control device according to the present invention. FIG. 1 is a block diagram of the device of the present invention, and FIG. 2 is a fuel flow rate command signal and FIG. 3 is a diagram showing a magnitude relationship between signals of respective parts of the first and second limiting means, and FIG. 3 is an explanatory diagram showing a change in excess air ratio with time. 1 ... Combustion furnace, 3 ... Burner, 4 ... Fuel pipe, 5 ...
… Fuel flow meter, 6… Fuel flow control valve, 7… Damper,
8 ... Temperature detector, 9 ... Temperature adjusting means, 10 ... First
Limiting means, 11 ... second limiting means, 12 ... fuel flow rate adjusting means, 13,14 ... multiplying means, 15 ... reactor pressure adjusting means, 16 ... unit total exhaust gas amount calculating means, 17 ...
... furnace pressure gauge, 18 ... square root calculation means, 19 ... division means, 10b, 11a ... high level signal selection means, 10a, 1
1b ... Low-order signal selection means, 10c, 10d, 11c,
11d ... Coefficient means.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃料流量計および燃料流量操作端を有する
燃料供給系と炉内圧力計および炉内圧力操作端を有する
排ガス排出系とを備えた燃焼制御装置において、 燃焼制御量を検出しこの検出燃焼制御量に基づいて燃料
流量指令信号を求める調節手段と、前記炉内圧力計の出
力に関連した予定の少なくとも上限を有し、前記調節手
段からの指令信号を制限する第1の制限手段と、前記燃
料流量計の出力に関連した予定の少なくとも下限を有
し、前記調節手段からの指令信号を制限する第2の制限
手段と、前記第1の制限手段の出力と前記燃料流量計の
出力を受けて燃料流量操作端を制御する燃料流量制御手
段と、前記第2の制限手段の出力から全排ガス量を排出
するに必要な炉内圧力設定値を求め、この炉内圧力設定
値と炉内圧力計の出力を受けて前記炉内圧力操作端を制
御する炉内圧力制御手段とを備えたことを特徴とする燃
焼制御装置。
1. A combustion control device comprising a fuel supply system having a fuel flow meter and a fuel flow operating end, and an exhaust gas exhaust system having an in-reactor pressure gauge and an in-reactor pressure operating end. Adjusting means for obtaining a fuel flow rate command signal based on the detected combustion control amount, and first limiting means for limiting the command signal from the adjusting means having at least a predetermined upper limit related to the output of the in-core pressure gauge. And second limiting means for limiting a command signal from the adjusting means, the second limiting means having at least a predetermined lower limit related to the output of the fuel flow meter, the output of the first limiting means and the fuel flow meter. A fuel flow rate control means for receiving the output to control the fuel flow rate control end, and a reactor internal pressure set value necessary for discharging the total amount of exhaust gas are obtained from the output of the second limiting means, and the reactor internal pressure set value Receives the output of the furnace pressure gauge And a furnace pressure control means for controlling the furnace pressure operating end.
JP62221407A 1987-09-04 1987-09-04 Combustion control device Expired - Lifetime JPH0637972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62221407A JPH0637972B2 (en) 1987-09-04 1987-09-04 Combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62221407A JPH0637972B2 (en) 1987-09-04 1987-09-04 Combustion control device

Publications (2)

Publication Number Publication Date
JPS6463713A JPS6463713A (en) 1989-03-09
JPH0637972B2 true JPH0637972B2 (en) 1994-05-18

Family

ID=16766259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62221407A Expired - Lifetime JPH0637972B2 (en) 1987-09-04 1987-09-04 Combustion control device

Country Status (1)

Country Link
JP (1) JPH0637972B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7079388B1 (en) * 2021-12-06 2022-06-01 株式会社荏原製作所 Plating method and plating equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3015967B2 (en) * 1989-10-02 2000-03-06 旭化成工業株式会社 Multilayer packaging film and method for producing the same
CN103256623B (en) * 2012-02-20 2015-06-17 宝山钢铁股份有限公司 Method for flexibly controlling air excess coefficient of impulse burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7079388B1 (en) * 2021-12-06 2022-06-01 株式会社荏原製作所 Plating method and plating equipment

Also Published As

Publication number Publication date
JPS6463713A (en) 1989-03-09

Similar Documents

Publication Publication Date Title
JP3101823B2 (en) Control method for low NOx combustion system
GB2141267A (en) Method of controlling combustion
GB2214666A (en) Burner air-fuel control
EP2359064A1 (en) Oxygen trim controller tuning during combustion system commissioning
US6145453A (en) Method for controlling the firing rate of combustion installations
US4489376A (en) Industrial process control apparatus and method
US4500950A (en) Industrial process control apparatus and method
EP2385321A2 (en) A method for regulating the combustion process in solid fuel central heating boilers
JPH0637972B2 (en) Combustion control device
US4489375A (en) Industrial process control apparatus and method
US4531905A (en) Optimizing combustion air flow
CA2671972C (en) Batch waste gasification process
JPS63286614A (en) Combustion control of boller
JPS648243B2 (en)
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
US9541906B2 (en) Controller capable of achieving multi-variable controls through single-variable control unit
JP3235643B2 (en) Combustion control method and apparatus for sludge incinerator
JP3235646B2 (en) Combustion control method for sludge incinerator and apparatus therefor
JPH06180116A (en) Exhaust gas concentration controller
JPS60263014A (en) Combustion controlling method
JPS6113531B2 (en)
JPS5813809B2 (en) Combustion control method using low excess air
JPH06117627A (en) Exhaust gas concentration control device
JPS6033204B2 (en) Residual oxygen control method
JPS6025682B2 (en) Combustion air flow control device in boiler

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080518

Year of fee payment: 14