JPH09161817A - Method of inspecting quality of lithium primary battery - Google Patents

Method of inspecting quality of lithium primary battery

Info

Publication number
JPH09161817A
JPH09161817A JP32142895A JP32142895A JPH09161817A JP H09161817 A JPH09161817 A JP H09161817A JP 32142895 A JP32142895 A JP 32142895A JP 32142895 A JP32142895 A JP 32142895A JP H09161817 A JPH09161817 A JP H09161817A
Authority
JP
Japan
Prior art keywords
battery
circuit voltage
voltage
electric capacity
temporary discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32142895A
Other languages
Japanese (ja)
Inventor
Hiroshi Hamada
浩 濱田
Akihide Izumi
彰英 泉
Yasuhiro Ishiguro
康裕 石黒
Masaaki Suzuki
正章 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP32142895A priority Critical patent/JPH09161817A/en
Publication of JPH09161817A publication Critical patent/JPH09161817A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely eliminate, as defective, an abnormal product which does not reveal an abnormality until a certain period later after the assembling. SOLUTION: A battery is assembled, and thereafter, 1-5% of the electric capacity of this battery is temporarily discharged. This battery is then aged, and at a point of time when a prescribed inspection period (for example, within three weeks) passed from the temporary discharge, whether the open circuit voltage of the battery is within a prescribed standard voltage range or not is judged, and whether the close circuit voltage of the battery is a prescribed standard voltage or more is also judged. Thus, an abnormal product by moisture inclusion can be judged by the close circuit voltage inspection, and abnormal products other than it can be judged by the open circuit voltage inspection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム一次電池
の製造過程において適用するに好適なリチウム一次電池
の品質検査方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quality inspection method for a lithium primary battery, which is suitable for application in the manufacturing process of a lithium primary battery.

【0002】[0002]

【従来の技術】従来、リチウム一次電池の品質を検査す
る際には、電池を組み立てた後、常温または高温(60
℃程度)で2〜4週間エージングを行なってから電池の
電圧または内部抵抗を測定し、その測定値を基準値と比
較して良否判定を行なう方法が広く採用されていた。
2. Description of the Related Art Conventionally, when inspecting the quality of a lithium primary battery, after assembling the battery, the temperature is set to room temperature or high temperature (60
A method of carrying out aging at about (° C.) For 2 to 4 weeks, measuring the voltage or internal resistance of the battery, and comparing the measured value with a reference value to judge acceptability is widely adopted.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これで
は電池の組立直後に内部短絡あるいは外部短絡が生じて
いる欠陥品や密閉状態が悪い不具合品は除去できるもの
の、電池を組み立ててから一定期間経過後に初めて異常
が現れる異常品(例えば、水分その他微量の鉄、銅、亜
鉛粉などの不純物が混入したため電池内部で化学変化を
起こし、電池を組み立ててから一定期間が経過した時点
で負極表面が酸化したり、内部短絡などの異常を来すも
の)については、必ずしもこれを不良品として排除する
ことができない。
However, this allows removal of defective products having internal short-circuit or external short-circuit immediately after assembly of the battery or defective products with poor sealing condition, but after a certain period of time has passed since the battery was assembled. Abnormal products that show abnormalities for the first time (for example, water and trace amounts of impurities such as iron, copper, zinc powder, etc. are mixed in, causing a chemical change inside the battery, and the negative electrode surface is oxidized when a certain period of time has passed after the battery was assembled. Or an abnormality such as an internal short circuit) cannot always be excluded as a defective product.

【0004】そのため、出荷する電池の中には、要求さ
れた性能レベルを十分に満足することができない不具合
品が混入する恐れがあり、多直形態で出荷する電池(大
型スパイラル形リチウム一次電池など)については、不
良品の混入によって使用時に過放電状態となる電池が安
全弁を作動し、電解液の吹き出しによる機器の損傷を招
く恐れがある等の不都合があった。
Therefore, there is a possibility that defective products that cannot sufficiently satisfy the required performance level may be mixed in the batteries to be shipped, and batteries to be shipped in a multi-rectangular form (such as large spiral lithium primary batteries) ), There is a problem that a battery which is in an over-discharged state during use due to mixing of defective products operates a safety valve, which may lead to damage of the device due to ejection of an electrolytic solution.

【0005】本発明は、上記事情に鑑み、電池を組み立
ててから一定期間経過後に初めて異常が現れる異常品を
も確実に排除することが可能なリチウム一次電池の品質
検査方法を提供することを目的とする。
In view of the above circumstances, it is an object of the present invention to provide a quality inspection method for a lithium primary battery, which is capable of surely removing an abnormal product that does not appear abnormal after a certain period of time has passed since the battery was assembled. And

【0006】[0006]

【課題を解決するための手段】すなわち本発明によるリ
チウム一次電池の品質検査方法は、電池を組み立て、そ
の後、この電池の電気容量の1〜5%を一時放電し、次
いで、この電池のエージングを行ない、一時放電から所
定の検査期間(例えば、3週間以内)が経過した時点
で、この電池の開路電圧が所定の基準開路電圧範囲内に
あるか否かを判定すると共に、この電池の閉路電圧が所
定の基準閉路電圧以上であるか否かを判定するようにし
て構成される。
That is, the quality inspection method for a lithium primary battery according to the present invention is to assemble a battery, then temporarily discharge 1 to 5% of the electric capacity of the battery, and then age the battery. When a predetermined inspection period (for example, within 3 weeks) has passed from the temporary discharge, it is determined whether the open circuit voltage of the battery is within a predetermined reference open circuit voltage range, and the closed circuit voltage of the battery is determined. Is configured to determine whether is equal to or higher than a predetermined reference closed circuit voltage.

【0007】なお、電圧の測定順序については、閉路電
圧の変動による影響を避けるため開路電圧の測定後に閉
路電圧を測定するのが望ましい。
Regarding the order of measuring the voltage, it is desirable to measure the closed circuit voltage after measuring the open circuit voltage in order to avoid the influence of the fluctuation of the closed circuit voltage.

【0008】ここで、一時放電量を電気容量の1〜5%
に限定したのは次のような理由による。すなわち、一時
放電量が電気容量の1%未満である場合には、一時放電
後の電圧回復において良品と不良品との差が明確に発現
せず、逆に一時放電量が電気容量の5%を越えると、容
量損失が大きくなり、放電性能が劣化し、更に一時放電
量が電気容量の8%を越えると、容量損失による性能劣
化に加えて、一時放電後の電圧が良品、不良品ともに安
定し、良品と不良品との差が不明瞭となるためである。
Here, the temporary discharge amount is 1 to 5% of the electric capacity.
The reason is limited to the following reasons. That is, when the temporary discharge amount is less than 1% of the electric capacity, the difference between the good product and the defective product does not clearly appear in the voltage recovery after the temporary discharge, and conversely, the temporary discharge amount is 5% of the electric capacity. If it exceeds, the capacity loss becomes large and the discharge performance deteriorates. Furthermore, if the temporary discharge amount exceeds 8% of the electric capacity, in addition to the performance deterioration due to the capacity loss, the voltage after temporary discharge is good or bad. This is because it is stable and the difference between a good product and a defective product is unclear.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施形態について
説明する。本発明によるリチウム一次電池の品質検査方
法は次の手順で行なわれる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. The quality inspection method for a lithium primary battery according to the present invention is performed in the following procedure.

【0010】まず電池を組み立て、その後、この電池の
電気容量の1〜5%を一時放電する。すると、実際に電
池内部で反応が起こる。
First, a battery is assembled, and then 1 to 5% of the electric capacity of the battery is temporarily discharged. Then, the reaction actually occurs inside the battery.

【0011】次いで、この電池のエージングを行なう。
この際、電池内部の異常の有無によって電池電圧の回復
具合に差が現れるので、一時放電から所定の検査期間が
経過した時点で次の2種類の検査(開路電圧検査および
閉路電圧検査)を実施する。
Next, this battery is aged.
At this time, since there is a difference in how the battery voltage recovers depending on the presence or absence of an abnormality inside the battery, the following two types of inspection (open circuit voltage inspection and closed circuit voltage inspection) are performed when the predetermined inspection period elapses from the temporary discharge. To do.

【0012】まず、水分混入による異常品以外の異常品
を不良品として排除するため、この電池の開路電圧が所
定の基準開路電圧範囲(例えば、3.22〜3.35
V)内にあるか否かを判定する。即ち、正常品の開路電
圧はこの基準開路電圧範囲内に納まるのに対して、水分
混入による異常品以外の異常品については、その開路電
圧が基準開路電圧範囲から外れるので、この開路電圧検
査によって排除することができる。
First, in order to exclude defective products other than defective products due to water contamination as defective products, the open circuit voltage of this battery is within a predetermined reference open circuit voltage range (for example, 3.22 to 3.35).
V) is determined. That is, the open circuit voltage of a normal product falls within this reference open circuit voltage range, whereas the open circuit voltage of abnormal products other than the abnormal product due to water contamination falls outside the reference open circuit voltage range. Can be eliminated.

【0013】次いで、水分混入による異常品を不良品と
して排除するため、この電池の閉路電圧が所定の基準閉
路電圧(例えば、3.14V)以上であるか否かを判定
する。即ち、正常品はこの基準閉路電圧以上の閉路電圧
を維持するのに対して、水分混入による異常品について
は、その閉路電圧が基準閉路電圧未満となるので、この
閉路電圧検査によって排除することができる。
Next, in order to exclude an abnormal product due to water contamination as a defective product, it is determined whether or not the closed circuit voltage of this battery is equal to or higher than a predetermined reference closed circuit voltage (for example, 3.14V). That is, a normal product maintains a closed circuit voltage equal to or higher than the reference closed circuit voltage, whereas an abnormal product due to water contamination has a closed circuit voltage lower than the reference closed circuit voltage. it can.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は一時放電量を電気容量の0.5%としたと
きの電圧推移を示すグラフ、図2は一時放電量を電気容
量の1.5%としたときの電圧推移を示すグラフ、図3
は一時放電量を電気容量の3%としたときの電圧推移を
示すグラフ、図4は一時放電量を電気容量の8%とした
ときの電圧推移を示すグラフ、図5は一時放電量と放電
性能との関係を示すグラフ、図6は一時放電量を電気容
量の1.5%としたときの水分混入異常品と正常品の閉
路電圧の推移を示すグラフである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a graph showing a voltage transition when the temporary discharge amount is 0.5% of the electric capacity, and FIG. 2 is a graph showing a voltage transition when the temporary discharge amount is 1.5% of the electric capacity.
Is a graph showing the voltage transition when the temporary discharge amount is 3% of the electric capacity, FIG. 4 is a graph showing the voltage transition when the temporary discharge amount is 8% of the electric capacity, and FIG. 5 is the temporary discharge amount and the discharge. FIG. 6 is a graph showing the relationship with the performance, and FIG. 6 is a graph showing the transition of the closed circuit voltage of the abnormal water-mixed product and the normal product when the temporary discharge amount is set to 1.5% of the electric capacity.

【0015】<実施例1>CR14H(直径25.5m
m、高さ50mm)の二酸化マンガンリチウム電池を組み
立てた後、電気容量の1.5%を一時放電し、3週間に
亙って個々の電池の開路電圧および閉路電圧(40Ω、
0.2秒後)を測定した。なお測定は、放電翌日(1回
目)、放電1週間後(2回目)、放電2週間後(3回
目)および放電3週間後(4回目)に実施し、良品と不
良品の判定基準は、電圧が前回測定時より−10mV以上
回復することとした。その結果をそれぞれ図2および図
6に示す。
<Example 1> CR14H (diameter 25.5 m
After assembling a lithium manganese dioxide battery (m, height 50 mm), 1.5% of the electric capacity was temporarily discharged, and the open circuit voltage and closed circuit voltage (40 Ω, 40 Ω of each battery) were maintained for 3 weeks.
After 0.2 seconds) was measured. The measurement was performed the day after discharge (first time), one week after discharge (second time), two weeks after discharge (third time), and three weeks after discharge (fourth time). It was decided that the voltage would recover by -10 mV or more from the previous measurement. The results are shown in FIGS. 2 and 6, respectively.

【0016】図2から明らかなように、良品の平均的な
電圧の推移を示すグラフ(実線)に対して、正極側に銅
粉、鉄粉、亜鉛粉などの不純物が混入し、内部短絡に至
った不良品(B)およびセパレータに孔があいた不良品
(C、D)は、それぞれ電圧の回復具合に明確な差が認
められた。
As is clear from FIG. 2, impurities such as copper powder, iron powder, and zinc powder are mixed in the positive electrode side with respect to the graph (solid line) showing the average voltage transition of non-defective products, which causes an internal short circuit. A clear difference was observed in the degree of voltage recovery between the reached defective product (B) and the defective product (C, D) having holes in the separator.

【0017】また、図6から明らかなように、封口不十
分で外部から水分が混入した不良品(A)は、閉路電圧
が低く、良品と明確な差が認められた。
Further, as is apparent from FIG. 6, the defective product (A) in which the sealing was insufficient and water was mixed in from the outside had a low closed circuit voltage, and a clear difference from the non-defective product was recognized.

【0018】<実施例2>一時放電量を電気容量の3%
としたこと以外は上述の実施例1と同様にして電圧検査
を行なった。その結果を図3に示す。
<Embodiment 2> The amount of temporary discharge is 3% of the electric capacity.
A voltage test was performed in the same manner as in Example 1 except for the above. The result is shown in FIG.

【0019】図3から明らかなように、良品の平均的な
電圧の推移を示すグラフ(実線)に対して、正極側に銅
粉、鉄粉、亜鉛粉などの不純物が混入し、内部短絡に至
った不良品(B)およびセパレータに孔があいた不良品
(C、D)は、それぞれ電圧の回復具合に明確な差が認
められた。
As is clear from FIG. 3, impurities such as copper powder, iron powder, and zinc powder are mixed in the positive electrode side with respect to the graph (solid line) showing the average voltage transition of non-defective products, which causes an internal short circuit. A clear difference was observed in the degree of voltage recovery between the reached defective product (B) and the defective product (C, D) having holes in the separator.

【0020】また、閉路電圧について、実施例1同様、
封口不十分で外部から水分が混入した不良品(A)と良
品とで明確な差が認められた。
Regarding the closed circuit voltage, as in the first embodiment,
A clear difference was observed between the defective product (A) in which the sealing was insufficient and water was mixed in from the outside and the non-defective product.

【0021】<比較例1>一時放電量を電気容量の0.
5%としたこと以外は上述の実施例1と同様にして電圧
検査を行なった。その結果を図1に示す。
<Comparative Example 1> A temporary discharge amount of 0.
A voltage test was performed in the same manner as in Example 1 except that the content was 5%. The result is shown in FIG.

【0022】図1から明らかなように、良品の平均的な
電圧の推移を示すグラフ(実線)に対して、セパレータ
に孔があいた不良品(C、D)は電圧の回復具合に差が
認められたが、封口不十分で外部から水分が混入した不
良品(A)および正極側に銅粉が不純物として混入した
不良品(B)については電圧の回復具合に殆ど差が認め
られなかった。
As is apparent from FIG. 1, in contrast to the graph (solid line) showing the average voltage transition of non-defective products, the defective products (C, D) with holes in the separator show a difference in the degree of voltage recovery. However, there was almost no difference in voltage recovery between the defective product (A) in which water was mixed from the outside due to insufficient sealing and the defective product (B) in which copper powder was mixed as an impurity on the positive electrode side.

【0023】<比較例2>一時放電量を電気容量の8%
としたこと以外は上述の実施例1と同様にして電圧検査
を行なった。その結果を図4に示す。
<Comparative Example 2> The amount of temporary discharge is 8% of the electric capacity.
A voltage test was performed in the same manner as in Example 1 except for the above. FIG. 4 shows the results.

【0024】図4から明らかなように、良品の平均的な
電圧の推移を示すグラフ(実線)に対して、封口不十分
で外部から水分が混入した不良品(A)、正極側に銅粉
等の不純物が混入した不良品(B)およびセパレータに
孔があいた不良品(C、D)はいずれも電圧の回復具合
に明確な差が認められなかった。一方、閉路電圧につい
ては、正極側に銅粉等の不純物が混入した不良品(B)
において、一時放電後、良品の電圧と明確な差が認めら
れるまでかなりの時間を要するため厳密な判別が不可能
であった。
As is clear from FIG. 4, in contrast to the graph (solid line) showing the average voltage transition of non-defective products, defective products (A) in which water was mixed from the outside due to insufficient sealing and copper powder on the positive electrode side No clear difference was found in the degree of voltage recovery between the defective product (B) in which impurities such as the above were mixed and the defective product (C, D) in which the separator had holes. On the other hand, regarding the closed circuit voltage, a defective product (B) in which impurities such as copper powder were mixed into the positive electrode side
However, since it took a considerable time after the temporary discharge until a clear difference from the voltage of the non-defective product was recognized, it was impossible to make a strict determination.

【0025】また、一時放電量が放電性能に及ぼす影響
をみるため、一時放電量を電気容量の5%、10%とし
たときの放電性能を求め、一時放電しないときを100
%とする指数で表現した。その結果を図5に示す。図5
から明らかなように、一時放電量が電気容量の5%を越
えると、放電性能の劣化が顕著となり、実用性に乏しく
なる。
Further, in order to see the influence of the temporary discharge amount on the discharge performance, the discharge performance is obtained when the temporary discharge amount is 5% and 10% of the electric capacity, and 100 is obtained when the temporary discharge is not performed.
Expressed as an index. The result is shown in FIG. FIG.
As is clear from the above, when the amount of temporary discharge exceeds 5% of the electric capacity, the discharge performance is significantly deteriorated and the practicality becomes poor.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、電
池を組み立て、その後、この電池の電気容量の1〜5%
を一時放電し、次いで、この電池のエージングを行な
い、一時放電から所定の検査期間(例えば、3週間以
内)が経過した時点で、この電池の開路電圧が所定の基
準開路電圧範囲内にあるか否かを判定すると共に、この
電池の閉路電圧が所定の基準閉路電圧以上であるか否か
を判定するようにして構成したので、一時放電によって
実際に電池内部で反応が起こり、内部の異常が電圧の回
復具合に差をもたらすため、水分混入による異常品につ
いては閉路電圧検査で良否を判定することができ、それ
以外の異常品については開路電圧検査で良否を判定する
ことができることから、電池を組み立ててから一定期間
経過後に初めて異常が現れる不良品をも確実に排除する
ことが可能となる。その結果、特に電池を多直形態で出
荷する場合においても、不良品の混入による、使用時の
電池の過放電による安全弁の作動およびこれに伴なう電
解液吹き出しによる機器損傷の恐れのない、信頼性の高
い電池を供給することができる。
As described above, according to the present invention, a battery is assembled and then 1 to 5% of the electric capacity of the battery is assembled.
Is temporarily discharged, then the battery is aged, and when the predetermined inspection period (for example, within 3 weeks) has passed from the temporary discharge, is the open circuit voltage of the battery within the predetermined reference open circuit voltage range? Since it is configured to determine whether or not the closed circuit voltage of the battery is equal to or higher than a predetermined reference closed circuit voltage, a reaction actually occurs inside the battery due to temporary discharge, and an internal abnormality occurs. Since it causes a difference in the degree of voltage recovery, it is possible to determine pass / fail by the closed-circuit voltage inspection for abnormal products due to water contamination, and it is possible to determine pass / fail by the open-circuit voltage inspection for other abnormal products. It is possible to reliably exclude defective products that appear abnormal only after a certain period of time has passed since the assembly. As a result, even when the battery is shipped in a multi-rectangular form, there is no risk of equipment damage due to the operation of the safety valve due to the over discharge of the battery during use and the accompanying electrolyte discharge due to the mixing of defective products, A battery with high reliability can be supplied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一時放電量を電気容量の0.5%としたときの
電圧推移を示すグラフである。
FIG. 1 is a graph showing a voltage transition when a temporary discharge amount is 0.5% of an electric capacity.

【図2】一時放電量を電気容量の1.5%としたときの
電圧推移を示すグラフである。
FIG. 2 is a graph showing a voltage transition when the amount of temporary discharge is 1.5% of the electric capacity.

【図3】一時放電量を電気容量の3%としたときの電圧
推移を示すグラフである。
FIG. 3 is a graph showing a voltage transition when the amount of temporary discharge is 3% of the electric capacity.

【図4】一時放電量を電気容量の8%としたときの電圧
推移を示すグラフである。
FIG. 4 is a graph showing a voltage transition when a temporary discharge amount is 8% of an electric capacity.

【図5】一時放電量と放電性能との関係を示すグラフで
ある。
FIG. 5 is a graph showing a relationship between a temporary discharge amount and discharge performance.

【図6】一時放電量を電気容量の1.5%としたときの
水分混入異常品と正常品の閉路電圧の推移を示すグラフ
である。
FIG. 6 is a graph showing changes in closed circuit voltage of a water-mixed abnormal product and a normal product when the amount of temporary discharge is set to 1.5% of the electric capacity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 正章 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaaki Suzuki 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電池を組み立て、 その後、この電池の電気容量の1〜5%を一時放電し、 次いで、この電池のエージングを行ない、 一時放電から所定の検査期間が経過した時点で、この電
池の開路電圧が所定の基準開路電圧範囲内にあるか否か
を判定すると共に、この電池の閉路電圧が所定の基準閉
路電圧以上であるか否かを判定するようにして構成した
リチウム一次電池の品質検査方法。
1. A battery is assembled, and then 1 to 5% of the electric capacity of the battery is temporarily discharged. Then, the battery is aged. When a predetermined inspection period has elapsed from the temporary discharge, the battery is discharged. Of the lithium primary battery configured so as to determine whether or not the open circuit voltage of the battery is within a predetermined reference open circuit voltage range, and whether or not the closed circuit voltage of the battery is equal to or higher than a predetermined reference closed circuit voltage. Quality inspection method.
【請求項2】 検査期間が3週間以内であることを特徴
とする請求項1記載のリチウム一次電池の品質検査方
法。
2. The quality inspection method for a lithium primary battery according to claim 1, wherein the inspection period is within 3 weeks.
JP32142895A 1995-12-11 1995-12-11 Method of inspecting quality of lithium primary battery Pending JPH09161817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32142895A JPH09161817A (en) 1995-12-11 1995-12-11 Method of inspecting quality of lithium primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32142895A JPH09161817A (en) 1995-12-11 1995-12-11 Method of inspecting quality of lithium primary battery

Publications (1)

Publication Number Publication Date
JPH09161817A true JPH09161817A (en) 1997-06-20

Family

ID=18132445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32142895A Pending JPH09161817A (en) 1995-12-11 1995-12-11 Method of inspecting quality of lithium primary battery

Country Status (1)

Country Link
JP (1) JPH09161817A (en)

Similar Documents

Publication Publication Date Title
US10794960B2 (en) Method and apparatus for detecting low voltage defect of secondary battery
JP2010091520A (en) Battery module abnormality detection circuit, and detection method therefor
JP2010231948A (en) Method for inspecting internal short circuit of battery
KR20080073652A (en) Evaluation method and evaluation apparatus for evaluating battery safety, and battery whose safety indices have been determined with the same
US20150212162A1 (en) Short-circuit inspection method for secondary cell
US7239147B2 (en) Method and device for inspecting secondary battery precursor and method for manufacturing secondary battery using the inspection method
WO2019229651A1 (en) Method and system for detecting internal short‐circuit (isc) in batteries and battery cells implementing such isc detection method
KR102408132B1 (en) Method for testing pressure short defect by jig pressing
JPWO2006075740A1 (en) Quality determination method and quality determination device for lead acid battery
JP4887581B2 (en) Battery inspection method and inspection apparatus
CN114846347A (en) Battery inspection device
JP2004132776A (en) Inspection method of battery
WO2022065636A1 (en) Method for detecting low voltage battery cell
CN108027406A (en) method for monitoring battery pack
KR20160088890A (en) Method for the in-situ recalibration of a comparison electrode incorporated into an electrochemical system
JPH09161817A (en) Method of inspecting quality of lithium primary battery
JP2000195565A (en) Inspection method of secondary battery
JPH07147165A (en) Method for detecting abnormality of lithium battery
JP3196071B2 (en) Short-circuit inspection method for alkaline secondary batteries
CN110707387A (en) Self-discharge screening method for lithium iron phosphate core
JP2000329834A (en) Battery deterioration detection method and device thereof
CN112379271B (en) Passivation-considered capacity detection method for carbon-coated lithium thionyl chloride battery
JP2002313435A (en) Battery inspection method
JP2023525963A (en) Micro-short circuit detection method, test stand, and production line
JP4436947B2 (en) Battery pack and voltage balance measuring device