JPH09170912A - 鋳鉄管の管寸法自動検査装置 - Google Patents

鋳鉄管の管寸法自動検査装置

Info

Publication number
JPH09170912A
JPH09170912A JP34978595A JP34978595A JPH09170912A JP H09170912 A JPH09170912 A JP H09170912A JP 34978595 A JP34978595 A JP 34978595A JP 34978595 A JP34978595 A JP 34978595A JP H09170912 A JPH09170912 A JP H09170912A
Authority
JP
Japan
Prior art keywords
pipe
cast iron
rotation
iron pipe
touch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34978595A
Other languages
English (en)
Other versions
JP2932166B2 (ja
Inventor
Kiyoshi Takashima
清 高島
Yoji Oba
洋司 大羽
Takafumi Uchiumi
貴文 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO TECHNO KK
Kurimoto Ltd
Original Assignee
SHINKO TECHNO KK
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO TECHNO KK, Kurimoto Ltd filed Critical SHINKO TECHNO KK
Priority to JP34978595A priority Critical patent/JP2932166B2/ja
Publication of JPH09170912A publication Critical patent/JPH09170912A/ja
Application granted granted Critical
Publication of JP2932166B2 publication Critical patent/JP2932166B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

(57)【要約】 【課題】 特に中口径の鋳鉄管の管軸方向に対する多点
の円周長の測定は、管路敷設時の要件から重要な項目で
あるが、従来は巻尺を使った手作業しか方法がなく、ま
た円管寸法の自動測定に係る多数の従来技術でも適応で
きる装置は皆無であった。 【解決手段】 芯出し部、測定部、搬送部よりなる検査
レイアウトで流れ作業式に鋳鉄管Pを送迎する。測定部
2では直上で垂直に昇降して管の全長に亘る各位置の外
周面上で圧接して回転するタッチロールセンサ4と、管
外面上に吸着した回転検出子を光ファイバーで検知して
管の1回転を正確に検出する回転検出器5と、タッチロ
ーラの回転数と管の1回転の両検出値を入力して管の長
手方向の個々の位置における円周長を演算し、標準仕様
と比較して寸法検査の合否を出力する制御器6で構成す
ることによって、全ての位置における正確な円周長が一
挙に算出されて課題が解決できる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は鋳鉄管の鋳造工程の
端末に接続し、連続して搬入される多数、多種類管、特
に大中口径の鋳鉄管がそれぞれ仕様通りの寸法に製造さ
れているか測定する管の寸法検査装置に係る。
【0002】
【従来の技術】鋳鉄管は材質的にはダクタイル鋳鉄で統
一されているが、各自治体などとの契約に基づいた納期
を守るために、同一管種に限ることなく、不特定多数の
鋳鉄管が平行して鋳造され検査工程へ搬入されてくるの
で、各鋳鉄管の寸法を逸早く測定し、もし異常が発見さ
れたときには直ちに鋳造現場へ情報をフィードバックし
て異常の原因に対処しなければ品質上の深刻なトラブル
に発展し兼ない。そのためには迅速な寸法検査と、その
正確さは品質管理上の重大な要諦となる。
【0003】鋳鉄管の鋳造は現在、すべて遠心力鋳造に
よるから、同じ鋳型内へ注湯すれば同一外径の製品とな
る筈であるが、実際は注湯温度の差や成分差、外気温度
の変動などが錯綜して常温に至るまでの冷却速度に微妙
な違いが介入し、また、その後の熱処理についても変動
の要因が入る可能性は否定できない。しかも直径に対し
て管長が大きいという形状上の特殊な条件のため、管の
長手方向について特に歪みの起こり易い不利な要素もあ
る。これらの変動要因を吸収して寸法的に許容される限
度が厳しく設定され、限界を超えれば寸法不良として選
別される。従来はほとんど検査員の手作業によって鋳鉄
管の寸法検査が実施されてきたが、個別に測定すること
はきわめて非能率であると共に、作業員にも肉体的に非
常な負担を強いる結果となるし、個人差のために測定結
果は必ずしも信頼性が高くないこともあって、機械化、
自動化の進んだ鋳造工程に比べると立ち後れた感覚は否
めず問題視されていた。
【0004】鋳鉄管の寸法測定を単なる個人の手作業に
だけ依存するのでなく、機械的に置換する自動化の試み
は従来から手が付けられている。たとえば、 実公平4−32572号公報では、鋳鉄管の挿口の真
円度を検出するために測定する管を押えローラと測定ロ
ーラで上下から挾圧して回転し、測定ローラの上下変動
を検知するリニアスケールの測定値を制御装置へ入力し
て偏心の程度を自動的に検出している。 実公平5−37206号公報では、鋳鉄管の受口の各
必要寸法を自動的に測定するために測定具を移動し、そ
の移動量をパルススケールでカウントする。たとえば図
10のようにシリンダ101の作動で昇降する測定ピン
102の移動量をパルススケール103で検知して制御
装置104へ入力し、受口の最小内径D3の測定を自動
的に算出する。 実公平5−12727号公報では、図11のように鋳
鉄管の両端に測定ユニット105を具え、このユニット
内に管体を内外から挟着、離脱自在に回動するキャリパ
ス106を軸支し、両キャリパスの回動を検知するリニ
アゲージ107の検知値を制御器に伝えて鋳鉄管の管厚
を自動的に測定する。
【0005】その他、鋳鉄管の計測に関しては、鋳鉄管
の楕円状態を自動的に検出する実願昭62−11878
6号、直管の曲り状態を自動的に測定する実願昭62−
118785号、同趣旨の実願昭63−73764号な
ど相当な提案が公開され現に実施されている従来技術も
多い。さらに鋳鉄管以外の円筒管の測定の合理化につい
ては、管内面のテーパ部分の軸方向長さを測定する特開
昭60−249009号公報、ボイラーなどの円周突き
合わせ溶接部の肉厚測定に係る実開昭61−13160
号公報、簡単な測定方法で正確な数値を得る演算処理に
係る特開昭51−54452号公報、γ線によって鋼管
の形状と欠陥測定する特開平1−308907号公報、
放射状に多数の探触子を配置して鋼管の寸法測定する実
開昭60−76209号公報などもある。
【0006】
【発明が解決しようとする課題】ここに引用した従来技
術は、すべてそれぞれが目指した課題の解決に有効であ
ったと考えてもよいが、鋳鉄管、特に大中口径管につい
てはどの従来技術によっても解決が不可能な一つの課題
が残されている。鋳鉄管は周知の通り地中で管同士を継
合して長い管路を埋設し、遠い貯水池から末端の家庭、
事務所などに送水されるが、その管路は単純な直線では
なく、大部分は地上の道路に合せて屈折、屈曲した複雑
な曲線を描くのが常である。したがって管路形成に当っ
ては定寸法の直管の受口・挿口の継合の他に、曲路に合
うように鋳鉄管を切断して方向変換するケースが意外に
頻発する。その場合に用いられる鋳鉄管は、相手側の継
手管と継合できるために管をどの長さに切断しても、そ
の切り口の断面寸法が常に一定値を維持していることが
必須の要件となる。業界ではこのような要件を満たした
鋳鉄管を特に「切用管」と呼んで管路の敷設工事用に別
に準備しなければないらない。
【0007】切用管の要件は小口径の鋳鉄管(たとえば
75mm口径管)の場合にはさほどの困難もなく、全て
の管が具えていると言ってもよい。しかし、管の口径が
大きくなると共に鋳造時の寸法誤差が増幅することはや
むを得ない現象であり、公式に許容されている公差内に
入っていても成分差による収縮量の差、大気の寒暖によ
る鋳造後の冷却速度、および熱処理時の冷却速度の差な
どが複雑に関連し合って、1本の鋳鉄管について見れ
ば、どの位置で切っても均等な断面寸法を維持するとは
保証し難い。いわばこれは技術的な限界でもあるわけで
あるから、鋳鉄管の全長に亘る断面の同一性を検知し
て、特定の数値限定を満たす鋳鉄管だけを選び出して切
用管と認定し、満たせなかった他の鋳鉄管と区別して現
地に提供するという特殊事情がある。
【0008】切用管の選別は従来はすべて人手に依存し
てきた。すなわち、鋳造現場から流れ出してくる多種類
の口径が混在する鋳鉄管を、作業員が特定の巻尺で管の
全長に亘って所定の位置(日本水道協会の規定では12
箇所)毎に巻き回して円周長を検寸し、各位置における
測定結果を総括して許容範囲と比較し検定を下してい
た。その作業は全く手仕事であるから非能率そのもので
あり、比較的合理化の進んだ前後の工程からみても余り
に低レベルの作業性に甘んじ、また労働安全、労働環境
の面からも見ても座視し難い深刻な課題と言わざるを得
ない。
【0009】切用管として求められる各断面における均
一性がきわめて厳しいのに対し、多くの従来技術に見ら
れる測定の自動化に係る技術は、検査用具自体が鋳鉄管
の内外面に直接接触する方式であり、正確さを維持する
上でかなりの疑問が残る。鋳鉄管は鋳放し状態の鋳造独
特の鋳肌からなり、いわゆる梨地と呼ばれる微細な凹凸
の集合面で形成されている上、製造中の他の要素、たと
えば鋳型表面の状態、熱処理炉内の位置などによって常
に影響を受けて不特定な歪みや、やや目立った凹凸もあ
り得るので、精密な計測器具が直接強くタッチすれば直
ちに摩耗を起こして精度を失うという欠陥がある。計測
精度を高く要求されるにも拘わらず、計測対象面自体が
ざらついているし、管軸方向に対する歪みもあり得るか
ら、計測器具のタッチが弱ければ精度が著しく劣化し、
強過ぎれば接触面が躍ったり傾いて衝撃、振動の原因と
なって、計測装置の精緻な回路を狂わせ、または破損す
る虞れが高く、管の全長に亘る多数の位置で同じ条件下
に計測することは至難の業とされる。
【0010】本発明は以上に述べた課題を解決するため
に鋳鉄管、特に大中口径管の管全長に亘って多数の位置
における円周長を最も能率的に、かつ正確に測定する管
寸法自動検査装置の提供を目的とする。
【0011】
【課題を解決するための手段】本発明に係る鋳鉄管の管
寸法自動装置は、搬入され待機する鋳鉄管Pを1本づつ
蹴り込んで両サイドにそれぞれ配置した2個1組のロー
ラ11上で回動して位置決めする芯出し部1、芯出し後
の鋳鉄管Pを両サイドに設けたそれぞれ2個1組のロー
ラ21上へ受けて回動し管外周長さを測定する測定部
2、および前記ローラ11、21の対向する両サイド間
で往復走行する台車31と該台車31上で対向し昇降自
在に支持される2個1組のV形ブロック32と33を直
列に並置してなる搬送部3よりなり、前記測定部2の直
上に管軸に対して垂直に昇降して管の全長に亘る各位置
の外周面上で圧接して回転するタッチロールセンサ4
と、管外面上に吸着した回転検出子を光ファイバーで検
知して管の1回転を正確に検出する回転検出器5と、タ
ッチローラの回転数と管の1回転の両検出値を入力して
管の長手方向の個々の円周長を演算し、標準仕様と比較
して寸法検査の合否を出力する制御器6よりなる構成よ
りなる。本装置へアットランダムに搬入されてきた各種
サイズの鋳鉄管Pは待機した後、芯出し部1へ蹴り込ま
れて進入し、ここで位置決めされて隣接する測定部2へ
進む。この移動は搬送部3の台車31が行ない、測定部
2から測定済みの先行の鋳鉄管Pが搬出されると同時
に、芯出しの終った後続の鋳鉄管Pが入れ替わって進入
するように台車が往復する。この作用が繰り返されるか
ら、鋳造現場から続々と搬入される鋳鉄管Pは、鋳造ペ
ースに同調して装置内で移動し搬出されるから、検査ペ
ースは格段に向上して課題を解決する。一方測定部の機
能について言えば、管の全長に亘る軸線一杯に配置され
たタッチロールセンサ4が同時に垂直に垂下して管の外
周面にタッチローラ41が圧接して回転し、管の回動と
共回りしてその延長距離を検知する。同時に回転検出器
5では回転検出子の回転を非接触のままで光ファイバー
検知センサ53が捉えて正確な鋳鉄管Pの1回転を検知
するから、管1回転当りの総延長距離が計算され、全て
の位置における正確な円周長が一挙に算出することで課
題が解決される。
【0012】この構成において、タッチロールセンサ4
は幅の狭いポリウレタン製のタッチローラ41と、該タ
ッチローラ41を支点軸42より自重で揺動自在に吊支
する長いアーム43と、タッチローラ41の回転軸44
の反対側に取り付けたパルス発振式のロータリーエンコ
ーダ45、および該ロータリーエンコーダからパルス波
を制御器6へ伝える回路を接続することが最も望ましい
態様である。タッチロールセンサは摩耗に対して耐性が
高く使用によっても容易に摩耗しないし、この方式は本
来転がり摩擦であるから摩耗作用も最小に留まり、検知
の信頼性が高い。タッチローラ41の幅を通常の半分以
下に設定し、またタッチローラ41を揺動自在に吊支す
るアーム43は逆に通常の1.5〜2倍の長さに設定す
れば、鋳鉄管外周面の粗雑な鋳肌や凹凸に自重で圧接し
ても、躍ったり飛び撥ねたり傾いたりすることなく、ま
た、管軸方向の歪みがあってもその変動は揺動によって
吸収し、それぞれが追随して一斉にそれぞれの位置で圧
着するから、軸の反対側に取り付けたロータリーエンコ
ーダ45の精緻な機能を衝撃や振動によって害する虞れ
がなくなることによって課題が解決した。
【0013】また、回転検出器5の構成については、鋳
鉄管Pの外周面に向って進退自在、かつ離脱自在にホル
ダー51に挟持されるマグネット52と、該マグネット
52を挟む両側に対向する発光部53Aと受光部53B
よりなる光ファイバー検知センサ53と、該検知を受け
て処理する制御器6(CPU)へ接続する回路を形成す
ることが最も望ましい態様である。鋳鉄管Pの1回転を
正確に把握することはタッチロールセンサとの共同作用
を採る本方式では必須の前提である。従来の回転検出方
法は、鋳鉄管Pの端面(挿口)に円板を押し当てて中心
軸の回転をリミットスイッチで検出する方式などが慣用
化しているが、リミットスイッチの内部誤差が大きいの
で繰り返し精度が低くて信頼性に乏しい。またこの後の
電気回路でも応答性が悪いので再現性が得られず誤差が
予想以上に大きいという欠点が払拭できなかった。本発
明では鋳鉄管Pの外周面上へ回転検出子としてマグネッ
ト52を吸着させて管と共に回動し、この検出子である
マグネットと接触しないで、極細光ファイバー検知セン
サ53によって横切る瞬間を捉えたスタートと1回転後
の時間の経過を電気的回路で処理する方式であるから、
検知は最も正確であり、誤差の入る確率をきわめて少な
くすることによって課題が解決した。
【0014】以上の鋳鉄管の円周長測定の機能に加え、
測定部2の管端の定位置で管内へ進退し、管肉を隔てて
対向するコ形のレーザ発振子71より投射し、管の内外
面からの反射波を捉えて管肉を演算するレーザギャップ
センサ7を前記制御器6へ接続する回路を具えた構成を
採れば、寸法検査として要求される他の項目である管肉
を同時に自動的に検査できるから、検査工程全体の合理
化にさらに貢献する。
【0015】制御器6について言えば、図7のブロック
図で装置各部材と情報系路を示す通り、タッチロールセ
ンサ4のパルス列をカウントする高速のカウンタユニッ
ト61、およびレーザギャップセンサ7のアナログ変位
値をデジタル変換するA/D変換ユニット62を組込ん
だCPUよりなり、さらに回転検出器5のパルス値をカ
ウントする専用トリガ演算器63を別に具えて前記CP
Uへ入力する構成を特徴とする。鋳鉄管の円周長さを測
定するとき、タッチローラの測定精度と共に1回転の範
囲を限定する信号の速度応答性が重要な要素となり、信
号の応答性が悪ければその誤差内に円周長さをカウント
するので、結果的に測定精度の劣化は免れない。CPU
は装置全体をプログラムで制御しているので、光ファイ
バーからの信号も制御させると応答性が落ちるので、別
に光ファイバーセンサのパルスだけをカウントする専用
トリガ演算器を具えて測定精度の向上を実現し、課題解
決に大きな貢献を果たす。
【0016】制御器6を主体とする情報処理のフロー図
を図8、図9に示すが、レーザギャップセンサ7による
管厚測定の直前に別の標準試料の測定によって気温変化
に伴う変動量を吸収する補正係数を測定算出すると共
に、タッチロールセンサ4の円周長さの測定を定回数繰
り返す毎に別の標準試料を測定してタッチローラ41の
摩耗に伴う変動量を吸収する補正係数を測定算出する手
順が本発明の課題解決上の特性である。レーザ変位計を
使用した測定では温度による影響は無視できない誤差の
原因となる。図8はレーザギャップセンサ7による管厚
測定フローであり、変位計キャブリブレーションの手順
において気温の高低に基づく測定値の変動を標準試料と
対比して補正係数を求める。補正係数は測定直前に実施
するので、その都度温度による変動量を吸収して測定値
の信頼性を高める。同様に図9はタッチロールセンサ4
による測定フローであり、この場合、測定誤差の主な原
因はタッチローラ41の摩耗による変動であるから、フ
ローのパラメータセットの手順を組入れて定回数毎に標
準試料の測定値と対比して補正係数を求め、カウント時
に乗じて測定値の信頼性を高め、両者相俟って課題解決
に貢献する。
【0017】
【発明の実施の形態】図2は本発明の実施の形態全体を
示す平面略図であり、図3は鋳鉄管進路の中心線におけ
る縦断正面図である。前工程から鋳鉄管Pが搬入されて
くる方向は図2の下方から、または図3の右側からであ
り、鋳鉄管Pは1本づつ待機部8へ進入し、キッカー8
1でタイムリーに蹴り込まれて芯出し部1へ転動して進
入する。芯出し部1には両サイドに2個1組のローラ1
1が設けられて転動してきた鋳鉄管Pをその上に載置し
て水平に支持する。鋳鉄管Pの端面には油圧シリンダー
12で水平に移動する調整板13が当接して軸線方向の
管の姿勢を一定の位置に摺動し、さらにローラ11が回
動することによって鋳鉄管Pの軸線をローラ軸線に一致
させて芯出しが行なわれる。
【0018】搬送部3は台車31を具えて軸線方向へ走
行する。走行は図3に示す油圧シリンダー34の作動に
よって行なわれる。芯出し部2における台車31は芯出
し中は鋳鉄管Pの回動の妨げとならないように低い位置
に沈んでいるが、芯出しが終了すれば台車の車輪35の
車軸が回動して立ち上がり、台車が上昇して台車上に装
着したV形ブロック32が芯出し部のローラ11より上
位となり、ローラ11に替って鋳鉄管Pを支持する。台
車31は鋳鉄管Pを支持して走行し隣接する測定部2の
定位置に達し、ここで台車が降下してV形ブロック32
上に支持してきた鋳鉄管Pを測定部2の両サイドに設け
たローラ21の上へ移し替える。
【0019】この動きは台車31の測定部の領域(図3
の左側)でも同時に進行して、ローラ21の上で測定の
終った鋳鉄管Pは上昇する台車上のV形ブロック33の
上へ移し替えられ、台車の走行と共に左進して搬出部9
へ移動する。このように芯出し部のローラ上での作用と
測定部のローラ上での作用が平行して進行し、その作用
が完了すれば搬送部の前後のV形ブロックが昇降し、そ
れぞれ鋳鉄管Pを同時に受け継いで支持し次の領域へ移
動するから、全体が一つの流れを形成して鋳鉄管の検査
が自動的に進行する。
【0020】図1は測定部2において昇降自在に取り付
けられたタッチロールセンサ4の配置図である。この図
では規格の検寸箇所通り鋳鉄管Pの管軸を12等分した
位置の上方に一括してタッチロールセンサ4を並列に吊
支する架橋46を昇降自在に架設している。タッチロー
ルセンサ4を吊支した架橋46は昇降用のモータ47の
回転を垂直方向に変換して全体がガイド付きジャッキ4
8に案内されて垂直に上下する。
【0021】個々のタッチロールセンサ4の詳細な形態
は図4(A)(B)に示す。タッチローラ41はアーム
43を介して支点軸42から揺動自在に吊支されて自重
によって鋳鉄管Pの外周面に圧接して共回りする。この
支点軸42は軸受49を介して前記の架橋46の底面に
螺合している。タッチローラ41の回転軸44の他端に
はパルス発振式のロータリーエンコーダ45が取り付け
られてタッチローラの回転数をパルス信号に置き換え、
さらに制御器6へ伝達して電気的に処理される。
【0022】図5は測定部2の領域で回動する鋳鉄管P
の1回転分を正確に検知する回転検出器5である。回転
検出子としてはマグネット52を適用し、測定以外の時
点ではホルダー51に抱持されて鋳鉄管Pの外周面より
低く沈んでいるが(図の2点鎖線)、測定時には電動シ
リンダー54の作動によってホルダー51と共に上昇し
て先端が外周面に接触して吸着する。その後、ホルダー
51はマグネット52を離して単独で降下し、マグネッ
ト52は鋳鉄管P外周面に残されたまま一緒に回動す
る。マグネット52の回動はホルダー51を隔てた位置
に対向して取り付けられた発光部53Aと受光部53B
よりなる光ファイバー検知センサ53によって正確に捉
えられる。すなわちマグネット52が回動をスタートす
ると発光部からの照射が遮られてカウントが始まり、1
回転して次に横切って発光が遮られた瞬間までを検知す
る。その信号は専用トリガ演算器63でカウントされて
制御器(CPU)6へ入力され、前記のタッチロールセ
ンサからの入力と共に演算の対象となる。
【0023】前記のように図8、図9は制御器6におけ
るフローを示したものであり、図8のフローがレーザギ
ャップセンサ7による測定手順を示す。ここでキャリブ
レーションが気温変化に伴う測定誤差を吸収するに補正
する過程であり、鋳鉄管測定の直前に同一温度の標準試
料を測定して対比し、温度のファクターを打ち消す。ま
た、図9のタッチロールセンサ4における情報処理につ
いてもパラメータセットの過程でタッチローラの摩耗に
よる変動要因を吸収する補正を行なうが、この場合には
摩耗の進行が緩慢であるから、測定直前毎に補正する必
要性は認められない。適宜、経験的に設定した定回数毎
の補正を標準的に制御器6へ初期条件として入力してお
けば生産性低下防止の観点から望ましい。
【0024】制御器6のCPUで演算した結果はあらか
じめ初期条件として入力されたそれぞれの管種の許容誤
差限度と比較考量し、合否を表示部64へ出力して自動
的に表示すると共に、所定の様式でプリントアウトして
検査記録を自動的に作成する。または、許容範囲を大き
く外れる管種が一定本数連続するときには、警報ランプ
の点滅やサイレンの吹鳴など、適宜機能を活用して前工
程へフィードバックする手法を伴うと品質管理上有益で
もある。
【0025】図6は管厚測定のために適用するレーザギ
ャップセンサ7の形態を示したもので、断面がコ形のレ
ーザ発振子71は下方に接続する電動シリンダー72の
作動を受けて鋳鉄管の端部から内部へ進入する。管内で
は管体内外の表面に向ってレーザー光線を投射し、それ
ぞれの反射波を捉えて上下の発振子間の距離Lと、管の
内外面までの距離S1、S2から肉厚=L−(S1+S2
で算出する。鋳鉄管Pを回動して円周4分割の位置でそ
れぞれ測定し、その結果を制御器6へ入力して良否の判
定に供するが、全ての作動が電気的に連動する回路を組
んでいるから作業性は大幅に向上し、その結果に対する
信頼性も比較にならないほど高まる。非接触式であるか
ら、鋳鉄管の局部的な外周面の状態に影響されず、正確
な肉厚を測定できるし、検出部材自体が摩耗したり外力
(振動など)によって機能を低下する虞れもない長所を
具えている。
【0026】
【実施例】本発明の自動検査装置の対象となる鋳鉄管の
種類に何の限定もないことは言うまでもないが、既に述
べたように小口径管には切用管の選別という概念が不必
要であるし、大口径管は大幹線管路に使用され、管長自
体も短いから切用管としての必要性は少ないから、最も
有効な実施例はすべて中口径、すなわち300〜800
mm程度の鋳鉄管が主体となる。この管種に対する実施
例の一つを挙げると、タッチロールセンサ4のタッチロ
ーラ41は直径が100±0.1mmのポリウレタン製
の円板よりなり、ロールの幅は30mmとして従来の標
準寸法77mmの半分以下に設定した。また、タッチロ
ーラの回転軸44と支点軸42間の距離を270mmと
して、従来のアームの標準長さよりx倍長く取り、特に
走行安定性の向上を実現した。この両寸法の改変によっ
て従来はタッチローラが躍って撥ね上がり、または計測
面で傾斜して正確なタッチができない上、接続するロー
タリーエンコーダの精密な機能を損っていた欠陥を是正
し、面圧1.7Kgf/cm2で円滑に圧着して共回りした。
ロータリーエンコーダ45についても、従来の標準装備
ではパルス周波数の最大が750までであったものを、
1024pprと大幅に能力アップし、高速高精度のロ
ータリーエンコーダを形成した。
【0027】回転検知器については、リミットスイッチ
方式の従来技術では精度が得られず、この方式とタッチ
ロールセンサとを組合わせて精度を確認した場合でも、
円周長さが250×πに対して約2mmの誤差が避けら
れず、しかもその誤差範囲が特定せずに再現性に乏しく
信頼できなかったのに比べ、タッチロールセンサと光フ
ァイバー検知センサの組合わせで0.16mmまでの誤
差範囲に収まり、その卓抜した再現性と共に検査レベル
の飛躍的な向上が実証された。結局、300〜800m
mの中口径鋳鉄管について平均的に見れば、±0.3m
m以内の誤差範囲に留まることが確認され、比率にすれ
ば0.3/(800×π)=0.012%内という驚異
的な精度となる。本来、鋳鉄管自体においては表面の凹
凸、楕円、歪み、曲りなどが避けられないから、そのば
らつきの要素を参酌して精度が2倍低下すると見積もっ
ても、±0.6mmが最大誤差であると解釈すれば十分
であることが確かめられた。
【0028】管の肉厚測定については、たとえば従来、
キャリパスによって人手によって直接管肉を挟んで測定
した場合には、経験上、1/10mm程度の誤差が精度
の限界とされていたが、非接触式のレーザー光線投射に
よる方式では1/100mmまで誤差範囲が縮小し、精
度は抜群となった。
【0029】
【発明の効果】本発明に係る鋳鉄管の管寸法自動検査装
置は、比較的検査面の粗い鋳肌である外周面を対象とし
ながら、従来技術に比べると検査の精度は抜群に高い。
かつ、その機能は長く維持されて変ることが少ないか
ら、検査結果に対する信頼性は従来よりも格段に優れて
いる。特に中口径管のいわゆる切用管の選別には好適で
あり、要件として求められる管軸方向の多点における円
周長の測定に限って言えば、如何なる従来技術でも果た
せなかった検査の能率化、合理化、省力化、作業環境の
浄化、労働安全と衛生問題の解決など、現場の抱える様
々な課題を一挙に解消して、能率の高い快適な作業場に
転換するのに大きな貢献を果たす。本発明ではユニーク
な検査手法の開発とその組合わせに加え、全体の優れた
検査レイアウトが相俟ってさらにこの効果を助長するこ
とが別の特徴である。合理的な領域の設定によって不特
定多数の鋳鉄管が流れ込んでくる現況に対応して、円滑
に捌いてスムースな流れを形成する効果が大きく、鋳造
作業の自動化に追随可能な検査能力を新たに具備するこ
とは生産工程全体の生産性を高める原動力である。
【0030】請求項2はタッチロールセンサの具体的な
対応に係り、タッチロールセンサ自体は従来からも紙
類、布類の厚み測定に適用される公知技術であるが、そ
の長所を活かし、粗雑な鋳肌面には到底適用し得ない問
題点を摘出し、鋭意改善した結果、優れた精度と耐久性
を兼備した検査方式に到達した効果が大きい。
【0031】請求項3は回転検出器の具体的な対応に係
り、回転検出子を検査面に付着して移動によって光ファ
イバー検知センサでその横切る瞬間を捉える検知の方式
自体は公知であるとは言え、鋳鉄管の1回転の検出に適
用するために付帯する種々の部材との組合わせとその作
動には従来技術ではうかがえない斬新なアイデアが基盤
となっている。タッチロールセンサと組合わせることに
よって、検査のフロー自体が従来の個々の技術では得ら
れなかった総合的な前記の効果を生み出す因子を構築し
たと位置付けるべきである。
【0032】請求項4は鋳鉄管の肉厚測定に係る具体的
な形態であり、非接触式の測定によって能率の向上と信
頼性の確保が著しく、今後の検査の方式をリードする重
要な技術を先駆して開発した効果は顕著である。
【0033】請求項5は回転検出器に専用のパルスカウ
ンタユニットを設けて応答性の低下を防ぎ、結果的に装
置全体の測定精度を大幅に向上する効果がある。また、
請求項6は通常の測定フローに本発明独自の補正手順を
組み入れて、特有の誤差発生の原因を取り除き、測定値
の信頼性を大きく高める効果があり、両者相俟って連続
的な測定操作の高速化と精度向上に大きな貢献を発揮す
る。
【図面の簡単な説明】
【図1】本発明の実施形態のうち、測定部の要部を示す
正面図である。
【図2】実施形態の全体を示す平面図である。
【図3】上図の中央縦断正面図である。
【図4】タッチロールセンサの正面図(A)と平面図
(B)である。
【図5】回転検出器の正面図である。
【図6】管厚測定のレーザーギャップセンサの正面図
(A)と測定原理(B)である。
【図7】本発明のブロック図である。
【図8】本発明の管厚測定フローである。
【図9】本発明の円周長さ測定フローである。
【図10】従来技術の一部断面正面図である。
【図11】別の従来技術の正面図である。
【符号の説明】
1 芯出し部 2 測定部 3 搬送部 4 タッチロールセンサ 5 回転検出器 6 制御器(CPU) 7 レーザギャップセンサ 8 待機部 9 搬出部 11 ローラ 21 ローラ 31 台車 32 V形ブロック 33 V形ブロック 41 タッチローラ 42 支点軸 43 アーム 44 回転軸 45 ロータリーエンコーダ 51 ホルダー 52 マグネット 53 光ファイバー検知センサ 61 高速カウンタユニット 62 A/D変換ユニット 63 専用トリガ演算器 64 表示部 71 レーザ発振子 P 鋳鉄管
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大羽 洋司 兵庫県神戸市灘区岩屋中町4丁目1−27− 402 (72)発明者 内海 貴文 兵庫県高砂市米田町米田925−2 高砂ア ーバンコンフォート103

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 鋳鉄管の管寸法の検査装置において、搬
    入され待機する鋳鉄管Pを1本づつ蹴り込んで両サイド
    にそれぞれ配置した2個1組のローラ11上で回動して
    位置決めする芯出し部1、芯出し後の鋳鉄管Pを両サイ
    ドに設けたそれぞれ2個1組のローラ21上へ受けて回
    動し管外周長さを測定する測定部2、および前記ローラ
    11、21の対向する両サイド間で往復走行する台車3
    1と該台車31上で対向し昇降自在に支持される2個1
    組のV形ブロック32と33を直列に並置してなる搬送
    部3よりなり、前記測定部2の直上に管軸に対して垂直
    に昇降して管の全長に亘る各位置の外周面上で圧接して
    回転するタッチロールセンサ4と、管外面上に吸着した
    回転検出子を光ファイバーで検知して管の1回転を正確
    に検出する回転検出器5と、タッチローラの回転数と管
    の1回転の両検出値を入力して管の長手方向の個々の位
    置における円周長を演算し、標準仕様と比較して寸法検
    査の合否を出力する制御器6よりなることを特徴とする
    鋳鉄管の管寸法自動検査装置。
  2. 【請求項2】 請求項1において、タッチロールセンサ
    4は幅の狭いポリウレタン製のタッチローラ41と、該
    タッチローラ41を支点軸42から自重で揺動自在に吊
    支する長いアーム43と、タッチローラ41の回転軸4
    4の反対側に取り付けたパルス発振式のロータリーエン
    コーダ45と、該検知を受けて処理する制御器6へ接続
    する回路を具えたことを特徴とする鋳鉄管の管寸法自動
    検査装置。
  3. 【請求項3】 請求項1または2において、回転検出器
    5は鋳鉄管Pの外周面に向って進退自在、かつ離脱自在
    にホルダー51に挟持されるマグネット52と、該ホル
    ダー51の両側で対向する発光部53Aと受光部53B
    よりなる光ファイバー検知センサ53と、該検知を受け
    て処理するマイクロシーケンサ、高速カウンタ、主ケン
    サーを介して制御器6へ接続する回路を具えたことを特
    徴とする鋳鉄管の管寸法自動検査装置。
  4. 【請求項4】 請求項1乃至3の何れかにおいて、測定
    部2の管端の定位置で管内へ進退し管肉を隔てて対向す
    るコ形のレーザ発振子71より投射し、管の内外面から
    の反射波を捉えて管肉を演算するレーザギャップセンサ
    7を前記制御器6へ接続する回路を具えたことを特徴と
    する鋳鉄管の管寸法自動検査装置。
  5. 【請求項5】 請求項1乃至4の何れかにおいて、制御
    器6はタッチロールセンサ4のパルス列をカウントする
    高速のカウンタユニット61、およびレーザギャップセ
    ンサ7のアナログ変位値をデジタル変換するA/D変換
    ユニット62を組込んだCPUよりなり、さらに回転検
    出器5のパルス値をカウントする専用トリガ演算器63
    を別に具えて前記CPUへ入力することを特徴とする鋳
    鉄管の管寸法自動検査装置。
  6. 【請求項6】 請求項5において、レーザギャップセン
    サ7による管厚測定の直前に別の標準試料の測定によっ
    て気温変化に伴う変動量を吸収する補正係数を測定算出
    すると共に、タッチロールセンサ4の円周長さ測定を定
    回数繰り返す毎に別の標準試料を測定してタッチローラ
    41の摩耗に伴う変動量を吸収する補正係数を測定算出
    することを特徴とする鋳鉄管の管寸法自動検査装置。
JP34978595A 1995-12-20 1995-12-20 鋳鉄管の管寸法自動検査装置 Expired - Lifetime JP2932166B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34978595A JP2932166B2 (ja) 1995-12-20 1995-12-20 鋳鉄管の管寸法自動検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34978595A JP2932166B2 (ja) 1995-12-20 1995-12-20 鋳鉄管の管寸法自動検査装置

Publications (2)

Publication Number Publication Date
JPH09170912A true JPH09170912A (ja) 1997-06-30
JP2932166B2 JP2932166B2 (ja) 1999-08-09

Family

ID=18406103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34978595A Expired - Lifetime JP2932166B2 (ja) 1995-12-20 1995-12-20 鋳鉄管の管寸法自動検査装置

Country Status (1)

Country Link
JP (1) JP2932166B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243436A (ja) * 2001-02-22 2002-08-28 Ricoh Co Ltd 測定装置、測定方法、測定装置の動作制御方法及び測定制御ユニット
WO2004025214A1 (ja) * 2002-09-12 2004-03-25 Showa Denko K.K. 管体の形状測定方法および同装置
US6954991B2 (en) 2002-09-12 2005-10-18 Showa Denko K.K. Method and apparatus for measuring shape of tubular body
CN113203382A (zh) * 2021-06-09 2021-08-03 芜湖新兴铸管有限责任公司 Dn600-dn1200球墨铸管承口内径尺寸自动检测系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243436A (ja) * 2001-02-22 2002-08-28 Ricoh Co Ltd 測定装置、測定方法、測定装置の動作制御方法及び測定制御ユニット
WO2004025214A1 (ja) * 2002-09-12 2004-03-25 Showa Denko K.K. 管体の形状測定方法および同装置
US6954991B2 (en) 2002-09-12 2005-10-18 Showa Denko K.K. Method and apparatus for measuring shape of tubular body
CN113203382A (zh) * 2021-06-09 2021-08-03 芜湖新兴铸管有限责任公司 Dn600-dn1200球墨铸管承口内径尺寸自动检测系统

Also Published As

Publication number Publication date
JP2932166B2 (ja) 1999-08-09

Similar Documents

Publication Publication Date Title
JP5036714B2 (ja) 研削盤のための独立測定装置
CA1260867A (en) Method and apparatus for positioning and testing railroad wheels
JP4363830B2 (ja) 管体の形状測定方法、同装置、管体の検査方法、同装置、管体の製造方法および同システム
CN108722897A (zh) 金属长材在线探伤和修磨的方法及系统
JP6589913B2 (ja) 溶接管の形状寸法測定装置
JPH09170912A (ja) 鋳鉄管の管寸法自動検査装置
JP2734974B2 (ja) 管外周加工面の芯出し方法とその装置
CN115451777A (zh) 钢管管端壁厚的测量方法
JP6717287B2 (ja) 溶接管の溶接部の形状寸法測定装置
KR20210059938A (ko) 이송위치 정밀도가 개선된 와이어드럼 구동방식의 빌렛 표면 연마 장치
JP2000146564A (ja) 接触式管内径測定装置の精度確認装置
CN108891444B (zh) 一种在线动态测量列车车轮几何参数的装置及方法
JPH073327B2 (ja) 管状品の自動測定方法およびその装置
JPS62135712A (ja) 鉄道車輌用車輪測定装置
JP4391444B2 (ja) 成形システム
CN217343563U (zh) 一种连铸水口在线检测装置
JPH0432572Y2 (ja)
JPH0712501A (ja) 管体の形状測定装置
CN211121076U (zh) 基于钢管螺旋行进的端头壁厚测量系统
EP4130731A1 (en) Machine for inspecting a railway vehicle axle using eddy currents
CN108819981B (zh) 一种用于在线动态测量列车车轮几何参数的方法
CN109017871B (zh) 一种在线动态测量列车车轮几何参数的装置及方法
JPH0540408Y2 (ja)
JPH07243829A (ja) 溶接管の突き合わせ部オフセット量計測方法
CN116351904B (zh) 一种钨线损伤处理方法

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term