JPH09180183A - Production of substrate for magnetic recording medium - Google Patents

Production of substrate for magnetic recording medium

Info

Publication number
JPH09180183A
JPH09180183A JP35222995A JP35222995A JPH09180183A JP H09180183 A JPH09180183 A JP H09180183A JP 35222995 A JP35222995 A JP 35222995A JP 35222995 A JP35222995 A JP 35222995A JP H09180183 A JPH09180183 A JP H09180183A
Authority
JP
Japan
Prior art keywords
substrate body
substrate
grinding
grindstone
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35222995A
Other languages
Japanese (ja)
Inventor
Yuzo Yamamoto
裕三 山本
Akira Noda
章 野田
Manabu Shibata
学 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP35222995A priority Critical patent/JPH09180183A/en
Publication of JPH09180183A publication Critical patent/JPH09180183A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To lower the polishing resistance of the inner and outer peripheral end faces of a substrate body with a grinding wheel, to improve the service life and polishing speed of the grinding wheel and to lower the surface roughness of the inner and outer peripheral end faces by impressing an electric field on the substrate body and subjecting the substrate body to grinding. SOLUTION: An electric field is impressed on the substrate body 1A and the substrate body is subjected to grinding with the grinding wheels 22, 23 in a chamfering stage of the substrate body 1A. The + side of a DC power source 40 is connected to the substrate body 1A to impress the anode electric field thereon. The - side is connected to the electrode 41 near the grinding wheels 22, 23 to impress the cathode electric field. A soln. coolant contg. an electrolyte is supplied between the grinding wheels 22, 23 and the substrate body 1A. As a result, the surface layer of the substrate body 1A subjected to the electrolytic treatment is dissolved and the polishing resistance is lowered. In addition, the hydrophilic components generated by oxidation decomposition are exposed on the surface of the substrate body 1A, thereby, the lubricity is improved and the grinding resistance is lowered. The service life and grinding speed of the grinding wheels are thus improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は磁気記録媒体用基板
の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a substrate for a magnetic recording medium.

【0002】[0002]

【従来の技術】ハードディスク(HD)用基板に代表さ
れる記録媒体用基板は、基板本体の表面を粗研磨するラ
ッピング工程、内外周端面を研削して面取りするチャン
ファ加工工程、表面を仕上げ研磨するポリッシング工程
を経て製造されている。そして、この基板は、更に、基
板本体の表面にテクスチャー層を形成してその表面を適
度に粗面化するテクスチャー工程、表面に下地層を形成
する下地層形成工程、表面に磁性層を成膜する磁性層形
成工程、磁性層上に保護層を形成する保護層形成工程、
保護層の上に潤滑層を形成する潤滑層形成工程等にて基
板本体の表面に成膜し、更にその膜表面の異常突起を除
去するバーニッシュ工程を施されて製品となる。
2. Description of the Related Art A substrate for a recording medium typified by a hard disk (HD) substrate is a lapping process for roughly polishing the surface of a substrate body, a chamfering process for chamfering the inner and outer peripheral end faces to be chamfered, and a final polishing for the surface. It is manufactured through a polishing process. Then, this substrate further has a texture step of forming a texture layer on the surface of the substrate body to appropriately roughen the surface, an underlayer forming step of forming an underlayer on the surface, and a magnetic layer formed on the surface. Magnetic layer forming step, a protective layer forming step of forming a protective layer on the magnetic layer,
A product is formed by forming a film on the surface of the substrate body in a lubricating layer forming step of forming a lubricating layer on the protective layer, and then performing a burnishing step of removing abnormal protrusions on the film surface.

【0003】然るに、ハードディスク基板における高記
録密度化のニーズ等が、基板本体の表面及び内外周端面
の鏡面化を要請している。
However, the need for higher recording density in the hard disk substrate requires the surface of the substrate body and the inner and outer peripheral end faces to be mirror-finished.

【0004】[0004]

【発明が解決しようとする課題】然しながら、砥石を用
いて基板本体の内外周端面を研削加工する従来技術で
は、以下の如くの問題点がある。 砥石による研削抵抗が大きい。このため、砥石の摩耗
が激しく砥石の低寿命を招く。また、砥石の研削速度
(材料除去速度)を上げることができず、生産コスト高
となる。
However, the conventional technique of grinding the inner and outer peripheral end faces of the substrate body by using a grindstone has the following problems. The grinding resistance of the grindstone is large. For this reason, the abrasion of the grindstone is severe and the life of the grindstone is shortened. Further, the grinding speed (material removal speed) of the grindstone cannot be increased, resulting in high production cost.

【0005】砥石による研削抵抗が大きいので、基板
本体にクラック及びそれに起因するピット(凹凸疵)を
生じ易く、鏡面化に困難がある。基板本体の内外周端面
の鏡面化が悪く、表面粗さがあまりにも粗いと、記録層
を成膜した後の膜密着耐久性が悪く、膜剥れを生ずる。
Since the grinding resistance of the grindstone is large, cracks and pits (unevenness flaws) resulting from the cracks are likely to occur in the substrate body, and it is difficult to achieve a mirror surface. If the inner and outer peripheral end faces of the substrate body are poorly mirror-finished and the surface roughness is too rough, the film adhesion durability after forming the recording layer is poor and film peeling occurs.

【0006】本発明は、基板本体の内外周端面の砥石に
よる研削抵抗を軽減し、砥石の寿命向上、砥石の研削速
度向上、内外周端面の表面粗さ低減を図ることを目的と
する。
An object of the present invention is to reduce the grinding resistance of the inner and outer peripheral end faces of the substrate body due to the grindstone, to improve the life of the grindstone, improve the grinding speed of the grindstone, and reduce the surface roughness of the inner and outer peripheral end faces.

【0007】[0007]

【課題を解決するための手段】請求項1に記載の本発明
は、非磁性基板本体の内外周端面を砥石により研削加工
する磁気記録媒体用基板の製造方法において、基板本体
に電場を印加した状態で上記砥石による研削加工を行な
うようにしたものである。
According to a first aspect of the present invention, an electric field is applied to the substrate body in a method for manufacturing a substrate for a magnetic recording medium, in which the inner and outer peripheral end faces of the nonmagnetic substrate body are ground with a grindstone. In this state, the grindstone is used for grinding.

【0008】請求項2に記載の本発明は、請求項1に記
載の本発明において更に、前記砥石による研削加工時に
供給するクーラントとして、電解質溶液を用いるように
したものである。
According to a second aspect of the present invention, in addition to the first aspect of the present invention, an electrolyte solution is used as a coolant supplied at the time of grinding by the grindstone.

【0009】請求項3に記載の本発明は、請求項1又は
2に記載の本発明において更に、前記基板本体がカーボ
ンからなるようにしたものである。
According to a third aspect of the present invention, in addition to the first or second aspect of the present invention, the substrate body is made of carbon.

【0010】請求項1〜3の本発明によれば下記〜
の作用がある。 基板本体を陽極とし、クーラントに電解質を含有せし
めるとき、 (a) 基板本体に電解処理(陽極溶出酸化分解、エッチン
グ、分極化)が施され、基板本体の表層が溶解する結
果、研削抵抗が小となる。尚、ここでいう分極現象と
は、基板本体の構成原子(例えばC原子)の原子間距離
が大きくなり、原子間結合が切れ易くなる現象をいう
(図3)。
According to the present invention of claims 1 to 3,
Has the effect of When the substrate body is used as an anode and the coolant contains an electrolyte, (a) The substrate body is subjected to electrolytic treatment (anodic eluting oxidative decomposition, etching, polarization) and the surface layer of the substrate body is dissolved, resulting in low grinding resistance. Becomes The polarization phenomenon referred to here is a phenomenon in which the interatomic distance between constituent atoms (for example, C atoms) of the substrate body becomes large and the interatomic bond is easily broken (FIG. 3).

【0011】(b) 基板本体の酸化分解により生ずる親水
成分が基板本体の表面に表われて基板本体のぬれ性(親
水性)ひいては潤滑性が増し、研削抵抗が小となる。
(B) The hydrophilic component generated by the oxidative decomposition of the substrate body appears on the surface of the substrate body, and the wettability (hydrophilicity) of the substrate body and thus the lubricity are increased, and the grinding resistance is reduced.

【0012】(c) 陽極での水の電気分解、或いは基板本
体の構成原子(例えばC原子)が酸化分解により溶出又
はガス化し、これらのガスが基板本体表面の切屑除去を
行ない研削抵抗が小となる。
(C) Electrolysis of water at the anode or constituent atoms (for example, C atoms) of the substrate body are eluted or gasified by oxidative decomposition, and these gases remove chips on the surface of the substrate body to reduce grinding resistance. Becomes

【0013】基板本体を陽極とし、クーラントに電解
質を含有せしめないとき、 (a) 基板本体に分極現象を生じ、研削抵抗小となる。 (b)上記(b) と同じ。 (c) 上記(c) と同じ。
When the substrate body is used as an anode and the coolant is not made to contain an electrolyte, (a) a polarization phenomenon occurs in the substrate body and the grinding resistance becomes small. (b) Same as (b) above. (c) Same as (c) above.

【0014】基板本体を陰極とするとき、クーラント
に電解質を含有していても含有していなくても、 (a) クーラントのカチオン成分が基板本体の表面に侵入
して基板本体の表面のぬれ性(親水性)ひいては潤滑性
が増し、研削抵抗が小となる。
When the substrate body is used as a cathode, whether the coolant contains an electrolyte or not, (a) the cation component of the coolant invades the surface of the substrate body to wet the surface of the substrate body. (Hydrophilicity) As a result, lubricity is increased and grinding resistance is reduced.

【0015】(b) クーラントを構成している水の電気分
解により発生するガスが基板本体表面の切屑除去を行な
い研削抵抗が小となる。
(B) The gas generated by the electrolysis of the water that constitutes the coolant removes the chips on the surface of the substrate body and reduces the grinding resistance.

【0016】カーボン基板等の脆性材料からなる基板
においては、基板本体の加工時にクラックや欠け等の欠
陥を生じ易い。本発明によれば、このような脆性材料か
らなる基板にあっても、上記〜により研削抵抗を小
とし、砥石の寿命向上、砥石の研削速度向上、基板本体
の内外周端面の表面粗さ低減を図ることができる。
In a substrate made of a brittle material such as a carbon substrate, defects such as cracks and chips are likely to occur during processing of the substrate body. According to the present invention, even in a substrate made of such a brittle material, the grinding resistance is reduced by the above items to improve the life of the grindstone, improve the grinding speed of the grindstone, and reduce the surface roughness of the inner and outer peripheral end faces of the substrate body. Can be achieved.

【0017】[0017]

【発明の実施の形態】図1は本発明による基板の研削加
工方式を示す模式図、図2は図1の電解処理原理図、図
3は分極現象を示す模式図、図4は樹脂合成工程からコ
ア抜き工程までのGC基板製造プロセスを示す模式図、
図5は焼成前ラッピング工程から焼成炭素化工程までの
GC基板製造プロセスを示す模式図、図6は焼成後ラッ
ピング工程から基板完成までのGC基板製造プロセスを
示す模式図、図7は本発明の実施例に係るハードディス
クの膜構成を示す模式図、図8は電解電流特性を示す模
式図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram showing a substrate grinding method according to the present invention, FIG. 2 is a principle diagram of electrolytic treatment of FIG. 1, FIG. 3 is a schematic diagram showing polarization phenomenon, and FIG. 4 is a resin synthesizing step. Schematic diagram showing the GC substrate manufacturing process from the core removal process to
5 is a schematic diagram showing the GC substrate manufacturing process from the lapping step before firing to the carbonizing step by firing, FIG. 6 is a schematic diagram showing the GC substrate manufacturing process from the lapping step after firing to the substrate completion, and FIG. FIG. 8 is a schematic diagram showing a film configuration of a hard disk according to an example, and FIG. 8 is a schematic diagram showing electrolytic current characteristics.

【0018】磁気ディスク用ガラス状カーボン基板(G
C基板)1は、下記(A) の製造工程で基板本体1Aを加
工され、この加工後の基板本体1Aに下記(B) の成膜を
施されて製品となる。
Glass-like carbon substrate for magnetic disk (G
The C substrate 1 is a product obtained by processing the substrate body 1A in the manufacturing process of (A) below and subjecting the processed substrate body 1A to the film formation of (B) below.

【0019】(A) GC基板の製造工程 図4〜図6はGC基板製造プロセスを示し、(1) 樹脂合
成工程、(2) 樹脂硬化工程、(3) コア抜き工程、(4) 焼
成前ラッピング工程、(5) 焼成炭素化工程、(6) 焼成後
ラッピング工程、(7) チャンファ加工工程、(8) ポリッ
シング工程の順で行なわれる。但し、(4) の焼成前ラッ
ピング工程でのラッピングの程度により、(6) の焼成後
ラッピング工程は省略可能である。また、(6) の焼成後
ラッピング工程と(7) のチャンファ加工工程の順序は入
れ替わっても特に問題はない。更には、(4) の焼成前ラ
ッピングは省略してもよい。
(A) GC Substrate Manufacturing Process FIGS. 4 to 6 show the GC substrate manufacturing process. (1) Resin synthesizing process, (2) Resin curing process, (3) Core removing process, (4) Before firing A lapping step, (5) firing carbonization step, (6) lapping step after firing, (7) chamfer processing step, and (8) polishing step are carried out in this order. However, depending on the degree of lapping in the pre-firing lapping step (4), the post-firing lapping step (6) can be omitted. Further, there is no particular problem even if the order of the post-firing lapping step (6) and the chamfering step (7) is interchanged. Furthermore, the lapping before firing in (4) may be omitted.

【0020】樹脂合成工程では、反応槽11にて、フェ
ノール変性フラン樹脂を合成する。樹脂合成後の液状の
樹脂は濾過器12により濾過する。
In the resin synthesizing step, the phenol-modified furan resin is synthesized in the reaction vessel 11. The liquid resin after resin synthesis is filtered by the filter 12.

【0021】樹脂硬化工程では、一対のガラス板13、
13間に、硬化剤を添加・混合した液状の樹脂を注入
し、高温状態で放置して反応させることにより、硬化さ
せ、この後、ガラス板13、13から取出して、板状の
硬化樹脂を得る。
In the resin curing step, the pair of glass plates 13,
A liquid resin containing a hardener added and mixed therein is injected between 13 and allowed to react by leaving it in a high temperature state to be cured. After that, it is taken out from the glass plates 13 and 13 to obtain a plate-shaped cured resin. obtain.

【0022】コア抜き工程では、例えばレーザーカッタ
ー(或いはルーター、旋盤、プレス等)を用いて、板状
の硬化樹脂14から、外径88mm、内径25mmのディスク状
の硬化樹脂(硬化樹脂基板)15を多数切り抜く。
In the core removing step, for example, a laser cutter (or a router, a lathe, a press, etc.) is used to change a plate-shaped cured resin 14 from a disk-shaped cured resin (cured resin substrate) 15 having an outer diameter of 88 mm and an inner diameter of 25 mm. Cut out many.

【0023】焼成前ラッピング工程では、両面研磨機1
6を用いて、コア抜きされた硬化樹脂基板2の表面を遊
離砥粒により研磨する。
In the lapping step before firing, the double side polishing machine 1
6, the surface of the cored cured resin substrate 2 is polished with free abrasive grains.

【0024】ここで使用する砥粒は、焼成後ラッピング
工程を省略することを前提とすれば、平均粒径 1.0〜
6.0μの範囲の砥粒とする。そして、ラッピング後の表
面粗さをRa= 0.4μ以下にする。尚、ラッピング後の
厚さは、この後の焼成時の収縮率が75%程度で、焼成後
に得る厚さを0.65mm〜 0.7mm程度とすると、0.9mm 〜0.
95mm程度にする。
The abrasive grains used here have an average grain size of 1.0 to 1.0 provided that the lapping step after firing is omitted.
Abrasive grains in the range of 6.0μ. Then, the surface roughness after lapping is set to Ra = 0.4 μm or less. As for the thickness after lapping, the shrinkage rate after firing is about 75%, and the thickness obtained after firing is about 0.65 mm to 0.7 mm, 0.9 mm to 0.
Make it about 95 mm.

【0025】また、焼成後ラッピング工程を実施するこ
とを前提として、焼成前ラッピング工程にて厚みを揃え
ることのみを目的とすれば、平均砥粒 1.0〜30.0μの範
囲の砥粒を使用する。そして、ラッピング後の表面粗さ
をRa= 2.0μ以下(0.02〜2.0μの範囲)にする。
On the premise that the lapping step after firing is performed, if the only purpose is to make the thickness uniform in the lapping step before firing, an average abrasive grain in the range of 1.0 to 30.0 μ is used. Then, the surface roughness after lapping is set to Ra = 2.0 μ or less (range 0.02 to 2.0 μ).

【0026】焼成炭素化工程では、黒鉛板(炭素板)1
7上に多数の硬化樹脂基板15を並べ、その上に更に黒
鉛板17、多数の硬化樹脂基板15を順次積層し、これ
らを焼成炉内に入れて、不活性ガス雰囲気下、黒鉛ヒー
タにより、1200℃で焼成することにより、硬化樹脂を炭
素化して、焼成されたGC基板本体1Aを得る。
In the firing carbonization step, a graphite plate (carbon plate) 1
A large number of cured resin substrates 15 are arranged on 7 and further a graphite plate 17 and a large number of cured resin substrates 15 are sequentially laminated thereon, and these are placed in a firing furnace, and in a inert gas atmosphere by a graphite heater, By firing at 1200 ° C., the cured resin is carbonized to obtain the fired GC substrate body 1A.

【0027】尚、詳しくは、焼成の温度パターンに沿っ
て、ある温度範囲では不活性ガス雰囲気下、また別の温
度範囲では真空にてという具合に、不活性ガス雰囲気下
と真空とを温度範囲にあわせて制御している。不活性ガ
スとしては、具体的には、窒素、アルゴン等を用いる。
More specifically, along the firing temperature pattern, a temperature range is set between an inert gas atmosphere and a vacuum, such as an inert gas atmosphere in a certain temperature range and a vacuum in another temperature range. It is controlled according to. Specifically, nitrogen, argon, or the like is used as the inert gas.

【0028】このときの収縮率は75%程度であり、焼成
前の厚さが 0.9mm〜0.95mm程度であるとすると、焼成後
の厚さは0.65mm〜 0.7mm程度となる。
At this time, the shrinkage is about 75%, and if the thickness before firing is about 0.9 mm to 0.95 mm, the thickness after firing is about 0.65 mm to 0.7 mm.

【0029】焼成後ラッピング工程では、両面研磨機2
1を用いて、焼成されたGC基板本体1Aの表面を遊離
砥粒により研磨する。
In the lapping step after firing, the double-side polishing machine 2
1, the surface of the baked GC substrate body 1A is polished with free abrasive grains.

【0030】ここで使用する両面研磨機21は焼成前ラ
ッピング工程で用いたものと同じものでよい。
The double-side polishing machine 21 used here may be the same as that used in the lapping step before firing.

【0031】また、使用する砥粒は、平均粒径 1.0〜
6.0μの範囲の砥粒とする。但し、焼成前ラッピング工
程において平均粒径 1.0〜 6.0μの範囲の砥粒を用い
て、焼成後に所望の厚さと平坦度/面粗さとを得ている
場合は、焼成後ラッピング工程を省略可能である。
The abrasive used has an average particle size of 1.0 to 1.0.
Abrasive grains in the range of 6.0μ. However, if the desired thickness and flatness / surface roughness are obtained after firing by using abrasive grains having an average particle size in the range of 1.0 to 6.0 μm in the pre-firing lapping step, the post-firing lapping step can be omitted. is there.

【0032】チャンファ加工工程では、GC基板本体1
Aの外周面及び内周面を砥石22、23により研削して
径を揃えるとともに角部の面取りを行なう。
In the chamfering process, the GC substrate 1
The outer peripheral surface and the inner peripheral surface of A are ground with grinding stones 22 and 23 to make the diameter uniform and chamfer the corner.

【0033】最後のポリッシング工程では、最終研磨の
ため、両面研磨機24を用いて、研磨する。以上の工程
を経て、GC基板本体1Aが得られる。
In the final polishing step, the double side polishing machine 24 is used for final polishing. Through the above steps, the GC substrate body 1A is obtained.

【0034】(B) GC基板への成膜工程(図7) Arガス圧 2mTorr 条件下DCマグネトロンスパッタ
リングにより厚さ30nm、平均表面粗さ9.2 オングストロ
ームのAl−10wt%Si合金テクスチャー層を設けた。
(B) Film forming process on GC substrate (FIG. 7) An Al-10 wt% Si alloy texture layer having a thickness of 30 nm and an average surface roughness of 9.2 angstrom was provided by DC magnetron sputtering under Ar gas pressure of 2 mTorr.

【0035】次いで、Arガス圧 2mTorr 、基板加熱
温度250 ℃の条件でDCマグネトロンスパッタリングに
より厚さ20nmのガラス状炭素からなる第1の下地層を設
けた。
Then, a first underlayer made of glassy carbon and having a thickness of 20 nm was provided by DC magnetron sputtering under the conditions of Ar gas pressure of 2 mTorr and substrate heating temperature of 250 ° C.

【0036】更に、基板加熱温度を180 ℃としてAr
ガス圧10mTorr 下で厚さ50nmのTiからなる第2の下地
層、40nmのCrよりなる第3の下地層、その上に厚さ30
nmのCo−15wt%Cr−10wt%Pt層(磁性層)を連続
して成膜した。
Further, the substrate heating temperature is set to 180 ° C. and Ar
Under a gas pressure of 10 mTorr, a second underlayer of Ti with a thickness of 50 nm, a third underlayer of Cr with a thickness of 40 nm, and a thickness of 30 on the third underlayer.
A Co-15 wt% Cr-10 wt% Pt layer (magnetic layer) having a thickness of nm was continuously formed.

【0037】次いで、上記基板をインライン型スパッ
タ装置のチャンバー内に配置し、該チャンバー内を真空
にした後にAr(分圧1.6mTorr) 及び酸素(分圧0.4mTo
rr)を導入し、黒鉛をターゲットとしてスパッタリング
を行ない、磁性層上に15nmの保護層を設けた。
Next, the substrate is placed in a chamber of an in-line type sputtering apparatus, the chamber is evacuated, and then Ar (partial pressure of 1.6 mTorr) and oxygen (partial pressure of 0.4 mTorr).
rr) was introduced, and sputtering was performed using graphite as a target to form a 15 nm protective layer on the magnetic layer.

【0038】最後にバーニッシュ後、上記保護層上に
潤滑剤(アオジモント社製のフォンブリンAM2001)を厚
さ 2nmになるように浸漬、塗布した。
Finally, after burnishing, a lubricant (Fomblin AM2001 manufactured by Aojimont Co., Ltd.) was dipped and applied on the protective layer to a thickness of 2 nm.

【0039】然るに、本発明では、前述した基板本体1
Aのチャンファ加工工程を図1、図2の如く、基板本体
1Aに電場を印加する状態で、砥石22、23による研
削加工を下記(1) 、(2) により行なうものである。
Therefore, in the present invention, the substrate body 1 described above is used.
As shown in FIGS. 1 and 2, the chamfering process of A is performed by the following (1) and (2) with the grindstones 22 and 23 in a state where an electric field is applied to the substrate body 1A.

【0040】(1) チャンファ加工装置30は、チャック
ステージ31、クランプ32、ダイヤモンド砥石22、
23を有して構成される。
(1) The chamfer processing device 30 includes a chuck stage 31, a clamp 32, a diamond grindstone 22,
It is configured to have 23.

【0041】チャックステージ31は、基板本体1Aを
支持する同心状の凸部31Aと、凸部31Aまわりで基
板本体1Aを真空吸引する真空吸引溝31Bと、真空吸
引溝31Bに真空圧を付与する真空供給路31Cとを備
える。これにより、チャックステージ31は基板本体1
Aを真空吸着可能とする。
The chuck stage 31 applies a vacuum pressure to the concentric convex portion 31A for supporting the substrate body 1A, a vacuum suction groove 31B for vacuum suctioning the substrate body 1A around the convex portion 31A, and a vacuum suction groove 31B. And a vacuum supply path 31C. As a result, the chuck stage 31 moves the substrate body 1
A can be vacuum-adsorbed.

【0042】クランプ32は、チャックステージ31上
の基板本体1Aに高圧水を印加する高圧水噴射口32A
を備え、基板本体1Aをチャックステージ31に押圧保
持可能とする。
The clamp 32 is a high-pressure water jet port 32A for applying high-pressure water to the substrate body 1A on the chuck stage 31.
And the substrate body 1A can be pressed and held on the chuck stage 31.

【0043】ダイヤモンド砥石22は基板本体1Aの外
周端面を外径研削及び面取り研削可能とし、ダイヤモン
ド砥石23は基板本体1Aの内周端面を内径研削及び面
取り研削可能とする。このとき、砥石22(砥石23も
同じ)は、メタルボンドホイール(ストレートホイール
の外周上の砥粒をメタルバインダーで固定したもの)と
する。
The diamond grindstone 22 makes it possible to grind the outer peripheral end face of the substrate body 1A to the outer diameter and chamfer, and the diamond grindstone 23 makes it possible to grind the inner peripheral end face of the substrate body 1A to the inner diameter and chamfer. At this time, the grindstone 22 (same for the grindstone 23) is a metal bond wheel (abrasive grains on the outer periphery of a straight wheel fixed with a metal binder).

【0044】(2) DC電源40のプラス側を基板本体1
Aに結線して陽極電場を印加し、マイナス側を砥石22
(23)近傍の電極41に結線して陰極電場を印加す
る。但し、マイナス側の配線は砥石22(23)に直接
的に結線してもよい。そして、砥石22(23)の外周
と基板本体1Aの間に電解質を含んだ水溶液クーラント
を供給する。これにより、基板本体1Aに陽極電場、砥
石22(23)にクーラントを介して陰極電場を印加す
るものとなる。
(2) The positive side of the DC power source 40 is the substrate body 1
Connect to A and apply an anode electric field, and grindstone 22 on the negative side.
(23) A cathode electric field is applied by connecting to the electrode 41 in the vicinity. However, the wiring on the minus side may be directly connected to the grindstone 22 (23). Then, an aqueous solution coolant containing an electrolyte is supplied between the outer periphery of the grindstone 22 (23) and the substrate body 1A. As a result, the anode electric field is applied to the substrate body 1A, and the cathode electric field is applied to the grindstone 22 (23) through the coolant.

【0045】このように、電解質溶液中で導電性の基板
を陽極として電解を行なうと、電解質の種類や電解条件
に応じて電解エッチング、電解研磨、陽極酸化などの現
象が生じる。即ち、導電性の基板を電解液中で陽極分極
すると、図8に示す如く、一般に、以下の三つの領域に
分類される(金属電気化学、沖猛雄、共立出版、1969
年、p170)。
As described above, when electrolysis is performed in an electrolyte solution using a conductive substrate as an anode, phenomena such as electrolytic etching, electrolytic polishing, and anodic oxidation occur depending on the type of electrolyte and electrolysis conditions. That is, when a conductive substrate is subjected to anodic polarization in an electrolytic solution, it is generally classified into the following three regions as shown in FIG. 8 (Metal Electrochemistry, Takeo Oki, Kyoritsu Shuppan, 1969).
Year, p170).

【0046】の領域(A−C):陽極分極(V)を行
なうと、オームの法則に従って陽極電流(I)は放物線
的に増加する。
Region (AC): When anodic polarization (V) is performed, the anodic current (I) increases parabolically according to Ohm's law.

【0047】の領域(C−D):電位(電場)を増加
しても、電流増加せず、飽和する領域。
Region (C-D): A region where the current does not increase even when the potential (electric field) is increased and the region is saturated.

【0048】の領域(D−E):更に陽極分極を増加
すると、再び電流が放物線的に増加する。
Region (D-E): When the anodic polarization is further increased, the current again increases parabolically.

【0049】各々の領域で行なわれている現象は次の通
りである。 :電解エッチング領域。初期の陽極溶解が生じてお
り、金属イオンが陽極電場に促進されて直接電解液中に
溶出する。陽極表面の溶け易い部分から自由に溶け去っ
て行くので、金属表面はエッチング(腐食)面が形成さ
れる。
The phenomenon occurring in each region is as follows. : Electrolytic etching area. Initial anodic dissolution occurs, and metal ions are promoted by the anodic electric field and are directly eluted into the electrolytic solution. The metal surface is free to be melted away from the easily melted portion, so that an etching (corrosion) surface is formed on the metal surface.

【0050】:電解研磨領域。金属の溶解/表面近傍
での蓄積、陽極酸化皮膜の形成が混在し、金属表面の凸
部が優先的に溶解し、結果的に鏡面化する領域。
Electrolytic polishing area. A region where metal dissolution / accumulation in the vicinity of the surface and formation of an anodic oxide film coexist, and the convex portion of the metal surface preferentially dissolves, resulting in a mirror finish.

【0051】:ガス発生/放電領域:陽極より酸素ガ
スの発生、皮膜の破壊や皮膜を通しての放電等が生じる
領域。
Gas generation / discharge region: A region where oxygen gas is generated from the anode, the film is broken, or discharge occurs through the film.

【0052】基板がカーボンの場合は、金属の場合と全
く同じ挙動を示さないが、類似した挙動・現象が生じ
る。
When the substrate is carbon, it does not exhibit the same behavior as when it is a metal, but similar behaviors and phenomena occur.

【0053】尚、電解質溶液は酸或いはアルカリの水溶
液であれば良く、0.1 〜80wt%、好ましくは1 〜60wt%
の濃度のものが用いられる。用いられる電解質成分とし
ては、酸は硫酸、塩酸、硝酸、リン酸、フッ酸、過塩素
酸などの無機酸、或いは、蓚酸、蟻酸などの有機酸或い
はアルカノールアミン類が挙げられる。アルカリはNa
OH、KOH等が挙げられる。これらは二種以上のもの
をブレンドして使用しても構わない。市販のクーラント
にこれらの電解質をブレンドして用いてもよい。
The electrolyte solution may be an acid or alkali aqueous solution, and is 0.1 to 80 wt%, preferably 1 to 60 wt%.
The concentration of is used. Examples of the electrolyte component to be used include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, hydrofluoric acid and perchloric acid, organic acids such as oxalic acid and formic acid, and alkanolamines. Alkali is Na
OH, KOH, etc. are mentioned. These may be used by blending two or more kinds. You may blend and use these electrolytes in a commercial coolant.

【0054】陽極材としては通常の電極、例えばPt、
Au、Pb、カーボン電極を使用できる。用いる電極波
形は、例えば直流、単相交流や3相交流などの交流、矩
形波、三角波などのパルス波、単相半波、2相半波、3
相半波、6相半波、単相全波、3相全波などの特殊波形
が用いられる。これらの波形を組合わせて用いても良
い。生産性の点から考慮すると3相交流が望ましい。
As the anode material, an ordinary electrode such as Pt,
Au, Pb and carbon electrodes can be used. The electrode waveforms used are, for example, direct current, alternating current such as single-phase alternating current and three-phase alternating current, pulse wave such as rectangular wave and triangular wave, single-phase half-wave, two-phase half-wave, and three-phase.
Special waveforms such as phase half wave, six phase half wave, single phase full wave, and three phase full wave are used. These waveforms may be used in combination. Considering productivity, three-phase alternating current is desirable.

【0055】電解時の電流密度に関しては、電解処理の
均一性、生産性、設備負荷を考慮すると、1 〜200mA/cm
2 が好ましい。更に好ましくは 5〜100mA/cm2 である。
即ち、電流密度が低過ぎると、生産性が低下し、逆に20
0A/cm2を越えて高過ぎる場合には、電解処理の均一性が
低下する傾向がある。
Regarding the current density during electrolysis, considering the uniformity of electrolysis treatment, productivity, and equipment load, it is 1 to 200 mA / cm 2.
2 is preferred. More preferably, it is 5 to 100 mA / cm 2 .
That is, if the current density is too low, the productivity will decrease, and conversely 20
If it exceeds 0 A / cm 2 and is too high, the uniformity of electrolytic treatment tends to deteriorate.

【0056】従って、本実施形態によれば、基板本体1
Aを陽極とし、クーラントに電解質を含有せしめたの
で、下記(a) 〜(c) の作用がある。 (a) 基板本体1Aに電解処理(酸化分解、エッチング、
分極)を施された、基板本体1Aの表層が溶解する結
果、研削抵抗が小となる。尚、分極現象は、基板本体1
Aの構成原子(例えばC原子)の原子間距離が大きくな
り、原子間結合が切れ易くなる現象をいう(図3)。
Therefore, according to this embodiment, the substrate body 1
Since A is the anode and the coolant contains the electrolyte, the following effects (a) to (c) are obtained. (a) Electrolytic treatment (oxidation decomposition, etching,
As a result of melting the surface layer of the substrate body 1A that has been polarized), the grinding resistance becomes small. The polarization phenomenon is caused by the substrate body 1
This is a phenomenon in which the interatomic distance between the constituent atoms of A (for example, C atom) becomes large and the interatomic bond is easily broken (FIG. 3).

【0057】(b) 基板本体1Aの酸化分解により生ずる
親水成分が基板本体1Aの表面に表われて基板本体1A
のぬれ性(親水性)ひいては潤滑性が増し、研削抵抗が
小となる。
(B) The hydrophilic component generated by the oxidative decomposition of the substrate body 1A appears on the surface of the substrate body 1A.
The wettability (hydrophilicity) and the lubricity are increased, and the grinding resistance is reduced.

【0058】(c) 基板本体1Aの構成原子(例えばC原
子)が酸化分解によりガス化し、このガスが基板本体表
面の切屑除去を行ない研削抵抗が小となる。
(C) Constituent atoms (for example, C atoms) of the substrate body 1A are gasified by oxidative decomposition, and this gas removes chips on the surface of the substrate body to reduce grinding resistance.

【0059】即ち、上記(a) 〜(c) により、基板本体1
Aの内外周端面の砥石22、23による研削抵抗を低減
し、砥石22、23の寿命向上、砥石22、23の研削
速度向上、基板本体1Aの内外周端面の表面粗さ低減を
図ることができる。
That is, according to the above (a) to (c), the substrate body 1
It is possible to reduce the grinding resistance by the grindstones 22 and 23 on the inner and outer peripheral end faces of A, improve the life of the grindstones 22 and 23, improve the grinding speed of the grindstones 22 and 23, and reduce the surface roughness of the inner and outer peripheral end faces of the substrate body 1A. it can.

【0060】尚、本発明は、下記(1) の如くに基板本体
1Aを陽極とし、クーラントに電解質を含有せしめな
い、或いは下記(2) の如くに基板本体1Aを陰極とす
る、の変形態様を採用することもでき、それぞれ以下の
如くの作用がある。
Incidentally, the present invention is a modified mode in which the substrate body 1A is used as an anode and the coolant does not contain an electrolyte as in the following (1), or the substrate body 1A is used as a cathode in the following (2). Can also be adopted, and each has the following effects.

【0061】(1) 基板本体1Aを陽極とし、クーラント
に電解質を含有せしめないとき、 (a) 基板本体1Aに分極現象を生じ、研削抵抗小とな
る。
(1) When the substrate body 1A is used as an anode and the coolant does not contain an electrolyte, (a) a polarization phenomenon occurs in the substrate body 1A, and the grinding resistance becomes small.

【0062】(b)基板本体1Aの酸化分解により生ずる
親水成分が基板本体1Aの表面に表われて基板本体1A
のぬれ性(親水性)ひいては潤滑性が増し、研削抵抗が
小となる。
(B) The hydrophilic component generated by the oxidative decomposition of the substrate body 1A appears on the surface of the substrate body 1A.
The wettability (hydrophilicity) and the lubricity are increased, and the grinding resistance is reduced.

【0063】(c) 基板本体1Aの構成原子(例えばC原
子)が酸化分解によりガス化し、このガスが基板本体表
面の切屑除去を行ない研削抵抗が小となる。
(C) Constituent atoms (for example, C atoms) of the substrate body 1A are gasified by oxidative decomposition, and this gas removes chips on the substrate body surface to reduce grinding resistance.

【0064】(2) 基板本体1Aを陰極とするとき、クー
ラントに電解質を含有していても含有していなくても、 (a) クーラントのカチオン成分が基板本体1Aの表面に
侵入して基板本体1Aの表面のぬれ性(親水性)ひいて
は潤滑性が増し、研削抵抗が小となる。
(2) When the substrate body 1A is used as a cathode, whether or not the coolant contains an electrolyte (a) the cation component of the coolant enters the surface of the substrate body 1A and The wettability (hydrophilicity) of the surface of 1A and thus the lubricity is increased, and the grinding resistance is reduced.

【0065】(b) クーラントを構成している水の電気分
解により発生するガスが基板本体1A表面の切屑除去を
行ない研削抵抗が小となる。
(B) The gas generated by the electrolysis of the water that constitutes the coolant removes the chips on the surface of the substrate body 1A, and the grinding resistance becomes small.

【0066】尚、本発明は、好ましくは、基板本体1A
を陽極とする電解処理法を採用することにより最大の効
果が達成される。
The present invention is preferably the substrate body 1A.
The maximum effect is achieved by adopting an electrolytic treatment method using as a positive electrode.

【0067】[0067]

【実施例】本発明例を比較例とともに説明する。但し、
本発明は以下の実施例に限定されるものではない。 (基板本体の焼成)フルフリルアルコール樹脂を公知の
方法である成形、予備焼成処理によりカーボン基板を製
造した。より具体的には、次のようにして製造した。フ
ルフリルアルコール 500重量部、92%ホルムアルデヒド
400重量部及び水30重量部を80℃で攪拌して溶解した。
次いで、攪拌下でフェノール 520重量部、水酸化カルシ
ウム9.5 重量部及び水45重量部の混合液を滴下し、80℃
で 3時間反応させた。その後フェノール30重量部、上記
のフェノール/水酸化カルシウム/水混合液を更に滴下
し、80℃で 2時間反応させた。30℃に冷却後、30%パラ
トルエンスルホン酸水溶液で中和した。この中和物を減
圧化で脱水し、 170重量部の水を除去し、フルフリルア
ルコール 500重量部を添加混合し、樹脂中の不溶分をメ
ンブランフィルターで濾過した。この樹脂が含むことの
できる水の量を測定したところ、35重量%であった。
EXAMPLES Examples of the present invention will be described together with comparative examples. However,
The present invention is not limited to the following examples. (Firing of Substrate Main Body) A furfuryl alcohol resin was molded by a known method and prebaked to produce a carbon substrate. More specifically, it was manufactured as follows. Furfuryl alcohol 500 parts by weight, 92% formaldehyde
400 parts by weight and 30 parts by weight of water were stirred and dissolved at 80 ° C.
Then, with stirring, a mixed solution of 520 parts by weight of phenol, 9.5 parts by weight of calcium hydroxide and 45 parts by weight of water was added dropwise at 80 ° C.
And reacted for 3 hours. Thereafter, 30 parts by weight of phenol and the above-mentioned phenol / calcium hydroxide / water mixture were further added dropwise, and reacted at 80 ° C. for 2 hours. After cooling to 30 ° C., the mixture was neutralized with a 30% aqueous solution of p-toluenesulfonic acid. The neutralized product was dehydrated under reduced pressure, 170 parts by weight of water was removed, 500 parts by weight of furfuryl alcohol was added and mixed, and the insoluble matter in the resin was filtered with a membrane filter. The amount of water that this resin can contain was measured and found to be 35% by weight.

【0068】この熱硬化性樹脂 100重量部に対し、パラ
トルエンスルホン酸70重量%、水20重量%、セルソルブ
10重量%の混合液0.5 重量部を添加し、充分攪拌後、厚
さ2mm の円盤状の型に注入し、減圧脱泡した。次いで、
50℃で 3時間、80℃で 2日間加熱硬化した。この熱硬化
物を所定のドーナツ形状に加工し、このあと有機物焼成
炉で窒素雰囲気下で2 〜5 ℃/時の昇温速度で700 ℃ま
で加熱し、次いで5 〜20℃/時の昇温速度で1200℃まで
加熱焼成し、この温度で 2時間保持した後、冷却し、直
径1.8 インチのカーボン基板を得た。このようにして得
られたカーボン基板は、Ra350 オングストローム、密
度1.5g/cm2、ビッカース硬度650 、構造はアモルファス
状であった。
To 100 parts by weight of this thermosetting resin, 70% by weight of paratoluenesulfonic acid, 20% by weight of water,
After adding 0.5 parts by weight of a 10% by weight mixed solution and sufficiently stirring, the mixture was poured into a disk-shaped mold having a thickness of 2 mm, and defoamed under reduced pressure. Then
The resin was cured by heating at 50 ° C for 3 hours and at 80 ° C for 2 days. This thermosetting product is processed into a predetermined donut shape, and then heated in an organic firing furnace to 700 ° C at a heating rate of 2 to 5 ° C / hour in a nitrogen atmosphere, and then to a temperature of 5 to 20 ° C / hour. It was heated and baked at a speed of 1200 ° C., held at this temperature for 2 hours, and then cooled to obtain a carbon substrate having a diameter of 1.8 inches. The carbon substrate thus obtained had a Ra350 angstrom, a density of 1.5 g / cm 2 , a Vickers hardness of 650 and an amorphous structure.

【0069】(基板本体の加工)焼成されたカーボン基
板を、SPEED FAM社製 9B 5L型両面研磨機を
使用し、紛砕炭化ケイ素砥粒のひとつであるGC(緑色
炭化ケイ素研磨材)#800 を用い、濃度 4重量%の遊離
砥粒方式によるラッピング加工を行なった。定盤には鋳
鉄定盤を用いた。研磨しろは、片面当たり200 μm とし
た。得られたカーボン基板のRaは 2μm であった。こ
の後、芝技研製チャンファー加工機SG−Tにより、内
・外径を所定の寸法に切揃え、面取り加工(45°)(チ
ャンファー加工)を行なった。
(Processing of Substrate Main Body) A fired carbon substrate was subjected to GCB (green silicon carbide abrasive) # 800, which is one of pulverized silicon carbide abrasive grains, using a 9B 5L double-sided polishing machine manufactured by SPEED FAM. Was used for lapping with a free abrasive grain method with a concentration of 4% by weight. The platen used was a cast iron platen. The polishing margin was 200 μm per side. The Ra of the obtained carbon substrate was 2 μm. Thereafter, the inner and outer diameters were trimmed to predetermined dimensions and chamfering (45 °) (chamfering) was performed using a chamfering machine SG-T manufactured by Shiba Giken.

【0070】然るに、上述のチャンファー加工におい
て、表1に記載の如く、本発明例である実施例1〜5で
は直流電源(高砂製作所製)を用いてカーボン基板に陽
極電場を、実施例6ではカーボン基板に陰極電極を印加
した電解処理を伴う研削加工を行ない、比較例1、2で
はカーボン基板に電場を印加することなく研削加工を行
なった。
However, in the above chamfering process, as shown in Table 1, in Examples 1 to 5 which are examples of the present invention, a DC power source (manufactured by Takasago Seisakusho) was used to apply an anode electric field to the carbon substrate and Example 6 was used. In Comparative Examples 1 and 2, grinding processing was performed without applying an electric field to Comparative Example 1 and 2.

【0071】尚、実施例1〜7、比較例1、2におい
て、砥石は、新東ブレータ(株)製、鉄ファイバーボン
ド砥石SD400 N100 F×3 〜SD800 N100 F×3 を
用いた。また、クーラントはユシロ化学製ELIDNo.3
5 の 3%水溶液に 3%NaOHを添加したものを用い
た。また、電解処理の電流密度、クーラント温度、砥石
送り速度は表1の通りとした。
In Examples 1 to 7 and Comparative Examples 1 and 2, iron fiber bond grindstones SD400 N100 Fx3 to SD800 N100 Fx3 manufactured by Shinto Brator Co., Ltd. were used as the grindstones. The coolant is ELID No. 3 made by Yushiro Chemical.
5% 3% aqueous solution with 3% NaOH added was used. Table 1 shows the current density, the coolant temperature, and the grindstone feed rate in the electrolytic treatment.

【0072】表1の実施結果(砥石寿命、平均表面粗
さ)によれば、本発明例(実施例1〜6)において、砥
石の寿命向上、基板本体の内外周端面の表面粗さをそれ
ぞれ格段に向上できることが認められる。
According to the execution results (grinding stone life, average surface roughness) in Table 1, in the present invention examples (Examples 1 to 6), the life of the grinding stone is improved and the surface roughness of the inner and outer peripheral end faces of the substrate body are respectively determined. It is recognized that it can be improved significantly.

【0073】尚、加工後の表面粗さRaは、触針式表面
粗さ計(Tencor(株)製:型式P2 )を用いて下
記条件で測定して得た値である。
The surface roughness Ra after processing is a value obtained by measurement under the following conditions using a stylus type surface roughness meter (manufactured by Tencor Co., Ltd .: model P2).

【0074】測定条件 触針先端半径 : 5μm (針曲率半径) 触針押し付け圧力: 7mg 測定長 : 250μm × 8箇所 トレース速度 :2.5 μm / 秒 カットオフ :1.25μm (ローパスフィルター)Measurement conditions Stylus tip radius: 5 μm (needle curvature radius) Stylus pressing pressure: 7 mg Measurement length: 250 μm × 8 places Trace speed: 2.5 μm / sec Cutoff: 1.25 μm (low pass filter)

【0075】[0075]

【表1】 [Table 1]

【0076】以上、本発明の実施の形態を図面により詳
述したが、本発明の具体的な構成はこの実施の形態に限
られるものではなく、本発明の要旨を逸脱しない範囲の
設計の変更等があっても本発明に含まれる。例えば、本
発明が適用される基板本体の材質はカーボンに限らず、
Al合金、Ti等であっても良い。
Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration of the present invention is not limited to this embodiment, and the design can be changed without departing from the gist of the present invention. Etc. are included in the present invention. For example, the material of the substrate body to which the present invention is applied is not limited to carbon,
It may be Al alloy, Ti, or the like.

【0077】[0077]

【発明の効果】以上のように本発明によれば、基板本体
の内外周端面の砥石による研削抵抗を軽減し、砥石の寿
命向上、砥石の研削速度向上、内外周端面の表面粗さ低
減を図ることができる。
As described above, according to the present invention, the grinding resistance of the inner and outer peripheral end faces of the substrate body by the grindstone is reduced, the life of the grindstone is improved, the grinding speed of the grindstone is improved, and the surface roughness of the inner and outer peripheral end faces is reduced. Can be planned.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明による基板の研削加工方式を示す
模式図である。
FIG. 1 is a schematic view showing a method of grinding a substrate according to the present invention.

【図2】図2は図1の電解処理原理図である。FIG. 2 is a diagram showing the electrolytic treatment principle of FIG.

【図3】図3は分極現象を示す模式図である。FIG. 3 is a schematic diagram showing a polarization phenomenon.

【図4】図4は樹脂合成工程からコア抜き工程までのG
C基板製造プロセスを示す模式図である。
FIG. 4 shows G from the resin synthesis process to the core removal process.
It is a schematic diagram which shows a C substrate manufacturing process.

【図5】図5は焼成前ラッピング工程から焼成炭素化工
程までのGC基板製造プロセスを示す模式図である。
FIG. 5 is a schematic diagram showing a GC substrate manufacturing process from a pre-firing lapping step to a firing carbonization step.

【図6】図6は焼成後ラッピング工程から基板完成まで
のGC基板製造プロセスを示す模式図である。
FIG. 6 is a schematic view showing a GC substrate manufacturing process from the lapping step after firing to the completion of the substrate.

【図7】図7は本発明の実施例に係るハードディスクの
膜構成を示す模式図である。
FIG. 7 is a schematic diagram showing a film structure of a hard disk according to an embodiment of the present invention.

【図8】図8は電解電流特性を示す模式図である。FIG. 8 is a schematic diagram showing electrolytic current characteristics.

【符号の説明】[Explanation of symbols]

1 基板 1A 基板本体 22、23 砥石 1 substrate 1A substrate body 22, 23 grindstone

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板本体の内外周端面を砥石によ
り研削加工する磁気記録媒体用基板の製造方法におい
て、 基板本体に電場を印加した状態で上記砥石による研削加
工を行なうことを特徴とする磁気記録媒体用基板の製造
方法。
1. A method of manufacturing a substrate for a magnetic recording medium, which grinds the inner and outer peripheral end faces of a non-magnetic substrate body with a grindstone, wherein the grinding work is performed with the grindstone while an electric field is applied to the substrate body. Manufacturing method of substrate for magnetic recording medium.
【請求項2】 前記砥石による研削加工時に供給するク
ーラントとして、電解質溶液を用いる請求項1記載の磁
気記録媒体用基板の製造方法。
2. The method for manufacturing a substrate for a magnetic recording medium according to claim 1, wherein an electrolyte solution is used as a coolant supplied during the grinding process with the grindstone.
【請求項3】 前記基板本体がカーボンからなる請求項
1又は2記載の磁気記録媒体用基板の製造方法。
3. The method for manufacturing a substrate for a magnetic recording medium according to claim 1, wherein the substrate body is made of carbon.
JP35222995A 1995-12-28 1995-12-28 Production of substrate for magnetic recording medium Withdrawn JPH09180183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35222995A JPH09180183A (en) 1995-12-28 1995-12-28 Production of substrate for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35222995A JPH09180183A (en) 1995-12-28 1995-12-28 Production of substrate for magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH09180183A true JPH09180183A (en) 1997-07-11

Family

ID=18422645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35222995A Withdrawn JPH09180183A (en) 1995-12-28 1995-12-28 Production of substrate for magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH09180183A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349354A (en) * 1998-06-08 1999-12-21 Nikon Corp Substrate for information recording medium and its production
JP2007098483A (en) * 2005-09-30 2007-04-19 Hoya Corp Glass substrate for magnetic disk, manufacturing method of magnetic disk and end face grinder
US7438630B2 (en) 1997-09-30 2008-10-21 Hoya Corporation Polishing method, polishing device, glass substrate for magnetic recording medium, and magnetic recording medium
JP2009289299A (en) * 2008-05-27 2009-12-10 Fuji Electric Device Technology Co Ltd Cleaning method of aluminum substrate for magnetic recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438630B2 (en) 1997-09-30 2008-10-21 Hoya Corporation Polishing method, polishing device, glass substrate for magnetic recording medium, and magnetic recording medium
US7494401B2 (en) 1997-09-30 2009-02-24 Hoya Corporation Polishing method, polishing device, glass substrate for magnetic recording medium, and magnetic recording medium
US7690969B2 (en) 1997-09-30 2010-04-06 Hoya Corporation Polishing method, polishing device, glass substrate for magnetic recording medium, and magnetic recording medium
JPH11349354A (en) * 1998-06-08 1999-12-21 Nikon Corp Substrate for information recording medium and its production
JP2007098483A (en) * 2005-09-30 2007-04-19 Hoya Corp Glass substrate for magnetic disk, manufacturing method of magnetic disk and end face grinder
JP2009289299A (en) * 2008-05-27 2009-12-10 Fuji Electric Device Technology Co Ltd Cleaning method of aluminum substrate for magnetic recording medium

Similar Documents

Publication Publication Date Title
EP0576937B1 (en) Apparatus for mirror surface grinding
JP5297549B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5305698B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate for magnetic disk
JPH0741754A (en) Abrasive composition and method of polishing therewith
US6166885A (en) Magnetic recording medium and method for producing the same
JPH09180183A (en) Production of substrate for magnetic recording medium
JPH09180184A (en) Production of substrate for magnetic recording medium
JPH11265506A (en) Glass substrate for magnetic disk and magnetic disk
JP4737492B2 (en) Metalless bond grindstone and electrolytic dressing grinding method and apparatus using the same
JP2004063883A (en) Method for manufacturing semiconductor wafer
JP2010250893A (en) Manufacturing method of magnetic disk glass substrate, and surface correction method of bonded abrasive tool
JPH09131654A (en) Method and grinding wheel for working substrate for recording medium
JPH1091950A (en) Production of substrate for magnetic recording medium and apparatus therefor
JPH1091951A (en) Production of substrate for magnetic recording medium and apparatus therefor
JP2010086631A (en) Method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP3678993B2 (en) Dresser for CMP processing
JP3612122B2 (en) Magnetic recording medium and method for manufacturing the same
JPH09102120A (en) Substrate for recording medium
JPH0976147A (en) Surface-machined substrate and its manufacture
JP2002075716A (en) Permanent magnet material and its manufacturing method
JPH09204656A (en) Manufacture of substrate for magnetic recording medium
JPH11185253A (en) Substrate for magnetic recording medium manufacturing method and device
JP3251610B2 (en) Mirror polishing method and apparatus using electrolytic products
JPH0997418A (en) Substrate for magnetic disk and its production
JPH11316947A (en) Production of glassy carbon substrate for recording medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304