JP2000081321A - Sample inspection equipment - Google Patents

Sample inspection equipment

Info

Publication number
JP2000081321A
JP2000081321A JP10251134A JP25113498A JP2000081321A JP 2000081321 A JP2000081321 A JP 2000081321A JP 10251134 A JP10251134 A JP 10251134A JP 25113498 A JP25113498 A JP 25113498A JP 2000081321 A JP2000081321 A JP 2000081321A
Authority
JP
Japan
Prior art keywords
sample
inspection
inspection apparatus
interference
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10251134A
Other languages
Japanese (ja)
Other versions
JP2000081321A5 (en
JP4011205B2 (en
Inventor
Koji Osawa
孝治 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP25113498A priority Critical patent/JP4011205B2/en
Publication of JP2000081321A publication Critical patent/JP2000081321A/en
Publication of JP2000081321A5 publication Critical patent/JP2000081321A5/ja
Application granted granted Critical
Publication of JP4011205B2 publication Critical patent/JP4011205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure fluctuation of face profile and thickness with high accuracy while suppressing damage onto a sample by projecting coherent light to the measuring surface and rear surface of an inspection sample, picking up fringes formed through optical interference between first interference face and the measuring surface and between second interference face and the measuring rear surface and then analyzing face profile information. SOLUTION: In a surface inspection optical system 1, luminous flux emitted from a light source 10 and reflected on the reference face 13a of a prism 13 interferes with luminous flux transmitting through the prism and reflecting on a measuring surface WF before being projected onto a screen 14. In a rear surface inspection optical system 2, luminous flux transmitted through a prism 23 and reflected on a measuring rear face WB interferes with luminous flux reflecting on a reference surface 23a before being projected onto a screen 24. Fringes are formed on the screens 14, 24 and the images thereof are picked up by means of TV cameras 16, 26. Each video signal is delivered to an image processing section where the analyzing region of each wafer is determined for the image data of each measuring face and analyzed by phase shift method thus obtaining the profile data of each face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、検査試料の形状を
測定する試料検査装置に係り、殊に薄板状の検査試料の
面形状や厚さむら測定に好適な試料検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample inspection apparatus for measuring the shape of an inspection sample, and more particularly to a sample inspection apparatus suitable for measuring the surface shape and thickness unevenness of a thin plate-shaped inspection sample.

【0002】[0002]

【従来技術】半導体素子製造過程における半導体ウエハ
等の検査試料の面形状や厚さむらを測定するものとして
は、静電容量センサ等の変位センサを用いた装置が知ら
れている。しかし変位センサはポイント的な測定である
ため、試料全面の詳細な測定データを得る上では変位セ
ンサを試料全面で走査させる必要があり、測定に非常に
時間が掛かる。
2. Description of the Related Art As a device for measuring the surface shape and thickness unevenness of an inspection sample such as a semiconductor wafer in a semiconductor element manufacturing process, an apparatus using a displacement sensor such as a capacitance sensor is known. However, since the displacement sensor is a point-based measurement, it is necessary to scan the entire surface of the sample to obtain detailed measurement data of the entire surface of the sample, and the measurement takes a very long time.

【0003】測定に時間を掛けずに測定を行うものとし
ては、干渉計を用いた装置が知られている。従来、この
種による測定では、高精度に平面研磨された基準平面を
持つ吸着台に検査試料の裏面を密着させることにより試
料の裏面と基準平面とを一致させ、試料の表面に可干渉
光を投光し、表面と参照面から反射される反射光により
形成される干渉縞からその表面形状を得ていた。殊に斜
入射干渉計は、斜め方向から測定面へ可干渉光を入射さ
せるので、比較的凹凸の大きな面も測定可能であり、ま
た、可干渉光の測定面への入射角度を変えることにより
測定感度を変更することができるので有利である。
An apparatus using an interferometer is known as one that performs measurement without taking much time. Conventionally, in this type of measurement, the back surface of the test sample is brought into close contact with the reference plane by bringing the back surface of the test sample into close contact with a suction table that has a reference plane polished with high precision, and coherent light is applied to the surface of the sample. Light is projected and the surface shape is obtained from interference fringes formed by reflected light reflected from the surface and the reference surface. In particular, the grazing incidence interferometer allows coherent light to be incident on the measurement surface from an oblique direction, so that it is possible to measure even a surface with relatively large irregularities. Advantageously, the measurement sensitivity can be changed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
干渉計を用いた装置において、吸着台に試料裏面を密着
させて試料を保持する構成ものは、吸着台と試料裏面と
の間に異物が混入すると、これにより表面形状測定の誤
差となったり、試料裏面に損傷を生じさせるという問題
があった。また、接触面が多いためダストの付着や接触
による汚れなどの化学的汚染の可能性が大きくなる。微
細なパターンを形成する半導体素子製造においては、こ
れらをできるだけ低減することが望まれている。
However, in the apparatus using the above interferometer, the structure in which the back surface of the sample is brought into close contact with the suction table and the sample is held, foreign matter is mixed between the suction table and the back surface of the sample. Then, there is a problem that this causes an error in surface shape measurement and causes damage to the back surface of the sample. Further, since there are many contact surfaces, the possibility of chemical contamination such as adhesion of dust and dirt due to contact increases. In the manufacture of semiconductor devices for forming fine patterns, it is desired to reduce these as much as possible.

【0005】本発明は上記問題点に鑑み、上記のような
検査試料へのダメージを抑え、試料の面形状や厚さむら
を高精度に、素早く測定検査することのできる試料検査
装置を提供することを技術課題とする。
In view of the above problems, the present invention provides a sample inspection apparatus capable of suppressing damage to an inspection sample as described above and measuring and inspecting the surface shape and thickness unevenness of the sample with high precision and speed. This is a technical issue.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は以下のような構成を備えることを特徴とす
る。
Means for Solving the Problems In order to solve the above problems, the present invention is characterized by having the following configuration.

【0007】(1) 検査試料の形状を測定する試料検
査装置において、前記検査試料の測定表面及び測定裏面
を除く部分を保持する保持手段と、該保持手段に保持さ
れた検査試料の測定表面に可干渉光を投光して第1参照
面と測定表面との光干渉により干渉縞を形成し該干渉縞
を撮像素子により撮像する第1検査光学系と、前記保持
手段に保持された検査試料の測定裏面に可干渉光を投光
して第2参照面と測定裏面との光干渉により干渉縞を形
成し該干渉縞を撮像素子により撮像する第2検査光学系
と、前記第1及び第2検査光学系によりそれぞれ得られ
る干渉縞画像に基づいて前記検査試料の面形状情報を得
る解析手段と、を備えることを特徴とする。
(1) In a sample inspection apparatus for measuring the shape of an inspection sample, a holding means for holding a portion of the inspection sample other than a measurement surface and a measurement back surface, and a measurement surface of the inspection sample held by the holding means. A first inspection optical system for projecting coherent light to form interference fringes by optical interference between the first reference surface and the measurement surface and imaging the interference fringes with an image sensor, and an inspection sample held by the holding unit A second inspection optical system for projecting coherent light onto the measurement back surface to form interference fringes by optical interference between the second reference surface and the measurement back surface and imaging the interference fringes with an image sensor; And analyzing means for obtaining surface shape information of the test sample based on the interference fringe images obtained by the two test optical systems.

【0008】(2) (1)の試料検査装置において、
前記第1及び第2検査手段の撮像素子は、それぞれ得る
干渉縞画像を同期して撮像することを特徴とする。
(2) In the sample inspection apparatus of (1),
The image pickup devices of the first and second inspection means synchronously image interference fringe images obtained respectively.

【0009】(3) (1)の試料検査装置において、
前記保持手段は少なくとも3点で前記試料の端部を狭持
することを特徴とする。
(3) In the sample inspection apparatus of (1),
The holding means may hold the end of the sample at at least three points.

【0010】(4) (1)の試料検査装置は、さらに
前記第1参照面と第2参照面との相対的平行度を検出す
る平行度検出手段を備え、前記解析手段は検出された平
行度情報に基づいて検査試料の表裏面の相対的な面形状
情報を補正することを特徴とする。
(4) The sample inspection apparatus of (1) further comprises a parallelism detecting means for detecting a relative parallelism between the first reference surface and the second reference surface, and the analyzing means comprises a detecting means for detecting the detected parallelism. It is characterized in that the relative surface shape information of the front and back surfaces of the test sample is corrected based on the degree information.

【0011】(5) (1)又は(4)の解析手段は、
前記検査試料の表裏面の厚さむらを得ることを特徴とす
る。
(5) The analyzing means of (1) or (4) is
It is characterized in that the thickness irregularity of the front and back surfaces of the test sample is obtained.

【0012】(6) (1)の試料検査装置において、
さらに前記第1及び第2検査光学系に対して前記保持手
段に保持された検査試料を相対移動させる移動手段を備
え、第1及び第2検査光学系は該移動手段により相対移
動される前記検査試料の測定面の干渉縞画像を参照面の
大きさに応じて分割して得ることを特徴とする。
(6) In the sample inspection apparatus of (1),
And a moving means for relatively moving the test sample held by the holding means with respect to the first and second inspection optical systems, wherein the first and second inspection optical systems are moved relatively by the moving means. The method is characterized in that an interference fringe image of the measurement surface of the sample is obtained by being divided according to the size of the reference surface.

【0013】(7) (6)の試料検査装置は、さらに
分割して得られる干渉縞画像に基づく面形状情報を得る
と共に、該面形状情報を繋ぎ合わせて全体の面形状情報
を得る分割画像解析手段を備えることを特徴とする。
(7) The sample inspection apparatus of (6) obtains surface shape information based on the interference fringe image obtained by further dividing, and combines the surface shape information to obtain the entire surface shape information. It is characterized by comprising analysis means.

【0014】(8) (1)の試料検査装置において、
前記第1及び第2検査光学系は対を成すことを特徴とす
る。
(8) In the sample inspection apparatus of (1),
The first and second inspection optical systems form a pair.

【0015】(9) (1)の試料検査装置において、
前記第1及び第2検査光学系は共に斜入射干渉計として
構成したことを特徴とする。
(9) In the sample inspection apparatus of (1),
The first and second inspection optical systems are both configured as oblique incidence interferometers.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は本発明に係る試料検査装置
の光学系要部図であり、本形態の装置は斜入射干渉計を
使用して構成している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a main view of an optical system of a sample inspection apparatus according to the present invention. The apparatus of the present embodiment is configured using an oblique incidence interferometer.

【0017】検査試料であるウェハWの測定表面WF
び測定裏面WBは、一対の表面検査光学系1と裏面検査
光学系2により検査される。ウェハWは、後述するウエ
ハ保持ユニットによりその周端部を3つの保持チャック
で狭持され、表面検査光学系1と裏面検査装置2との間
に置かれる。
The measurement surface W F and measuring the back surface W B of the wafer W as an inspection sample is tested by a pair of surface inspection optical system 1 and the back surface inspection optical system 2. The peripheral edge of the wafer W is sandwiched by three holding chucks by a wafer holding unit described later, and is placed between the front surface inspection optical system 1 and the back surface inspection device 2.

【0018】表面検査光学系1は光源10、エキスパン
ダレンズ11、コリメータレンズ12、プリズム13、
スクリーン14、フィールドレンズ15、TVカメラ1
6から構成されている。光源10は可干渉光を出射する
レーザ光源であり、本実施形態ではHe−Neレーザ光
源を使用している。光源10から出射されたレーザ光
は、エキスパンダレンズ11により必要な大きさの光束
に拡張された後、コリメータレンズ12により平行光束
にされ、プリズム13に入射する。プリズム13の参照
面13aで反射した光束と、プリズム13を透過して測
定表面WFで反射した光束とが干渉現象を起こし、これ
がスクリーン14に投影される。スクリーン14に投影
された干渉縞は、フィールドレンズ15を介してTVカ
メラ16に撮像される。
The surface inspection optical system 1 includes a light source 10, an expander lens 11, a collimator lens 12, a prism 13,
Screen 14, field lens 15, TV camera 1
6. The light source 10 is a laser light source that emits coherent light, and in this embodiment, a He-Ne laser light source is used. The laser light emitted from the light source 10 is expanded into a light beam of a required size by an expander lens 11, converted into a parallel light beam by a collimator lens 12, and incident on a prism 13. A light beam reflected by the reference surface 13a of the prism 13, the light beam reflected by the measurement surface W F passes through the prism 13 cause interference phenomenon, which is projected on the screen 14. The interference fringes projected on the screen 14 are captured by the TV camera 16 via the field lens 15.

【0019】裏面検査光学系2は表面検査光学系1と同
一要素の、光源20、エキスパンダレンズ21、コリメ
ータレンズ22、プリズム23、スクリーン24、フィ
ールドレンズ25、TVカメラ26から構成されてお
り、プリズム23を透過して測定裏面WBで反射した光
束と、プリズム23の参照面23aで反射した光束とが
干渉現象を起こし、これがスクリーン24に投影され
る。スクリーン24に投影された干渉縞は、フィールド
レンズ25を介してTVカメラ26に撮像される。光源
20はウェハWを挟んで光源10に対向するように配置
されており、各々の光源からの光束が対向する側のTV
カメラ16、26に入射し難いように配置されている。
The back surface inspection optical system 2 comprises a light source 20, an expander lens 21, a collimator lens 22, a prism 23, a screen 24, a field lens 25, and a TV camera 26 having the same elements as the front surface inspection optical system 1. a light beam reflected by the measured rear surface W B passes through the prism 23, the light beam reflected by the reference surface 23a of the prism 23 cause interference phenomenon, which is projected on the screen 24. The interference fringes projected on the screen 24 are captured by the TV camera 26 via the field lens 25. The light source 20 is disposed so as to face the light source 10 with the wafer W interposed therebetween.
They are arranged so that they are hardly incident on the cameras 16 and 26.

【0020】17及び27はピエゾ素子等からなるアク
チエータで、測定表面WFとプリズム13の参照面13
aとの距離、測定裏面WBとプリズム23の参照面13
aとの距離をそれぞれ変化させる。
[0020] 17 and 27 in actuator comprising a piezoelectric element or the like, the reference surface 13 of the measuring surface W F and the prism 13
distance between a, reference surface 13 of the measurement back surface W B and the prism 23
The distances to a are changed.

【0021】なお、コリメータレンズ12とプリズム1
3との間、及びコリメータレンズ22とプリズム23と
の間には、共に図示なき入射角調整プリズムが配置され
ており、各プリズムへのレーザ光束の入射角度を変える
ことにより、測定感度を変化させることができるように
なっている。
The collimator lens 12 and the prism 1
3, and between the collimator lens 22 and the prism 23, an incident angle adjusting prism (not shown) is disposed, and the measurement sensitivity is changed by changing the incident angle of the laser beam to each prism. You can do it.

【0022】図2(a)はウェハWを保持する保持ユニ
ット30の概略構成を示す図であり、ウェハWは保持リ
ング31に設けられた3つの保持チャック32によりそ
の周端面が保持され、測定表面WF及び測定裏面WBは非
接触となっている。図2(b)に示すように、保持チャ
ック32の先端部は、ウェハWの端部のテーパ形状に合
う傾斜面を持つV字溝が設けられており、保持チャック
32が進退移動することによりウェハWの狭持、解放を
行なう。また、この保持チャック32はウェハWの幅と
ほぼ同で幅を持ち、ウェハWを保持したままプリズム1
3の参照面13aとプリズム23の参照面23aとの間
に配置できるようになっている。なお、保持ユニット3
0はウェハWを狭持した状態で図示なき搬送装置により
移動される。
FIG. 2A is a view showing a schematic structure of a holding unit 30 for holding a wafer W. The wafer W is held at its peripheral end face by three holding chucks 32 provided on a holding ring 31, and measurement is performed. surface W F and measuring the back surface W B are not in contact. As shown in FIG. 2B, a V-shaped groove having an inclined surface matching the tapered shape of the end of the wafer W is provided at the tip of the holding chuck 32, and the holding chuck 32 moves forward and backward. The wafer W is held and released. The holding chuck 32 has substantially the same width as the width of the wafer W, and holds the prism W while holding the wafer W.
3 and the reference surface 23a of the prism 23. The holding unit 3
0 is moved by a transfer device (not shown) while holding the wafer W.

【0023】次に、以上のような構成を備える試料検査
装置について、その動作を図3の制御系要部図に基づい
て以下に説明する。
Next, the operation of the sample inspection apparatus having the above-described configuration will be described with reference to FIG.

【0024】保持ユニット30により保持されたウェハ
Wを表面検査光学系1及び裏面検査光学系2の各プリズ
ム13、23の間に配置する。光源10及び20からの
レーザ光によりスクリーン14及び24にはそれぞれ干
渉縞が形成され、これがTVカメラ16、26により撮
像される。TVカメラ16、26からの各映像信号は画
像処理部42に取り込まれ、画像処理部42内のメモリ
にデジタル変換された画像データが記憶される。このと
きのTVカメラ16、26による画像データは、タイミ
ングジェネレータ41の信号により同期して同時に撮像
されたものが取り込まれる。
The wafer W held by the holding unit 30 is arranged between the prisms 13 and 23 of the front surface inspection optical system 1 and the back surface inspection optical system 2. Interference fringes are formed on the screens 14 and 24 by the laser beams from the light sources 10 and 20, respectively, and these are captured by the TV cameras 16 and 26. Each video signal from the TV cameras 16 and 26 is taken into the image processing unit 42, and digitally converted image data is stored in a memory in the image processing unit 42. At this time, the image data taken by the TV cameras 16 and 26 are taken in synchronization with the signal of the timing generator 41 and taken simultaneously.

【0025】1枚目の各画像データが得らると、制御部
40はアクチュエータ17、27を駆動して、干渉縞の
位相を所定の縞感度分だけ変化すべく、それぞれプリズ
ム13、23(参照面13a、23a)を移動する。そ
の後、TVカメラ16、26により撮像される画像デー
タは、前述と同様にタイミングジェネレータ41の信号
により同期して画像処理部42に取り込まれる。
When the first image data is obtained, the control unit 40 drives the actuators 17 and 27 to change the phase of the interference fringes by the predetermined fringe sensitivity by the prisms 13 and 23 (respectively). The reference planes 13a and 23a) are moved. Thereafter, the image data captured by the TV cameras 16 and 26 is taken into the image processing unit 42 in synchronization with the signal of the timing generator 41 in the same manner as described above.

【0026】こうして位相を変化させた画像データの取
り込みを所定の枚数分行う。ウエハWの両測定面におけ
る所定数の画像データが得られると、画像処理部42は
各測定面の画像データに対して、それぞれウエハ面の解
析領域を決定して位相シフト法による所定の解析処理を
施すことにより各面毎の面形状データを得る(例えば、
本出願人による特開平10−221033号公報に記載
されているように、8枚の画像データから解析する方法
を使用することができる)。そして、ウェハWの測定表
面WF及び測定裏面WBの各面形状データを対応させるこ
とにより、厚さむらデータが算出される。得られた解析
結果は、モニタ45に表示される。このようなウエハの
面形状の解析において、参照面13aと参照面23aと
の間が平行でなく、傾斜成分が発生している場合は次の
ようにしてその傾斜成分による誤差を取り除くことがで
きる。
The image data whose phase has been changed in this way is taken in by a predetermined number. When a predetermined number of image data on both measurement surfaces of the wafer W are obtained, the image processing unit 42 determines an analysis region on the wafer surface for each of the image data on each measurement surface and performs a predetermined analysis process by the phase shift method. To obtain surface shape data for each surface (for example,
As described in JP-A-10-221033 by the present applicant, a method of analyzing from eight pieces of image data can be used). Then, by associating the measurement surface W F and each face shape data of the measurement back surface W B of the wafer W, the thickness unevenness data is calculated. The obtained analysis result is displayed on the monitor 45. In such an analysis of the wafer surface shape, if the reference plane 13a and the reference plane 23a are not parallel and a tilt component is generated, an error due to the tilt component can be removed as follows. .

【0027】図4は、参照面13aに対して参照面23
aが傾斜していた場合の干渉縞画像の例を示す図であ
り、ウエハ領域外にはプリズム13の参照面13aで反
射した光束と対向するプリズム23の参照面23aで反
射した光束とによる干渉縞も形成されている。画像処理
部42はこのようにウエハ領域外に形成される参照面間
の干渉縞を利用して、参照面13aと参照面23aとの
相対的平行度(傾斜)の情報を得る。すなわち、ウエハ
領域外に測定感度分の干渉縞が得られるので、ウエハ面
の形状解析と同様に解析領域を決定して、位相シフト法
による解析処理を行うことによりその傾斜成分を検出す
る。この傾斜情報に基づいて前述のように算出される厚
さむらデータを補正することにより、精度の良い測定結
果を得ることができる。
FIG. 4 shows the reference surface 23a with respect to the reference surface 13a.
FIG. 9 is a diagram illustrating an example of an interference fringe image when a is inclined, in which interference is caused by a light beam reflected by a reference surface 13a of a prism 13 and a light beam reflected by a reference surface 23a of a prism 23 facing the outside of the wafer region. Stripes are also formed. The image processing unit 42 obtains information on the relative parallelism (inclination) between the reference surface 13a and the reference surface 23a using the interference fringes between the reference surfaces formed outside the wafer region in this manner. That is, since interference fringes corresponding to the measurement sensitivity are obtained outside the wafer area, the analysis area is determined in the same manner as in the shape analysis of the wafer surface, and the inclination component is detected by performing the analysis processing by the phase shift method. By correcting the uneven thickness data calculated as described above based on the tilt information, a highly accurate measurement result can be obtained.

【0028】なお、プリズムの参照面13a、23a間
の平行度を検出する方法としては、専用の検出光学系を
設けて構成することもできる。図5はその例を示す図で
ある。平行度検出光学系50は参照面13a、23a間
の異なる3点を測定できる位置に3組配置されており
(図では1組の図示を略している)、測定光束を出射す
る半導体レーザ光源51、ビームスプリッタ52、受光
素子53から構成されている。その検出光軸は、プリズ
ム13に入射した測定光束が参照面13aに対して略垂
直に透過するように配置されている。
As a method for detecting the degree of parallelism between the reference surfaces 13a and 23a of the prism, it is possible to provide a dedicated detection optical system. FIG. 5 is a diagram showing the example. The parallelism detection optical system 50 is arranged in three sets at positions where three different points between the reference surfaces 13a and 23a can be measured (one set is omitted in the figure), and a semiconductor laser light source 51 that emits a measurement light beam. , A beam splitter 52, and a light receiving element 53. The detection optical axis is arranged such that the measurement light beam incident on the prism 13 is transmitted substantially perpendicularly to the reference surface 13a.

【0029】プリズム13に入射した測定光束は参照面
13aで反射されるとともに、透過した光束がプリズム
23の参照面23aで反射される。この2つの反射光は
共に略同じ光路となって受光素子53により検出され
る。2つの反射光の位相差成分は干渉を起し、受光素子
53により検出される光強度は2つの反射光の光路差に
応じて変化する。したがって、各受光素子53からの出
力信号の変化から測定点間の距離の変化量を検出するこ
とができ、これに基づいて参照面13a、23a間の平
行度を知ることができる。
The measurement light beam incident on the prism 13 is reflected by the reference surface 13a, and the transmitted light beam is reflected by the reference surface 23a of the prism 23. The two reflected lights have substantially the same optical path and are detected by the light receiving element 53. The phase difference component between the two reflected lights causes interference, and the light intensity detected by the light receiving element 53 changes according to the optical path difference between the two reflected lights. Therefore, the amount of change in the distance between the measurement points can be detected from the change in the output signal from each light receiving element 53, and based on this, the parallelism between the reference surfaces 13a and 23a can be known.

【0030】以上の実施形態においては、測定面に対し
て斜め方向から可干渉光を入射させる斜入射干渉計を例
にとって説明したが、測定面に対して垂直方向から可干
渉光を入射させる垂直入射型の干渉計で構成してもよ
い。
In the above embodiment, the oblique incidence interferometer in which the coherent light is incident on the measurement surface from an oblique direction has been described as an example. It may be constituted by an incident type interferometer.

【0031】また、プリズム参照面の相対的平行度を検
出する方法としては、上記した変容の他、マイクロメー
タや変位センサ等により参照面位置を測定する構成とす
ることも可能である。
As a method of detecting the relative parallelism of the prism reference surface, in addition to the above-described transformation, a configuration in which the position of the reference surface is measured by a micrometer, a displacement sensor, or the like can be used.

【0032】さらに、プリズムサイズ以上の大口径の試
料を測定する場合には、試料表面及び裏面のそれぞれの
測定領域を複数に分割して撮影し、各撮影像毎に両面の
形状を算出した後、これらを繋ぎ合わせることにより全
面の領域を形状結果を得ることも可能である。例えば、
図6に示すように、MA1(斜線部)の領域を1回目の
測定領域として面形状を算出した後、MA2の領域が撮
影できるように検査光学系に対して試料を相対移動させ
る(平行移動又は回転移動で行う)。MA2領域の面形
状が測定できたら、同様にMA3、MA4の順に各々面形
状を測定する。各MA1〜MA4の重複部分PAとして、
面形状の凹凸情報が一致する部分を重ね合わせて繋ぎ合
わせることにより、試料全面の面形状情報が得られる。
各領域の繋ぎ合わせ方法は、凹凸情報の一致だけではな
く、例えば、予め与えておいた特異点を重ね合わせた
り、試料外形を一致させるようにして繋ぎ合わせてもよ
い。このように、1つの試料を複数に分割して測定する
ことにより、試料の大型化にも比較的容易に対応するこ
とができる。
Further, when measuring a sample having a large diameter equal to or larger than the prism size, each of the measurement areas on the front surface and the back surface of the sample is divided into a plurality of pieces and photographed. By connecting these, it is also possible to obtain a shape result over the entire area. For example,
As shown in FIG. 6, after calculating the surface shape using the area of MA 1 (shaded area) as the first measurement area, the sample is moved relative to the inspection optical system so that the area of MA 2 can be imaged ( Performed by parallel or rotational movement). Once it measured surface shape of the MA 2 region, similarly to measure each surface shape in the order of MA 3, MA 4. As overlapping portion P A of the MA 1 to MA 4,
By superimposing and joining the portions where the surface shape unevenness information coincides, the surface shape information of the entire surface of the sample is obtained.
The joining method of the respective regions is not limited to the matching of the concavo-convex information. For example, the joining may be performed such that the singular points given in advance are overlapped or the outer shape of the sample is matched. As described above, by dividing one sample into a plurality of pieces and measuring, it is possible to relatively easily cope with an increase in the size of the sample.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
検査試料の測定表面及び測定裏面を非接触の状態で同時
に測定できるので、検査試料へのダメージを抑え、試料
の面形状や厚さむらを高精度に測定できる。また、干渉
計を利用した測定であるので、大きな面を持つ検査試料
の測定も高速に行うことができる。
As described above, according to the present invention,
Since the measurement surface and the measurement back surface of the test sample can be measured simultaneously in a non-contact state, damage to the test sample can be suppressed, and the surface shape and thickness unevenness of the sample can be measured with high accuracy. In addition, since the measurement is performed using an interferometer, measurement of a test sample having a large surface can be performed at high speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る試料検査装置の光学系要部図であ
る。
FIG. 1 is a main view of an optical system of a sample inspection apparatus according to the present invention.

【図2】ウェハWを保持する保持ユニットの概略構成図
である。
FIG. 2 is a schematic configuration diagram of a holding unit that holds a wafer W.

【図3】本発明に係る試料検査装置の制御系要部図であ
る。
FIG. 3 is a main view of a control system of the sample inspection apparatus according to the present invention.

【図4】参照面13aに対して参照面23aが傾斜して
いた場合の干渉縞画像の例を示す図である。
FIG. 4 is a diagram illustrating an example of an interference fringe image when the reference surface 23a is inclined with respect to the reference surface 13a.

【図5】プリズムの参照面間の平行度を検出する検出光
学系の説明図である。
FIG. 5 is an explanatory diagram of a detection optical system that detects parallelism between reference surfaces of a prism.

【図6】分割して測定する場合の測定領域を示した模式
図である。
FIG. 6 is a schematic diagram showing a measurement area when measuring by dividing.

【符号の説明】 1 表面検査光学系 2 裏面検査光学系 10、20 光源 12、22 コリメータレンズ 13、23 プリズム 13a、23a 参照面 16、26 TVカメラ 32 保持チャック 40 制御部 41 タイミングジェネレータ 42 画像処理部[Description of Signs] 1 Surface inspection optical system 2 Back surface inspection optical system 10, 20 Light source 12, 22 Collimator lens 13, 23 Prism 13a, 23a Reference surface 16, 26 TV camera 32 Holding chuck 40 Control unit 41 Timing generator 42 Image processing Department

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 検査試料の形状を測定する試料検査装置
において、前記検査試料の測定表面及び測定裏面を除く
部分を保持する保持手段と、該保持手段に保持された検
査試料の測定表面に可干渉光を投光して第1参照面と測
定表面との光干渉により干渉縞を形成し該干渉縞を撮像
素子により撮像する第1検査光学系と、前記保持手段に
保持された検査試料の測定裏面に可干渉光を投光して第
2参照面と測定裏面との光干渉により干渉縞を形成し該
干渉縞を撮像素子により撮像する第2検査光学系と、前
記第1及び第2検査光学系によりそれぞれ得られる干渉
縞画像に基づいて前記検査試料の面形状情報を得る解析
手段と、を備えることを特徴とする試料検査装置。
1. A sample inspection apparatus for measuring the shape of an inspection sample, comprising: holding means for holding a portion of the inspection sample other than a measurement surface and a measurement back surface; A first inspection optical system for projecting interference light to form interference fringes by optical interference between the first reference surface and the measurement surface and imaging the interference fringes by an imaging element; A second inspection optical system for projecting coherent light on the measurement back surface to form interference fringes by optical interference between the second reference surface and the measurement back surface and imaging the interference fringes with an imaging device; and the first and second inspection optical systems. A sample inspection apparatus comprising: an analysis unit configured to obtain surface shape information of the inspection sample based on interference fringe images respectively obtained by the inspection optical system.
【請求項2】 請求項1の試料検査装置において、前記
第1及び第2検査手段の撮像素子は、それぞれ得る干渉
縞画像を同期して撮像することを特徴とする試料検査装
置。
2. The sample inspection apparatus according to claim 1, wherein the imaging elements of the first and second inspection means synchronously image interference fringe images obtained respectively.
【請求項3】 請求項1の試料検査装置において、前記
保持手段は少なくとも3点で前記試料の端部を狭持する
ことを特徴とする試料検査装置。
3. The sample inspection apparatus according to claim 1, wherein said holding means clamps an end of said sample at at least three points.
【請求項4】 請求項1の試料検査装置は、さらに前記
第1参照面と第2参照面との相対的平行度を検出する平
行度検出手段を備え、前記解析手段は検出された平行度
情報に基づいて検査試料の表裏面の相対的な面形状情報
を補正することを特徴とする試料検査装置。
4. The sample inspection apparatus according to claim 1, further comprising parallelism detecting means for detecting a relative parallelism between the first reference surface and the second reference surface, and wherein the analyzing means detects the detected parallelism. A sample inspection apparatus, wherein relative surface shape information of front and back surfaces of an inspection sample is corrected based on information.
【請求項5】 請求項1又は4の解析手段は、前記検査
試料の表裏面の厚さむらを得ることを特徴とする試料検
査装置。
5. The sample inspection apparatus according to claim 1, wherein the analysis means obtains uneven thickness of the front and back surfaces of the inspection sample.
【請求項6】 請求項1の試料検査装置において、さら
に前記第1及び第2検査光学系に対して前記保持手段に
保持された検査試料を相対移動させる移動手段を備え、
第1及び第2検査光学系は該移動手段により相対移動さ
れる前記検査試料の測定面の干渉縞画像を参照面の大き
さに応じて分割して得ることを特徴とする試料検査装
置。
6. The sample inspection apparatus according to claim 1, further comprising a moving unit that relatively moves the inspection sample held by the holding unit with respect to the first and second inspection optical systems.
A sample inspection apparatus, wherein the first and second inspection optical systems obtain an interference fringe image of a measurement surface of the inspection sample, which is relatively moved by the moving unit, according to a size of a reference surface.
【請求項7】 請求項6の試料検査装置は、さらに分割
して得られる干渉縞画像に基づく面形状情報を得ると共
に、該面形状情報を繋ぎ合わせて全体の面形状情報を得
る分割画像解析手段を備えることを特徴とする試料検査
装置。
7. The sample inspection apparatus according to claim 6, further comprising obtaining surface shape information based on an interference fringe image obtained by further dividing, and connecting the surface shape information to obtain the entire surface shape information. A sample inspection apparatus comprising:
【請求項8】 請求項1の試料検査装置において、前記
第1及び第2検査光学系は対を成すことを特徴とする試
料検査装置。
8. The sample inspection apparatus according to claim 1, wherein the first and second inspection optical systems form a pair.
【請求項9】 請求項1の試料検査装置において、前記
第1及び第2検査光学系は共に斜入射干渉計として構成
したことを特徴とする試料検査装置。
9. The sample inspection apparatus according to claim 1, wherein said first and second inspection optical systems are both configured as oblique incidence interferometers.
JP25113498A 1998-09-04 1998-09-04 Sample inspection equipment Expired - Fee Related JP4011205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25113498A JP4011205B2 (en) 1998-09-04 1998-09-04 Sample inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25113498A JP4011205B2 (en) 1998-09-04 1998-09-04 Sample inspection equipment

Publications (3)

Publication Number Publication Date
JP2000081321A true JP2000081321A (en) 2000-03-21
JP2000081321A5 JP2000081321A5 (en) 2005-10-27
JP4011205B2 JP4011205B2 (en) 2007-11-21

Family

ID=17218188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25113498A Expired - Fee Related JP4011205B2 (en) 1998-09-04 1998-09-04 Sample inspection equipment

Country Status (1)

Country Link
JP (1) JP4011205B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522939A (en) * 2000-01-25 2003-07-29 ザイゴ コーポレーション Optical system for measuring the shape and geometric dimensions of precision industrial parts
JP2012518185A (en) * 2009-02-18 2012-08-09 ケーエルエー−テンカー コーポレイション Method and apparatus for measuring substrate shape or thickness information
CN108489422A (en) * 2018-03-12 2018-09-04 四川大学 A kind of method of frequency conversion phase shift least-squares iteration superposition face shape separation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522939A (en) * 2000-01-25 2003-07-29 ザイゴ コーポレーション Optical system for measuring the shape and geometric dimensions of precision industrial parts
JP2012518185A (en) * 2009-02-18 2012-08-09 ケーエルエー−テンカー コーポレイション Method and apparatus for measuring substrate shape or thickness information
CN108489422A (en) * 2018-03-12 2018-09-04 四川大学 A kind of method of frequency conversion phase shift least-squares iteration superposition face shape separation

Also Published As

Publication number Publication date
JP4011205B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JPS6149602B2 (en)
JPH08505952A (en) Inspection interferometer with scanning function
WO1999046814A1 (en) Optical instrument for measuring shape of wafer
KR100785802B1 (en) Apparatus for measurment of three-dimensional shape
JP2000121324A (en) Thickness measuring apparatus
US6674521B1 (en) Optical method and system for rapidly measuring relative angular alignment of flat surfaces
CN110806181A (en) High-precision optical extensometer and measuring method based on color camera
JP4532556B2 (en) Interferometer with mirror device for measuring objects
JP2016148569A (en) Image measuring method and image measuring device
JPH0758172B2 (en) Shape measuring method and apparatus
JP2003042734A (en) Method and apparatus for measurement of surface shape
JP4011205B2 (en) Sample inspection equipment
JP4087146B2 (en) Shape measuring method and shape measuring apparatus
JP2000329535A (en) Simiultaneous measuring apparatus for phase-shifting interference fringes
JP4675011B2 (en) Shape measuring method and shape measuring apparatus
JP3921432B2 (en) Shape measuring apparatus and shape measuring method using moire optical system
JP4402849B2 (en) Surface shape measuring method and surface shape measuring apparatus
JP2631003B2 (en) Sample shape measuring apparatus and its measuring method
JP3845286B2 (en) Shape measuring apparatus and shape measuring method
JPH102724A (en) Optical three-dimensional measuring apparatus
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
JPS62106310A (en) Apparatus for measuring degree of parallelism of plane-parallel plates
JP2753545B2 (en) Shape measurement system
JPH0139041B2 (en)
JPH04295709A (en) Intereference measuring apparatus and method for receiving image data of interference fringe

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees