JPH09172065A - Dielectric isolating substrate - Google Patents

Dielectric isolating substrate

Info

Publication number
JPH09172065A
JPH09172065A JP33300795A JP33300795A JPH09172065A JP H09172065 A JPH09172065 A JP H09172065A JP 33300795 A JP33300795 A JP 33300795A JP 33300795 A JP33300795 A JP 33300795A JP H09172065 A JPH09172065 A JP H09172065A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
polysilicon layer
polycrystalline semiconductor
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33300795A
Other languages
Japanese (ja)
Inventor
Atsushi Ogiwara
淳 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP33300795A priority Critical patent/JPH09172065A/en
Publication of JPH09172065A publication Critical patent/JPH09172065A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric isolating substrate whose warp is little. SOLUTION: A dielectric isolating substrate 1 is composed of a polysilicon layer 2a deposited by a vapor growth (CVD) method, and a polysilicon later 2b whose crystal grain diameter is smaller than that of the polysilicon layer 2a. In this case on the surface of the polysilicon layer 2b, single crystal silicon islands 4, made out of single crystal silicon and insulated individually electrically, whose sides and bottoms are covered with silicon oxide films 3 are arranged by a desired pattern. Accordingly, crystal grain boundaries become fewer, sine the grains of the polysilicon layer 2a are made larger than those of the polysilicon layer 2b. it becomes possible to prevent the shrinkage of the polysilicon layer 2a caused by the mutual uniting of grains, and the expansion of the polysilicon layer 2a caused by the diffusion of oxygen in an oxidizing process, and the warpage of the dielectric isolating substrate 1 can be lessened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、誘電体分離基板に
関するものであり、特に誘電体分離基板の反りを低減す
る構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric isolation substrate, and more particularly to a structure for reducing warpage of a dielectric isolation substrate.

【0002】[0002]

【従来の技術】図5は、従来例に係る誘電体分離基板1
を示す略断面図である。従来の誘電体分離基板1は、シ
リコン酸化膜(SiO2)3により2層のポリシリコン
層2e,2fに分離されて成るポリシリコン基板のポリ
シリコン層2fの表面に、単結晶シリコンから成る複数
の単結晶シリコン島4がシリコン酸化膜3によって取り
囲まれて形成されている。
2. Description of the Related Art FIG. 5 shows a dielectric isolation substrate 1 according to a conventional example.
FIG. A conventional dielectric isolation substrate 1 has a plurality of single crystal silicon layers formed on the surface of a polysilicon layer 2f of a polysilicon substrate which is formed by separating into two polysilicon layers 2e and 2f by a silicon oxide film (SiO 2 ) 3. The single crystal silicon island 4 is formed by being surrounded by the silicon oxide film 3.

【0003】ポリシリコン基板は、一般にシリコン酸化
膜3により2層あるいはそれ以上の多層に分離されてい
る場合が多い。このとき、多層に分離された各層を形成
するポリシリコン層の結晶の粒径(グレイン)は、各層
を通じてほぼ同程度に形成されている。
In many cases, the polysilicon substrate is generally separated into two or more layers by the silicon oxide film 3. At this time, the crystal grain size (grain) of the polysilicon layer forming each layer separated into multiple layers is formed to be approximately the same throughout the layers.

【0004】[0004]

【発明が解決しようとする課題】ところが、上述のよう
な構成の誘電体分離基板では、ポリシリコン堆積工程及
び単結晶シリコン島4内にデバイスを作り込んでいく後
工程の酸化工程において、基板に反りが発生し、それが
半導体製造装置における搬送系でのトラブルやフォトリ
ソグラフィーでの精度の悪化の原因となっていた。
However, in the dielectric isolation substrate having the above-mentioned structure, the dielectric isolation substrate is formed on the substrate in the polysilicon deposition process and the subsequent oxidation process of forming the device in the single crystal silicon island 4. Warpage occurs, which causes troubles in the transport system of semiconductor manufacturing equipment and deterioration of accuracy in photolithography.

【0005】誘電体分離基板1の製造工程での、ポリシ
リコン堆積工程において発生する基板の反りの原因とし
ては、ポリシリコンを高温下で堆積しているときに隣接
するグレイン同士が合体していくことによる収縮現象が
考えられ、誘電体分離基板1を酸化したときに発生する
基板の反りの原因としては、ポリシリコン側から進入し
た酸素がグレイン同士の境界(粒界)に拡散していくこ
とによるポリシリコンの膨張が考えられる。
The cause of the warp of the substrate in the polysilicon deposition process in the manufacturing process of the dielectric isolation substrate 1 is that adjacent grains are coalescing with each other when polysilicon is deposited at a high temperature. A contraction phenomenon is considered to be caused, and the cause of the warp of the substrate that occurs when the dielectric isolation substrate 1 is oxidized is that oxygen that has entered from the polysilicon side diffuses to the boundaries (grain boundaries) between the grains. The expansion of polysilicon due to

【0006】本発明は、上記の点に鑑みて成されたもの
であり、その目的とするところは、反りが小さい誘電体
分離基板を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a dielectric isolation substrate having a small warp.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明は、
多結晶半導体層と、該多結晶半導体層上に誘電体層を介
して形成された単結晶半導体層とから成る誘電体分離基
板において、前記多結晶半導体層を基板の厚み方向に2
層に分離して構成するとともに、前記2層の内、前記単
結晶半導体層側の層を第1の多結晶半導体層とし、他方
を第2の多結晶半導体層として、該第2の多結晶半導体
層の結晶粒径を前記第1の多結晶半導体層の結晶粒径よ
りも大きくしたことを特徴とするものである。
According to the first aspect of the present invention,
In a dielectric isolation substrate comprising a polycrystalline semiconductor layer and a single crystal semiconductor layer formed on the polycrystalline semiconductor layer via a dielectric layer, the polycrystalline semiconductor layer is formed in a thickness direction of the substrate of 2
The second polycrystal is formed by separating into two layers, and the layer on the single crystal semiconductor layer side of the two layers is a first polycrystal semiconductor layer and the other is a second polycrystal semiconductor layer. The crystal grain size of the semiconductor layer is larger than that of the first polycrystalline semiconductor layer.

【0008】請求項2記載の発明は、請求項1記載の誘
電体分離基板において、前記第1の多結晶半導体層と前
記第2の多結晶半導体層との間に、誘電体層を形成した
ことを特徴とするものである。
According to a second aspect of the invention, in the dielectric isolation substrate according to the first aspect, a dielectric layer is formed between the first polycrystalline semiconductor layer and the second polycrystalline semiconductor layer. It is characterized by that.

【0009】請求項3記載の発明は、請求項1又は請求
項2記載の誘電体分離基板において、前記第2の多結晶
半導体層が、誘電体層と多結晶半導体層とから成る複合
層の単層または複層で構成されていることを特徴とする
ものである。
According to a third aspect of the present invention, in the dielectric isolation substrate according to the first or second aspect, the second polycrystalline semiconductor layer is a composite layer including a dielectric layer and a polycrystalline semiconductor layer. It is characterized by being composed of a single layer or multiple layers.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施形態につい
て図面に基づき説明する。図1は、本発明の一実施形態
に係る誘電体分離基板1を示す略断面図である。本実施
形態に係る誘電体分離基板1は、気相成長(CVD)法
により堆積された多結晶半導体層としてのポリシリコン
層2aと、ポリシリコン層2aよりも結晶の粒径(グレ
イン)が小さい多結晶半導体層としてのポリシリコン層
2bとから成るポリシリコン基板において、ポリシリコ
ン層2bの表面に、側面及び底面が誘電体層としてのシ
リコン酸化膜(SiO2)3で覆われ、各々電気的に絶
縁された単結晶半導体層としての単結晶シリコンから成
る単結晶シリコン島4が所望のパターンで配置されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view showing a dielectric isolation substrate 1 according to an embodiment of the present invention. The dielectric isolation substrate 1 according to this embodiment has a polysilicon layer 2a as a polycrystalline semiconductor layer deposited by a vapor deposition (CVD) method, and a crystal grain size (grain) smaller than that of the polysilicon layer 2a. In a polysilicon substrate composed of a polysilicon layer 2b serving as a polycrystalline semiconductor layer, a side surface and a bottom surface of the polysilicon layer 2b are covered with a silicon oxide film (SiO 2 ) 3 serving as a dielectric layer, each of which is electrically conductive. Single crystal silicon islands 4 made of single crystal silicon as a single crystal semiconductor layer insulated from each other are arranged in a desired pattern.

【0011】ここで、ポリシリコン層2aの堆積条件の
一例としては、気相エピタキシャル成長法を用いて行わ
れ、温度:1200℃,トリクロロシラン(SiHCl
3)流量:20g/min.,水素(H2)流量:60000
sccm,膜厚300μmである。また、ポリシリコン層2
bの堆積条件の一例としては、気相エピタキシャル成長
法を用いて行われ、温度:1100℃,SiHCl3
量:20g/min.,H2流量:60000sccm,膜厚1
00μmである。また、シリコン酸化膜3の形成条件の
一例としては、温度1100℃で2時間程度のパイロ酸
化を行うことにより可能である。
Here, as an example of the deposition condition of the polysilicon layer 2a, a vapor phase epitaxial growth method is used and the temperature is 1200 ° C. and trichlorosilane (SiHCl).
3 ) Flow rate: 20 g / min., Hydrogen (H 2 ) flow rate: 60000
sccm, film thickness 300 μm. In addition, the polysilicon layer 2
As an example of the deposition condition of b, the vapor phase epitaxial growth method is used, and the temperature is 1100 ° C., the SiHCl 3 flow rate is 20 g / min., the H 2 flow rate is 60000 sccm, and the film thickness is 1
00 μm. Further, as an example of the formation condition of the silicon oxide film 3, it is possible to perform pyrooxidation at a temperature of 1100 ° C. for about 2 hours.

【0012】以上より、本実施形態においては、ポリシ
リコン層2aのグレインを、ポリシリコン層2bのグレ
インより大きくしたので、結晶粒界(グレインバウンダ
リー)が少なくなり、グレイン同士の合体によるポリシ
リコン層2aの収縮、及び酸化工程における酸素の拡散
によるポリシリコン層2aの膨張を防止することがで
き、誘電体分離基板1の反りを小さくできる。
As described above, in the present embodiment, since the grains of the polysilicon layer 2a are made larger than the grains of the polysilicon layer 2b, the crystal grain boundaries (grain boundaries) are reduced, and the polysilicon formed by the coalescence of the grains is reduced. The contraction of the layer 2a and the expansion of the polysilicon layer 2a due to the diffusion of oxygen in the oxidation step can be prevented, and the warp of the dielectric isolation substrate 1 can be reduced.

【0013】また、単結晶シリコン島4の周辺では結晶
のグレインが小さいので、ボイド等が発生して誘電体分
離基板1の信頼性を損なうことがなくなる。
Further, since the crystal grains are small around the single crystal silicon island 4, voids or the like are not generated and the reliability of the dielectric isolation substrate 1 is not impaired.

【0014】なお、図2,図3に示すように、複数のポ
リシリコン層2a〜2d間にシリコン酸化膜3を介在さ
せるようにすれば、このシリコン酸化膜3によりポリシ
リコン層2a〜2d堆積後に発生する誘電体分離基板1
の反りを低減することができる。
As shown in FIGS. 2 and 3, if the silicon oxide film 3 is interposed between the plurality of polysilicon layers 2a to 2d, the polysilicon layers 2a to 2d are deposited by the silicon oxide film 3. Dielectric isolation substrate 1 generated later
The warp of the can be reduced.

【0015】この時の単結晶シリコン島4の形成方法の
一例としては、先ず図4(a),(b)に示すように、
Si単結晶基板5の一方の表面にV溝6を形成し、Si
単結晶基板5の両面にシリコン酸化膜3を形成する。そ
して、単結晶シリコン基板5のV溝6側にポリシリコン
層2bを堆積後、ポリシリコン層2bの表面にシリコン
酸化膜3を形成して、再びポリシリコン層2aを堆積す
る。最後に、Si単結晶基板5のポリシリコン層2a,
2bを堆積していない方から研磨を行うことにより単結
晶シリコン島4が形成される。
As an example of a method of forming the single crystal silicon island 4 at this time, first, as shown in FIGS. 4 (a) and 4 (b),
The V groove 6 is formed on one surface of the Si single crystal substrate 5, and
Silicon oxide films 3 are formed on both surfaces of the single crystal substrate 5. Then, after depositing the polysilicon layer 2b on the V-groove 6 side of the single crystal silicon substrate 5, a silicon oxide film 3 is formed on the surface of the polysilicon layer 2b, and the polysilicon layer 2a is deposited again. Finally, the polysilicon layer 2a of the Si single crystal substrate 5,
By polishing from the side where 2b is not deposited, the single crystal silicon island 4 is formed.

【0016】[0016]

【発明の効果】請求項1記載の発明は、多結晶半導体層
と、多結晶半導体層上に誘電体層を介して形成された単
結晶半導体層とから成る誘電体分離基板において、多結
晶半導体層を基板の厚み方向に2層に分離して構成する
とともに、2層の内、単結晶半導体層側の層を第1の多
結晶半導体層とし、他方を第2の多結晶半導体層とし
て、第2の多結晶半導体層の結晶粒径を第1の多結晶半
導体層の結晶粒径よりも大きくしたので、結晶粒界(グ
レインバウンダリー)を少なくすることができ、グレイ
ン同士の合体による第2の多結晶半導体層の収縮、及び
酸化工程における酸素の拡散による第2の多結晶半導体
層の膨張を防止することができ、更に、単結晶半導体層
の周辺では結晶のグレインが小さいので、ボイド等が発
生して誘電体分離基板の信頼性を損なうことがなくな
り、反りが小さい誘電体分離基板を提供することができ
た。
According to the first aspect of the present invention, there is provided a dielectric isolation substrate comprising a polycrystalline semiconductor layer and a single crystal semiconductor layer formed on the polycrystalline semiconductor layer via a dielectric layer. The layer is divided into two layers in the thickness direction of the substrate, and of the two layers, the layer on the single crystal semiconductor layer side is the first polycrystalline semiconductor layer, and the other is the second polycrystalline semiconductor layer. Since the crystal grain size of the second polycrystalline semiconductor layer is made larger than that of the first polycrystalline semiconductor layer, the crystal grain boundaries (grain boundaries) can be reduced, and it is It is possible to prevent the second polycrystalline semiconductor layer from contracting and the second polycrystalline semiconductor layer from expanding due to oxygen diffusion in the oxidation step. Further, since the crystal grains are small around the single crystal semiconductor layer, voids are generated. Dielectric separation group Of no longer impair the reliability, it is possible to provide a small warpage dielectric isolation substrate.

【0017】請求項2記載の発明は、請求項1記載の誘
電体分離基板において、第1の多結晶半導体層と第2の
多結晶半導体層との間に誘電体層を形成したので、誘電
体層により多結晶半導体層堆積後に発生する基板の反り
を低減することができる。
According to a second aspect of the invention, in the dielectric isolation substrate according to the first aspect, the dielectric layer is formed between the first polycrystalline semiconductor layer and the second polycrystalline semiconductor layer. The body layer can reduce the warp of the substrate that occurs after the polycrystalline semiconductor layer is deposited.

【0018】請求項3記載の発明は、請求項1または請
求項2記載の誘電体分離基板において、第2の多結晶半
導体層が、誘電体層と多結晶半導体層とから成る複合層
の単層または複層で構成されているので、誘電体層によ
り多結晶半導体層堆積後に発生する基板の反りを更に低
減することができる。
According to a third aspect of the present invention, in the dielectric isolation substrate according to the first or second aspect, the second polycrystalline semiconductor layer is a single composite layer composed of a dielectric layer and a polycrystalline semiconductor layer. Since it is composed of multiple layers or multiple layers, the dielectric layer can further reduce the warp of the substrate that occurs after the deposition of the polycrystalline semiconductor layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る誘電体分離基板を示
す略断面図である。
FIG. 1 is a schematic sectional view showing a dielectric isolation substrate according to one embodiment of the present invention.

【図2】本発明の他の実施形態に係る誘電体分離基板を
示す略断面図である。
FIG. 2 is a schematic cross-sectional view showing a dielectric isolation substrate according to another embodiment of the present invention.

【図3】本発明の他の実施形態に係る誘電体分離基板を
示す略断面図である。
FIG. 3 is a schematic sectional view showing a dielectric isolation substrate according to another embodiment of the present invention.

【図4】本実施形態に係る誘電体分離基板の形成工程図
である。
FIG. 4 is a process drawing of forming a dielectric isolation substrate according to the present embodiment.

【図5】従来例に係る誘電体分離基板を示す略断面図で
ある。
FIG. 5 is a schematic sectional view showing a dielectric isolation substrate according to a conventional example.

【符号の説明】[Explanation of symbols]

1 誘電体分離基板 2a〜2f ポリシリコン層 3 シリコン酸化膜 4 単結晶シリコン島 5 Si単結晶基板 6 V溝 DESCRIPTION OF SYMBOLS 1 Dielectric isolation substrate 2a-2f Polysilicon layer 3 Silicon oxide film 4 Single crystal silicon island 5 Si single crystal substrate 6 V groove

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多結晶半導体層と、該多結晶半導体層上
に誘電体層を介して形成された単結晶半導体層とから成
る誘電体分離基板において、前記多結晶半導体層を基板
の厚み方向に2層に分離して構成するとともに、前記2
層の内、前記単結晶半導体層側の層を第1の多結晶半導
体層とし、他方を第2の多結晶半導体層として、該第2
の多結晶半導体層の結晶粒径を前記第1の多結晶半導体
層の結晶粒径よりも大きくしたことを特徴とする誘電体
分離基板。
1. A dielectric isolation substrate comprising a polycrystalline semiconductor layer and a single crystal semiconductor layer formed on the polycrystalline semiconductor layer via a dielectric layer, wherein the polycrystalline semiconductor layer is formed in a thickness direction of the substrate. In addition to the two separate layers,
Of the layers, the layer on the single crystal semiconductor layer side is the first polycrystalline semiconductor layer and the other is the second polycrystalline semiconductor layer, and the second polycrystalline semiconductor layer is the second polycrystalline semiconductor layer.
2. The dielectric isolation substrate, wherein the crystal grain size of the polycrystalline semiconductor layer is larger than that of the first polycrystal semiconductor layer.
【請求項2】 前記第1の多結晶半導体層と前記第2の
多結晶半導体層との間に、誘電体層を形成したことを特
徴とする請求項1記載の誘電体分離基板。
2. The dielectric isolation substrate according to claim 1, wherein a dielectric layer is formed between the first polycrystalline semiconductor layer and the second polycrystalline semiconductor layer.
【請求項3】 前記第2の多結晶半導体層が、誘電体層
と多結晶半導体層とから成る複合層の単層または複層で
構成されていることを特徴とする請求項1または請求項
2記載の誘電体分離基板。
3. The first polycrystalline semiconductor layer according to claim 1, wherein the second polycrystalline semiconductor layer is composed of a single layer or a multi-layer of a composite layer composed of a dielectric layer and a polycrystalline semiconductor layer. 2. The dielectric isolation substrate according to 2.
JP33300795A 1995-12-21 1995-12-21 Dielectric isolating substrate Pending JPH09172065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33300795A JPH09172065A (en) 1995-12-21 1995-12-21 Dielectric isolating substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33300795A JPH09172065A (en) 1995-12-21 1995-12-21 Dielectric isolating substrate

Publications (1)

Publication Number Publication Date
JPH09172065A true JPH09172065A (en) 1997-06-30

Family

ID=18261250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33300795A Pending JPH09172065A (en) 1995-12-21 1995-12-21 Dielectric isolating substrate

Country Status (1)

Country Link
JP (1) JPH09172065A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319995A (en) * 2000-05-10 2001-11-16 Sanyo Electric Co Ltd Manufacturing method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319995A (en) * 2000-05-10 2001-11-16 Sanyo Electric Co Ltd Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JPH01235254A (en) Semiconductor device and manufacture thereof
JPS5820141B2 (en) semiconductor equipment
JPH09172065A (en) Dielectric isolating substrate
JP3048754B2 (en) Semiconductor substrate
JPH09219459A (en) Non-volatile semiconductor memory device and manufacture thereof
JPS59186342A (en) Manufacture of semiconductor device
JP2950029B2 (en) Method for manufacturing semiconductor device
KR0162510B1 (en) Semiconductor device and manufacture thereof
JPS6152572B2 (en)
US4606936A (en) Stress free dielectric isolation technology
JPH0330992B2 (en)
JPH0563019B2 (en)
KR940004253B1 (en) Isolation method for components of semiconductor
JPH10321616A (en) Method of forming insulation film for separating semiconductor elements from each other
JPS6056291B2 (en) Manufacturing method of dielectric insulation isolation substrate
JPS5849027B2 (en) Manufacturing method for semiconductor integrated circuit devices
JPH0799745B2 (en) Method for manufacturing semiconductor device
JP2945023B2 (en) Method for manufacturing thin film transistor
JP3206944B2 (en) Semiconductor device
JPS62219916A (en) Manufacture of semiconductor device
JPH0246747A (en) Formation of multilayer interconnection
JPH01286444A (en) Semiconductor device
JPS63226041A (en) Manufacture of semiconductor integrated circuit device
JPS6317334B2 (en)
JPS60182737A (en) Manufacture of semiconductor device