JPH09186457A - Production of laminate having inner layer circuit - Google Patents

Production of laminate having inner layer circuit

Info

Publication number
JPH09186457A
JPH09186457A JP34273595A JP34273595A JPH09186457A JP H09186457 A JPH09186457 A JP H09186457A JP 34273595 A JP34273595 A JP 34273595A JP 34273595 A JP34273595 A JP 34273595A JP H09186457 A JPH09186457 A JP H09186457A
Authority
JP
Japan
Prior art keywords
prepreg
laminate
melt viscosity
inner layer
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34273595A
Other languages
Japanese (ja)
Other versions
JP3605917B2 (en
Inventor
Noriyasu Oto
則康 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP34273595A priority Critical patent/JP3605917B2/en
Publication of JPH09186457A publication Critical patent/JPH09186457A/en
Application granted granted Critical
Publication of JP3605917B2 publication Critical patent/JP3605917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a laminate having an inner layer circuit where the difference of thickness is small between a laminate having an inner layer circuit produced at a position touching a hot plate and a laminate having an inner layer circuit produced at a position not touching the hot plate. SOLUTION: A prepreg comprising a basic material impregnated with a thermosetting resin is laminated on a board provided with a circuit and more than two such laminates are laminated and hot pressed by means of hot plates. The ratio of melt viscosity at 130 deg.C is set at 1:1.2-1.5 between the prepreg in a laminate touching the hot plate and the prepreg in a laminate not touching the hot plate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、プリント配線板の
製造に使用される、内層回路入り積層板の製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a laminated board containing an inner layer circuit, which is used for manufacturing a printed wiring board.

【0002】[0002]

【従来の技術】従来、内層回路入り積層板は、回路を形
成した基板を内層基板とし、その内層基板にプリプレグ
を積層し、さらにそのプリプレグの最外層に必要に応じ
て金属箔を配して積層し、この積層物を、熱板間に挟ん
で加熱加圧して製造されている。また、生産性の向上の
ために、上記積層物を、必要に応じて間に金型を介在さ
せて複数積層し、その複数積層したものを熱板間に挟ん
で加熱加圧して、1度に多数の内層回路入り積層板が得
られる方法も用いられている。これらの、内層回路入り
積層板に用いられるプリプレグは、内層基板の表面に形
成された、回路と回路の間に存在する各種形状の凹部を
樹脂により埋めるために、必要な樹脂量と比べて、余裕
をみて過剰に多い樹脂量のものが一般に使用されてお
り、また凹部に気泡が残らないように、加熱したとき流
動性がよいものが使用されている。
2. Description of the Related Art Conventionally, a laminated board with an inner layer circuit has a substrate on which a circuit is formed as an inner layer substrate, a prepreg is laminated on the inner layer substrate, and a metal foil is further arranged on the outermost layer of the prepreg as required. It is manufactured by stacking and sandwiching the stacked product between hot plates to heat and press. In addition, in order to improve productivity, a plurality of the above-mentioned laminates are laminated with a mold interposed therebetween, and the plurality of laminates are sandwiched between hot plates and heated and pressed once. In addition, a method for obtaining a large number of laminated boards with inner circuit is also used. These prepregs used for the inner layer circuit-containing laminated plate have a resin amount required to fill the recesses of various shapes existing between the circuits formed on the surface of the inner layer substrate with resin, compared to the resin amount required. A resin having an excessively large amount of resin is generally used with a margin, and a resin having a good fluidity when heated is used so that air bubbles do not remain in the recess.

【0003】近年の電子機器の高機能化に伴い、内層回
路入り積層板に要求される板厚精度は、非常に高いもの
となっている。しかし、上記のような複数の積層物を熱
板間に挟んで加熱加圧成形する方法の場合、板厚のばら
つきが大きく、不良となる場合があり、歩留まりを低下
させ問題となっている。
As electronic devices have become more sophisticated in recent years, the plate thickness accuracy required for laminated plates with inner layer circuits has become extremely high. However, in the case of a method in which a plurality of laminates as described above are sandwiched between hot plates and heat-pressed, there is a large variation in plate thickness, which may result in defects, which lowers the yield and poses a problem.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記問題点
を改善するために成されたもので、その目的とするとこ
ろは、回路を形成した基板と熱硬化性樹脂を基材に含浸
したプリプレグを積層して積層物を形成し、その積層物
を3枚以上重ねて積層体を形成し、その積層体を熱板間
に挟んで加熱加圧して製造する内層回路入り積層板の製
造方法において、熱板と接する位置で製造した内層回路
入り積層板と、熱板と接しない位置で製造した内層回路
入り積層板の板厚の差が小さい、内層回路入り積層板の
製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and its purpose is to impregnate a substrate on which a circuit is formed and a base material with a thermosetting resin. A method for producing a laminated board with an inner layer circuit, comprising laminating prepregs to form a laminated body, stacking three or more laminated bodies to form a laminated body, sandwiching the laminated body between hot plates, and heating and pressurizing the laminated body. In, there is provided a method for producing a laminated plate with an internal layer circuit, in which a difference in plate thickness between the laminated plate with an internal layer circuit produced at a position in contact with the hot plate and the laminated plate with an internal layer circuit produced at a position not in contact with the hot plate is small. Especially.

【0005】[0005]

【課題を解決するための手段】本発明の請求項1に係る
内層回路入り積層板の製造方法は、回路を形成した基板
と、熱硬化性樹脂を基材に含浸したプリプレグを積層し
て積層物を形成し、その積層物を3枚以上重ねて積層体
を形成し、その積層体を熱板間に挟んで加熱加圧して製
造する内層回路入り積層板の製造方法において、上記積
層体中の積層物のうち熱板と接する積層物に用いるプリ
プレグ(以下第1プリプレグと記す)の130℃におけ
る溶融粘度と、上記積層体中の積層物のうち熱板と接す
る積層物以外の積層物に用いるプリプレグ(以下第2プ
リプレグと記す)の130℃における溶融粘度の比が、
1:1.2〜1.5であることを特徴とする。
According to a first aspect of the present invention, there is provided a method of manufacturing a laminated board with an inner layer circuit in which a circuit-formed substrate and a prepreg having a base material impregnated with a thermosetting resin are laminated. In the method for producing a laminated board with an inner layer circuit, the laminated body is formed by stacking three or more laminated bodies to form a laminated body, and sandwiching the laminated body between hot plates to heat and pressurize the laminated body. Melt viscosity at 130 ° C. of a prepreg (hereinafter referred to as a first prepreg) used for a laminate in contact with a hot plate, and a laminate other than the laminate in contact with the hot plate among the laminates in the laminate. The ratio of the melt viscosity of the prepreg used (hereinafter referred to as the second prepreg) at 130 ° C. is
1: 1.2 to 1.5.

【0006】本発明の請求項2に係る内層回路入り積層
板の製造方法は、請求項1記載の内層回路入り積層板の
製造方法において、プリプレグが、エポキシ樹脂組成物
をガラスクロスに含浸したものであることを特徴とす
る。
According to a second aspect of the present invention, there is provided a method for producing a laminated board having an inner layer circuit, wherein the prepreg is a glass cloth impregnated with an epoxy resin composition. Is characterized in that.

【0007】本発明の請求項3に係る内層回路入り積層
板の製造方法は、請求項2記載の内層回路入り積層板の
製造方法において、第1プリプレグ及び第2プリプレグ
の130℃における溶融粘度が、300〜800ポイズ
であることを特徴とする。
According to a third aspect of the present invention, there is provided a method for producing an inner layer circuit-containing laminated sheet according to the second aspect, wherein the first prepreg and the second prepreg have a melt viscosity at 130 ° C. , 300 to 800 poise.

【0008】なお、本発明でいう熱板と接するとは、積
層体と熱板が直接接触することだけではなく、間に金型
や熱緩衝材やクッション材等を介在して接する場合も含
む。
The term "contact with the hot plate" in the present invention includes not only the direct contact between the laminated body and the hot plate, but also the case of interposing a mold, a heat cushioning material, a cushion material or the like therebetween. .

【0009】前記課題を解決するため、発明者らは種々
検討を重ねた結果、プリプレグと、熱板の位置関係(距
離)の差によって、プリプレグの温度上昇速度の違いが
発生し、その温度上昇速度の違いによる熱硬化性樹脂の
流動性の違いが、板厚のばらつきの発生の原因の一つで
あることを見い出した。そのため、発明者らは温度上昇
速度の違いがあっても、プリプレグの熱硬化性樹脂の流
動性の差が小さくなる製造方法を見い出し課題を解決し
た。
In order to solve the above-mentioned problems, the inventors have conducted various studies, and as a result, due to the difference in the positional relationship (distance) between the prepreg and the hot plate, a difference in the temperature rising rate of the prepreg occurs, and the temperature increase thereof occurs. It was found that the difference in the fluidity of the thermosetting resin due to the difference in speed is one of the causes of the variation in the plate thickness. Therefore, the inventors have found a manufacturing method in which the difference in the fluidity of the thermosetting resin of the prepreg is reduced even if there is a difference in the rate of temperature rise, and solved the problem.

【0010】本発明によると、第1プリプレグの溶融粘
度を、第2プリプレグの溶融粘度より特定の割合で小さ
くすることにより、第1プリプレグと第2プリプレグの
樹脂流れの差を小さくし、板厚のばらつきを小さくす
る。
According to the present invention, the melt viscosity of the first prepreg is made smaller than the melt viscosity of the second prepreg by a specific ratio, so that the difference in the resin flow between the first prepreg and the second prepreg is reduced and the plate thickness is reduced. To reduce the variation.

【0011】[0011]

【発明の実施の形態】本発明の内層回路入り積層板の製
造方法は、回路を形成した基板に、熱硬化性樹脂を基材
に含浸したプリプレグを積層し、さらに必要に応じてそ
の最外層に金属箔又は離型フィルムを積層して積層物を
形成し、その積層物を必要に応じて金型を介在させて3
枚以上重ねて積層体を形成し、その積層体を熱板間に挟
んで加熱加圧して製造する。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a laminated board with an internal circuit according to the present invention comprises laminating a prepreg in which a base material is impregnated with a thermosetting resin on a circuit-formed substrate, and further, if necessary, the outermost layer thereof. A metal foil or a release film is laminated on the above to form a laminated body, and the laminated body is intervened with a mold if necessary.
A laminate is formed by stacking one or more sheets, and the laminate is sandwiched between hot plates and heated and pressed to manufacture.

【0012】積層体を熱板間に挟んで加熱するときの、
各積層物の温度上昇は、熱板からの伝熱により加熱され
るため、熱板との距離に応じて上昇速度のずれが発生す
る。この温度の上昇速度の差は、熱板と接する積層物
と、その隣に接する熱板から2枚目の積層物の間で特に
大きな差が発生する。なお、積層体を熱板間に挟むと
は、積層体と熱板が直接接触するように挟むことだけで
はなく、間に温度の上昇速度の差を少しでも減らすため
に用いる熱緩衝材や、回路間の凹部に気泡が残らないよ
うにクッション性を付与する紙等を挟んでいてもよい。
なおこの場合も一般に熱板と接する積層物と、上記2枚
目の積層物間で最も大きな上昇速度の差が発生する。
When the laminated body is sandwiched between heating plates and heated,
Since the temperature rise of each laminate is heated by the heat transfer from the hot plate, the rise rate is deviated according to the distance from the hot plate. This difference in the rising speed of the temperature causes a particularly large difference between the laminate in contact with the hot plate and the second laminate from the adjacent heat plate. It should be noted that sandwiching the laminated body between the hot plates is not only sandwiched so that the laminated body and the hot plate are in direct contact with each other, but also a thermal buffering material used to reduce the difference in temperature rising speed as much as possible, Paper or the like that imparts cushioning properties may be sandwiched so that air bubbles do not remain in the recesses between the circuits.
Also in this case, generally, the largest difference in the ascending speed occurs between the laminate in contact with the hot plate and the above-mentioned second laminate.

【0013】本発明に用いるプリプレグは、熱硬化性樹
脂を基材に含浸して半硬化させたものである。この半硬
化させた熱硬化性樹脂は、加熱すると、いったん粘度が
低下して樹脂が流れ、さらに加熱すると硬化して樹脂が
流れなくなるため、積層時の取り扱いにおいては半硬化
しているため扱いやすく、また、加熱加圧して成形する
途中で、ある程度流動性を有するため、回路間の凹部に
気泡が残りにくくなるという特徴があり一般に用いられ
ている。この加熱時の流動性を表わす特性値のうち、1
30℃に加熱したときに計測される最低粘度値が、13
0℃における溶融粘度であり、フローテスター等を用い
て測定される。また、同種の樹脂を用いた場合、溶融粘
度は、熱硬化性樹脂の硬化程度も表わしており、溶融粘
度が小さい樹脂は、溶融粘度が大きい樹脂と比較して、
硬化程度が低く、硬化までの時間が長いことを表わして
いる。
The prepreg used in the present invention is obtained by impregnating a base material with a thermosetting resin and semi-curing it. This semi-cured thermosetting resin is easy to handle because it loses its viscosity once it is heated and the resin flows when it is heated, and the resin does not flow when it is heated, because it is semi-cured during lamination. In addition, since it has a certain degree of fluidity during heating and pressurizing and molding, air bubbles are less likely to remain in the recesses between the circuits, and it is generally used. Of the characteristic values representing the fluidity during heating, 1
The minimum viscosity value measured when heated to 30 ° C is 13
Melt viscosity at 0 ° C., which is measured using a flow tester or the like. Further, when the same kind of resin is used, the melt viscosity also represents the degree of curing of the thermosetting resin, and the resin having a small melt viscosity is compared with the resin having a large melt viscosity,
It indicates that the degree of curing is low and the time to cure is long.

【0014】本発明に用いるプリプレグは、第1プリプ
レグの130℃における溶融粘度と、第2プリプレグの
130℃における溶融粘度の比を、1:1.2〜1.5
とすることで、第1プリプレグと第2プリプレグの樹脂
流れの差を小さくし、板厚のばらつきを小さくする。な
お、異なる溶融粘度のプリプレグを得る方法としては、
プリプレグを製造するときの加熱温度や、加熱時間等を
変更することにより、容易に得ることができる。
The prepreg used in the present invention has a ratio of the melt viscosity of the first prepreg at 130 ° C. to the melt viscosity of the second prepreg at 130 ° C. of 1: 1.2 to 1.5.
As a result, the difference in resin flow between the first prepreg and the second prepreg is reduced, and the variation in plate thickness is reduced. As a method for obtaining prepregs having different melt viscosities,
It can be easily obtained by changing the heating temperature, the heating time, etc. when manufacturing the prepreg.

【0015】なお、第1プリプレグの130℃における
溶融粘度と第2プリプレグの130℃における溶融粘度
の比が1.2未満の場合は、板厚のばらつきの改良の効
果が得られず、1.5を越える場合は、第1プリプレグ
の粘度が低くなりすぎるため、板厚のばらつきが大きく
なり問題となる。
When the ratio of the melt viscosity of the first prepreg at 130 ° C. to the melt viscosity of the second prepreg at 130 ° C. is less than 1.2, the effect of improving the variation in plate thickness cannot be obtained. If it exceeds 5, the viscosity of the first prepreg becomes too low, which causes a problem of large variation in plate thickness.

【0016】なお、1枚の積層物中に、複数種類の溶融
粘度のプリプレグを用いる場合、その複数種類のプリプ
レグの重量比率を掛け合わせた平均値を、その積層物の
溶融粘度とする。
When a plurality of prepregs having different melt viscosities are used in one laminate, the average value obtained by multiplying the weight ratio of the plurality of prepregs is taken as the melt viscosity of the laminate.

【0017】本発明の基板及びプリプレグに用いる樹脂
としては、エポキシ樹脂系、フェノール樹脂系、ポリイ
ミド樹脂系、不飽和ポリエステル樹脂系、ポリフェニレ
ンエーテル樹脂系等の単独、変性物、混合物のように、
熱硬化性樹脂全般を用いることができる。なお、エポキ
シ樹脂組成物が、電気特性及び耐熱性に優れ好ましい。
エポキシ樹脂組成物の場合、130℃における溶融粘度
が、150〜2000ポイズ程度のものが一般には用い
られるが、板厚の改良と、回路間の凹部に気泡が残らな
いようにするためには、300〜800ポイズが好まし
い。また、樹脂を含浸する基材としてはガラス等の無機
質繊維やポリエステル、ポリアミド、ポリアクリル、ポ
リイミド等の有機質繊維や、木綿等の天然繊維の織布、
不織布、紙等を用いることができる。なお、ガラスクロ
ス等の無機質繊維が耐熱性、耐湿性に優れており好まし
い。上記基板の両面又は片面には、金属製の回路が形成
されており、回路を形成する金属としては、銅、アルミ
ニウム、真鍮、ニッケル等の単独、合金、複合の金属箔
及び銅、ニッケル、ハンダ等のメッキによる析出金属を
用いることができる。
The resin used for the substrate and prepreg of the present invention may be an epoxy resin type, a phenol resin type, a polyimide resin type, an unsaturated polyester resin type, a polyphenylene ether resin type, etc., such as a single substance, a modified substance or a mixture thereof.
All thermosetting resins can be used. The epoxy resin composition is preferable because of its excellent electrical characteristics and heat resistance.
In the case of an epoxy resin composition, a melt viscosity at 130 ° C. of about 150 to 2000 poise is generally used, but in order to improve the plate thickness and prevent bubbles from remaining in the recesses between circuits, 300-800 poise is preferred. Further, as the substrate to be impregnated with resin, inorganic fibers such as glass and polyester, polyamide, polyacrylic, organic fibers such as polyimide, woven fabric of natural fibers such as cotton,
Nonwoven fabric, paper, etc. can be used. In addition, inorganic fibers such as glass cloth are preferable because they have excellent heat resistance and moisture resistance. A circuit made of metal is formed on both sides or one side of the substrate, and as the metal forming the circuit, copper, aluminum, brass, nickel or the like alone, alloy, composite metal foil and copper, nickel, solder It is possible to use a metal deposited by plating such as.

【0018】[0018]

【実施例】【Example】

(実施例1)エポキシ当量が500であるテトラブロモ
ビスフェノールA型エポキシ樹脂[ダウケミカル社製、
商品名DER511]80重量部と、エポキシ当量が1
80であるフェノールノボラック型エポキシ樹脂[油化
シェルエポキシ社製、商品名エピコート154]20重
量部と、ジシアンジアミド2.5重量部と、2−メチル
イミダゾールを0.1重量部配合し、混合して樹脂組成
物を得た。
Example 1 Tetrabromobisphenol A type epoxy resin having an epoxy equivalent of 500 [manufactured by Dow Chemical Co.,
Product name DER511] 80 parts by weight and epoxy equivalent is 1
20 parts by weight of a phenol novolac type epoxy resin [trade name: Epicoat 154, manufactured by Yuka Shell Epoxy Co., Ltd. 80], 2.5 parts by weight of dicyandiamide, and 0.1 parts by weight of 2-methylimidazole were mixed and mixed. A resin composition was obtained.

【0019】次いで、得られた樹脂組成物をガラスクロ
ス[旭シュエーベル社製、品番1550]に含浸し、次
いで150℃で乾燥して、厚みが0.15mm、レジン
コンテントが45重量%、130℃における溶融粘度が
420ポイズのプリプレグAを得た。また同じ樹脂組成
物を同じガラスクロスに含浸し、次いで150℃で上記
プリプレグAと乾燥時間を変えて乾燥して、厚みが0.
15mm、レジンコンテントが45重量%、130℃に
おける溶融粘度が600ポイズのプリプレグBを得た。
Then, the obtained resin composition was impregnated into glass cloth [manufactured by Asahi Schwebel, product number 1550] and dried at 150 ° C. to have a thickness of 0.15 mm, resin content of 45% by weight, and 130 ° C. A prepreg A having a melt viscosity of 420 poises was obtained. Further, the same resin composition was impregnated in the same glass cloth, and then dried at 150 ° C. with the above prepreg A by changing the drying time to obtain a thickness of 0.
A prepreg B having a resin content of 15 mm, a resin content of 45% by weight, and a melt viscosity at 130 ° C. of 600 poise was obtained.

【0020】また、絶縁層厚み0.2mmの両面銅張積
層板(FR−4タイプ)の銅箔(厚み35μm)をエッ
チングし、残銅率約50%の回路を形成した基板を得
た。
Further, a copper foil (thickness: 35 μm) of a double-sided copper clad laminate (FR-4 type) having an insulating layer thickness of 0.2 mm was etched to obtain a circuit-formed substrate having a residual copper rate of about 50%.

【0021】次いで、得られた基板の両側に第1プリプ
レグとしてプリプレグAを各2枚ずつ重ね、さらにその
両外側に厚み35μmの銅箔を配して積層して積層物Y
を得た。また、得られた基板の両側に第2プリプレグと
してプリプレグBを各2枚ずつ重ね、さらにその両外側
に厚み35μmの銅箔を配して積層して積層物Zを得
た。次いで、積層物Zを、間に1mmの金型を介在させ
て8枚積層し、その両外側に1mmの金型を介在させて
積層物Yを積層し、10枚の積層物Y,Zよりなる積層
体を形成した。
Next, two prepregs A each serving as a first prepreg are laminated on both sides of the obtained substrate, and a copper foil having a thickness of 35 μm is arranged on both outer sides of the prepregs A and laminated to form a laminate Y.
I got In addition, two prepregs B each as a second prepreg were laminated on both sides of the obtained substrate, and a copper foil having a thickness of 35 μm was arranged on both outer sides of the prepreg B to laminate them to obtain a laminate Z. Next, eight laminates Z were laminated with a 1 mm mold interposed therebetween, and a laminate Y was laminated on both outer sides thereof with a 1 mm mold interposed therebetween. Was formed.

【0022】その積層体を1mmの金型とクラフト紙を
介して熱板で挟み、温度170℃、最初の30分間が
0.4MPa、以降は3.9MPaの圧力で120分加
熱加圧して、10枚の内層回路入り銅張積層板を得た。
なおこの場合の、第1プリプレグの130℃における溶
融粘度と、第2プリプレグの130℃における溶融粘度
の比は、1:1.4となる。
The laminated body was sandwiched by a hot plate through a 1 mm mold and kraft paper, and heated and pressurized at a temperature of 170 ° C. for 0.4 minutes for the first 30 minutes and thereafter at 3.9 MPa for 120 minutes, Ten copper clad laminates with inner layer circuits were obtained.
In this case, the ratio of the melt viscosity of the first prepreg at 130 ° C and the melt viscosity of the second prepreg at 130 ° C is 1: 1.4.

【0023】(実施例2)乾燥時間を変えて乾燥して、
厚みが0.15mm、レジンコンテントが45重量%、
130℃における溶融粘度が480ポイズのプリプレグ
Cを得たこと、及びプリプレグAに代えて、プリプレグ
Cを使用したこと以外は、実施例1と同様にして10枚
の内層回路入り銅張積層板を得た。なおこの場合の、第
1プリプレグの130℃における溶融粘度と、第2プリ
プレグの130℃における溶融粘度の比は、1:1.3
となる。
(Example 2) Drying was performed by changing the drying time,
Thickness is 0.15mm, resin content is 45% by weight,
Ten copper clad laminates with an inner layer circuit were obtained in the same manner as in Example 1 except that prepreg C having a melt viscosity at 130 ° C. of 480 poise was obtained, and prepreg C was used instead of prepreg A. Obtained. In this case, the ratio of the melt viscosity of the first prepreg at 130 ° C and the melt viscosity of the second prepreg at 130 ° C was 1: 1.3.
Becomes

【0024】(実施例3)乾燥時間を変えて乾燥して、
厚みが0.15mm、レジンコンテントが45重量%、
130℃における溶融粘度が640ポイズのプリプレグ
Dを得たこと、及び乾燥時間を変えて乾燥して、厚みが
0.15mm、レジンコンテントが45重量%、130
℃における溶融粘度が800ポイズのプリプレグEを得
たこと、及びプリプレグAに代えて、プリプレグDを使
用したこと、及びプリプレグBに代えて、プリプレグE
を使用したこと以外は、実施例1と同様にして10枚の
内層回路入り銅張積層板を得た。なおこの場合の、第1
プリプレグの130℃における溶融粘度と、第2プリプ
レグの130℃における溶融粘度の比は、1:1.3と
なる。
(Example 3) Drying was performed by changing the drying time,
Thickness is 0.15mm, resin content is 45% by weight,
Prepreg D having a melt viscosity of 640 poises at 130 ° C. was obtained, and the prepreg D was dried by changing the drying time to have a thickness of 0.15 mm and a resin content of 45% by weight.
Prepreg E having a melt viscosity of 800 poise at 0 ° C., using prepreg D in place of prepreg A, and prepreg E in place of prepreg B
Ten copper clad laminates with inner layer circuits were obtained in the same manner as in Example 1 except that was used. In this case, the first
The ratio of the melt viscosity of the prepreg at 130 ° C and the melt viscosity of the second prepreg at 130 ° C is 1: 1.3.

【0025】(実施例4)乾燥時間を変えて乾燥して、
厚みが0.15mm、レジンコンテントが45重量%、
130℃における溶融粘度が800ポイズのプリプレグ
Eを得たこと、及び乾燥時間を変えて乾燥して、厚みが
0.15mm、レジンコンテントが45重量%、130
℃における溶融粘度が560ポイズのプリプレグFを得
たこと、及びプリプレグAに代えて、プリプレグFを使
用したこと、及びプリプレグBに代えて、プリプレグE
を使用したこと以外は、実施例1と同様にして10枚の
内層回路入り銅張積層板を得た。なおこの場合の、第1
プリプレグの130℃における溶融粘度と、第2プリプ
レグの130℃における溶融粘度の比は、1:1.4と
なる。
(Embodiment 4) Drying is performed by changing the drying time,
Thickness is 0.15mm, resin content is 45% by weight,
Prepreg E having a melt viscosity of 800 poises at 130 ° C. was obtained, and the prepreg E was dried by changing the drying time to have a thickness of 0.15 mm and a resin content of 45% by weight.
Prepreg F having a melt viscosity of 560 poise at 0 ° C., using prepreg F in place of prepreg A, and prepreg E in place of prepreg B
Ten copper clad laminates with inner layer circuits were obtained in the same manner as in Example 1 except that was used. In this case, the first
The ratio of the melt viscosity of the prepreg at 130 ° C and the melt viscosity of the second prepreg at 130 ° C is 1: 1.4.

【0026】(実施例5)乾燥時間を変えて乾燥して、
厚みが0.15mm、レジンコンテントが45重量%、
130℃における溶融粘度が400ポイズのプリプレグ
Gを得たこと、及び乾燥時間を変えて乾燥して、厚みが
0.15mm、レジンコンテントが45重量%、130
℃における溶融粘度が500ポイズのプリプレグHを得
たこと、及びプリプレグAに代えて、プリプレグGを使
用したこと、及びプリプレグBに代えて、プリプレグH
を使用したこと以外は、実施例1と同様にして10枚の
内層回路入り銅張積層板を得た。なおこの場合の、第1
プリプレグの130℃における溶融粘度と、第2プリプ
レグの130℃における溶融粘度の比は、1:1.3と
なる。
(Embodiment 5) Drying is performed by changing the drying time,
Thickness is 0.15mm, resin content is 45% by weight,
Prepreg G having a melt viscosity of 400 poises at 130 ° C. was obtained, and the prepreg G was dried by changing the drying time to have a thickness of 0.15 mm and a resin content of 45% by weight.
Prepreg H having a melt viscosity of 500 poise at 0 ° C., prepreg G used in place of prepreg A, and prepreg H in place of prepreg B
Ten copper clad laminates with inner layer circuits were obtained in the same manner as in Example 1 except that was used. In this case, the first
The ratio of the melt viscosity of the prepreg at 130 ° C and the melt viscosity of the second prepreg at 130 ° C is 1: 1.3.

【0027】(実施例6)乾燥時間を変えて乾燥して、
厚みが0.15mm、レジンコンテントが45重量%、
130℃における溶融粘度が350ポイズのプリプレグ
Iを得たこと、及び乾燥時間を変えて乾燥して、厚みが
0.15mm、レジンコンテントが45重量%、130
℃における溶融粘度が500ポイズのプリプレグHを得
たこと及びプリプレグAに代えて、プリプレグIを使用
したこと、及びプリプレグBに代えて、プリプレグHを
使用したこと以外は、実施例1と同様にして10枚の内
層回路入り銅張積層板を得た。なおこの場合の、第1プ
リプレグの130℃における溶融粘度と、第2プリプレ
グの130℃における溶融粘度の比は、1:1.4とな
る。
(Example 6) Drying was performed by changing the drying time,
Thickness is 0.15mm, resin content is 45% by weight,
Prepreg I having a melt viscosity of 350 poise at 130 ° C. was obtained, and the prepreg I was dried by changing the drying time to have a thickness of 0.15 mm and a resin content of 45% by weight.
Same as Example 1 except that prepreg H having a melt viscosity at 500 ° C. of 500 poise was obtained, prepreg I was used instead of prepreg A, and prepreg H was used instead of prepreg B. As a result, 10 copper clad laminates with inner layer circuits were obtained. In this case, the ratio of the melt viscosity of the first prepreg at 130 ° C and the melt viscosity of the second prepreg at 130 ° C is 1: 1.4.

【0028】(実施例7)乾燥時間を変えて乾燥して、
厚みが0.15mm、レジンコンテントが45重量%、
130℃における溶融粘度が800ポイズのプリプレグ
Eを得たこと、及び乾燥時間を変えて乾燥して、厚みが
0.15mm、レジンコンテントが45重量%、130
℃における溶融粘度が1000ポイズのプリプレグJを
得たこと及びプリプレグAに代えて、プリプレグEを使
用したこと、及びプリプレグBに代えて、プリプレグJ
を使用したこと以外は、実施例1と同様にして10枚の
内層回路入り銅張積層板を得た。なおこの場合の、第1
プリプレグの130℃における溶融粘度と、第2プリプ
レグの130℃における溶融粘度の比は、1:1.25
となる。
(Embodiment 7) Drying is performed by changing the drying time,
Thickness is 0.15mm, resin content is 45% by weight,
Prepreg E having a melt viscosity of 800 poises at 130 ° C. was obtained, and the prepreg E was dried by changing the drying time to have a thickness of 0.15 mm and a resin content of 45% by weight.
Prepreg J having a melt viscosity at 1000 ° C. of 1000 poise was obtained, prepreg E was used instead of prepreg A, and prepreg J was used instead of prepreg B.
Ten copper clad laminates with inner layer circuits were obtained in the same manner as in Example 1 except that was used. In this case, the first
The ratio of the melt viscosity of the prepreg at 130 ° C and the melt viscosity of the second prepreg at 130 ° C is 1: 1.25.
Becomes

【0029】(実施例8)乾燥時間を変えて乾燥して、
厚みが0.15mm、レジンコンテントが45重量%、
130℃における溶融粘度が700ポイズのプリプレグ
Kを得たこと、及び乾燥時間を変えて乾燥して、厚みが
0.15mm、レジンコンテントが45重量%、130
℃における溶融粘度が1000ポイズのプリプレグJを
得たこと及びプリプレグAに代えて、プリプレグKを使
用したこと、及びプリプレグBに代えて、プリプレグJ
を使用したこと以外は、実施例1と同様にして10枚の
内層回路入り銅張積層板を得た。なおこの場合の、第1
プリプレグの130℃における溶融粘度と、第2プリプ
レグの130℃における溶融粘度の比は、1:1.4と
なる。
(Embodiment 8) Drying is performed by changing the drying time,
Thickness is 0.15mm, resin content is 45% by weight,
Prepreg K having a melt viscosity of 700 poise at 130 ° C. was obtained, and the prepreg K was dried by changing the drying time to have a thickness of 0.15 mm and a resin content of 45% by weight.
Prepreg J having a melt viscosity at 1000 ° C. of 1000 poise was obtained, prepreg K was used instead of prepreg A, and prepreg J was used instead of prepreg B.
Ten copper clad laminates with inner layer circuits were obtained in the same manner as in Example 1 except that was used. In this case, the first
The ratio of the melt viscosity of the prepreg at 130 ° C and the melt viscosity of the second prepreg at 130 ° C is 1: 1.4.

【0030】(比較例1)全てのプリプレグにプリプレ
グAを使用したこと以外は、実施例1と同様にして10
枚の内層回路入り銅張積層板を得た。なおこの場合の、
第1プリプレグの130℃における溶融粘度と、第2プ
リプレグの130℃における溶融粘度の比は、1:1と
なる。
(Comparative Example 1) 10 was carried out in the same manner as in Example 1 except that prepreg A was used for all the prepregs.
A copper clad laminate with an inner layer circuit was obtained. In this case,
The ratio of the melt viscosity of the first prepreg at 130 ° C and the melt viscosity of the second prepreg at 130 ° C is 1: 1.

【0031】(比較例2)全てのプリプレグにプリプレ
グBを使用したこと以外は、実施例1と同様にして10
枚の内層回路入り銅張積層板を得た。なおこの場合の、
第1プリプレグの130℃における溶融粘度と、第2プ
リプレグの130℃における溶融粘度の比は、1:1と
なる。
(Comparative Example 2) 10 was carried out in the same manner as in Example 1 except that prepreg B was used for all the prepregs.
A copper clad laminate with an inner layer circuit was obtained. In this case,
The ratio of the melt viscosity of the first prepreg at 130 ° C and the melt viscosity of the second prepreg at 130 ° C is 1: 1.

【0032】(比較例3)乾燥時間を変えて乾燥して、
厚みが0.15mm、レジンコンテントが45重量%、
130℃における溶融粘度が540ポイズのプリプレグ
Lを得たこと、及びプリプレグAに代えて、プリプレグ
Lを使用したこと以外は、実施例1と同様にして10枚
の内層回路入り銅張積層板を得た。なおこの場合の、第
1プリプレグの130℃における溶融粘度と、第2プリ
プレグの130℃における溶融粘度の比は、1:1.1
となる。
(Comparative Example 3) Drying was performed by changing the drying time,
Thickness is 0.15mm, resin content is 45% by weight,
Ten inner-layer circuit-containing copper clad laminates were obtained in the same manner as in Example 1 except that prepreg L having a melt viscosity at 130 ° C. of 540 poise was obtained, and prepreg L was used instead of prepreg A. Obtained. In this case, the ratio of the melt viscosity of the first prepreg at 130 ° C and the melt viscosity of the second prepreg at 130 ° C was 1: 1.1.
Becomes

【0033】(比較例4)乾燥時間を変えて乾燥して、
厚みが0.15mm、レジンコンテントが45重量%、
130℃における溶融粘度が350ポイズのプリプレグ
Iを得たこと、及びプリプレグAに代えて、プリプレグ
Iを使用したこと以外は、実施例1と同様にして10枚
の内層回路入り銅張積層板を得た。なおこの場合の、第
1プリプレグの130℃における溶融粘度と、第2プリ
プレグの130℃における溶融粘度の比は、1:1.7
となる。 (評価)実施例1〜8及び比較例1〜4で得られた、内
層回路入り銅張積層板の板厚ばらつきと、成形性を評価
した。なお、板厚ばらつきは、10枚の内層回路入り銅
張積層板をマイクロメーターを用いて各6点ずつ測定
し、その6点の平均値を各内層回路入り銅張積層板の板
厚とし、熱板と接する位置で製造した2枚と他の8枚の
それぞれ平均を求め、その差を板厚ばらつきとした。ま
た、成形性は、各10枚の最外層の銅箔を全面エッチン
グし、回路間の凹部の気泡の有無を目視で評価した。
(Comparative Example 4) Drying was performed by changing the drying time,
Thickness is 0.15mm, resin content is 45% by weight,
Ten copper clad laminates with an inner layer circuit were obtained in the same manner as in Example 1 except that prepreg I having a melt viscosity at 130 ° C. of 350 poise was obtained, and prepreg I was used instead of prepreg A. Obtained. In this case, the ratio of the melt viscosity of the first prepreg at 130 ° C. and the melt viscosity of the second prepreg at 130 ° C. is 1: 1.7.
Becomes (Evaluation) The thickness variation and the formability of the copper clad laminates with inner layer circuits obtained in Examples 1 to 8 and Comparative Examples 1 to 4 were evaluated. The variation in plate thickness is obtained by measuring 10 copper clad laminates with inner layer circuits using a micrometer at 6 points each, and averaging the 6 points as the thickness of each copper clad laminate with inner layer circuits. The average of each of the two sheets manufactured at the position in contact with the hot plate and the other eight sheets was obtained, and the difference was defined as the variation in sheet thickness. The formability was evaluated by visually inspecting the presence or absence of air bubbles in the recesses between the circuits by etching the entire 10 copper foils of the outermost layer.

【0034】結果は表1に示した通り、実施例1〜8は
比較例1〜4と比べ板厚ばらつきが小さく良好であるこ
とが確認された。また、成形性は、130℃における溶
融粘度が、300〜800ポイズの範囲である実施例1
〜6が、実施例7,8と比べ良好であった。
The results are shown in Table 1, and it was confirmed that Examples 1 to 8 were smaller in variation in plate thickness than Comparative Examples 1 to 4 and were good. Further, as for moldability, Example 1 having a melt viscosity at 130 ° C. in the range of 300 to 800 poises
6 were better than those of Examples 7 and 8.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【発明の効果】本発明の内層回路入り積層板の製造方法
は、第1プリプレグと第2プリプレグの樹脂流れの差を
小さくするため、本発明の内層回路入り積層板の製造方
法によると、熱板と接する位置で製造した内層回路入り
積層板と、熱板と接しない位置で製造した内層回路入り
積層板の板厚の差が小さくなる。
According to the method for manufacturing a laminated board with an inner layer circuit of the present invention, in order to reduce the difference in resin flow between the first prepreg and the second prepreg, the method for manufacturing a laminated board with an inner layer circuit according to the present invention The difference in plate thickness between the laminated plate with an inner layer circuit manufactured at a position in contact with the plate and the laminated plate with an inner layer circuit manufactured at a position not in contact with the heating plate becomes small.

【0037】本発明の請求項3記載の内層回路入り積層
板の製造方法によると、上記の効果に加え、さらに、回
路間の凹部に気泡が残りにくくなる。
According to the method for manufacturing a laminated board with an inner layer circuit according to a third aspect of the present invention, in addition to the above effects, bubbles are less likely to remain in the recesses between the circuits.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回路を形成した基板と、熱硬化性樹脂を
基材に含浸したプリプレグを積層して積層物を形成し、
その積層物を3枚以上重ねて積層体を形成し、その積層
体を熱板間に挟んで加熱加圧して製造する内層回路入り
積層板の製造方法において、上記積層体中の積層物のう
ち熱板と接する積層物に用いるプリプレグの130℃に
おける溶融粘度と、上記積層体中の積層物のうち熱板と
接する積層物以外の積層物に用いるプリプレグの130
℃における溶融粘度の比が、1:1.2〜1.5である
ことを特徴とする内層回路入り積層板の製造方法。
1. A laminated body is formed by laminating a circuit-formed substrate and a prepreg in which a base material is impregnated with a thermosetting resin,
In the method for producing a laminated board with an inner layer circuit, which is produced by stacking three or more of the laminated bodies to form a laminated body, and sandwiching the laminated body between hot plates to heat and pressurize the laminated body, The melt viscosity of the prepreg used for the laminate in contact with the hot plate at 130 ° C., and the prepreg 130 used for the laminate other than the laminate in contact with the hot plate among the laminates in the laminate.
The method for producing a laminated board with an inner layer circuit, characterized in that the ratio of melt viscosities at ° C is 1: 1.2 to 1.5.
【請求項2】 プリプレグが、エポキシ樹脂組成物をガ
ラスクロスに含浸したものであることを特徴とする請求
項1記載の内層回路入り積層板の製造方法。
2. The method for producing a laminated board with an inner layer circuit according to claim 1, wherein the prepreg is a glass cloth impregnated with an epoxy resin composition.
【請求項3】 熱板と接する積層物に用いるプリプレグ
及び熱板と接する積層物以外の積層物に用いるプリプレ
グの130℃における溶融粘度が、300〜800ポイ
ズであることを特徴とする請求項2記載の内層回路入り
積層板の製造方法。
3. The melt viscosity at 130 ° C. of the prepreg used for the laminate in contact with the hot plate and the prepreg used for laminates other than the laminate in contact with the hot plate is 300 to 800 poises. A method for producing a laminated board with an inner layer circuit according to the description.
JP34273595A 1995-12-28 1995-12-28 Manufacturing method of laminated board with inner layer circuit Expired - Fee Related JP3605917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34273595A JP3605917B2 (en) 1995-12-28 1995-12-28 Manufacturing method of laminated board with inner layer circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34273595A JP3605917B2 (en) 1995-12-28 1995-12-28 Manufacturing method of laminated board with inner layer circuit

Publications (2)

Publication Number Publication Date
JPH09186457A true JPH09186457A (en) 1997-07-15
JP3605917B2 JP3605917B2 (en) 2004-12-22

Family

ID=18356092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34273595A Expired - Fee Related JP3605917B2 (en) 1995-12-28 1995-12-28 Manufacturing method of laminated board with inner layer circuit

Country Status (1)

Country Link
JP (1) JP3605917B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001277273A (en) * 2000-03-29 2001-10-09 Sumitomo Bakelite Co Ltd Method for manufacturing laminated sheet
WO2022009937A1 (en) * 2020-07-08 2022-01-13 パナソニックIpマネジメント株式会社 Resin sheet, prepreg, insulating resin material, and printed wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001277273A (en) * 2000-03-29 2001-10-09 Sumitomo Bakelite Co Ltd Method for manufacturing laminated sheet
WO2022009937A1 (en) * 2020-07-08 2022-01-13 パナソニックIpマネジメント株式会社 Resin sheet, prepreg, insulating resin material, and printed wiring board

Also Published As

Publication number Publication date
JP3605917B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
JP2692508B2 (en) Manufacturing method of laminated board
JP3605917B2 (en) Manufacturing method of laminated board with inner layer circuit
JP2003055565A (en) Resin composition for laminate
JP4802541B2 (en) Method for producing metal foil-clad laminate and multilayer printed wiring board
JP3951601B2 (en) Manufacturing method for composite laminates
JP2001030279A (en) Manufacture of laminated sheet
JP2000013024A (en) Manufacture of multilayer board and plate for multilayer board manufacture
JPH0263821A (en) Laminated plate
JP2007165436A (en) Process for manufacturing circuit board
JP4207282B2 (en) Manufacturing method of multilayer printed wiring board
JP2675810B2 (en) Manufacturing method of electric laminate
JP3952862B2 (en) Manufacturing method of metal foil clad laminate with inner layer circuit
JPH07109940B2 (en) Method for manufacturing multilayer circuit board
JPH1168309A (en) Manufacture of laminated board with built-in inner circuit
JPH10235796A (en) Production of laminate
JPH1197845A (en) Method of manufacturing multlayered printed wiring board
JP3409245B2 (en) Epoxy resin composition for copper clad laminate, copper clad laminate, multilayer laminate
JPH1016100A (en) Preparation of laminated sheet
JP2003313420A (en) Resin composition for laminate, prepreg and multilayer laminate
JPH04223113A (en) Manufacture of laminated sheet
JPH0832243A (en) Production of multilayer printed wiring board
JPH06272135A (en) Woven fabric of glass yarn for multi-layer printed-wiring board and prepreg for multi-layer printed-wiring board
JPH11268181A (en) Copper-clad laminate
JP2000063545A (en) Material for forming multilayer board, and multilayer board
JPS625448B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees