JPH09184784A - Measurement of anamorphic lens - Google Patents

Measurement of anamorphic lens

Info

Publication number
JPH09184784A
JPH09184784A JP2627097A JP2627097A JPH09184784A JP H09184784 A JPH09184784 A JP H09184784A JP 2627097 A JP2627097 A JP 2627097A JP 2627097 A JP2627097 A JP 2627097A JP H09184784 A JPH09184784 A JP H09184784A
Authority
JP
Japan
Prior art keywords
light
lens
curvature
receiving surface
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2627097A
Other languages
Japanese (ja)
Other versions
JP2842861B2 (en
Inventor
Takehiro Nakaeda
武弘 中枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP2627097A priority Critical patent/JP2842861B2/en
Publication of JPH09184784A publication Critical patent/JPH09184784A/en
Application granted granted Critical
Publication of JP2842861B2 publication Critical patent/JP2842861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the shape of an anamorphic lens by making a light source converge toward the center of curvature of one principal meridian in the anamorphic lens on a mounting table, separating the flux of reflection light with a beam splitter to form its line picture on the light receiving surface, and observing the picture when the mounting table is slid parallel to the light flux. SOLUTION: An anamorphic lens AL has different curvatures on horizontal and vertical sections, to the light flux is allowed to converge at the center of curvature in the principal meridian's direction so as to form a line picture. The minimum line width is measured in order to obtain a difference between the curve and true round in one principal meridian's direction. A cylinder prototype is fitted on a five feed mounting table 20 at such a position that a line picture is formed on a light receiving surface 39. Then, the prototype is removed and the table 20 with the lens AL loaded is moved to the position where the line picture is formed on the light receiving surface 39. In such a position, an incident light is also directed toward the center of curvature of the lens AL, and the reflected light returns through the same light passage as that in the prototype, so that the difference of curvature radius can be obtained in the basis of the moving quantity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、縦方向と横方向
とで曲率が異なるアナモフィックレンズの形状等を測定
するための方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the shape of an anamorphic lens having different curvatures in the vertical and horizontal directions.

【0002】[0002]

【従来の技術】従来、レンズの形状を測定する手段とし
ては、干渉縞を利用する方法が多くとられており、特に
球面レンズにおいてはニュートン板を用いる方法が簡便
なものとして利用されている。
2. Description of the Related Art Hitherto, as a means for measuring the shape of a lens, a method using an interference fringe has been widely used, and particularly in a spherical lens, a method using a Newton plate is used as a simple method.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、アナモ
フィックレンズを検査する場合には、ニュートン板を利
用しても検出されるニュートンリングが真円とならない
ため、予定の精度に達しているか否かを検査することが
困難であった。
However, when inspecting an anamorphic lens, the Newton's ring to be detected does not become a perfect circle even if a Newton's plate is used. It was difficult to do.

【0004】この発明は、上記の課題に鑑みてなされた
ものであり、アナモフィックレンズの形状を正確に測定
することができる方法の提供を目的とする。
The present invention has been made in view of the above problems, and an object thereof is to provide a method capable of accurately measuring the shape of an anamorphic lens.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明は、光源から発する光束を集
光レンズを介して載物台に取り付けた被検物であるアナ
モフィックレンズの一方の主経線の曲率中心へ向けて収
束させ、該アナモフィックレンズによって反射された光
束をビームスプリッターで分離して前記曲率中心とほぼ
共役な位置に設けられた受光面に線像を形成させる第1
段階と、前記線像が形成される前後で、前記載物台を光
束の進行方向に平行な方向にスライドさせつつ前記受光
面上に形成される像の観察を行う第2段階と、を有する
ことを特徴とする。
In order to achieve the above-mentioned object, the invention described in claim 1 is an anamorphic lens which is an object in which a light beam emitted from a light source is attached to a stage through a condenser lens. Converging toward the center of curvature of one of the main meridians, separating the light beam reflected by the anamorphic lens by a beam splitter, and forming a line image on the light receiving surface provided at a position substantially conjugate with the center of curvature. 1
And a second step of observing the image formed on the light receiving surface while sliding the object stage in a direction parallel to the traveling direction of the light flux before and after the line image is formed. It is characterized by

【0006】上記方法によれば、受光面上に線像を形成
させ、その線像形成の前後で、載物台を光束の進行方向
に平行な方向にスライドさせながら、受光面上に形成さ
れる像の観察を行う。この場合、アナモフィックレンズ
が良品であれば、線像形成の前後のデフォーカス状態
で、受光面上には一様な明部が形成されるが、アナモフ
ィックレンズが不良品であれば、前記明部の中に線像が
形成されている。
According to the above method, a line image is formed on the light receiving surface, and before and after the line image is formed, it is formed on the light receiving surface while sliding the stage in a direction parallel to the traveling direction of the light beam. Observe the image. In this case, if the anamorphic lens is a good product, a uniform bright portion is formed on the light-receiving surface in the defocused state before and after the line image is formed. A line image is formed inside.

【0007】[0007]

【発明の実施の形態】以下、この発明を図面に基づいて
説明する。図1から図6はこの発明の実施の形態を示し
たものである。図1は発明に係る方法を実現するために
用いられる装置の具体的な構成を示したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. 1 to 6 show an embodiment of the present invention. FIG. 1 shows a specific configuration of an apparatus used to implement the method according to the invention.

【0008】この装置は、基板10と、この基板に対し
てスライド自在に設けられて被検物を載置する微動載物
台20と、以下の光学素子とから構成されている。30
は光源としてのヘリウムネオンレーザー管であり、この
レーザー管から発する光束は第1ミラー31、第2ミラ
ー32を介してビームエキスパンダー33に入射する。
このビームエキスパンダー33を出射した平行光束はビ
ームスプリッター34によって2つの光路に分割され
る。直進してビームスプリッター34を透過した光束は
集光レンズ35を介して集束光として微動載物台20に
セットされた被検物であるアナモフィックレンズALに
達する。アナモフィックレンズALで反射された光束
は、ビームスプリッター34に戻り、その一部は第3ミ
ラー37、結像レンズ38を介して受光面に設けられた
CCDカメラ39に到達する。
This apparatus comprises a substrate 10, a fine movement stage 20 which is slidably provided on the substrate and on which an object to be inspected is placed, and the following optical elements. 30
Is a helium neon laser tube as a light source, and the light flux emitted from this laser tube is incident on the beam expander 33 via the first mirror 31 and the second mirror 32.
The parallel light flux emitted from the beam expander 33 is split into two optical paths by the beam splitter 34. The light flux that has traveled straight and passed through the beam splitter 34 reaches the anamorphic lens AL, which is the object to be inspected, set as the focused light on the fine movement stage 20 via the condenser lens 35. The light beam reflected by the anamorphic lens AL returns to the beam splitter 34, and a part of it reaches the CCD camera 39 provided on the light receiving surface via the third mirror 37 and the imaging lens 38.

【0009】図2(A)・(B)は微動載物台20にア
ナモフィックレンズALを集光レンズ35を出射した光
束がアナモフィックレンズALの一方の主経線方向の曲
率中心に集束するように載置した状態を示しており、
(A)は図1と同一な平面(以下水平断面という)内、
(B)はこれと垂直な平面(以下垂直断面という)内の
光路を示したものである。
2A and 2B, the anamorphic lens AL is mounted on the fine movement mount 20 so that the light flux emitted from the condenser lens 35 is focused on the center of curvature of the anamorphic lens AL in one main meridian direction. It shows the state of placing
(A) is in the same plane as FIG. 1 (hereinafter referred to as horizontal section),
(B) shows an optical path in a plane perpendicular to the plane (hereinafter referred to as a vertical section).

【0010】反射面が球面であれば、入射光束をその曲
率中心に集束するよう設定すれば反射光は入射光と同一
の光路を戻り、受光面39a上に点像を形成する。しか
し、アナモフィックレンズALは水平断面内と垂直断面
内とで曲率が異なるため、(B)に示したように一方の
主経線方向の曲率中心に光束を集光させると、(A)に
示すように他方の主経線方向に対しては広がりを持ち、
全体として線像を形成することとなる。但し、垂直断面
内の主経線方向が円でなければ線像が太るため、最小線
幅を測定することによって一方の主経線方向の曲線と真
円との差異を測定することができる。
If the reflecting surface is a spherical surface, the reflected light returns along the same optical path as the incident light by setting the incident light flux to be focused on the center of curvature, and forms a point image on the light receiving surface 39a. However, since the anamorphic lens AL has different curvatures in the horizontal cross section and the vertical cross section, when the light flux is focused on one of the main meridian curvature centers as shown in (B), as shown in (A). Has a spread in the other main meridian direction,
A line image will be formed as a whole. However, if the main meridian direction in the vertical cross section is not a circle, the line image is thick. Therefore, the difference between the curve in one main meridian direction and a perfect circle can be measured by measuring the minimum line width.

【0011】次に、上記装置を用いたアナモフィックレ
ンズの測定方法について説明する。 《曲率半径の測定》トーリック面の一主経線方向の曲率
半径、あるいはシリンダー面の曲率半径は、基準シリン
ダー原器との差をとることによって測定を行う。図3は
曲率半径を測定するための原理を示したものである。す
なわち、所定の正確な曲率半径Rを有する基準シリンダ
ー原器による反射光と被検レンズ40による反射光とが
同一の光路をとるように設定し、その間の移動量Aを求
めることにより被検レンズ40の一方の主経線に沿う曲
率半径R’をR’=R−A によって求めることができ
る。
Next, a method of measuring an anamorphic lens using the above apparatus will be described. << Measurement of radius of curvature >> The radius of curvature of the toric surface in the direction of the main meridian or the radius of curvature of the cylinder surface is measured by taking the difference from the reference cylinder prototype. FIG. 3 shows the principle for measuring the radius of curvature. That is, the light to be reflected by the reference cylinder prototype having a predetermined accurate radius of curvature R and the light to be reflected by the lens to be inspected 40 are set so as to take the same optical path, and the amount of movement A between them is determined to obtain the lens to be inspected. The radius of curvature R ′ along one of the main meridians 40 can be determined by R ′ = RA.

【0012】具体的には、まずシリンダー原器を微動載
物台20に取り付けて受光面39a上に線像が形成され
る位置に設定する。その後、原器を取り外して被検レン
ズ40を取り付け、微動載物台20を受光面39a上に
線像が形成される位置まで移動させる。同様に線像が形
成される位置は、入射光が被検レンズ40の曲率中心に
向かい、反射光が原器の場合と同一の光路を戻る場合で
あるので、その移動量を測定することにより、原器との
曲率半径の差を求めることができる。
Specifically, first, the cylinder prototype is attached to the fine motion stage 20 and set at a position where a line image is formed on the light receiving surface 39a. After that, the prototype is removed, the lens 40 to be inspected is attached, and the fine movement stage 20 is moved to a position where a line image is formed on the light receiving surface 39a. Similarly, the position where the line image is formed is the case where the incident light is directed to the center of curvature of the lens 40 to be inspected and the reflected light returns on the same optical path as in the case of the standard device. , The difference in radius of curvature from the prototype can be obtained.

【0013】シリンダーレンズは比較的高精度な加工が
行い易いため、原器として用いるのに適している。な
お、上記の手段によれば、被検面が凹面である場合にも
同様にして曲率半径を検出できる。
The cylinder lens is suitable for use as a prototype because it can be processed with relatively high precision. According to the above means, the radius of curvature can be similarly detected even when the surface to be detected is concave.

【0014】《偏心の測定》次に、アナモフィックレン
ズの偏心の測定方法について説明する。図4は偏心測定
の原理を示したものであり、実線は入射光、破線は反射
光を示している。この場合にも、基準シリンダー原器と
の比較から偏心量を測定する。ここでレンズの偏心と
は、載物台20に当接するレンズの当て付け面を基準と
した曲率中心の位置が原器の曲率中心の位置とズレてい
ることをいう。
<< Measurement of Eccentricity >> Next, a method of measuring the eccentricity of the anamorphic lens will be described. FIG. 4 shows the principle of eccentricity measurement. The solid line shows the incident light and the broken line shows the reflected light. Also in this case, the amount of eccentricity is measured by comparison with the reference cylinder prototype. Here, the eccentricity of the lens means that the position of the center of curvature with respect to the contact surface of the lens that contacts the stage 20 is displaced from the position of the center of curvature of the prototype.

【0015】図4に示したように、基準シリンダー原器
による反射光の集光位置を記憶しておき、原器と被検レ
ンズ40とを取り替えて被検レンズ40による反射光の
集光位置を検出する。これらの集光位置のズレ量B’
と、光学系の倍率とから被検レンズ40の一方の主経線
に沿う偏心量Bを求めることができる。
As shown in FIG. 4, the light collection position of the reflected light by the reference cylinder prototype is stored, and the prototype and the lens 40 to be tested are replaced with each other to collect the reflected light from the lens 40 to be tested. To detect. Amount B'of deviation of these condensing positions
And the magnification of the optical system, the eccentricity B along one main meridian of the lens 40 to be measured can be obtained.

【0016】《主経線の傾き測定》次に、トーリック面
の主経線の傾きを測定する手段を図5に基づいて説明す
る。図5は図1及び図2(A)と同様な水平断面を示し
たものである。トーリック面の水平断面方向の主経線の
傾きを測定する場合には、まず被検レンズ40を円形の
皿50に貼ったまま微動載物台20に回転可能にセット
し、図5に破線で示したようにレンズの一方の端部が測
定点(装置の光軸との交点近傍)となるよう皿50を調
整する。皿50の回転中心は、被検レンズ40の水平断
面内の主経線の曲率中心である。その後、被検レンズ4
0による反射光が受光面39a上に線像を結ぶよう光束
が垂直断面方向の曲率中心へ向けて収束する位置に微動
載物台20を調整し、皿50を図中に矢印で示したよう
に回転させてレンズ全面を走査させる。
<< Measurement of Main Meridian Inclination >> Next, a means for measuring the inclination of the main meridian of the toric surface will be described with reference to FIG. FIG. 5 shows a horizontal section similar to FIGS. 1 and 2 (A). When measuring the inclination of the main meridian of the toric surface in the horizontal sectional direction, first, the lens 40 to be inspected is rotatably set on the fine motion stage 20 while being attached to the circular dish 50, and is shown by a broken line in FIG. As described above, the dish 50 is adjusted so that one end of the lens becomes the measurement point (near the intersection with the optical axis of the device). The center of rotation of the dish 50 is the center of curvature of the main meridian in the horizontal cross section of the lens 40 to be tested. Then, the lens 4 to be inspected
The fine movement table 20 is adjusted to a position where the light flux converges toward the center of curvature in the vertical cross-sectional direction so that the reflected light from 0 forms a line image on the light receiving surface 39a, and the dish 50 is moved as shown by an arrow in the figure. Rotate to scan the entire surface of the lens.

【0017】被検レンズ40は水平断面内の主経線の曲
率中心を軸として回転されるため、装置の光軸とを含む
垂直断面とトーリック面との交差曲線の曲率中心は、そ
の光軸を含む垂直断面内に位置することとなる。従っ
て、水平断面方向の主経線に傾きがなければ、受光面3
9aに形成される線像は光束が走査したとしても移動し
ない。
Since the lens 40 to be inspected is rotated about the center of curvature of the main meridian in the horizontal section, the center of curvature of the intersecting curve of the vertical section including the optical axis of the apparatus and the toric surface is the optical axis. It will be located in the vertical section that contains. Therefore, if the main meridian in the horizontal cross section is not inclined, the light receiving surface 3
The line image formed on 9a does not move even if the light beam scans.

【0018】レンズの研磨の偏り等により主経線に傾き
があれば、実際の主経線が理想的な主経線から離れた点
においては、垂直断面方向の曲率中心の偏心として、偏
心がない場合に線像が形成される位置とは異なる位置に
線像が形成される。
If the main meridian is inclined due to the deviation of the polishing of the lens, etc., at the point where the actual main meridian is away from the ideal main meridian, the eccentricity of the center of curvature in the direction of the vertical cross section is not eccentric. The line image is formed at a position different from the position where the line image is formed.

【0019】主経線に傾きがあれば、各点における偏心
量が変化するため、光束の走査に伴って受光面39a上
に形成される線像の位置が移動する。従って、線像の移
動を観察することにより、水平断面方向の主経線の傾き
を測定することができる。
If the main meridian has an inclination, the amount of eccentricity at each point changes, so that the position of the line image formed on the light receiving surface 39a moves as the light beam is scanned. Therefore, by observing the movement of the line image, the inclination of the main meridian in the horizontal sectional direction can be measured.

【0020】《面精度の測定》面精度の測定に際して
は、微動載物台20に被検レンズ40をセットして、線
像を形成する前後で微動載物台20をスライドさせ、受
光面39a上に現われる像を検査する。
<< Measurement of Surface Accuracy >> In measuring the surface accuracy, the lens 40 to be inspected is set on the fine movement stage 20, and the fine stage 20 is slid before and after forming a line image to receive the light receiving surface 39a. Inspect the image that appears above.

【0021】具体的には、微動載物台20に取り付けら
れた被検レンズ40の一方の主経線の曲率中心へ向けて
光束を収束させ、被検レンズ40によって反射された光
束をビームスプリッター34で分離して受光面39a上
に線像を形成させる(第1段階)。その後、上記線像が
形成される前後で、微動載物台20を光束の進行方向に
平行な方向にスライドさせつつ受光面39a上に形成さ
れる像の観察を行う(第2段階)。
Specifically, the light beam is converged toward the center of curvature of one main meridian of the lens 40 to be inspected mounted on the fine movement stage 20, and the light beam reflected by the lens 40 to be inspected is reflected by the beam splitter 34. Then, a line image is formed on the light receiving surface 39a (first step). Then, before and after the line image is formed, the image formed on the light receiving surface 39a is observed while sliding the fine movement stage 20 in a direction parallel to the traveling direction of the light flux (second step).

【0022】図6はその観察結果であり、トーリック面
の面精度を検査した結果を示す説明図である。良品の場
合には、線像の形成前後のデフォーカス状態で両側にト
ーリック面の有効光束径外の面だれによる線像が形成さ
れると共に、それらの内側は一様に明部となり、線像形
成時には一本の細い線像が形成される。
FIG. 6 shows the observation result, and is an explanatory view showing the result of inspecting the surface accuracy of the toric surface. In the case of a non-defective product, a line image is formed on both sides in a defocused state before and after the formation of the line image due to surface droop outside the effective luminous flux diameter of the toric surface, and the inside of the line image becomes uniformly bright, and the line image At the time of formation, one thin line image is formed.

【0023】不良品は面に細かい凹凸があるため、局部
的に半径が異なる。従って、曲率半径が概略同一であっ
てもデフォーカス状態で明部の中に局部的な曲率半径の
違いによる線像が形成され、線像形成時にも周囲にフレ
アーが出現する。
Since the defective product has fine irregularities on its surface, the radius is locally different. Therefore, even if the radii of curvature are substantially the same, a line image due to a local difference in the radius of curvature is formed in a bright portion in a defocused state, and flare appears around the line image even when the line image is formed.

【0024】よって、上記の検査によって検出される像
の状態を評価することにより、面精度に関する良品と不
良品とを識別することができる。
Therefore, by evaluating the state of the image detected by the above inspection, it is possible to discriminate between a good product and a defective product concerning the surface accuracy.

【0025】[0025]

【発明の効果】以上説明したように本発明の測定方法に
よれば、受光面上に形成される像を見ることにより、ア
ナモフィックレンズの面精度が良品であるか不良品であ
るかを容易に識別することができる。
As described above, according to the measuring method of the present invention, by observing the image formed on the light receiving surface, it is possible to easily determine whether the surface accuracy of the anamorphic lens is a good product or a defective product. Can be identified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係るアナモフィックレンズの測定方
法を実現するための装置の一例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of an apparatus for realizing an anamorphic lens measuring method according to the present invention.

【図2】(A)は図1の光学形の水平断面を示した図、
(B)は図1の光学系の垂直断面を示した図である。
FIG. 2A is a diagram showing a horizontal cross section of the optical type shown in FIG.
(B) is a view showing a vertical cross section of the optical system of FIG. 1.

【図3】曲率半径測定の原理を示す説明図である。FIG. 3 is an explanatory diagram showing the principle of curvature radius measurement.

【図4】偏心測定の原理を示す説明図である。FIG. 4 is an explanatory diagram showing the principle of eccentricity measurement.

【図5】主経線の傾き測定を示す説明図である。FIG. 5 is an explanatory diagram showing the measurement of the inclination of the main meridian.

【図6】受光面上に形成される像の説明図である。FIG. 6 is an explanatory diagram of an image formed on a light receiving surface.

【符号の説明】[Explanation of symbols]

20 微動載物台 30 光源 33 ビームエキスパンダー 34 ビームスプリッター 35 集光レンズ 39a 受光面 40 被検レンズ 20 Micro-moving stage 30 Light source 33 Beam expander 34 Beam splitter 35 Condensing lens 39a Light receiving surface 40 Test lens

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光源から発する光束を集光レンズを介し
て載物台に取り付けた被検物であるアナモフィックレン
ズの一方の主経線の曲率中心へ向けて収束させ、該アナ
モフィックレンズによって反射された光束をビームスプ
リッターで分離して前記曲率中心とほぼ共役な位置に設
けられた受光面に線像を形成させる第1段階と、 前記線像が形成される前後で、前記載物台を光束の進行
方向に平行な方向にスライドさせつつ前記受光面上に形
成される像の観察を行う第2段階と、を有することを特
徴とするアナモフィックレンズの測定方法。
1. A light flux emitted from a light source is converged through a condenser lens toward a center of curvature of one main meridian of an anamorphic lens which is an object to be inspected and is reflected by the anamorphic lens. The first stage in which a light beam is split by a beam splitter to form a line image on a light-receiving surface provided at a position substantially conjugate to the center of curvature; and before and after the line image is formed, A second step of observing an image formed on the light receiving surface while sliding in a direction parallel to the traveling direction, the measuring method of the anamorphic lens.
JP2627097A 1997-02-10 1997-02-10 How to measure anamorphic lens Expired - Fee Related JP2842861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2627097A JP2842861B2 (en) 1997-02-10 1997-02-10 How to measure anamorphic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2627097A JP2842861B2 (en) 1997-02-10 1997-02-10 How to measure anamorphic lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63229261A Division JP2657405B2 (en) 1988-09-13 1988-09-13 How to measure anamorphic lens

Publications (2)

Publication Number Publication Date
JPH09184784A true JPH09184784A (en) 1997-07-15
JP2842861B2 JP2842861B2 (en) 1999-01-06

Family

ID=12188598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2627097A Expired - Fee Related JP2842861B2 (en) 1997-02-10 1997-02-10 How to measure anamorphic lens

Country Status (1)

Country Link
JP (1) JP2842861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285876A (en) * 2006-04-17 2007-11-01 Nano System Solutions:Kk Spherical surface inspection method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285876A (en) * 2006-04-17 2007-11-01 Nano System Solutions:Kk Spherical surface inspection method and apparatus

Also Published As

Publication number Publication date
JP2842861B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
US7663746B2 (en) Method and apparatus for scanning, stitching and damping measurements of a double sided metrology inspection tool
EP0856728A2 (en) Optical method and apparatus for detecting defects
JP2007327771A (en) Method of measuring amount of eccentricity
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
US11047675B2 (en) Method and apparatus for inspection of spherical surfaces
US5351119A (en) Method and apparatus for measuring a lens
JPS60196605A (en) Scattering-light detecting optical device
JP3634985B2 (en) Optical surface inspection mechanism and optical surface inspection apparatus
JP2012002548A (en) Light wave interference measurement device
JP2842861B2 (en) How to measure anamorphic lens
JP2002500771A (en) Lens inspection device
JP2657405B2 (en) How to measure anamorphic lens
JP2678473B2 (en) Anamorphic lens measuring device
JP2004205478A (en) Three-dimensional coordinate measuring method
JP2001083098A (en) Optical surface inspection mechanism and device
CN217845590U (en) Objective lens aberration testing device
JP2003161610A (en) Optical measurement device
JPH1038556A (en) Shape measuring device
JPS6255542A (en) Optical system inspecting device
JPH01143904A (en) Thin film inspecting device
JP2005083981A (en) Aspheric surface eccentricity measuring apparatus and method
JPH10122833A (en) Surface measuring equipment
JP2000081321A (en) Sample inspection equipment
JP2001004337A (en) Specimen inspecting device equipped with carrier stripe generating means
JPS6110164Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees