JPH09162020A - Manufacture of superconductor powder - Google Patents

Manufacture of superconductor powder

Info

Publication number
JPH09162020A
JPH09162020A JP8155248A JP15524896A JPH09162020A JP H09162020 A JPH09162020 A JP H09162020A JP 8155248 A JP8155248 A JP 8155248A JP 15524896 A JP15524896 A JP 15524896A JP H09162020 A JPH09162020 A JP H09162020A
Authority
JP
Japan
Prior art keywords
powder
superconductor
superconductor powder
fine powder
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8155248A
Other languages
Japanese (ja)
Inventor
Eiji Natori
名取英治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP8155248A priority Critical patent/JPH09162020A/en
Publication of JPH09162020A publication Critical patent/JPH09162020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen defects in superconductor powder and the internal stress of the powder, to inhibit the reduction in the critical temperature of the powder and at the same time, to enhance the stability of the powder by a method wherein the superconductor powder is manufactured by a melt spray method and this superconductor powder is subjected to heat treatment. SOLUTION: Gd2 O3 fine powder, BaLO3 X fine powder and CuO fine powder are mixed with each other and are dispersed and thereafter, the fine powder is melted in a platinum crucible. Then, a centrifugal spray device is rotated to make a molten material fall on a disc, the molten material is formed into spray and fine powder is obtained. A rationalization of the gain size and gain size distribution of the obtainable powder is easily contrived by adjusting the number of revolutions of the disc. The shape of the powder obtained at this time is formed into roughly a globular shape. Then, in a powdering, which is conducted by a centrifugal spray method, oxygen in the powder is not proper and moreover, as the structure of the powder is not stable, this powder is subjected to annealing treatment in an oxygen atmosphere and superconductor powder is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は超伝導体粉末の製造
方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing superconductor powder.

【0002】[0002]

【従来の技術】従来、磁束の制御や磁気の影響を受け易
い素子、装置を磁気から守るためのシールド材には、主
にパーマロイ、センダスト、純鉄等高透磁率材料が用い
られていた。また最近酸化物セラミック系超伝導物質に
高臨界温度のものが発見されるに至り超伝導体の完全反
磁性化(マイスナー効果)を利用したものが検討されつ
つある。中でも形状自由度、耐衝撃性、量産性に優れた
特徴を持つ超伝導体粉末を用いたバインダー結合型が注
目されている。このバインダー結合型シールド材に用い
る超伝導体粉末は焼成後のバルクを機械粉砕して作られ
る。
2. Description of the Related Art Conventionally, a high permeability material such as permalloy, sendust or pure iron has been mainly used as a shield material for controlling magnetic flux and protecting elements and devices susceptible to magnetism from magnetism. Also, recently, oxide ceramic superconductors having a high critical temperature have been discovered, and studies are being made on the use of perfect diamagnetization (Meissner effect) of superconductors. Above all, attention has been paid to a binder-bonded type using a superconductor powder having characteristics excellent in shape freedom, impact resistance, and mass productivity. The superconductor powder used for the binder-bonded shield material is produced by mechanically pulverizing the bulk after firing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら高透磁率
材料を用いた場合、材料の比透磁率や飽和磁束密度に制
限があるため確実に磁気をシールドする事は困難であっ
た。また酸化物セラミック系超伝導材料を用いた場合は
完全反磁性(マイスナー効果)を利用するためシールド
性は良いが超伝導体粉末の製造に機械粉砕法を用いると
粉末に欠陥や内部応力が発生するため臨界温度の低下を
招いたり水分により分解され易くなり安定性(耐環境
性)が悪いものとなっていた。
However, when a high magnetic permeability material is used, it is difficult to reliably shield the magnetism because the relative magnetic permeability and the saturation magnetic flux density of the material are limited. Also, when oxide ceramic superconducting material is used, the perfect diamagnetism (Meissner effect) is used, so the shielding property is good, but if mechanical pulverization method is used for manufacturing superconductor powder, defects and internal stress occur in the powder. As a result, the critical temperature is lowered and it is easily decomposed by water, resulting in poor stability (environmental resistance).

【0004】[0004]

【課題を解決するための手段】請求項1の発明は、溶融
噴霧法により超伝導体粉末を製造する工程と、前記超伝
導体粉末を熱処理する工程と、を有することを特徴とす
る超伝導体粉末の製造方法である。
The invention according to claim 1 has a step of producing a superconductor powder by a melt spraying method and a step of heat-treating the superconductor powder. It is a method for producing body powder.

【0005】請求項2の発明は、前記熱処理は、超伝導
体粉末中の酸素濃度を調整するとともに超伝導体粉末の
構造の安定化を図るように行われる請求項1に記載の超
伝導体粉末の製造方法である。
In the invention of claim 2, the heat treatment is performed so as to adjust the oxygen concentration in the superconductor powder and to stabilize the structure of the superconductor powder. It is a method for producing powder.

【0006】請求項3の発明は、前記熱処理は、酸素雰
囲気中で行われる請求項1または請求項2に記載の超伝
導体粉末の製造方法である。
A third aspect of the present invention is the method for producing superconductor powder according to the first or second aspect, wherein the heat treatment is performed in an oxygen atmosphere.

【0007】請求項4の発明は、前記超伝導体粉末は、
所定の粒度分布を持つほぼ球形のものである請求項1な
いし請求項3のいずれかに記載の超伝導体粉末の製造方
法である。
According to a fourth aspect of the invention, the superconductor powder comprises:
The method for producing a superconductor powder according to any one of claims 1 to 3, wherein the superconductor powder has a substantially spherical shape having a predetermined particle size distribution.

【0008】[0008]

【発明の実施の形態】以下実施例に従い本発明を詳細に
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to Examples.

【0009】Gd2 3 、BaCO3 、CuOの微粉末
を混合分散した後白金坩堝中に於て溶融する。この時の
Gd、Ba、Cuの割合はl:2:3であり溶融雰囲気
は空気中である。次に遠心噴霧装置の5000rpm〜
30000rpmで回転しているディスク上に該溶融物
を落下、噴霧化させ微粉末をえる。得られる粉末の粒径
をDとしディスクの回転数をRとしたときDとRには D=K、R-n(n<l) の関係が成立するためディスクの回転数を調整すること
により容易に粉末の粒度及び粒度分布の適正化を図るこ
とが出来るわけである。
Fine powders of Gd 2 O 3 , BaCO 3 and CuO are mixed and dispersed and then melted in a platinum crucible. At this time, the ratio of Gd, Ba, and Cu was 1: 2: 3, and the melting atmosphere was air. Next, from 5000 rpm of centrifugal atomizer
The melt is dropped and atomized on a disk rotating at 30,000 rpm to obtain a fine powder. When the particle diameter of the obtained powder is D and the rotational speed of the disk is R, the relationship of D = K and R −n (n <l) is established between D and R. Therefore, by adjusting the rotational speed of the disk, The particle size and particle size distribution of the powder can be easily optimized.

【0010】この時得られた粉末を顕微鏡観察したとこ
ろ形状はほぼ球形であり表面は滑らかなものであった。
When the powder obtained at this time was observed with a microscope, the shape was almost spherical and the surface was smooth.

【0011】次に、遠心噴霧法による粉末化は高温から
の急冷となり粉末中の酸素が適正でなく更に構造が安定
でないため該粉末を930℃酸素雰囲気中に於て8時間
アニール処理し超伝導体粉末を得る。これにバインダー
として、粉末の充填性が良いポリアミド(ナイロン)l
2の粉末を重量比でl0%加え混合分散して後2軸押出
混練機により2l0℃〜240℃に加熱しながら混練す
る。粉末は球形であり適正な粒度分布となっているため
樹脂中の超伝導粉末の分散性は良い。また混練中のモー
ター負荷が機械粉砕による粉末の時に比べ少ないことか
ら混練時に粉末に与える応力も少ないものと考えられ
る。次に混練物を射出成形機により成形しシールド材
(厚さ0.5mm)を得る。
Next, the powdering by the centrifugal atomization method is rapidly cooled from a high temperature, and the oxygen in the powder is not appropriate and the structure is not stable. Therefore, the powder is annealed in an oxygen atmosphere at 930 ° C. for 8 hours, and superconducting Obtain body powder. Polyamide (nylon) with good powder filling properties as a binder
The powder of No. 2 was added by 10% in weight ratio, mixed and dispersed, and then kneaded while being heated at 210 ° C to 240 ° C by a twin-screw extrusion kneader. Since the powder is spherical and has an appropriate particle size distribution, the superconducting powder in the resin has good dispersibility. Further, since the motor load during kneading is smaller than that of powder obtained by mechanical pulverization, it is considered that the stress given to the powder during kneading is also small. Next, the kneaded product is molded by an injection molding machine to obtain a shield material (thickness 0.5 mm).

【0012】得られた試料の臨界温度と安定性(耐環境
性)を調べた。安定性(耐環境性)試験は温度45℃湿
度85%雰囲気の恒温恒湿槽内にl000時間放置した
時の帯磁率の変化により判断した。帯磁率の測定温度は
77Kである。結果を機械粉砕により得た超伝導体粉末
を用いた従来例と共に表1に示した。臨界温度はエンド
ポイント(Tce)である。
The critical temperature and stability (environmental resistance) of the obtained sample were investigated. The stability (environmental resistance) test was judged by the change in magnetic susceptibility when left for 1000 hours in a thermo-hygrostat at a temperature of 45 ° C. and a humidity of 85%. The magnetic susceptibility measurement temperature is 77K. The results are shown in Table 1 together with the conventional example using the superconductor powder obtained by mechanical grinding. The critical temperature is the end point (Tce).

【0013】[0013]

【表1】 [Table 1]

【0014】表より判る様に本実施例によると安定性
(耐環境性)が大幅に向上するだけでなく臨界温度も向
上(従来例の機械粉砕前のバルクの状態に於ける臨界温
度とほぼ同じであるため低下していないといった方が適
切)している。
As can be seen from the table, according to this embodiment, not only the stability (environmental resistance) is greatly improved but also the critical temperature is improved (almost equal to the critical temperature in the bulk state before mechanical grinding in the conventional example). Since it is the same, it is more appropriate that it has not declined).

【0015】尚実施例では遠心噴霧による粉末化である
が高圧水噴霧(高圧水アトマイズ)、ガス噴霧(ガスア
トマイズ)、超音波ガス噴霧によるものでも効果は同じ
でありまたバインダーに熱化塑性樹脂であるポリアミド
を用いたが塗料系のバインダーであるテトラ−n−ブチ
ルチタネート、アルカリ金属珪酸塩や金属系の低融点バ
インダーであるPb−Sn合金、Zn合金等を用いても
効果は同じであり何等差し支えない。さらに実施例の超
伝導物質は酸化物であるがセラミック系超伝導材料であ
れば酸化物だけでなくどの物質にも本発明を適用出来
る。
In the examples, powdering is carried out by centrifugal spraying, but high pressure water spraying (high pressure water atomizing), gas spraying (gas atomizing) and ultrasonic gas spraying have the same effect. Although a certain polyamide is used, the same effect can be obtained by using a paint binder such as tetra-n-butyl titanate, an alkali metal silicate or a metal-based low melting point binder such as Pb-Sn alloy or Zn alloy. It doesn't matter. Further, the superconducting material of the embodiment is an oxide, but the present invention can be applied to any material other than the oxide as long as it is a ceramic superconducting material.

【0016】[0016]

【発明の効果】以上述べたように、本発明の超伝導体粉
末の製造方法によれば、超伝導体粉末の欠陥、内部応力
や歪を少なくできるため安定性(耐環境性)が大幅に向
上すると共に、臨界温度の低下も抑制することができ
る。また、熱処理することにより、溶融噴霧法で急冷さ
れた構造が不安定な超伝導体粉末を、安定な構造とする
ことができる。さらに、酸素濃度が目標値より低い超伝
導体粉末を、酸素雰囲気中で熱処理することにより、適
正な酸素濃度に調整することにより、臨界温度の低下を
抑えるという優れた効果を奏する。
As described above, according to the method for producing superconductor powder of the present invention, defects (internal stress and strain) of the superconductor powder can be reduced, so that stability (environmental resistance) is significantly improved. It is possible to improve and to suppress the decrease of the critical temperature. Further, by heat treatment, the superconductor powder that is rapidly cooled by the melt spraying method and has an unstable structure can have a stable structure. Furthermore, the superconducting powder having an oxygen concentration lower than the target value is heat-treated in an oxygen atmosphere to adjust the oxygen concentration to an appropriate value, thereby exhibiting an excellent effect of suppressing a decrease in the critical temperature.

【0017】[0017]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 565 H01B 13/00 565D H01L 39/00 ZAA H01L 39/00 ZAAS H05K 9/00 ZAA H05K 9/00 ZAAW ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01B 13/00 565 H01B 13/00 565D H01L 39/00 ZAA H01L 39/00 ZAAS H05K 9/00 ZAA H05K 9/00 ZAAW

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 溶融噴霧法により超伝導体粉末を製造す
る工程と、 前記超伝導体粉末を熱処理する工程と、 を有することを特徴とする超伝導体粉末の製造方法。
1. A method for producing superconductor powder, comprising: a step of producing a superconductor powder by a melt spraying method; and a step of heat-treating the superconductor powder.
【請求項2】 前記熱処理は、超伝導体粉末中の酸素濃
度を調整するとともに超伝導体粉末の構造の安定化を図
るように行われる請求項1に記載の超伝導体粉末の製造
方法。
2. The method for producing a superconductor powder according to claim 1, wherein the heat treatment is performed so as to adjust the oxygen concentration in the superconductor powder and stabilize the structure of the superconductor powder.
【請求項3】 前記熱処理は、酸素雰囲気中で行われる
請求項1または請求項2に記載の超伝導体粉末の製造方
法。
3. The method for producing a superconductor powder according to claim 1, wherein the heat treatment is performed in an oxygen atmosphere.
【請求項4】 前記超伝導体粉末は、所定の粒度分布を
持つほぼ球形のものである請求項1ないし請求項3のい
ずれかに記載の超伝導体粉末の製造方法。
4. The method for producing a superconductor powder according to claim 1, wherein the superconductor powder has a substantially spherical shape having a predetermined particle size distribution.
JP8155248A 1996-06-17 1996-06-17 Manufacture of superconductor powder Pending JPH09162020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8155248A JPH09162020A (en) 1996-06-17 1996-06-17 Manufacture of superconductor powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8155248A JPH09162020A (en) 1996-06-17 1996-06-17 Manufacture of superconductor powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62280505A Division JP2570326B2 (en) 1987-11-06 1987-11-06 Manufacturing method of shielding material

Publications (1)

Publication Number Publication Date
JPH09162020A true JPH09162020A (en) 1997-06-20

Family

ID=15601779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8155248A Pending JPH09162020A (en) 1996-06-17 1996-06-17 Manufacture of superconductor powder

Country Status (1)

Country Link
JP (1) JPH09162020A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285158A (en) * 1987-05-18 1988-11-22 Sumitomo Electric Ind Ltd Production of superconductive material
JPS6414149A (en) * 1987-07-08 1989-01-18 Toshiba Corp Production of oxide superconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285158A (en) * 1987-05-18 1988-11-22 Sumitomo Electric Ind Ltd Production of superconductive material
JPS6414149A (en) * 1987-07-08 1989-01-18 Toshiba Corp Production of oxide superconductor

Similar Documents

Publication Publication Date Title
JP2001516142A (en) Nanocrystallite powder based varistor formed by mechanical grinding
JPH02153803A (en) Oxide superconductor bulk material and production thereof
JP2871258B2 (en) Oxide superconductor and manufacturing method thereof
JP2839415B2 (en) Method for producing rare earth superconducting composition
US5395820A (en) Oxide superconductor and process for producing the same
EP0493007B1 (en) Rare earth oxide superconducting material and process for producing the same
JPH09162020A (en) Manufacture of superconductor powder
JP2570326B2 (en) Manufacturing method of shielding material
US5413981A (en) Oxide superconductor and a method for manufacturing an oxide superconductor
JP3160028B2 (en) Method for producing bismuth-based oxide superconducting whiskers
JP2931446B2 (en) Method for producing rare earth oxide superconductor
JPH07242424A (en) Oxide superconducting structure and production thereof
JPH0517155A (en) Platinum-containing bismuth-based oxide superconductor and production thereof
JP2004203727A (en) Oxide superconductor having high critical current density
JPH03141611A (en) Fineparticle organization mn-zn ferrite material and its manufacture
JPH0672712A (en) Oxide superconducting material containing rare-earth element and its production
JP3338461B2 (en) Oxide superconductor and manufacturing method thereof
JPH0337105A (en) Production of oxide superconductor
JPH04124033A (en) Vanadium-containing superconducting substance and its production
JPS63138707A (en) Manufacture of rco5-type rare earth alloy powder for production of rare earth bond magnet
JPH05279027A (en) Rare-earth superconductor
JPH04124013A (en) Oxide superconductor
JPH01124917A (en) Manufacture of wire material
JPH01201062A (en) Production of ceramic superconducting material
JPH09118522A (en) Oxide superconductor having high critical current density