JPH04295709A - Intereference measuring apparatus and method for receiving image data of interference fringe - Google Patents

Intereference measuring apparatus and method for receiving image data of interference fringe

Info

Publication number
JPH04295709A
JPH04295709A JP3060118A JP6011891A JPH04295709A JP H04295709 A JPH04295709 A JP H04295709A JP 3060118 A JP3060118 A JP 3060118A JP 6011891 A JP6011891 A JP 6011891A JP H04295709 A JPH04295709 A JP H04295709A
Authority
JP
Japan
Prior art keywords
interference
light
image data
capturing
interference fringes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3060118A
Other languages
Japanese (ja)
Inventor
Toshiyuki Izeki
敏之 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3060118A priority Critical patent/JPH04295709A/en
Publication of JPH04295709A publication Critical patent/JPH04295709A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize the analysis of fringes at resolution higher than the resolution of a sensor by moving a sensor part stepwise at an equal interval in the two directions wherein the pixels of an image sensing element are aligned, receiving a plurality of fringe image data, and thereafter combining the data into one image datum. CONSTITUTION:A CCD camera 1 is mounted on an X-Y stage 2 which is driven with a PZT piezoelectric element. The PZT piezoelectric element is controlled with a PZT controller 6, and a sensor part is moved at steps which are 1/N (N is an integer) of the pitch of the CCD pixel. The total of (N-1) sheets of the images are sequentially stored in a memory 5 through a video interface 4. Thereafter, the image data are transferred into the memory of a computer 8, and the data are combined. Thus, the interference-fringe image data are obtained. Therefore, the resolution which is N times the ordinary resolution can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、非球面形状の測定等、
物体の表面形状を測定するための干渉測定装置及び干渉
縞画像情報取り込み方法に関する。
[Industrial Application Field] The present invention is applicable to measurements of aspherical shapes, etc.
The present invention relates to an interference measurement device and a method for capturing interference fringe image information for measuring the surface shape of an object.

【0002】0002

【従来の技術】従来、非球面形状の測定等に用いられる
装置として、測定物体の表面に光を照射し、該光と別の
光の両波面により生じる干渉縞をテレビカメラで撮像し
、該干渉縞を画像処理することによって上記物体の表面
形状を特定する干渉測定装置が知られている。
[Prior Art] Conventionally, as a device used for measuring aspherical shapes, etc., the surface of a measurement object is irradiated with light, and a television camera is used to image the interference fringes generated by the wavefronts of the light and another light. 2. Description of the Related Art An interference measuring device is known that identifies the surface shape of the object by image processing interference fringes.

【0003】0003

【発明が解決しようとする課題】しかしながら、干渉測
定法による欠点は、干渉縞をCCD(Charge C
oupledDevices)等のイメージセンサーで
読み取るため、センサーの分解能の制約を受けることで
ある。以下、この点について詳しく説明する。干渉縞の
縞間隔に対応する位相差は、λ(レーザー光の波長)に
等しい。例えば、図6(a)に示すような干渉縞の断面
形状を求めるためには、まず断面AA’と干渉縞ピーク
の交点を求め、図6(b)のように、これを予め高さを
波長で目盛られたグラフに表示し、滑らかな曲線で結べ
ばよい。しかし、この方法は、干渉縞本数が少ない場合
には測定点が少なくなり、精度がおちる。つまりこの方
法では、測定点と測定点の間の情報が干渉縞画像から全
く読み取ることができないことが問題なのである。そこ
で、情報密度を高めるためには、図7のようにティルト
成分を導入する方法が一般に行なわれる。この方法では
、図6(a)の場合と比較すればかなり情報密度は高く
なるが、あまりティルト成分を多く導入すると、CCD
画素の分解能に対して縞の密度が高くなり過ぎるという
新たな問題が生ずる。言い替えると、CCD画素の受光
エリアはある幅をもっているために、干渉縞ピーク位置
をその画素の幅以上の精度で特定するのは不可能である
[Problems to be Solved by the Invention] However, a drawback of the interferometry method is that the interference fringes cannot be measured using a CCD (Charge CCD).
Since the information is read using an image sensor such as an image sensor such as an image sensor (e.g. This point will be explained in detail below. The phase difference corresponding to the fringe spacing of the interference fringes is equal to λ (the wavelength of the laser light). For example, in order to obtain the cross-sectional shape of the interference fringes as shown in FIG. 6(a), first find the intersection of the cross-section AA' and the peak of the interference fringes, and then set the height in advance as shown in FIG. 6(b). All you have to do is display it on a graph scaled by wavelength and connect it with a smooth curve. However, in this method, when the number of interference fringes is small, the number of measurement points decreases and the accuracy deteriorates. In other words, the problem with this method is that no information between the measurement points can be read from the interference fringe image. Therefore, in order to increase the information density, a method of introducing a tilt component as shown in FIG. 7 is generally used. With this method, the information density is considerably higher than in the case of Fig. 6(a), but if too many tilt components are introduced, the CCD
A new problem arises in that the fringe density becomes too high relative to the pixel resolution. In other words, since the light receiving area of a CCD pixel has a certain width, it is impossible to specify the interference fringe peak position with an accuracy greater than the width of that pixel.

【0004】また、近年では、縞解析方法はいわゆるサ
ブフリンジ解析法が主流になっている。サブフリンジ解
析法は上記のような干渉縞ピークを求める方法とは異な
り、干渉縞のピーク点以外のポイントにおいても干渉縞
の位相角が決定できるものであり、一例として、縞走査
法があげられる。この方法は、参照光の光路をλ/Mき
ざみでM段階に変化させて得られるM個の干渉縞データ
から被検波面形状を求めるものである。通常、測定時間
を短縮するために、M=4として縞走査を行なうことが
多い。この場合、位相角φは次式より計算される。但し
I1〜I4は参照光の光路長をλ/4きざみで4段階に
変化させたときのあるポイントにおける縞強度である。 tan φ={(I2−I4)/(I1−I3)}ここ
で、φは−π/2〜π/2の間の値をとるため、CCD
画素に対応するポイント毎に求まるφの値は、通常、と
ころどころで不連続となる。これを連続的になるように
つなぎ合わせることが必要であるが、そのためには干渉
縞一周期をCCD画素4個以上で受光しなければならな
い。したがって、それ以上に縞密度が高くなると、φの
つなぎ合わせができなくなる。また、縞間隔が小さくな
り過ぎないよう、縞画像を光学系を用いて拡大する方法
もあるが、拡大する分、測定範囲が狭くなるという問題
がある。
Furthermore, in recent years, the so-called sub-fringe analysis method has become mainstream as a fringe analysis method. The subfringe analysis method differs from the method of determining the interference fringe peak as described above, in that it allows the phase angle of the interference fringe to be determined at points other than the peak point of the interference fringe.An example is the fringe scanning method. . In this method, the shape of the wavefront to be measured is determined from M pieces of interference fringe data obtained by changing the optical path of the reference light in M steps in steps of λ/M. Usually, in order to shorten the measurement time, fringe scanning is often performed with M=4. In this case, the phase angle φ is calculated from the following equation. However, I1 to I4 are the fringe intensities at certain points when the optical path length of the reference light is changed in four steps in steps of λ/4. tan φ={(I2-I4)/(I1-I3)} Here, φ takes a value between -π/2 and π/2, so the CCD
The value of φ determined for each point corresponding to a pixel is usually discontinuous in some places. It is necessary to connect these patterns continuously, but to do so, one cycle of interference fringes must be received by four or more CCD pixels. Therefore, if the fringe density becomes higher than that, it becomes impossible to connect φ. In addition, there is a method of enlarging the fringe image using an optical system so that the fringe interval does not become too small, but there is a problem in that the measurement range becomes narrower by the amount of enlargement.

【0005】本発明は上記事情に鑑みてなされたもので
あり、センサー本体の分解能よりも高い分解能で縞解析
を実現することが可能となる干渉測定装置及び干渉縞画
像情報取り込み方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an interference measuring device and a method for capturing interference fringe image information that make it possible to realize fringe analysis with a resolution higher than that of the sensor body. With the goal.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
、本願請求項1記載の発明は、測定物体の表面に光を照
射し、該光と別の光の両波面により生じる干渉縞をテレ
ビカメラで撮像し、該干渉縞を画像処理することによっ
て上記物体の表面形状を特定する干渉測定装置において
、前記干渉縞を受像する撮像素子などのセンサー部を光
軸に直交する面内で可動ならしめる機構を有し、上記撮
像素子の画素の並ぶ2方向に段階的に等間隔にセンサー
部を動かしながら縞画像データを複数取り込んだ後に一
つの画像データにつなぎ合わせる手段を備えたことを特
徴とする。
[Means for Solving the Problems] In order to achieve the above object, the invention according to claim 1 of the present application irradiates the surface of a measurement object with light, and monitors the interference fringes generated by the wavefronts of the light and another light. In an interference measuring device that identifies the surface shape of the object by capturing an image with a camera and processing the interference fringes, if a sensor unit such as an image sensor that receives the interference fringes is movable within a plane perpendicular to the optical axis. The image pickup device has a closing mechanism, and means for capturing a plurality of striped image data while moving the sensor part stepwise at equal intervals in two directions in which the pixels of the image pickup device are lined up, and then stitching the striped image data together into one image data. do.

【0007】また、本願請求項2記載の発明は、測定物
体の表面に光を照射し、該光と別の光の両波面により生
じる干渉縞をテレビカメラで撮像し、該干渉縞を画像処
理することによって上記物体の表面形状を特定する干渉
測定装置において、両波面が干渉した後からその干渉光
が位置が固定されたテレビカメラに入射するまでの間の
光路上でミラーあるいは平行平板、レンズ等の光学的な
構成要素を機械的に動かすことによって上記テレビカメ
ラに入射する干渉光を横ずらしできる機構を有し、画素
の並ぶ2方向に沿って段階的に等間隔に干渉光を横ずら
ししながら取り込んだ複数の縞画像データを取り込み後
に一つの画像データにつなぎ合わせる手段を備えたこと
を特徴とする。
[0007] Furthermore, the invention according to claim 2 of the present application irradiates light onto the surface of a measurement object, images interference fringes generated by both wavefronts of the light and another light with a television camera, and performs image processing on the interference fringes. In an interference measurement device that identifies the surface shape of the object by It has a mechanism that can horizontally shift the interference light incident on the television camera by mechanically moving optical components such as, and horizontally shifts the interference light stepwise at equal intervals along the two directions in which the pixels are lined up. The present invention is characterized in that it includes a means for joining a plurality of striped image data captured while capturing them into one image data after capturing them.

【0008】また、本願請求項3記載の発明は、測定物
体の表面に光を照射し、該光と別の光の両波面により生
じる干渉縞をテレビカメラで撮像し、該干渉縞を画像処
理することによって上記物体の表面形状を特定する干渉
測定装置における干渉縞画像情報取り込み方法において
、前記干渉縞を受像する撮像素子などのセンサー部が光
軸に直交する面内で可動ならしめる機構を有し、上記撮
像素子の画素の並ぶ2方向に段階的に等間隔にセンサー
部を動かしながら縞画像データを複数取り込んだ後に一
つの画像データにつなぎ合わせることを特徴とする。
[0008] Furthermore, the invention according to claim 3 of the present application irradiates light onto the surface of a measurement object, images interference fringes generated by both wavefronts of the light and another light with a television camera, and performs image processing on the interference fringes. A method for capturing interference fringe image information in an interferometric measurement device that identifies the surface shape of an object by determining the surface shape of an object, the method includes a mechanism that allows a sensor unit such as an image sensor that receives the interference fringes to move within a plane perpendicular to the optical axis. The present invention is characterized in that a plurality of pieces of striped image data are taken in while moving the sensor section stepwise and at equal intervals in two directions in which the pixels of the image pickup device are lined up, and then combined into one piece of image data.

【0009】また、本願請求項4記載の発明は、測定物
体の表面に光を照射し、該光と別の光の両波面により生
じる干渉縞をテレビカメラで撮像し、該干渉縞を画像処
理することによって上記物体の表面形状を特定する干渉
測定装置における干渉縞画像情報取り込み方法において
、両波面が干渉した後からその干渉光が位置が固定され
たテレビカメラに入射するまでの間の光路上でミラーあ
るいは平行平板、レンズ等の光学的な構成要素を機械的
に動かすことによって上記テレビカメラに入射する干渉
光を横ずらしできる機構を有し、画素の並ぶ2方向に沿
って段階的に等間隔に干渉光を横ずらししながら取り込
んだ複数の縞画像データを取り込み後に一つの画像デー
タにつなぎ合わせることを特徴とする。
[0009] Furthermore, the invention according to claim 4 of the present application irradiates light onto the surface of a measurement object, images interference fringes generated by both wavefronts of the light and another light with a television camera, and performs image processing on the interference fringes. In a method for capturing interference fringe image information in an interferometric measurement device that identifies the surface shape of an object by It has a mechanism that can horizontally shift the interference light incident on the TV camera by mechanically moving optical components such as mirrors, parallel plates, lenses, etc., and the interference light incident on the TV camera can be shifted horizontally in equal steps along the two directions where the pixels are lined up. The method is characterized in that a plurality of pieces of fringe image data are captured while laterally shifting the interference light at intervals, and then combined into one image data.

【0010】0010

【作用】本発明の干渉測定装置及び干渉縞画像情報取り
込み方法は、何れの場合も、干渉縞の取り込みの際、テ
レビカメラ(または撮像素子)か縞画像のどちらか一方
を光軸と直交する2方向に駆動しながら縞画像を複数回
取り込んで画像メモリに蓄えておき、その後で、互いに
わずかずつずれた複数の縞画像データを一つの画像デー
タにつなぎ合わせる方法を採るため、これによりセンサ
本体の分解能よりも高い分解能で縞解析を実現すること
ができる。
[Operation] In both cases, the interference measuring device and method for capturing interference fringe image information of the present invention orient either the television camera (or image sensor) or the fringe image orthogonally to the optical axis when capturing interference fringes. While driving in two directions, striped images are captured multiple times and stored in the image memory, and then the multiple striped image data that are slightly shifted from each other are combined into one image data. Fringe analysis can be achieved with a resolution higher than that of .

【0011】[0011]

【実施例】以下、本発明を図面を参照して詳細に説明す
る。先ず、本発明の干渉測定装置における干渉縞画像情
報取り込み方法の原理を図1を用いて説明する。図1は
図6のAA’のラインに沿った干渉縞強度分布と、CC
D各画素の受光量を模式的に表したものであり、また、
図1では干渉縞強度変化の一周期をCCD画素4/3個
で受光している。しかし、このような状態では、もはや
縞のピーク位置を求めることも縞走査法を適用すること
もできない。そこで、CCDを、その画素の並び方向に
画素ピッチの1/5ずつ移動させ、干渉縞データの取り
込みを行なう場合を考えてみる。まず、CCD画素Xに
着目すると、その出力値は図2に示すように変化する。 図2に示した画素Xの受光量変化は、図1の干渉縞強度
分布と同一周期で変化する。これは他の全ての画素につ
いても同様であり、画素ピッチの1/5ずつ移動させた
ときのCCD出力値を全画素についてつなぎ合わせれば
、もとの5倍の分解能で干渉縞データの取り込みが可能
となる。すなわち、上記の例に従えば、干渉縞一周期を
画素20/3個で受光する場合と同等のデータを取り込
むことができるわけである。勿論、CCD移動量は画素
ピッチの1/5に限るわけではない。また、この例では
簡単のために一次元で説明したが、2次元のCCDを用
いた場合には、画素の並びに沿った2方向にCCDを移
動させることになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below with reference to the drawings. First, the principle of a method for capturing interference fringe image information in an interferometer of the present invention will be explained using FIG. 1. Figure 1 shows the interference fringe intensity distribution along the line AA' in Figure 6 and the CC
D is a schematic representation of the amount of light received by each pixel, and
In FIG. 1, one cycle of interference fringe intensity change is received by 4/3 CCD pixels. However, in such a state, it is no longer possible to determine the peak position of the fringe or apply the fringe scanning method. Therefore, let us consider a case where the CCD is moved in steps of 1/5 of the pixel pitch in the direction in which the pixels are lined up to capture interference fringe data. First, when focusing on the CCD pixel X, its output value changes as shown in FIG. The change in the amount of light received by the pixel X shown in FIG. 2 changes at the same period as the interference fringe intensity distribution shown in FIG. This is the same for all other pixels, and if you connect the CCD output values for all pixels when moving by 1/5 of the pixel pitch, you can capture interference fringe data with 5 times the original resolution. It becomes possible. That is, according to the above example, it is possible to capture data equivalent to the case where one cycle of interference fringes is received by 20/3 pixels. Of course, the amount of CCD movement is not limited to 1/5 of the pixel pitch. Furthermore, although this example has been described in one dimension for simplicity, if a two-dimensional CCD is used, the CCD will be moved in two directions along the pixel arrangement.

【0012】次に、上述のような干渉縞情報取り込み方
法を可能にするための機構について説明する。まず、第
一の方法としては、CCDカメラそのものを動かす。す
なわちCCD画素の並び方向に動くXYステージにCC
Dカメラを設置する。この場合、CCDの画素ピッチは
通常10μm程度であるので、ステージの位置決め精度
はサブミクロンのオーダを満足する必要があるが、この
ような要求を満足する圧電素子内蔵型のXYステージが
市販されている。次に、第二の方法は、CCDカメラは
固定し、干渉縞画像そのものを光軸と直交方向に横ずら
しするものである。例えば図3のように、CCDカメラ
の結像レンズに入射する前に、xz面内に面法線を持つ
ミラー1と、yz面内に面法線を持つミラー2で2回干
渉光を反射させ、それぞれのミラーを図3中の矢印の方
向(z方向)に圧電素子を使って動かす。すなわち、ミ
ラー1をz方向に動かすことによりCCDカメラに入射
する干渉光はx方向に横ずれし、ミラー2をz方向に動
かすことによりCCDカメラに入射する光はz方向に横
ずれする。あるいは、図4(a),(b)に示すように
、ミラー、レンズ、ハーフミラーを組合せ、レンズの結
像位置に置いたミラーをx,y軸回りに回転させること
によって干渉光を横ずらしすることもできる。尚、図3
、図4の何れも干渉光は平行光でなければならない。
[0012] Next, a mechanism for enabling the above-mentioned interference fringe information acquisition method will be explained. First, the first method is to move the CCD camera itself. In other words, the CC is placed on an XY stage that moves in the direction of the CCD pixels.
Install the D camera. In this case, since the pixel pitch of the CCD is usually about 10 μm, the positioning accuracy of the stage needs to be on the order of submicrons. There is. Next, in the second method, the CCD camera is fixed and the interference fringe image itself is laterally shifted in a direction orthogonal to the optical axis. For example, as shown in Figure 3, before entering the imaging lens of a CCD camera, the interference light is reflected twice by mirror 1, which has its surface normal in the xz plane, and mirror 2, which has its surface normal in the yz plane. and move each mirror in the direction of the arrow (z direction) in FIG. 3 using a piezoelectric element. That is, by moving mirror 1 in the z direction, the interference light incident on the CCD camera is laterally shifted in the x direction, and by moving mirror 2 in the z direction, the light incident on the CCD camera is laterally shifted in the z direction. Alternatively, as shown in Figures 4(a) and (b), by combining a mirror, a lens, and a half mirror, and rotating the mirror placed at the imaging position of the lens around the x and y axes, the interference light can be shifted laterally. You can also. Furthermore, Figure 3
, FIG. 4, the interference light must be parallel light.

【0013】次に、図5は本発明の干渉縞情報取り込み
方法を利用した干渉測定装置の一実施例を示す。この装
置では、PZT圧電素子によって駆動されるXYステー
ジ2上にCCDカメラ1を搭載し、PZTコントローラ
6によってPZT圧電素子を制御してCCD画素ピッチ
の1/N(Nは整数)のステップでXYステージ2を移
動させ、計(N−1)2枚の画像をビデオインターフェ
イス4を介して順次フレームメモリ5に蓄える。その後
、画像データをコンピュータ8のメモリへ転送し、デー
タのつなぎ合わせを行ない、干渉縞画像情報を得る。こ
のように、本発明の干渉測定装置では、平行光とCCD
カメラとを相対的にCCD画素の1/Nステップで横ず
らしさせながら順次データを取り込み、その後で、それ
らのデータを一つの画像データにつなぎ合わせるので、
通常のN倍の分解能が得られる。
Next, FIG. 5 shows an embodiment of an interference measurement apparatus using the interference fringe information acquisition method of the present invention. In this device, a CCD camera 1 is mounted on an XY stage 2 driven by a PZT piezoelectric element, and a PZT controller 6 controls the PZT piezoelectric element to perform XY scanning in steps of 1/N (N is an integer) of the CCD pixel pitch. The stage 2 is moved and a total of (N-1) two images are sequentially stored in the frame memory 5 via the video interface 4. Thereafter, the image data is transferred to the memory of the computer 8, and the data is connected to obtain interference fringe image information. In this way, in the interference measurement device of the present invention, parallel light and CCD
Data is captured sequentially while horizontally shifting the camera in steps of 1/N of CCD pixels, and then these data are combined into one image data.
A resolution N times higher than normal resolution can be obtained.

【0014】[0014]

【発明の効果】以上説明したように、本発明の干渉測定
装置及び干渉縞画像情報取り込み方法では、何れの場合
も、干渉縞の取り込みの際、テレビカメラ(または撮像
素子)か縞画像のどちらか一方を光軸と直交する2方向
に駆動しながら縞画像を複数回取り込んで画像メモリに
蓄えておき、その後で、互いにわずかずつずれた複数の
縞画像データを一つの画像データにつなぎ合わせる方法
を採るため、これによりセンサ本体の分解能よりも高い
分解能で縞解析を実現することができる。従って本発明
によれば、非球面形状の測定等、物体の表面形状の測定
を精度よく測定することが可能となる。
[Effects of the Invention] As explained above, in both the interference measuring device and the method for capturing interference fringe image information of the present invention, when capturing interference fringes, either the television camera (or image sensor) or the fringe image is used. A method of capturing striped images multiple times while driving one side in two directions perpendicular to the optical axis and storing them in image memory, and then joining multiple pieces of striped image data that are slightly shifted from each other into one image data. Therefore, it is possible to realize fringe analysis with a resolution higher than that of the sensor body. Therefore, according to the present invention, it is possible to accurately measure the surface shape of an object, such as the measurement of an aspherical surface shape.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の原理を説明するための図であって、干
渉縞強度分布とCCD画素の受光量を示す図である。
FIG. 1 is a diagram for explaining the principle of the present invention, and is a diagram showing the interference fringe intensity distribution and the amount of light received by a CCD pixel.

【図2】本発明の原理を説明するための図であって、C
CD画素を画素ピッチの1/5ずつ移動させた時の受光
量変化を示す図である。
FIG. 2 is a diagram for explaining the principle of the present invention,
FIG. 6 is a diagram showing changes in the amount of received light when CD pixels are moved by 1/5 of the pixel pitch.

【図3】本発明による干渉縞画像情報取り込み方法に適
用される干渉光横ずらし方法の一例を示す図である。
FIG. 3 is a diagram showing an example of an interference light lateral shifting method applied to the interference fringe image information acquisition method according to the present invention.

【図4】本発明による干渉縞画像情報取り込み方法に適
用される干渉光横ずらし方法の別の例を示す図である。
FIG. 4 is a diagram showing another example of the interference light lateral shifting method applied to the interference fringe image information acquisition method according to the present invention.

【図5】本発明を利用した干渉測定装置の一例を示すシ
ステムブロック図である。
FIG. 5 is a system block diagram showing an example of an interference measurement device using the present invention.

【図6】縞解析の一例を示す図であって、(a)は干渉
縞の一例を示す図、(b)は(a)に示す干渉縞から読
み取った波面形状を示す図である。
FIG. 6 is a diagram showing an example of fringe analysis, in which (a) is a diagram showing an example of interference fringes, and (b) is a diagram showing a wavefront shape read from the interference fringes shown in (a).

【図7】ティルトを導入した場合の干渉縞の例を示す図
である。
FIG. 7 is a diagram showing an example of interference fringes when tilt is introduced.

【符号の説明】[Explanation of symbols]

1    テレビカメラ 2    XYステージ 3    レーザ干渉計 4    ビデオインターフェース 5    フレームメモリ 6    PZTコントローラ 7    入出力インターフェース 8    コンピュータ 1 TV camera 2 XY stage 3 Laser interferometer 4 Video interface 5 Frame memory 6 PZT controller 7 Input/output interface 8 Computer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】測定物体の表面に光を照射し、該光と別の
光の両波面により生じる干渉縞をテレビカメラで撮像し
、該干渉縞を画像処理することによって上記物体の表面
形状を特定する干渉測定装置において、前記干渉縞を受
像する撮像素子などのセンサー部を光軸に直交する面内
で可動ならしめる機構を有し、上記撮像素子の画素の並
ぶ2方向に段階的に等間隔にセンサー部を動かしながら
縞画像データを複数取り込んだ後に一つの画像データに
つなぎ合わせる手段を備えたことを特徴とする干渉測定
装置。
[Claim 1] Light is irradiated onto the surface of the object to be measured, interference fringes generated by the wavefronts of the light and another light are imaged with a television camera, and the surface shape of the object is determined by image processing the interference fringes. The interference measurement device to be specified has a mechanism that allows a sensor unit such as an image sensor that receives the interference fringes to be movable in a plane orthogonal to the optical axis, and is configured to move the sensor unit, such as an image sensor that receives the interference fringes, in a stepwise manner in two directions in which the pixels of the image sensor are lined up. An interference measurement device characterized by comprising means for capturing a plurality of striped image data while moving a sensor section at intervals and then joining them together into one image data.
【請求項2】測定物体の表面に光を照射し、該光と別の
光の両波面により生じる干渉縞をテレビカメラで撮像し
、該干渉縞を画像処理することによって上記物体の表面
形状を特定する干渉測定装置において、両波面が干渉し
た後からその干渉光が位置が固定されたテレビカメラに
入射するまでの間の光路上でミラーあるいは平行平板、
レンズ等の光学的な構成要素を機械的に動かすことによ
って上記テレビカメラに入射する干渉光を横ずらしでき
る機構を有し、画素の並ぶ2方向に沿って段階的に等間
隔に干渉光を横ずらししながら取り込んだ複数の縞画像
データを取り込み後に一つの画像データにつなぎ合わせ
る手段を備えたことを特徴とする干渉測定装置。
[Claim 2] Light is irradiated onto the surface of the object to be measured, interference fringes generated by both the wavefronts of the light and another light are imaged with a television camera, and the surface shape of the object is determined by image processing the interference fringes. In the interference measurement device to be identified, a mirror or parallel plate is placed on the optical path from the time the two wavefronts interfere until the interference light enters the television camera whose position is fixed.
It has a mechanism that can horizontally shift the interference light incident on the TV camera by mechanically moving optical components such as lenses, and it shifts the interference light horizontally at equal intervals in stages along the two directions where the pixels are lined up. An interference measuring device characterized by comprising means for combining a plurality of striped image data captured while shifting them into one image data after capturing.
【請求項3】測定物体の表面に光を照射し、該光と別の
光の両波面により生じる干渉縞をテレビカメラで撮像し
、該干渉縞を画像処理することによって上記物体の表面
形状を特定する干渉測定装置における干渉縞画像情報取
り込み方法において、前記干渉縞を受像する撮像素子な
どのセンサー部が光軸に直交する面内で可動ならしめる
機構を有し、上記撮像素子の画素の並ぶ2方向に段階的
に等間隔にセンサー部を動かしながら縞画像データを複
数取り込んだ後に一つの画像データにつなぎ合わせるこ
とを特徴とする干渉縞画像情報取り込み方法。
3. The surface shape of the object is determined by irradiating light onto the surface of the object to be measured, imaging the interference fringes generated by the wavefronts of the light and another light with a television camera, and processing the interference fringes as images. In a method for capturing interference fringe image information in an interference measurement device to be specified, a sensor unit such as an image sensor that receives the interference fringes has a mechanism that allows it to move within a plane perpendicular to the optical axis, and pixels of the image sensor are arranged A method for capturing interference fringe image information characterized by capturing a plurality of pieces of fringe image data while moving a sensor unit stepwise at equal intervals in two directions and then combining them into one image data.
【請求項4】測定物体の表面に光を照射し、該光と別の
光の両波面により生じる干渉縞をテレビカメラで撮像し
、該干渉縞を画像処理することによって上記物体の表面
形状を特定する干渉測定装置における干渉縞画像情報取
り込み方法において、両波面が干渉した後からその干渉
光が位置が固定されたテレビカメラに入射するまでの間
の光路上でミラーあるいは平行平板、レンズ等の光学的
な構成要素を機械的に動かすことによって上記テレビカ
メラに入射する干渉光を横ずらしできる機構を有し、画
素の並ぶ2方向に沿って段階的に等間隔に干渉光を横ず
らししながら取り込んだ複数の縞画像データを取り込み
後に一つの画像データにつなぎ合わせることを特徴とす
る干渉縞画像情報取り込み方法。
4. The surface shape of the object is determined by irradiating light onto the surface of the object to be measured, capturing an image of the interference fringes generated by the wavefronts of the light and another light with a television camera, and processing the interference fringes as images. In the method of capturing interference fringe image information in the specified interference measurement device, a mirror, parallel plate, lens, etc. is used on the optical path after the two wavefronts interfere until the interference light enters a television camera whose position is fixed. It has a mechanism that can horizontally shift the interference light incident on the television camera by mechanically moving optical components, and the system shifts the interference light stepwise and at equal intervals along the two directions in which the pixels are lined up. A method for capturing interference fringe image information, which is characterized by combining a plurality of captured fringe image data into one image data after capturing.
JP3060118A 1991-03-25 1991-03-25 Intereference measuring apparatus and method for receiving image data of interference fringe Pending JPH04295709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3060118A JPH04295709A (en) 1991-03-25 1991-03-25 Intereference measuring apparatus and method for receiving image data of interference fringe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3060118A JPH04295709A (en) 1991-03-25 1991-03-25 Intereference measuring apparatus and method for receiving image data of interference fringe

Publications (1)

Publication Number Publication Date
JPH04295709A true JPH04295709A (en) 1992-10-20

Family

ID=13132889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3060118A Pending JPH04295709A (en) 1991-03-25 1991-03-25 Intereference measuring apparatus and method for receiving image data of interference fringe

Country Status (1)

Country Link
JP (1) JPH04295709A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046626A1 (en) * 2005-10-19 2007-04-26 Intekplus Co., Ltd. Apparatus for and method of measuring image
JP2008216086A (en) * 2007-03-06 2008-09-18 Microdent:Kk Quantification standardizing (phase contrast) microscope
CN103267494A (en) * 2013-05-20 2013-08-28 湖北工业大学 Method and device for surface appearance interference measurement
JP2014059312A (en) * 2013-11-06 2014-04-03 Hitachi High-Technologies Corp Defect inspection device and defect inspection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046626A1 (en) * 2005-10-19 2007-04-26 Intekplus Co., Ltd. Apparatus for and method of measuring image
US8155483B2 (en) 2005-10-19 2012-04-10 Intekplus Co., Ltd. Apparatus for and method of measuring image
JP2008216086A (en) * 2007-03-06 2008-09-18 Microdent:Kk Quantification standardizing (phase contrast) microscope
CN103267494A (en) * 2013-05-20 2013-08-28 湖北工业大学 Method and device for surface appearance interference measurement
JP2014059312A (en) * 2013-11-06 2014-04-03 Hitachi High-Technologies Corp Defect inspection device and defect inspection method

Similar Documents

Publication Publication Date Title
KR100685574B1 (en) Apparatus and method for evaluating a large target relative to the measuring hole of the sensor
US4869593A (en) Interferometric surface profiler
US7564568B2 (en) Phase shifting interferometry with multiple accumulation
EP2175232A1 (en) Three-dimensional shape measuring device, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium
US20070002333A1 (en) Interferometric apparatus for measuring moving object and optical interferometry method for measuring moving object
JPH0117523B2 (en)
JPH03289293A (en) Image pickup device
JPH0694434A (en) Deformation measuring method based on speckle interference method
JP3306858B2 (en) 3D shape measuring device
JPH04295709A (en) Intereference measuring apparatus and method for receiving image data of interference fringe
JP3228458B2 (en) Optical three-dimensional measuring device
JP3533195B2 (en) Coherent beam device for sample observation measurement
JP2001147174A (en) Interference measuring apparatus
US6940608B2 (en) Method and apparatus for surface configuration measurement
JP3921432B2 (en) Shape measuring apparatus and shape measuring method using moire optical system
KR100943405B1 (en) A 3D Shape Measuring System using Lateral Scan
JP4675011B2 (en) Shape measuring method and shape measuring apparatus
JPH08327327A (en) Method and apparatus for measuring height of bump
JP2595050B2 (en) Small angle measuring device
JP4011205B2 (en) Sample inspection equipment
JP2005024505A (en) Device for measuring eccentricity
JP4402849B2 (en) Surface shape measuring method and surface shape measuring apparatus
JPH07198319A (en) Real-time phase-shift interferometer
JPH07190737A (en) Shearing interference measuring method and shearing interferometer
JP2629965B2 (en) Shape measuring device