JP2010231948A - Method for inspecting internal short circuit of battery - Google Patents

Method for inspecting internal short circuit of battery Download PDF

Info

Publication number
JP2010231948A
JP2010231948A JP2009076452A JP2009076452A JP2010231948A JP 2010231948 A JP2010231948 A JP 2010231948A JP 2009076452 A JP2009076452 A JP 2009076452A JP 2009076452 A JP2009076452 A JP 2009076452A JP 2010231948 A JP2010231948 A JP 2010231948A
Authority
JP
Japan
Prior art keywords
battery
internal short
short circuit
batteries
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009076452A
Other languages
Japanese (ja)
Inventor
Masahiro Iwamoto
将大 岩本
Yasushi Matsukawa
靖 松川
Yuichi Itoi
雄一 井樋
Original Assignee
Primearth Ev Energy Co Ltd
プライムアースEvエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth Ev Energy Co Ltd, プライムアースEvエナジー株式会社 filed Critical Primearth Ev Energy Co Ltd
Priority to JP2009076452A priority Critical patent/JP2010231948A/en
Publication of JP2010231948A publication Critical patent/JP2010231948A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inspecting the internal short circuit of a battery capable of inspecting the presence of the internal short circuit of the battery in high reliability based on the voltage change of the battery. <P>SOLUTION: Electrodes having the same polarity of a plurality of batteries 110s, 110a to 110e are electrically connected, one of the plurality of batteries is used as a standard, the voltage difference between the electrode of the battery 110s used as the standard and opened other electrodes of the batteries 110a to 110e other than the battery 110s is measured, and the presence of the internal short circuit of the batteries 110a to 110e other than the battery 110s used as the standard is inspected based on the measured voltage difference. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電池内部での微小短絡の有無を検査する電池の内部短絡検査方法に関するものである。   The present invention relates to a battery internal short circuit inspection method for inspecting the presence or absence of a micro short circuit inside a battery.
上記検査対象とする電池、例えばマンガン乾電池やアルカリ乾電池等の一次電池をはじめ、ニッケルカドミウム電池、ニッケル水素電池やリチウムイオン電池等の二次電池(蓄電池)に代表される密閉型電池は、通信機器やOA機器といったポータブル機器用の電源として幅広く用いられている。また、特にニッケル水素電池やリチウムイオン電池等の二次電池は、電気自動車用電池、ハイブリッド自動車用電池、あるいは夜間電力貯蔵用電池としても用いられており、より大容量、高出力であるとともに、長期間の放置でも容量低下や内部抵抗の上昇が少ないなどの特性が要求されている。   Sealed batteries typified by secondary batteries (storage batteries) such as primary batteries such as manganese dry batteries and alkaline dry batteries, nickel cadmium batteries, nickel metal hydride batteries and lithium ion batteries, are the communication devices. And widely used as a power source for portable devices such as OA devices. In particular, secondary batteries such as nickel metal hydride batteries and lithium ion batteries are also used as batteries for electric vehicles, batteries for hybrid vehicles, or batteries for nighttime power storage, with higher capacity and higher output, Characteristics such as a decrease in capacity and a small increase in internal resistance are required even when left for a long period of time.
そして、これらの電池の多くは、正極と負極とをセパレータにより隔離してこれらを渦巻き状に捲回した、あるいは正極と負極とを隔離するようにセパレータを配して積層した電極群を金属製もしくは樹脂製のケースに挿入後、ケース内に電解液を注入し、封口板でケースの上部を密閉することによって製造される。   In many of these batteries, a positive electrode and a negative electrode are separated by a separator and wound in a spiral shape, or an electrode group in which separators are arranged and separated so as to separate the positive electrode and the negative electrode are made of metal. Or after inserting in a resin-made case, electrolyte solution is inject | poured in a case and the upper part of a case is sealed with a sealing board.
このようにして製造される電池は、正極、負極の電極間が非常に薄いセパレータによって隔離されているため、電極群を作成する際に、電極の切断面のバリや活物質の脱落物などがセパレータを突き破って電極間を微小短絡させることがある。また、活物質材料の製造工程中に金属不純物や電池製造設備の金属摩耗くずなどが正極に混入した場合には、充電時に正極の電位によってそれらが電気化学的に溶解され、電解液中を拡散して負極に到達し、負極の電位でデンドライト析出して電極間を微小短絡させることがある。このように正極、負極が内部で微小短絡した電池は、充電後しばらく放置すると放電容量が大きく低下してしまうため、製造段階でこのような電池を選別する必要がある。また、ニッケル水素蓄電池やリチウムイオン蓄電池は通常、数セル〜数十セル、多い場合には数百セルを直列に接続した組電池で使用されることが多く、その組電池中に1セルでも内部短絡した電池が含まれていた場合には、放置によって1セルだけ放電容量が下がったり、電圧が下がったりするため、使用中に1セルだけ過放電や逆充電の状態になることがあり、電池の安定性という点からも好ましくない。   In the battery manufactured in this way, the positive electrode and the negative electrode are separated by a very thin separator. Therefore, when forming an electrode group, there are burrs on the cut surface of the electrode, fallen off active materials, etc. There is a case where the separator is broken to make a short circuit between the electrodes. In addition, if metal impurities or metal wear debris from battery manufacturing equipment enter the positive electrode during the manufacturing process of the active material, they are dissolved electrochemically by the potential of the positive electrode during charging and diffuse in the electrolyte. May reach the negative electrode, and dendrite precipitates at the potential of the negative electrode, causing a short circuit between the electrodes. As described above, since the battery in which the positive electrode and the negative electrode are minutely short-circuited inside is left for a while after charging, the discharge capacity is greatly reduced. Therefore, it is necessary to select such a battery in the manufacturing stage. In addition, nickel-metal hydride storage batteries and lithium ion storage batteries are usually used in assembled batteries in which several cells to several tens of cells, and in many cases hundreds of cells are connected in series. If a short-circuited battery is included, the discharge capacity may be reduced by one cell or the voltage may be reduced by leaving it alone, so that only one cell may be overdischarged or reverse charged during use. This is also not preferable from the viewpoint of stability.
そこで従来は、例えば特許文献1に見られるように、初回充電前の二次電池の電極間に電流を通電し、通電中、並びに開放後の電極間の電圧の経時変化をそれぞれ計測することで二次電池内部の微小短絡の有無を検出するようにしている。すなわち、電極間が内部短絡していない場合は、通電により電圧が上昇または下降し、開放後に若干復元する。一方、電極間が内部短絡している場合は、通電された電流の一部が短絡部分を通過するため、電圧の変化速度が遅くなり、内部短絡の程度が大きい場合には電圧が一定値から変化しなくなる。また、電流を通電させたのちに電極を開放した場合には、短絡部を通じて放電するため、経時的に電圧が最初の値へと復元していく。このように、電圧の経時変化を計測することにより、電池の内部短絡の有無を判別するようにしている。   Therefore, conventionally, as seen in Patent Document 1, for example, a current is passed between the electrodes of the secondary battery before the initial charge, and the time-dependent changes in the voltage between the electrodes during and after the opening are measured. The presence or absence of a micro short circuit inside the secondary battery is detected. That is, when the electrodes are not internally short-circuited, the voltage increases or decreases due to energization, and is slightly restored after being opened. On the other hand, when the electrodes are internally short-circuited, a part of the energized current passes through the short-circuited portion, so the voltage change rate becomes slow. No change. In addition, when the electrode is opened after the current is applied, the voltage is restored to the initial value over time because the electrode is discharged through the short circuit portion. In this way, the presence or absence of an internal short circuit of the battery is determined by measuring the change in voltage over time.
特開2000−28690号公報JP 2000-28690 A
ところで、こうした電圧の経時変化を計測する際には、電池の出力電圧に合わせて計測器(電圧計)のレンジを設定する必要がある。このため、電池の電圧に比べて相対的に微小な電圧の経時変化を計測するには、その計測精度の低下が免れない。また、上記各電池は、短絡電流とは別に自己放電電流を発しており、特にリチウム電池にあっては、自己放電が小さいものの時間あたりの電圧変化も小さいため、この自己放電も考慮して内部短絡の有無を検査する必要がある。このような実情から、電圧の経時変化に基づいて電池の内部短絡の有無を正確に判別することは困難であり、その検査にかかる信頼性も自ずと低いものとなる。   By the way, when measuring such a change in voltage over time, it is necessary to set the range of a measuring instrument (voltmeter) in accordance with the output voltage of the battery. For this reason, in order to measure a change with time of a voltage that is relatively small compared to the voltage of the battery, a decrease in the measurement accuracy is inevitable. Each of the above batteries emits a self-discharge current separately from the short-circuit current, and particularly in the case of a lithium battery, the voltage change per hour is small although the self-discharge is small. It is necessary to check for short circuits. From such a situation, it is difficult to accurately determine the presence or absence of an internal short circuit of the battery based on the change with time of the voltage, and the reliability of the inspection is naturally low.
本発明は、こうした実情に鑑みてなされたものであり、電池の電圧もしくは電流の計測に基づいて高い信頼性のもとに電池の内部短絡の有無を検査することのできる電池の内部短絡検査方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a battery internal short-circuit inspection method capable of inspecting the presence or absence of an internal short-circuit of a battery with high reliability based on measurement of the voltage or current of the battery. The purpose is to provide.
上記課題を解決するため、請求項1に記載の発明は、正極と負極とを有する電池の内部短絡の有無を検査する電池の内部短絡検査方法であって、複数の電池の一方の電極を互いに同極同士で電気的に接続するとともに、該複数の電池の一つを基準とし、基準とする電池と基準とする電池以外の電池との互いに開放された他方の電極間での電圧もしくは電流を計測し、該計測した電圧もしくは電流に基づいて前記基準とする電池以外の電池の内部短絡の有無を検査することを要旨とする。   In order to solve the above-mentioned problem, the invention described in claim 1 is a battery internal short circuit inspection method for inspecting the presence or absence of an internal short circuit of a battery having a positive electrode and a negative electrode, wherein one electrode of a plurality of batteries is connected to each other. The electrodes are electrically connected at the same polarity, and the voltage or current between the other open electrodes of the reference battery and a battery other than the reference battery is defined based on one of the plurality of batteries. The gist is to measure the presence or absence of an internal short circuit of a battery other than the reference battery based on the measured voltage or current.
前述のように、電池に生じる内部短絡に起因する電圧変化は通常、電池の出力電圧に比べて相対的に微小なものとなる。また、電池自体の自己放電による電圧の低下も生じるため、これを除外してこの内部短絡による電圧変化、すなわち電圧の低下を検査する必要がある。この点、上記検査方法によるように、正極と負極とを有する複数の電池の一方を同極同士で電気的に接続する、すなわち検査対象とする電池の一方の電極を並列に接続して基準とする電池とそれ以外の電池との互いに開放された他方の電極間での電圧もしくは電流を測定すれば、検査対象とする電池自体の電圧及び自己放電が相殺され、電池の内部短絡に起因する電圧変化もしくは電流変化のみを計測することができるようになる。これにより、計測器(電圧計、電流計)により電池の内部短絡の有無を検査する上で、同計測器のレンジを内部短絡に起因して変化する電圧もしくは電流に合わせて設定することができ、ひいては、複数の電池の内部短絡の有無を高い信頼性のもとに検査することができるようになる。   As described above, the voltage change due to the internal short circuit occurring in the battery is usually relatively small compared to the output voltage of the battery. Further, since a voltage drop due to the self-discharge of the battery itself occurs, it is necessary to inspect the voltage change due to the internal short circuit, that is, the voltage drop, excluding this. In this regard, as in the above inspection method, one of a plurality of batteries having a positive electrode and a negative electrode is electrically connected to each other with the same polarity, that is, one electrode of a battery to be inspected is connected in parallel to a reference. If the voltage or current between the other open electrode of the battery to be tested and the other battery is measured, the voltage and self-discharge of the battery to be inspected are offset and the voltage caused by the internal short circuit of the battery Only changes or current changes can be measured. This allows the measuring instrument (voltmeter, ammeter) to check the internal short circuit of the battery and set the measuring instrument range to match the voltage or current that changes due to the internal short circuit. As a result, the presence or absence of internal short circuits of a plurality of batteries can be inspected with high reliability.
請求項2に記載の発明は、請求項1に記載の電池の内部短絡検査方法において、前記計測の対象が前記電圧であり、前記基準とする電池と基準とする電池以外の電池との間での電圧差に対して許容できる内部短絡の度合いを判定するための判定値を設け、前記計測した電圧差が該判定値を超える電池を不良品として判別することを要旨とする。   According to a second aspect of the present invention, in the battery internal short-circuit inspection method according to the first aspect, the measurement target is the voltage, and between the reference battery and a battery other than the reference battery. The gist is to provide a determination value for determining the degree of internal short circuit that can be tolerated with respect to the voltage difference, and to determine as a defective product a battery in which the measured voltage difference exceeds the determination value.
電池に内部短絡が生じた場合は、その度合いに応じて電池の電圧が低下するようになる。すなわち、内部短絡の度合いが軽度であるほど電池の電圧低下は小さく、内部短絡の度合いが重度であるほど電池の電圧低下は大きくなる。一方、電池に内部短絡が生じていない場合には、自己放電による電圧低下しか生じないため同電池の電圧低下は微小なものとなる。そこで例えば、内部短絡が生じていない電池(良品)を上記基準とする電池とし、この電池と内部短絡が生じている電池との電圧差を測定するようにすれば、これら電池間の電圧差は自ずと拡大されるようになる。このため、同検査方法によるように、この電圧差に対して上記判定値を設け、計測した電圧差がこの判定値を超える電池を許容できない内部短絡の生じた不良品として判別するようにすれば、こうした不良品の判別を簡便に行うことができるようになる。なお、これら電圧差は時間とともに拡大されるため、電池の
初回充電後、所定の時間を置いたのちに検査することで、その検査精度をさらに高めることができるようにもなる。
When an internal short circuit occurs in the battery, the battery voltage decreases according to the degree. That is, the lighter the internal short circuit, the smaller the battery voltage drop, and the more severe the internal short circuit, the greater the battery voltage drop. On the other hand, when an internal short circuit does not occur in the battery, only a voltage drop due to self-discharge occurs, so that the battery voltage drop is very small. Therefore, for example, if a battery having no internal short circuit (non-defective product) is used as the above standard battery, and the voltage difference between the battery and the battery having the internal short circuit is measured, the voltage difference between these batteries is It will naturally expand. Therefore, as in the same inspection method, the determination value is provided for this voltage difference, and a battery whose measured voltage difference exceeds this determination value is determined as a defective product having an internal short circuit that cannot be tolerated. Such defective products can be easily identified. Since these voltage differences increase with time, the inspection accuracy can be further increased by inspecting after a predetermined time after the initial charge of the battery.
請求項3に記載の発明は、請求項1または2に記載の電池の内部短絡検査方法において、前記電圧差を単位時間当たりの電圧変化量として計測することを要旨とする。
上述のように、電池に内部短絡が生じた場合にはこの電池の短絡部を通じた放電が起こるため、電池の出力電圧も経時的に低下するようになる。そして、この電圧の単位時間あたりの変化量は、電池の内部短絡の度合いが大きいほど大きくなり、電池の内部短絡の度合いが小さいほど、また内部短絡が生じていない場合ほど小さくなる。このため、同検査方法によるように、上記電圧差を単位時間当たりの電圧変化量として測定することとすれば電池の内部短絡の有無をより的確に判別することができるようになる。なお、この場合にも、内部短絡が生じた電池と内部短絡が生じていない電池との電圧差は時間とともに拡大されることから、微小な内部短絡を検査する上では、単位とする時間を長くとるほどその検査精度を高めることができるようになる。
The gist of a third aspect of the invention is to measure the voltage difference as a voltage change amount per unit time in the battery internal short circuit inspection method according to the first or second aspect.
As described above, when an internal short circuit occurs in the battery, discharge occurs through the short circuit portion of the battery, so that the output voltage of the battery also decreases with time. The amount of change in voltage per unit time increases as the degree of internal short circuit of the battery increases, and decreases as the degree of internal short circuit of the battery decreases and when no internal short circuit occurs. For this reason, if the voltage difference is measured as the amount of voltage change per unit time as in the same inspection method, the presence or absence of an internal short circuit of the battery can be more accurately determined. In this case as well, the voltage difference between the battery in which the internal short circuit has occurred and the battery in which the internal short circuit has not occurred increases with time. The inspection accuracy can be increased as the value increases.
請求項4に記載の発明は、請求項1に記載の電池の内部短絡検査方法において、前記計測の対象が前記電流であるとともに、前記基準とする電池を含めて同極同士で電気的に接続する複数の電池が3個以上の電池からなって前記基準とする電池以外の2個以上の電池に対する前記検査を同時実行するものであり、記計測した電流の方向を検出し、前記基準とする電池の電流の方向と異なる方向に電流が流れる電池を不良品として判別することを要旨とする。   According to a fourth aspect of the present invention, in the battery internal short circuit inspection method according to the first aspect, the measurement target is the current, and the same polarity is electrically connected to each other including the reference battery. The plurality of batteries are composed of three or more batteries, and simultaneously execute the inspection for two or more batteries other than the reference battery, and detect the direction of the measured current as the reference. The gist is to distinguish a battery in which a current flows in a direction different from the direction of the current of the battery as a defective product.
基準とする電池と検査対象とする複数の電池との間で流れる各電流は、内部短絡に起因して相対的に電圧が低下した電池とその他の電池との電圧差によって、内部短絡の生じた電池に向かって流れ込むようになるために、基準とする電池を流れる電流の方向と内部短絡の生じている電池を流れる電流の方向とが異なるようになる。これにより、検査対象とする電池を流れる電流の方向のみに基づいて電池の内部短絡の有無を検査することができるようになり、ひいては、電池の内部短絡の検査をより容易に行うことができるようになる。   Each current flowing between the reference battery and the plurality of batteries to be inspected caused an internal short circuit due to a voltage difference between the battery whose voltage was relatively lowered due to the internal short circuit and the other batteries. Since the current flows toward the battery, the direction of the current flowing through the reference battery is different from the direction of the current flowing through the battery in which an internal short circuit occurs. As a result, the presence or absence of an internal short circuit of the battery can be inspected based only on the direction of the current flowing through the battery to be inspected, so that the inspection of the internal short circuit of the battery can be performed more easily. become.
また、上記方法によれば、2個以上の電池を同時に検査対象とすることができ、特に、こうした2個以上の電池を同時に検査対象として上記検査を同時実行することで、その検査効率が大幅に高められ、ひいては、こうした検査を含む電池の生産性も向上されるようになる。   Further, according to the above method, two or more batteries can be simultaneously inspected, and in particular, the inspection efficiency can be greatly improved by simultaneously executing the above inspection with these two or more batteries being simultaneously inspected. As a result, the productivity of batteries including such inspection is also improved.
請求項5に記載の発明は、請求項4に記載の電池の内部短絡検査方法において、前記基準とする電池の電流の方向と異なる方向に流れる電流に対して許容できる内部短絡の度合いを判定するための判定値を設け、前記基準とする電池の電流方向と異なる方向に電流が流れてかつ、該電流値が前記判定値を超える電池を不良品として判別することを要旨とする。   According to a fifth aspect of the present invention, in the internal short circuit inspection method for a battery according to the fourth aspect, an acceptable degree of internal short circuit is determined for a current flowing in a direction different from the current direction of the reference battery. A determination value is provided for determining a battery having a current flowing in a direction different from the current direction of the reference battery and having a current value exceeding the determination value as a defective product.
各電池を流れる電流値は、各電池間の電圧差に応じて変化するものであり、各電池間の電圧差が大きいほどこれに比例して大きくなる一方、各電池間の電圧差が小さいほどこれに比例して小さくなる。そして、各電池を流れる電流は、各電池のうち最も電圧の低い単電池に向かって流れるものであり、上記検査対象とする電池に内部短絡が生じていない場合であっても、検査対象とする電池のうち最も電圧の小さい電池に向かって微小な電流が流れ込むことも生じ得る。この点、上記方法によるように、基準とする電池の電流方向と異なる方向に電流が流れてかつ、その電流値が上記判定値を超える電池のみを不良品として判定することとすれば、例えば「良品」を「不良品」として誤判定することもなく、各電池間を流れる電流に基づいて電池の内部短絡の有無を検査する上で、その検査精度をさ
らに高めることができるようにもなる。
The current value flowing through each battery changes according to the voltage difference between the batteries, and the larger the voltage difference between the batteries, the larger the proportional difference, while the smaller the voltage difference between the batteries. It becomes smaller in proportion to this. And the electric current which flows through each battery is what flows toward the cell with the lowest voltage among each battery, and even if it is a case where the internal short circuit has not arisen in the battery made into the said test object, it is set as a test object. A minute current may flow toward the battery having the lowest voltage among the batteries. In this regard, as in the above method, if only a battery in which a current flows in a direction different from the current direction of the reference battery and the current value exceeds the determination value is determined as a defective product, for example, “ Without inaccurately determining “good” as “defective”, it is possible to further increase the inspection accuracy when inspecting the presence or absence of an internal short circuit of the battery based on the current flowing between the batteries.
請求項6に記載の発明は、請求項1〜5のいずれか一項に記載の電池の内部短絡検査方法において、前記基準とする電池を含めて同極同士で電気的に接続する複数の電池は同一仕様の二次電池であり、前記検査に先立ち、全ての電池を同一SOCになるまで充電することを要旨とする。   A sixth aspect of the present invention is the battery internal short-circuit inspection method according to any one of the first to fifth aspects, wherein a plurality of batteries that are electrically connected at the same polarity, including the reference battery. Is a secondary battery of the same specification, and its gist is to charge all the batteries until the same SOC is reached prior to the inspection.
一般に、二次電池はSOC(充電状態:標準容量に対する充電量の割合)に応じてその電池の出力電圧も異なるようになる。そこでこの検査方法のように、電池の内部短絡検査に先立って全ての電池を同一のSOCにしておくこととすれば、検査対象とする電池を同一の条件のもとに検査することができるようになり、ひいては電池の内部短絡の検査精度を高めることができるようになる。   In general, the output voltage of a secondary battery varies depending on the SOC (charge state: ratio of charge amount to standard capacity). Therefore, as in this inspection method, if all the batteries are set to the same SOC prior to the internal short circuit inspection of the battery, the battery to be inspected can be inspected under the same conditions. As a result, the inspection accuracy of the internal short circuit of the battery can be increased.
請求項7に記載の発明は、請求項1〜6のいずれか一項に記載の電池の内部短絡検査方法において、前記基準とする電池を含めて同極同士で電気的に接続する複数の電池として同一ロットにて生産された電池を用いることを要旨とする。   The invention according to claim 7 is the battery internal short-circuit inspection method according to any one of claims 1 to 6, wherein a plurality of batteries that are electrically connected with the same polarity including the reference battery. The main point is to use batteries produced in the same lot.
上記検査対象とする電池は、同一の仕様のものであっても少なからず個体差が生じることがある。この点、同検査方法によるように、検査対象とする電池を同一ロットで生産された電池とすれば、これら電池間の個体差を最小とすることができ、これら電池間の内部短絡に起因する電圧差のみをより高い精度のもとに測定することができるようになる。   Even if the batteries to be inspected have the same specifications, there are not a few individual differences. In this regard, if the battery to be inspected is a battery produced in the same lot as in the same inspection method, individual differences between these batteries can be minimized, resulting from an internal short circuit between these batteries. Only the voltage difference can be measured with higher accuracy.
本発明にかかる電池の内部短絡検査方法によれば、計測器(電圧計、電流計)により電池の内部短絡の有無を検査する上で、複数の電池の内部短絡の有無を高い信頼性のもとに検査することができるようになる。   According to the internal short circuit inspection method for a battery according to the present invention, the presence or absence of internal short circuit of a plurality of batteries is highly reliable when inspecting for internal short circuit of a battery by a measuring instrument (voltmeter, ammeter). You will be able to inspect.
本発明にかかる電池の内部短絡検査方法の各実施の形態において検査の対象とする角形密閉式電池を側面方向から見た部分断面図。The fragmentary sectional view which looked at the square sealed type battery made into a candidate for inspection in each embodiment of the internal short circuit inspection method of the battery concerning the present invention from the side. 第1の実施の形態にかかる内部短絡検査方法について、その検査回路の構成例を示すブロック図。The block diagram which shows the structural example of the test | inspection circuit about the internal short circuit test | inspection method concerning 1st Embodiment. 同実施の形態にかかる内部短絡検査方法による検査態様を示すグラフ。The graph which shows the test | inspection aspect by the internal short circuit inspection method concerning the embodiment. 第2の実施の形態にかかる内部短絡検査方法について、その検査回路の構成例を示すブロック図。The block diagram which shows the structural example of the test | inspection circuit about the internal short circuit test | inspection method concerning 2nd Embodiment. 同実施の形態にかかる内部短絡検査方法による検査態様を示すグラフ。The graph which shows the test | inspection aspect by the internal short circuit inspection method concerning the embodiment. 電池の内部短絡検査方法の他の例について、その検査回路の構成例を示すブロック図。The block diagram which shows the structural example of the test | inspection circuit about the other example of the internal short circuit inspection method of a battery.
(第1の実施の形態)
以下、本発明にかかる電池の内部短絡検査方法の第1の実施の形態について図1〜図3を参照して説明する。
(First embodiment)
Hereinafter, a first embodiment of a battery internal short circuit inspection method according to the present invention will be described with reference to FIGS.
本実施の形態において検査対象とする電池は、複数のニッケル水素蓄電池(単電池)を電気的に直列接続することによって構成される角形の密閉式電池である。本実施の形態ではまず、こうした角形密閉式電池を組み立てたのちに、同角形密閉式電池を構成する各単電池に対し同一の条件のもとに活性化処理を実施する。そして、内部短絡検査に先立ち、この活性化された各単電池を同一のSOC(充電状態:標準容量に対する充電量の割合)になるまで充電し、このSOCが同一となった各単電池に対して内部短絡検査を実施する
The battery to be inspected in the present embodiment is a rectangular sealed battery configured by electrically connecting a plurality of nickel metal hydride storage batteries (unit cells) in series. In the present embodiment, first, after assembling such a square sealed battery, activation processing is performed under the same conditions for each single cell constituting the square sealed battery. Prior to the internal short circuit inspection, each activated single cell is charged until it reaches the same SOC (charging state: ratio of charge amount to standard capacity), and each single cell having the same SOC is charged. Perform internal short circuit inspection.
ここで、本実施の形態において検査対象とする上記角形密閉式電池は、図1に側方から見た一部断面構造を示すように、例えばニッケル水素蓄電池からなる単電池110を構成する電槽130を隔壁120を介して複数連結したものが同じく角形の一体電槽100に収容された状態で、各電槽130の上面開口が蓋体200により一体に封止されている。そして、これら各電槽130内には、正極板と負極板とがセパレータを介して積層された極板群140とその両側に接合された集電板150、160とからなる発電要素が電解液とともに収容されている。ここで、上記極板群140の正極板及び負極板は互いに反対側の側部に突出されることで正極板及び負極板のリード部141a、141bが構成され、これらリード部141a、141bの側端縁にそれぞれ上記集電板150、160が接合されている。また、上記隔壁120の上部には各電槽130の接続に用いられる貫通孔170が形成されており、これら集電板150、160の上部に突設されている接続突部151、161同士がこの貫通孔170を介してスポット溶接により接続されることによって、各々隣接する電槽130が電気的に直列に接続される。なお、上記貫通孔170のうち、両端の電槽130の各々外側に位置するもの、すなわち一体電槽100の端側壁上方の貫通孔170には正極または負極の接続端子TMが装着されている。そして、それら接続端子TMと集電板150または160の接続突部151または161とがスポット溶接により接続されることによって、こうして直列接続された電槽130、すなわち複数の単電池110の総出力がこれら接続端子TMから取り出される。   Here, the rectangular sealed battery to be inspected in the present embodiment is, for example, a battery case constituting a unit cell 110 made of a nickel-metal hydride storage battery, as shown in FIG. In a state in which a plurality of 130 connected through the partition wall 120 are accommodated in the rectangular integrated battery case 100, the upper surface opening of each battery case 130 is integrally sealed by the lid 200. In each battery case 130, a power generation element including an electrode group 140 in which a positive electrode plate and a negative electrode plate are stacked via a separator and current collector plates 150 and 160 bonded to both sides of the electrode plate group 140 is an electrolyte solution. Is housed together. Here, the positive electrode plate and the negative electrode plate of the electrode plate group 140 are protruded to the opposite side portions to constitute the lead portions 141a and 141b of the positive electrode plate and the negative electrode plate, and the side of the lead portions 141a and 141b. The current collector plates 150 and 160 are joined to the end edges, respectively. Further, a through-hole 170 used for connecting each battery case 130 is formed in the upper part of the partition wall 120, and the connection protrusions 151 and 161 projecting from the upper parts of the current collector plates 150 and 160 are formed. By connecting through this through-hole 170 by spot welding, each adjacent battery case 130 is electrically connected in series. Of the through-holes 170, positive or negative connection terminals TM are attached to those located outside the battery cases 130 at both ends, that is, the through-holes 170 above the end side walls of the integrated battery case 100. Then, the connection terminals TM and the connection protrusions 151 or 161 of the current collector plates 150 or 160 are connected by spot welding, so that the total output of the battery cells 130 connected in series in this way, that is, the plurality of single cells 110, is increased. It is taken out from these connection terminals TM.
次に、このようなニッケル水素蓄電池を製造する各工程について、その一例を説明する。この製造工程は、大きくは、正極板、負極板、セパレータ及び電解液をケースに封入して電池を組み立てる組立工程(第1工程)と、この組み立てられた電池を活性化させるべく所定の条件のもとに充放電を行う第2工程〜第4工程からなる。   Next, an example of each process for manufacturing such a nickel metal hydride storage battery will be described. In general, the manufacturing process includes an assembly process (first process) in which a positive electrode plate, a negative electrode plate, a separator and an electrolyte are enclosed in a case to assemble a battery, and a predetermined condition for activating the assembled battery. It consists of the 2nd process-the 4th process which charge / discharge based on.
まず、電池の組立工程(第1工程)においては、正極板や負極板、セパレータ、集電板150及び160等を有して構成される単電池を一体電槽100内で電気的に直列接続する(ここでは各接続突部151、161同士を仮接続)。次いで、各電槽内に水酸化カリウムを主成分とするアルカリ水溶液(電解液)を所定量注入したのちに、蓋体200で一体電槽100の開口を封止することによって、複数の単電池(ニッケル水素蓄電池)からなる例えば定格容量「6.5Ah」の角形密閉式電池の組み立てが完了する。   First, in the battery assembling process (first process), the cells configured to include the positive electrode plate, the negative electrode plate, the separator, the current collector plates 150 and 160, etc. are electrically connected in series in the integrated battery case 100. (Here, the connection protrusions 151 and 161 are temporarily connected). Next, a predetermined amount of an alkaline aqueous solution (electrolytic solution) containing potassium hydroxide as a main component is injected into each battery case, and then the opening of the integrated battery case 100 is sealed with a lid 200, thereby a plurality of unit cells. For example, the assembly of a rectangular sealed battery having a rated capacity of “6.5 Ah” made of (nickel metal hydride battery) is completed.
次に、このようにして組み立てられたニッケル水素蓄電池に対し、各電極を活性化させるべく活性化工程を行う。
この活性化処理では、上記組み立てられた角形密閉式電池に対し、まず「0.05〜0.2C(1C=電池の定格容量/1時間)」の範囲内の電流で上記組み立てられた電池をSOC(充電状態)が「10〜30%」になるまで充電することによって、正極に含まれているコバルトを酸化させるとともに、過放電時の転極を防止する放電リザーブを負極に形成する(第2工程)。そして、この第2工程を経た電池を「0.2〜1C」の範囲内の電流で過充電したのちに、SOCが「10%」以下になるまで放電することで正極中の活物質を活性化させる(第3工程)。さらに、「0.2〜5C」の範囲内の電流でSOCが「60〜95%」になるまで充電したのちに、電池の電圧が「0.70〜1.05V」になるまで放電を行う充放電サイクルを複数回繰り返すとともに、この充放電サイクル時に「30〜60℃」の冷媒によって電池を冷却することにより、負極中の活物質を活性化する(第4工程)。
Next, an activation step is performed on the nickel-metal hydride storage battery thus assembled to activate each electrode.
In this activation treatment, the assembled battery is first subjected to a current in the range of “0.05 to 0.2C (1C = rated battery capacity / 1 hour)” with respect to the assembled rectangular sealed battery. By charging until the SOC (charged state) reaches “10 to 30%”, cobalt contained in the positive electrode is oxidized, and a discharge reserve is formed on the negative electrode to prevent inversion during overdischarge (No. 1). 2 steps). Then, after the battery having undergone the second step is overcharged with a current in the range of “0.2 to 1 C”, the active material in the positive electrode is activated by discharging until the SOC becomes “10%” or less. (Third step). Further, after charging until the SOC becomes “60 to 95%” at a current in the range of “0.2 to 5 C”, discharging is performed until the voltage of the battery becomes “0.70 to 1.05 V”. The charge / discharge cycle is repeated multiple times, and the active material in the negative electrode is activated by cooling the battery with a refrigerant of “30 to 60 ° C.” during the charge / discharge cycle (fourth step).
そして、上記第4工程において、最後の充放電サイクルで各単電池の電圧が「1.0V」となるように調整し、角形密閉式電池の活性化処理を終了する。
本実施の形態では、このように内部短絡検査の対象とする単電池110を同一ロットで
組み立てることとし、この組み立てられた単電池110に対して同一の活性化処理を施し、内部短絡検査に先立ち同一のSOC(「1.0V」)とする。これにより、各単電池110の内部短絡を検査する上で、検査対象とする各単電池110の内部短絡を同一の条件のもとに検査することができるようになり、ひいては各単電池110の内部短絡の検査精度を高めることができるようになる。
And in the said 4th process, it adjusts so that the voltage of each single cell may be set to "1.0V" in the last charging / discharging cycle, and complete | finishes the activation process of a square sealed battery.
In the present embodiment, the unit cells 110 to be subjected to the internal short circuit inspection are assembled in the same lot as described above, and the same activation process is performed on the assembled unit cells 110, and prior to the internal short circuit inspection. The same SOC (“1.0 V”) is used. As a result, when inspecting the internal short circuit of each unit cell 110, the internal short circuit of each unit cell 110 to be inspected can be inspected under the same conditions. Inspection accuracy of internal short circuit can be improved.
次に、このような角形密閉式電池を対象に実施される内部短絡の検査方法について説明する。
まず、上記製造された角形密閉式電池を構成する各単電池110のうち、電池の内部短絡検査に際して基準となる単電池110を選定する。この基準となる単電池110の選定に際しては、まず、上記製造された角形密閉式電池を構成する複数の各単電池110のうち任意の単電池110を選び、その単電池110が良品であるか否か、すなわち内部短絡が生じているか否かを判定する。なお、この判定も含め、以降の内部短絡検査に際しては、上記仮接続した各接続突部151、161間の電気的接続が一旦解除される。
Next, an internal short-circuit inspection method implemented for such a rectangular sealed battery will be described.
First, out of the unit cells 110 constituting the manufactured square sealed battery, the unit cell 110 serving as a reference for the internal short circuit inspection of the battery is selected. When selecting the reference unit cell 110, first, an arbitrary unit cell 110 is selected from the plurality of unit cells 110 constituting the manufactured square sealed battery, and is the unit cell 110 good? It is determined whether or not an internal short circuit has occurred. In addition, in the subsequent internal short-circuit inspection including this determination, the electrical connection between the temporarily connected connection protrusions 151 and 161 is once released.
この良品判定では、上記選定された任意の単電池110に対して一定の電流を通電し、通電中の電圧の経時変化を計測する。そして、この計測される電圧値の経時変化が上記通電される電流の供給量に相関する場合には、この計測対象とされた単電池110を良品と判定し、この電池を基準電池110sとする。一方、上記計測される電圧の経時変化が、通電される電流の供給量を下回る場合には、この計測対象とされた電池に内部短絡が生じていると判定し、さらに他の単電池110を選定して、同じく内部短絡の有無を計測する。   In this non-defective product determination, a constant current is applied to the selected unit cell 110, and a change with time of the voltage being supplied is measured. If the time-dependent change in the measured voltage value correlates with the supply amount of the energized current, the unit cell 110 to be measured is determined as a non-defective product, and this battery is used as the reference battery 110s. . On the other hand, if the time-dependent change in the measured voltage is less than the supply amount of the energized current, it is determined that an internal short circuit has occurred in the battery that is the object of measurement, and another unit cell 110 is connected. Select and measure whether there is an internal short circuit.
このようにして良品、すなわち内部短絡検査の実施に際して基準となる電池の判定が終了すると、次に、この良品と判定された電池110sを基準として内部短絡検査を行う。
この内部短絡検査に際しては、図2に示すように、まず、上記良品と判定された基準電池110sの負極と未検査の単電池110a〜110eの各負極とを、すなわち同極同士をリード線300によって互いに電気的に接続する。そして、基準電池110sの正極と未検査の各単電池110a〜110eの正極との間に、これら基準電池110sと未検査の各単電池110a〜110eとの各電圧差を計測すべく電圧計VM1〜VM5をリード線301〜305によって接続する。
When the determination of the non-defective product, that is, the battery serving as a reference in carrying out the internal short circuit inspection is completed in this manner, the internal short circuit inspection is then performed on the basis of the battery 110s determined to be the non-defective product.
In this internal short circuit inspection, as shown in FIG. 2, first, the negative electrode of the reference battery 110 s determined as a non-defective product and the negative electrodes of the untested unit cells 110 a to 110 e, that is, the same polarity are connected to the lead wire 300. Are electrically connected to each other. The voltmeter VM1 is used to measure a voltage difference between the reference battery 110s and the uninspected single cells 110a to 110e between the positive electrode of the reference battery 110s and the positive electrodes of the uninspected single cells 110a to 110e. -VM5 is connected by lead wires 301-305.
このようにして、基準電池110sと未検査の各単電池110a〜110eとの同極同士が電気的に接続された内部短絡検査の検査回路が構成される。なお、本実施の形態においては、これら基準電池110sと未検査の各単電池110a〜110eとの導通状態を切り替え可能とすべく、上記各電圧計VM1〜VM5と未検査の各単電池110a〜110eの正極との間にオン/オフ動作を切り替え可能なスイッチSw1〜Sw5を設ける。これにより、これら各スイッチSw1〜Sw5のオン/オフ動作に応じて、基準電池110sと未検査の各単電池110a〜110eとの電圧差Vsa〜Vseが電圧計VM1〜VM5を通じて各別に計測されるようになる。また、これら各電圧計VM1〜VM5には、その計測値を一括して取り組む検査装置TMG1が接続されており、この検査装置TMG1にて各電圧計VM1〜VM5の計測値が一括管理される。なお、各単電池110a〜110eに生じうる内部短絡に起因する電圧変化は、通常、各単電池110a〜110eの電圧(「1.0V」)よりも相対的に微小であることに鑑み、本実施の形態では、こうした内部短絡に起因して変化する各電圧差Vsa〜Vseを確実に検出すべく、各電圧計VM1〜VM5の計測レンジを例えば数mV〜数十mV程度の範囲で設定する。   In this way, an inspection circuit for an internal short circuit inspection in which the same polarity of the reference battery 110s and the uninspected single cells 110a to 110e are electrically connected is configured. In the present embodiment, the voltmeters VM1 to VM5 and the untested unit cells 110a to 110a can be switched between the reference battery 110s and the untested unit cells 110a to 110e. Switches Sw1 to Sw5 capable of switching on / off operation are provided between the positive electrode 110e and the positive electrode 110e. Thereby, according to the on / off operation of each of these switches Sw1 to Sw5, the voltage differences Vsa to Vse between the reference battery 110s and the uninspected single cells 110a to 110e are separately measured through the voltmeters VM1 to VM5. It becomes like this. Further, an inspection device TMG1 that tackles the measured values collectively is connected to these voltmeters VM1 to VM5, and the measured values of the voltmeters VM1 to VM5 are collectively managed by the inspection device TMG1. In view of the fact that the voltage change caused by the internal short circuit that can occur in each of the unit cells 110a to 110e is usually relatively smaller than the voltage (“1.0V”) of each of the unit cells 110a to 110e. In the embodiment, the measurement ranges of the voltmeters VM1 to VM5 are set in a range of, for example, about several mV to several tens of mV in order to reliably detect the voltage differences Vsa to Vse that change due to such an internal short circuit. .
次に、こうして構成された検査回路によって未検査の単電池110a〜110eの内部短絡の有無を検査する。この検査では、まず、各スイッチSw1〜Sw5のオン/オフ状態が、検査装置TMG1を通じてスイッチSw1から順に例えば5秒毎に一時的にオン状
態とされることによって、オン状態とされたスイッチSw1〜Sw5に応じて電圧計VM1〜VM5により各電圧差Vsa〜Vseが計測され、これら計測されたVsa〜Vseの値が検査装置TMG1に取り込まれる。
Next, the inspection circuit thus configured is inspected for the presence of internal short circuits in the uninspected cells 110a to 110e. In this inspection, first, the on / off states of the switches Sw1 to Sw5 are temporarily turned on, for example, every 5 seconds in order from the switch Sw1 through the inspection device TMG1, so that the switches Sw1 to Sw1 that are turned on are turned on. The voltage differences Vsa to Vse are measured by the voltmeters VM1 to VM5 according to Sw5, and the values of these measured Vsa to Vse are taken into the inspection device TMG1.
すなわち、まず、内部短絡検査の開始直後にスイッチSw1のみがオン状態とされることにより、基準電池110sと未検査の単電池110aとの電圧差Vsaが計測される。こうして基準電池110sと未検査の単電池110aとの電圧差Vsaの計測が終了するとスイッチSw1が再びオフ状態に維持される。次に、内部短絡検査の開始から5秒経過時にスイッチSw2のみがオン状態にされることにより、基準電池110sと未検査の単電池110bとの電圧差Vsbが計測され、再びスイッチSw2がオフ状態に維持される。   That is, first, only the switch Sw1 is turned on immediately after the start of the internal short circuit inspection, whereby the voltage difference Vsa between the reference battery 110s and the uninspected unit cell 110a is measured. When the measurement of the voltage difference Vsa between the reference battery 110s and the uninspected unit cell 110a is thus completed, the switch Sw1 is maintained in the off state again. Next, when only the switch Sw2 is turned on after 5 seconds from the start of the internal short circuit inspection, the voltage difference Vsb between the reference battery 110s and the untested unit cell 110b is measured, and the switch Sw2 is turned off again. Maintained.
その後は、同じく内部短絡検査の開始から10秒、15秒、20秒の経過時に応じて、スイッチSw3〜スイッチSw5が順に一時的にオン状態とされることによって、その際の基準電池110sと未検査の各単電池110c〜110eとの各電圧差Vsc、Vsd、Vseが順に計測される。このようにして、内部短絡検査の開始から5秒毎の各電圧差Vsa〜Vseの値が計測され、これらの値が検査装置TMG1に取り込まれる。   Thereafter, the switches Sw3 to Sw5 are temporarily turned on sequentially in accordance with the lapse of 10 seconds, 15 seconds, and 20 seconds from the start of the internal short-circuit inspection, so that the reference battery 110s at that time is not changed. Each voltage difference Vsc, Vsd, Vse with each of the cells 110c to 110e in the inspection is measured in order. In this way, the values of the voltage differences Vsa to Vse every 5 seconds from the start of the internal short circuit inspection are measured, and these values are taken into the inspection apparatus TMG1.
次に、こうして計測される各電圧差Vsa〜Vseの計測結果に基づき検査装置TMG1を通じて実行される内部短絡の検査態様について図3を参照して説明する。なお、図3において、直線L0は、単電池110に内部短絡が生じた場合において、この内部短絡に伴う電池の電圧低下の推移を示したものあり、本実施の形態では、この直線L0を基準電池110sとの間での電圧差に対して許容できる内部短絡の度合い、すなわち不良品か否かを判定する判定値として用いる。   Next, the inspection mode of the internal short circuit executed through the inspection apparatus TMG1 based on the measurement results of the voltage differences Vsa to Vse thus measured will be described with reference to FIG. In FIG. 3, a straight line L0 shows the transition of the voltage drop of the battery due to the internal short circuit when an internal short circuit occurs in the unit cell 110. In this embodiment, the straight line L0 is a reference. This is used as a determination value for determining whether or not the internal short circuit is acceptable with respect to the voltage difference with the battery 110s, that is, whether it is a defective product.
図3に一例を示すように、上記検査を通じて5秒毎に計測された各計測値は、基準電池110sと各単電池110a、110b、110d、110eとの各電圧差Vsa、Vsb、Vsd、Vseの値が、いずれも「0mV」となっている。これにより、これら各単電池110a、110b、110d、110eは良品、すなわち内部短絡が生じていないと判定された基準電池110sと同等の電圧を出力しているものと判断することができ、基準電池110sと同じく良品と判定することができる。また、これら各単電池は、内部短絡とは別途に自己放電による電圧低下が生じる場合があるものの、本実施の形態では、各単電池の同極同士を接続することで得られる各電圧差に基づいて内部短絡の有無を判定するようにしていることにより、この自己放電が相殺された値を検出することができる。このため、同図3に示すように、これら良品と判定された各単電池110a、110b、110d、110eとの各電圧差Vsa、Vsb、Vsd、Vseの値は、全て「0mV」となっており、このことからも、本実施の形態にかかる内部短絡検査方法によれば、検査対象とする単電池の自己放電が相殺された値が計測されていることが確認できる。   As shown in FIG. 3, each measured value measured every 5 seconds through the above inspection is a voltage difference Vsa, Vsb, Vsd, Vse between the reference battery 110s and each single cell 110a, 110b, 110d, 110e. The values of both are “0 mV”. Accordingly, each of the single cells 110a, 110b, 110d, and 110e can be determined to be non-defective, that is, output a voltage equivalent to the reference battery 110s that is determined not to have an internal short circuit. It can be determined to be a non-defective product as with 110s. In addition, although each of these single cells may cause a voltage drop due to self-discharge separately from the internal short circuit, in this embodiment, the voltage difference obtained by connecting the same polarity of each single cell By determining whether or not there is an internal short circuit based on this, it is possible to detect a value in which this self-discharge is offset. For this reason, as shown in FIG. 3, the values of the voltage differences Vsa, Vsb, Vsd, and Vse with respect to each of the cells 110a, 110b, 110d, and 110e determined to be non-defective products are all “0 mV”. From this, it can be confirmed that according to the internal short-circuit inspection method according to the present embodiment, a value obtained by canceling the self-discharge of the unit cell to be inspected is measured.
一方、検査開始後10秒後に計測された基準電池110sと単電池110cとの電圧差Vscの値は、この図3の例では「11mV」となっている。すなわち、本内部短絡検査に先立ち、一旦「1.0V」まで充電された単電池110cの電圧が、次第に低下し、内部短絡検査の開始から10秒経過時において、少なくとも「11mV」の電圧低下が発生していることになる。これにより、この単電池110cは、それ自身の自己放電以外に起因する電圧の低下、すなわち内部短絡が生じているものと判定することができる。   On the other hand, the value of the voltage difference Vsc between the reference battery 110s and the unit cell 110c measured 10 seconds after the start of the inspection is “11 mV” in the example of FIG. That is, prior to the internal short circuit inspection, the voltage of the unit cell 110c once charged to “1.0V” gradually decreases, and at the time when 10 seconds have elapsed from the start of the internal short circuit inspection, the voltage decrease is at least “11 mV”. It will have occurred. Thereby, this cell 110c can determine with the voltage fall resulting from other than own self-discharge, ie, the internal short circuit having arisen.
しかも、同図3に示されるように、内部短絡検査の開始から10秒経過した時点において、基準電池110sと単電池110cとの電圧差Vscの値「11mV」は、内部短絡の基準となる直線L0を上回っている。これにより本実施の形態の検査では、この単電池110cは、その内部短絡の度合いが基準電池110sに対して許容されうる内部短絡の
度合いを超えた「不良品」として判定される。
Moreover, as shown in FIG. 3, at the time when 10 seconds have elapsed from the start of the internal short circuit inspection, the value “11 mV” of the voltage difference Vsc between the reference battery 110s and the unit cell 110c is a straight line that becomes the reference for the internal short circuit. It exceeds L0. Thus, in the inspection of the present embodiment, this single cell 110c is determined as a “defective product” whose degree of internal short circuit exceeds the degree of internal short circuit that can be allowed for the reference battery 110s.
以上説明したように、本実施の形態にかかる電池の内部短絡検査方法によれば、以下のような効果が得られるようになる。
(1)良品と判定された基準電池110sと検査対象とする複数の単電池110a〜110eとを互いに同極同士で電気的に接続するとともに、互いに開放された他方の電極は各々電圧計VM1〜VM5を介して基準電池110sと接続し、各々計測される電圧差Vsa〜Vseに基づいて内部短絡の有無を検査することとした。このため、検査対象とする各単電池110a〜110e自身の出力電圧(「1.0V」)及び自己放電が除外され、上記内部短絡に起因する比較的微少な電圧変化のみがそれら各電圧差Vsa〜Vseとして計測されるようになる。これにより、こうした微小な電圧変化に応じて電圧計VM1〜VM5の計測レンジを設定することができるようになり、ひいては、複数の電池の内部短絡の有無を高い信頼性のもとに検査することができるようになる。
As described above, according to the internal short circuit inspection method for a battery according to the present embodiment, the following effects can be obtained.
(1) The reference battery 110s determined to be non-defective and the plurality of single cells 110a to 110e to be inspected are electrically connected to each other with the same polarity, and the other open electrodes are connected to the voltmeters VM1 to VM1, respectively. The reference battery 110s is connected via the VM5, and the presence or absence of an internal short circuit is inspected based on the measured voltage differences Vsa to Vse. For this reason, the output voltage (“1.0 V”) and self-discharge of each of the single cells 110a to 110e to be inspected are excluded, and only a relatively small voltage change due to the internal short circuit is the voltage difference Vsa. It is measured as ~ Vse. As a result, the measurement ranges of the voltmeters VM1 to VM5 can be set according to such a minute voltage change, and by extension, the presence or absence of internal short-circuits of a plurality of batteries should be inspected with high reliability. Will be able to.
(2)内部短絡検査に先立ち、検査対象とする各単電池110a〜110eを全て同一の条件、すなわち、(イ)同一の活性化処理を施すとともに、(ロ)同一のSOC(「1V」)に統一することとした。これにより、基準電池110sと各単電池110a〜110eとの各電圧差Vsa〜Vseに基づき内部短絡の有無を検査する上で、これら単電池間の個体差を最小とすることができ、ひいては電池の内部短絡の検査精度を高めることができるようになる。   (2) Prior to the internal short circuit inspection, all the single cells 110a to 110e to be inspected are subjected to the same conditions, that is, (a) the same activation treatment is performed, and (b) the same SOC (“1V”). It was decided to unify. Thereby, in examining the presence or absence of an internal short circuit based on the voltage differences Vsa to Vse between the reference battery 110s and each of the unit cells 110a to 110e, individual differences between these unit cells can be minimized. Inspection accuracy of internal short circuit can be improved.
(3)基準電池110sと内部短絡の検査対象とする各単電池110a〜110eとの各電圧差Vsa〜Vseを計測するに際し、これら基準電池110sと単電池110a〜110eとの導通状態を切り替え可能なスイッチSw1〜Sw5を設けることとした。このため、電圧計VM1〜VM5を通じて各電圧差Vsa〜Vseを計測するタイミングを任意に設定することができる。これにより、各電圧差Vsa〜Vseの推移、ひいては、単電池110a〜110eの内部短絡に起因する電圧の低下を個別に、かつ任意の時点で検出することができるようになる。これにより、基準電池110sと各単電池110a〜110eとの各電圧差Vsa〜Vseに基づき内部短絡の有無を検査する上で、各単電池110a〜110e毎にそれらの内部短絡の有無を高い精度のもとに検査することができるようになる。
(第2の実施の形態)
以下、本発明を具体化した第2の実施の形態を図4、図5を参照して説明する。なお、この第2の実施の形態では、基準電池110sと単電池110a〜110eとの間を流れる各電流Isa〜Iseを同時に検出すべく、各電池110s、110a〜110e間の通電状態を同時に切り替え可能な治具400を用いている。
(3) When measuring the voltage differences Vsa to Vse between the reference battery 110s and the single cells 110a to 110e to be inspected for internal short circuit, the conduction state between the reference battery 110s and the single cells 110a to 110e can be switched. Switches Sw1 to Sw5 are provided. For this reason, the timing which measures each voltage difference Vsa-Vse through the voltmeters VM1-VM5 can be set arbitrarily. Thereby, transition of each voltage difference Vsa-Vse and by extension, the fall of the voltage resulting from the internal short circuit of the cell 110a-110e can be detected separately and at arbitrary time points. Thereby, when inspecting the presence or absence of an internal short circuit based on the voltage differences Vsa to Vse between the reference battery 110s and the single cells 110a to 110e, the presence or absence of the internal short circuit is highly accurate for each of the single cells 110a to 110e. It becomes possible to inspect under.
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, the energization state between the batteries 110s and 110a to 110e is switched at the same time so as to simultaneously detect the currents Isa to Ise flowing between the reference battery 110s and the cells 110a to 110e. A possible jig 400 is used.
図4は、先の図2に対応する図として、この第2の実施形態にかかる電池の内部短絡検査方法に用いられる検査回路を示したものである。
すなわちこの図4に示すように、良品と判定された基準電池110sの正極と未検査の単電池110a〜110eの各正極との間に、これら基準電池110sと未検査の各単電池110a〜110eとの各電圧差によって流れる電流Isa〜Iseを計測すべく電流計AM1〜AM5をリード線301〜305によって接続する。なお、本実施の形態では、電流計AM1〜AM5を、各単電池110a〜110eの正極側に接続し、それら各単電池110a〜110eの正極の電圧と基準電池110sの正極の電圧との電圧差に基づく電流を計測する。すなわち、基準電池110s及び未検査の単電池110a〜110eの各負極側に、上記通電状態を同時に切り替え可能な治具400が取り付けられる。こうして治具400によって各電池110s、110a〜110eが導通状態とされることにより、基準電池110sと各単電池110a〜110eとの間にそれらの電圧差に応じた電流Isa〜Iseが流れることとなる。そして、これら導通状態とされた各電池110
a〜110eのいずれかに内部短絡が生じている場合には、内部短絡に起因してその電圧が低下することとなり、このために相対的に電圧が低くなる単電池へと電流が流れることとなる。そこで、本実施の形態では、こうした各電池110s、110a〜110e間を流れる電流Is、Isa〜Iseの方向及びその値を検出することによって電池の内部短絡の有無を検査することとする。なお、本実施の形態においては、これら電流Isa〜Iseを、各電流計AM1〜AM5によって同時に計測するようにしている。
FIG. 4 shows an inspection circuit used in the internal short circuit inspection method for a battery according to the second embodiment as a diagram corresponding to FIG.
That is, as shown in FIG. 4, between the positive electrode of the reference battery 110s determined as a non-defective product and the positive electrodes of the untested unit cells 110a to 110e, the reference battery 110s and the untested unit cells 110a to 110e. The ammeters AM1 to AM5 are connected by lead wires 301 to 305 in order to measure the currents Isa to Ise flowing depending on the voltage difference between the lead wires 301 to 305. In the present embodiment, ammeters AM1 to AM5 are connected to the positive side of each unit cell 110a to 110e, and the voltage between the positive electrode voltage of each unit cell 110a to 110e and the positive electrode voltage of reference battery 110s. Measure the current based on the difference. That is, the jig | tool 400 which can switch the said electricity supply state simultaneously is attached to each negative electrode side of the reference | standard battery 110s and the untested cell 110a-110e. In this way, when the batteries 110s and 110a to 110e are made conductive by the jig 400, currents Isa to Ise corresponding to the voltage difference between the reference battery 110s and the unit cells 110a to 110e flow. Become. And each battery 110 made into these conduction | electrical_connection states
When an internal short circuit occurs in any one of a to 110e, the voltage decreases due to the internal short circuit, and for this reason, a current flows to the unit cell having a relatively low voltage. Become. Therefore, in the present embodiment, the presence or absence of an internal short circuit of the battery is inspected by detecting the direction and values of the currents Is and Isa to Ise flowing between the batteries 110s and 110a to 110e. In the present embodiment, these currents Isa to Ise are measured simultaneously by the ammeters AM1 to AM5.
また、本実施の形態において、上記各電流計AM1〜AM5には、その計測値を一括して取り込む検査装置TMG2が接続されており、この検査装置TMG2にて各電流計AM1〜AM5の計測値が一括管理される。なお、各単電池110a〜110eに生じうる内部短絡に起因する電圧変化は、通常、各単電池110a〜110eの電圧(「1.0V」)よりも相対的に微小であり、こうした電圧変化に応じて流れる電流も微小である。そこで、本実施の形態においても、こうした内部短絡に起因して変化する各電流Isa〜Iseを確実に検出すべく、各電流計AM1〜AM5の計測レンジを例えば数μA程度の範囲で低く設定している。   In the present embodiment, each of the ammeters AM1 to AM5 is connected to an inspection device TMG2 that collects the measurement values at once. The measurement values of the ammeters AM1 to AM5 are connected to the inspection device TMG2. Are collectively managed. In addition, the voltage change resulting from the internal short circuit that can occur in each of the unit cells 110a to 110e is usually relatively smaller than the voltage (“1.0V”) of each of the unit cells 110a to 110e. The current that flows accordingly is also very small. Therefore, also in the present embodiment, the measurement ranges of the ammeters AM1 to AM5 are set low in a range of, for example, several μA in order to reliably detect the currents Isa to Ise that change due to such an internal short circuit. ing.
次に、こうして構成された検査回路によって計測される電池110s、110a〜110eを流れる電流Is、Isa〜Iseの推移について図5を参照して説明する。なお、この図5では、上記治具400が基準電池110s及び未検査の単電池110a〜110eの各負極に取り付けられてから5秒経過時、15秒経過時、25秒経過時における各電流Isa〜Iseの推移を示したものである。   Next, transitions of the currents Is and Isa to Ise flowing through the batteries 110 s and 110 a to 110 e measured by the thus configured inspection circuit will be described with reference to FIG. In FIG. 5, when the jig 400 is attached to the negative electrodes of the reference battery 110s and the untested unit cells 110a to 110e, the currents Isa at the time of 5 seconds, 15 seconds, and 25 seconds have elapsed. The transition of ~ Ise is shown.
この図5に示されるように、まず、治具400が取付けられてから5秒経過時に計測された基準電池110sと単電池110a〜110eとの間を流れる各電流Isa、Isb、Isd、Iseの値は、いずれも約「+0.5μA」となっている。これに対し、単電池110cを流れる電流は約「−1.8μA」となっている。すなわち、内部短絡検査に先立ち、一旦「1.0V」まで充電された単電池110cの電圧がその他の電池110s、110a、110b、110d、110eの電圧よりも相対的に低下し、それら電池110s、110a〜110eからこの単電池110cに電流が流れ込んでいることが確認できる。このため、基準電池110sを流れる電流Isの方向と単電池110cを流れる電流Iscとを流れる電流の方向とが異なるようになる。また、こうした電流Iscの値(「−1.8μA」)は、電流Isa、Isb、Isc、Iseの値(「+0.5μA」)とは大きく乖離したものともなっている。   As shown in FIG. 5, first, the currents Isa, Isb, Isd, and Ise that flow between the reference battery 110s and the single cells 110a to 110e, which are measured when 5 seconds have elapsed after the jig 400 is attached, are measured. The values are all about “+0.5 μA”. On the other hand, the current flowing through the unit cell 110c is about “−1.8 μA”. That is, prior to the internal short circuit inspection, the voltage of the unit cell 110c once charged to “1.0V” is relatively lower than the voltages of the other batteries 110s, 110a, 110b, 110d, and 110e, and the batteries 110s, It can be confirmed that current flows from 110a to 110e into the unit cell 110c. For this reason, the direction of the current Is flowing through the reference battery 110s is different from the direction of the current flowing through the current Isc flowing through the single battery 110c. In addition, the value of the current Isc (“−1.8 μA”) is greatly deviated from the values of the currents Isa, Isb, Isc, and Ise (“+0.5 μA”).
一方、計測開始後、15秒経過時に計測された基準電池110sと単電池110a、110b、110d、110eとの間を流れる各電流Isa、Isb、Isd、Iseの値はいずれも約「+0.5μA」となっている。これに対し、基準電池110sと単電池110cとの間を流れる電流Iscの値は約「−1.75μA」となっている。このため、検査開始後から15秒経過時においても、電流Iscの方向がその他の各電流Isa、Isb、Isd、Iseの方向とは相反する関係にあり、また、こうした電流Iscの値(「−1.75μA」)は、電流Isa、Isb、Isc、Iseの値(「+0.5μA」)とは大きく乖離したものともなっている。   On the other hand, the values of the currents Isa, Isb, Isd, and Ise flowing between the reference battery 110s and the cells 110a, 110b, 110d, and 110e measured after 15 seconds from the start of measurement are all about “+0.5 μA. " On the other hand, the value of the current Isc flowing between the reference battery 110s and the single battery 110c is about “−1.75 μA”. For this reason, even when 15 seconds have elapsed since the start of the inspection, the direction of the current Isc is in a relationship opposite to the directions of the other currents Isa, Isb, Isd, and Ise, and the value of the current Isc (“−” 1.75 μA ”) is also greatly deviated from the values of currents Isa, Isb, Isc, Ise (“ +0.5 μA ”).
また一方、さらに、計測開始後、25秒経過時に計測された基準電池110sと単電池110a、110b、110d、110eとの間を流れる各電流Isa、Isb、Isd、Iseの値も同じく約「+0.5μA」となっている。これに対し、基準電池110sと単電池110cとの間を流れる電流Iscの値は約「−1.6μA」となっている。このため、検査開始後から25秒経過時においても、電流Iscの方向がその他の各電流Isa、Isb、Isd、Iseの方向とは相反する関係にあり、また、こうした電流Iscの値(「−1.6μA」)は、電流Isa、Isb、Isc、Iseの値(「+0.5
μA」)とは大きく乖離したものともなっている。
On the other hand, the values of the currents Isa, Isb, Isd, and Ise flowing between the reference battery 110s and the single cells 110a, 110b, 110d, and 110e measured after 25 seconds from the start of measurement are also about “+0”. .5 μA ”. On the other hand, the value of the current Isc flowing between the reference battery 110s and the single battery 110c is about “−1.6 μA”. For this reason, even when 25 seconds have elapsed since the start of the inspection, the direction of the current Isc is in a relationship opposite to the directions of the other currents Isa, Isb, Isd, Ise, and the value of the current Isc (“−” 1.6 μA ”) is the value of current Isa, Isb, Isc, Ise (“ +0.5
[mu] A ") is also greatly deviated.
このように、単電池110cを流れる電流Iscの方向は、単電池110cの内部短絡に起因して、その他の単電池110a、110b、110d、110eを流れる電流Isa、Isb、Isd、Iseの方向とは異なるものとなっており、またそれらの乖離も大きくなっている。また、図5に示されるように、内部短絡が生じているとみられる単電池110cを流れる電流Iscは、計測開始からそれぞれ5秒、15秒、25秒が経過した時点において、「−1.8μA」、「−1.75μA」、「−1.6μA」と次第に「0μA」に近づく態様で推移している。この結果、内部短絡が生じている電池を流れる電流と内部短絡が生じていない電池を流れる電流との乖離は、電池が導通状態にされた後、5秒程度で最大となっている。そこで、本実施の形態では、電池110s、110a〜110eが導通状態とされてから5秒経過時に計測される電流値に基づいて各単電池110a〜110eの内部短絡の有無を検査することとする。   Thus, the direction of the current Isc flowing through the unit cell 110c is caused by the internal short circuit of the unit cell 110c, and the direction of the currents Isa, Isb, Isd, Ise flowing through the other unit cells 110a, 110b, 110d, and 110e. Are different, and the gap between them is also large. Further, as shown in FIG. 5, the current Isc flowing through the unit cell 110c in which an internal short circuit is considered to occur is “−1.8 μA when 5 seconds, 15 seconds, and 25 seconds have elapsed from the start of measurement, respectively. ”,“ −1.75 μA ”,“ −1.6 μA ”, and gradually shifts toward“ 0 μA ”. As a result, the difference between the current flowing through the battery in which the internal short circuit has occurred and the current flowing through the battery in which the internal short circuit has not occurred is maximum in about 5 seconds after the battery is turned on. Therefore, in the present embodiment, the presence or absence of an internal short circuit in each of the single cells 110a to 110e is inspected based on the current value measured when 5 seconds have elapsed since the batteries 110s and 110a to 110e are turned on. .
次に、上記のように構成された検査回路によって未検査の単電池110a〜110eの内部短絡の有無を検査する方法について説明する。
この検査では、まず、上記治具400が基準電池110s及び未検査の単電池110a〜110eの各負極に取り付けられる。これによって電流計AM1〜AM5により各電流Isa〜Iseが計測され、これらの各電流Isa〜Iseの値が検査装置TMG2に取り込まれる。
Next, a method for inspecting the presence / absence of an internal short circuit of uninspected cells 110a to 110e by the inspection circuit configured as described above will be described.
In this inspection, first, the jig 400 is attached to each negative electrode of the reference battery 110s and uninspected unit cells 110a to 110e. Thereby, the currents Isa to Ise are measured by the ammeters AM1 to AM5, and the values of these currents Isa to Ise are taken into the inspection device TMG2.
具体的には、上記治具400が基準電池110s及び未検査の単電池110a〜110eの各負極に取り付けられた後、例えば5秒経過時における各電流Isa〜Iseの値が各単電池110a〜110eの内部短絡の有無の判定のために抽出される。ここでの例では、図5に例示したように、例えば検査開始後5秒経過時に計測された基準電池110sと単電池110a〜110eとの間を流れる各電流Isa、Isb、Isd、Iseの値は、いずれも約「+0.5μA」となっている。これに対し、単電池110cを流れる電流は約「−1.8μA」となっている。そしてこれにより、同図5からも明らかなように、基準電池110sと単電池110cとの間を流れる電流の方向が、基準電池110sと各単電池110a、110b、110d、110eとの間を流れる電流Isa、Isb、Isc、Iseの方向と相反するようになる。すなわち、基準電池110sを流れる電流Isの方向と単電池110cを流れる電流Iscの方向とが異なるようになる。また、こうした電流Iscの値(「−1.8μA」)は、電流Isa、Isb、Isc、Iseの値(「+0.5μA」)とは大きく乖離したものともなっている。このため、上記検査装置TMG2では、こうした電流Iscの方向、あるいはその大きさや乖離の度合いから、単電池110cを、その内部短絡の度合いが許容されうる度合いを超えた「不良品」として判定する。   Specifically, after the jig 400 is attached to the negative electrodes of the reference battery 110s and the untested unit cells 110a to 110e, for example, the values of the currents Isa to Ise when five seconds elapse are the respective unit cells 110a to 110a. 110e is extracted to determine whether or not there is an internal short circuit. In this example, as illustrated in FIG. 5, for example, the values of the currents Isa, Isb, Isd, and Ise that flow between the reference battery 110 s and the single cells 110 a to 110 e measured when 5 seconds have elapsed after the start of the inspection. Are both about “+0.5 μA”. On the other hand, the current flowing through the unit cell 110c is about “−1.8 μA”. Thus, as is apparent from FIG. 5, the direction of the current flowing between the reference battery 110s and the single battery 110c flows between the reference battery 110s and each single battery 110a, 110b, 110d, 110e. The directions of the currents Isa, Isb, Isc, and Ise are contrary to each other. That is, the direction of the current Is flowing through the reference battery 110s is different from the direction of the current Isc flowing through the single battery 110c. In addition, the value of the current Isc (“−1.8 μA”) is greatly deviated from the values of the currents Isa, Isb, Isc, and Ise (“+0.5 μA”). For this reason, in the inspection apparatus TMG2, the unit cell 110c is determined as a “defective product” whose degree of internal short circuit exceeds the allowable level based on the direction of the current Isc, the magnitude, or the degree of deviation.
以上説明したように、第2の実施形態にかかる電池の内部短絡検査方法によれば、以下のような効果が得られるようになる。
(1)良品と判定された基準電池110sと検査対象とする複数の単電池110a〜110eとを互いに同極同士で電気的に接続するとともに、互いに開放された他方の電極は各々電流計AM1〜AM5を介して基準電池110sと接続し、各々計測される電流Isa〜Iseの方向あるいはその値に基づいて内部短絡の有無を検査することとした。これにより、検査対象とする各単電池110a〜110e自身の出力電圧(「1.0V」)及び自己放電が除外され、複数の電池の内部短絡の有無が高い信頼性のもとに判別されるようになる。
As described above, according to the internal short circuit inspection method for a battery according to the second embodiment, the following effects can be obtained.
(1) The reference battery 110s determined to be non-defective and the plurality of single cells 110a to 110e to be inspected are electrically connected to each other with the same polarity, and the other open electrodes are connected to the ammeters AM1 to AM1. The reference battery 110 s is connected via the AM 5, and the presence or absence of an internal short circuit is inspected based on the direction or the value of each of the currents Isa to Ise measured. As a result, the output voltage (“1.0 V”) and self-discharge of each of the single cells 110a to 110e to be inspected are excluded, and the presence or absence of internal short-circuiting of the plurality of batteries is determined with high reliability. It becomes like this.
(2)また、このように基準電池110sと検査対象とする複数の単電池110a〜110eとの間に流れる電流は、内部短絡に起因して相対的に電圧が低下した単電池110
cとその他の各単電池110a、110b、110d、110eとの電圧差により、内部短絡の生じた単電池110cに向かう態様で各電流Isa〜Iseが流れることとなる。このため、検査対象とする各単電池110a〜110eのうち内部短絡の生じた単電池110cを流れる電流Iscの方向のみが、基準電池110sを流れる電流Isの方向と異なるようになる。これにより、各単電池110a〜110eを流れる電流の方向のみに基づいて各単電池110a〜110eの内部短絡の有無を判別することができるようにもなる。
(2) In addition, the current flowing between the reference battery 110s and the plurality of single cells 110a to 110e to be inspected in this way is the single cell 110 whose voltage is relatively lowered due to an internal short circuit.
The currents Isa to Ise flow in a manner toward the single cell 110c in which an internal short circuit has occurred due to a voltage difference between c and the other single cells 110a, 110b, 110d, and 110e. For this reason, only the direction of the current Isc flowing through the unit cell 110c in which the internal short circuit has occurred among the unit cells 110a to 110e to be inspected is different from the direction of the current Is flowing through the reference battery 110s. Thereby, it becomes possible to determine the presence or absence of an internal short circuit of each of the single cells 110a to 110e based only on the direction of the current flowing through each of the single cells 110a to 110e.
(3)基準電池110sと内部短絡の検査対象とする各単電池110a〜110eとの間を流れる電流Isa〜Iseを計測するに際し、これら基準電池110sと各単電池110a〜110eとの導通状態を同時に切り替え可能な治具400を用いることとした。このため、この治具400が取り付けられることによって、基準電池110sと各単電池110a〜110eとが導通状態となり、これに応じて各電流計AM1〜AM5により各電流Isa〜Iseが同時に計測されるようになる。これにより、基準電池110sと各単電池110a〜110eとの間を流れる電流の方向あるいはその大きさに基づき電池の内部短絡の有無を検査する上で、こうした2個以上の電池を同時に検査対象として上記検査を同時実行することで、その検査効率が大幅に高められ、ひいては、こうした検査を含む電池の生産性も向上されるようになる。
(他の実施の形態)
なお、上記各実施の形態は、以下のように変更して実施することもできる。
(3) When measuring the currents Isa to Ise flowing between the reference battery 110s and the single cells 110a to 110e to be inspected for internal short circuits, the continuity between the reference battery 110s and the single cells 110a to 110e is determined. The jig 400 that can be switched simultaneously is used. For this reason, by attaching the jig 400, the reference battery 110s and the single cells 110a to 110e are brought into conduction, and the currents Isa to Ise are simultaneously measured by the ammeters AM1 to AM5. It becomes like this. Thus, when inspecting the presence or absence of an internal short circuit of the battery based on the direction or magnitude of the current flowing between the reference battery 110s and each of the unit cells 110a to 110e, two or more such batteries are simultaneously inspected. By performing the above inspections simultaneously, the inspection efficiency is greatly improved, and as a result, the productivity of batteries including such inspections is improved.
(Other embodiments)
The above-described embodiments can be implemented with the following modifications.
・上記第1の実施の形態では、各電圧差Vsa〜Vseの計測に際し、スイッチSw1〜Sw5のオン/オフ状態をSw1から順に一つのスイッチのみを例えば5秒毎にオン状態とすることとした。これに限らず、基準電池110sとの電圧差を計測する単電池110a〜110eの選択は任意であり、スイッチSw1〜Sw5のうち複数のスイッチを同時にオン状態とすることとしてもよい。また、各電圧差Vsa〜Vseを計測するタイミングは任意であり、5秒の間隔に限定されるものでもない。   In the first embodiment, when the voltage differences Vsa to Vse are measured, the on / off states of the switches Sw1 to Sw5 are changed to the on state only every 5 seconds, for example, from Sw1. . Not only this but selection of the cell 110a-110e which measures a voltage difference with the reference | standard battery 110s is arbitrary, and it is good also as turning on several switches simultaneously among switch Sw1-Sw5. Moreover, the timing which measures each voltage difference Vsa-Vse is arbitrary, and is not limited to the interval of 5 seconds.
・上記第1の実施の形態では、図3に示したように、基準電池110sと各単電池110a〜110eとの電圧差Vsa〜Vseの計測回数をそれぞれ一回とした。これに限らず、基準電池110sと各単電池110a〜110eとの電圧差Vsa〜Vseをそれぞれ複数回計測するようにしてもよい。   In the first embodiment, as shown in FIG. 3, the voltage difference Vsa to Vse between the reference battery 110s and the single cells 110a to 110e is measured once. Not limited to this, the voltage differences Vsa to Vse between the reference battery 110s and the single cells 110a to 110e may be measured a plurality of times.
・上記第1の実施の形態では、基準電池110sと検査対象とする単電池110a〜110eとの間での電圧差Vsa〜Vseに対して許容できる内部短絡を判定するための判定値として直線L0を用いることとしたが、上記判定値はこの直線L0に限定されるものではない。また、こうした判定値を用いることなく、基準電池110sと検査対象とする単電池110a〜110eとの間で電圧差が生じた場合に、これを「不良品」として判定するようにしてもよい。   In the first embodiment, the straight line L0 is used as a determination value for determining an allowable internal short circuit for the voltage difference Vsa to Vse between the reference battery 110s and the single cells 110a to 110e to be inspected. However, the determination value is not limited to the straight line L0. Further, without using such a determination value, when a voltage difference occurs between the reference battery 110s and the single cells 110a to 110e to be inspected, this may be determined as a “defective product”.
・上記各実施の形態では、便宜上、「不良品」として判定される単電池を一つとして説明したが、内部短絡の生じている電池が複数個あったとしても上記方法による検査を行うことは可能である。例えば、上記第1の実施の形態では、基準電池110sとの電圧差Vscが判定値を超えた単電池110cを「不良品」として判定することとしたが、基準電池110sとの電圧差が判定値を超える単電池が複数ある場合にはそれらを「不良品」として判定するようにしてもよい。また、上記第2の実施の形態では、一度の検査で不良品として判別可能な単電池の数は一つではあるが、一回目の検査で「不良品」として判定された単電池を検査対象から外したのちに、再度、各単電池間に流れる電流を計測し、各々計測された電流のうち電流の方向が異なる一つの単電池を「不良品」として判定することとなる。また、こうした検査を繰り返し実行するようにしてもよい。   In each of the above embodiments, for the sake of convenience, a single cell that is determined as a “defective product” has been described as a single cell. Is possible. For example, in the first embodiment, the unit cell 110c in which the voltage difference Vsc from the reference battery 110s exceeds the determination value is determined as a “defective product”, but the voltage difference from the reference battery 110s is determined. When there are a plurality of single cells exceeding the value, they may be determined as “defective products”. In the second embodiment, the number of cells that can be determined as defective by one inspection is one, but the cells determined as “defective” by the first inspection are subject to inspection. Then, the current flowing between the single cells is measured again, and one single cell having a different current direction among the measured currents is determined as a “defective product”. Further, such inspection may be repeatedly executed.
・上記第2の実施の形態では、内部短絡の有無を判定する値として、検査開始から例えば5秒経過時における各電流Isa〜Iseの値を用いることとしたが、各電流Isa〜Iseの方向のみに基づき内部短絡の有無を検査する上では、このような条件に限定されるものではない。   In the second embodiment, the values of the currents Isa to Ise when, for example, 5 seconds have elapsed from the start of the inspection are used as the values for determining the presence or absence of an internal short circuit. However, it is not limited to such a condition when the presence or absence of an internal short circuit is inspected based on the above.
・上記第2の実施の形態では、各単電池110a〜110eを流れる電流の方向に基づいて内部短絡の有無を検査することとした。ここで、各電池110s、110a〜110e間に流れる電流Isa〜Iseの大きさは、各電池110s、110a〜110e間の相対的な電圧差に応じて変化するものである。そして、基準電池110sを流れる電流の方向と異なる方向に流れる電流の値は、各電池110s、110a〜110e間の電圧差が大きいほどこれに比例して大きくなる。一方、各単電池110a〜110eを流れる電流Isa〜Iseは、これら各単電池110a〜110eのうち最も電圧の低い単電池に向かって流れるものであり、たとえ各単電池110a〜110eのいずれにも許容できないような内部短絡が生じていない場合であっても、各単電池110a〜110eのうち最も電圧の低い単電池に向かって電流が流れ込むことが懸念される。そこで、基準電池110sを流れる電流Isと異なる方向に流れる電流に対して許容できる内部短絡の度合いを判定するための判定値を設け、基準電池110sを流れる電流Isと異なる方向に電流が流れて、かつ、その電流値が上記判定値を超える単電池を「不良品」として判別することとしてもよい。これにより、検査対象とする各単電池110a〜110eのいずれにも内部短絡が生じていない場合に、「良品」が「不良品」として誤判別されるような事態を回避することができるようになり、ひいては、各単電池110a〜110eの内部短絡の有無をより高い精度のもとに検査することができるようになる。   -In the said 2nd Embodiment, it decided to test | inspect the presence or absence of an internal short circuit based on the direction of the electric current which flows through each cell 110a-110e. Here, the magnitudes of the currents Isa to Ise flowing between the batteries 110 s and 110 a to 110 e vary according to the relative voltage difference between the batteries 110 s and 110 a to 110 e. The value of the current flowing in a direction different from the direction of the current flowing through the reference battery 110s increases in proportion to the voltage difference between the batteries 110s and 110a to 110e. On the other hand, the currents Isa to Ise flowing through the unit cells 110a to 110e flow toward the unit cell having the lowest voltage among the unit cells 110a to 110e, and even if any of the unit cells 110a to 110e is used. Even if there is no unacceptable internal short circuit, there is a concern that current flows into the unit cell having the lowest voltage among the unit cells 110a to 110e. Therefore, a determination value for determining an allowable degree of internal short-circuit for a current flowing in a direction different from the current Is flowing through the reference battery 110s is provided, and a current flows in a direction different from the current Is flowing through the reference battery 110s, And it is good also as discriminate | determining as a "defective product" the cell with the electric current value exceeding the said determination value. Thus, it is possible to avoid a situation in which “non-defective product” is erroneously determined as “defective product” when no internal short circuit occurs in any of the single cells 110a to 110e to be inspected. As a result, the presence or absence of an internal short circuit of each unit cell 110a to 110e can be inspected with higher accuracy.
・上記第2の実施の形態では、電流計AM1〜AM5の端子を各単電池110a〜110eの正極側に接続することとした。これに限らず、各単電池110a〜110e間を流れる電流の方向あるいはその値に基づき電池の内部短絡の有無を検査するものであればよく、電流計AM1〜AM5を各単電池110a〜110eの負極側に接続するようにしてもよい。   In the second embodiment, the terminals of the ammeters AM1 to AM5 are connected to the positive side of each of the unit cells 110a to 110e. However, the present invention is not limited to this, as long as the direction of the current flowing between the single cells 110a to 110e or the value thereof is inspected for the presence or absence of an internal short circuit. You may make it connect to a negative electrode side.
・上記第2の実施の形態では、基準電池110sと各単電池110a〜110eとの間の電流Isa〜Iseを計測することとしたが、基準電池110sを用いず、検査対象とする複数の電池を同極同士で互いに電気的に接続したときにそれら各電池間の電圧差に起因する電流の方向あるいは電流値を計測して内部短絡の有無を検査するようにしてもよい。すなわち、先の図4に対応する図として例えば図6に示すように、各単電池110a〜110eを互いに同極同士で電気的に接続するとともに、それら複数の電池の互いに開放された他方の電極間を流れる電流を計測する。そして、この計測した電流の方向を検出し、この検出された電流のうち異なる方向に電流が流れる電池を不良品として判別する。またあるいは、この異なる方向に流れる電流に対して許容できる内部短絡の度合いを判定するための判定値を設け、前記異なる方向に流れる電流の値がこの判定値を超える電池を不良品として判別する。このように同極同士が接続された電池間を流れる電流の方向や大きさは、それら各電池の相対的な電圧差に応じたものであり、内部短絡の生じていない相対的に電圧の高い単電池から内部短絡に起因して相対的に電圧が低下した単電池に向かって電流が流れ込むようになる。このため、検査対象とする各電池間を流れる電流の方向に基づいて電池の内部短絡の有無を検査する上では、予め「良品」と判定された基準とする電池を用いることなく同検査を実施することも可能であり、こうした検査を含む電池の生産性もより向上されるようになる。   In the second embodiment, the currents Isa to Ise between the reference battery 110s and the individual cells 110a to 110e are measured. However, the reference battery 110s is not used and a plurality of batteries to be inspected are used. May be inspected for the presence or absence of an internal short circuit by measuring the direction or current value of the current caused by the voltage difference between the batteries. That is, as shown in FIG. 6, for example, corresponding to FIG. 4, the unit cells 110a to 110e are electrically connected to each other with the same polarity, and the other open electrodes of the plurality of batteries are connected to each other. Measure the current flowing between them. Then, the direction of the measured current is detected, and a battery in which a current flows in a different direction among the detected currents is determined as a defective product. Alternatively, a determination value for determining an allowable degree of internal short circuit with respect to the current flowing in the different direction is provided, and a battery whose current value flowing in the different direction exceeds the determination value is determined as a defective product. Thus, the direction and magnitude of the current flowing between the batteries having the same polarity connected to each other are in accordance with the relative voltage difference between the batteries, and the voltage is relatively high without any internal short circuit. Current flows from the unit cell toward the unit cell whose voltage is relatively lowered due to the internal short circuit. For this reason, when inspecting the presence or absence of an internal short circuit of a battery based on the direction of current flowing between the batteries to be inspected, the same inspection is carried out without using a reference battery that has been determined as “good” in advance. It is also possible to improve the productivity of the battery including such inspection.
・上記各実施の形態では、基準とする電池と検査対象とする電池との検査回路として、図2あるいは図4に示す検査回路を用いることとしたが、基準とする電池と検査対象とす
る電池との一方の電極同士を電気的に接続するとともに、これらの開放された他方の電極間での電圧差を計測可能な回路構成であればよく、これらに限定されるものではない。
In each of the above embodiments, the inspection circuit shown in FIG. 2 or 4 is used as the inspection circuit for the reference battery and the inspection target battery. However, the reference battery and the inspection target battery are used. The circuit configuration is not limited to these, as long as the circuit configuration can electrically connect one electrode to the other and measure the voltage difference between the other open electrodes.
・上記各実施の形態では、活性化処理を経て、電池の電圧が「1.0V」とされた直後に内部短絡の有無を検査することとしたが、基準とする電池と内部短絡が生じた電池との電圧差をさらに拡大させる上では、SOCが「1.0V」とされた電池を一定時間放置したのちに電池の内部短絡の有無を検査するようにしてもよい。   In each of the above embodiments, the activation process is performed and the presence or absence of an internal short circuit is inspected immediately after the battery voltage is set to “1.0 V”, but an internal short circuit has occurred with the reference battery. In order to further expand the voltage difference from the battery, the battery with the SOC set to “1.0 V” may be left for a certain period of time and then checked for the presence of an internal short circuit in the battery.
・上記各実施の形態では、電池の内部短絡検査に先立ち、電池の電圧を「1.0V」になるまで充電することとしたが、予め設定する電池の電圧値は、この値に限定されるものではない。   In each of the above embodiments, the battery voltage is charged until the battery voltage reaches “1.0 V” prior to the internal short circuit inspection of the battery. However, the preset voltage value of the battery is limited to this value. It is not a thing.
・上記各実施の形態では、検査対象とする電池として5個の電池を用いることとした。これに限らず、基準とする電池と検査対象とする電池との電圧差に基づき電池の内部短絡の有無を検査する上では、検査対象とする電池は1個、あるいは6個以上であってもよい。   In the above embodiments, five batteries are used as the batteries to be inspected. In addition to this, when inspecting the presence or absence of an internal short circuit of a battery based on the voltage difference between the reference battery and the battery to be inspected, the number of batteries to be inspected may be one, or six or more. Good.
・上記各実施の形態では、内部短絡検査の対象として、同一の工程で製造された電池を用いることとしたが、基準とする電池と検査対象とする電池との電圧差に基づき電池の内部短絡の有無を検査する上では、同一の仕様あるいは同一の電圧を有する電池であればよく、これに限定されるものではない。   In each of the above embodiments, the battery manufactured in the same process is used as the target of the internal short circuit inspection, but the internal short circuit of the battery is based on the voltage difference between the reference battery and the inspection target battery. In order to inspect the presence or absence of batteries, batteries having the same specification or the same voltage may be used, and the present invention is not limited to this.
・上記各実施の形態では、基準電池110sとして予め検査された良品を用いることとした。これに限らず、基準とされる電池は、不良品を含めて、どのような電池を基準としてもよく、要は、基準とされる電池の一方の電極と検査対象とする電池の一方の電極とを同極同士で接続し、基準とされる電池と検査対象とする電池との互いに開放された他方の電極間の電圧差に基づき電池の内部短絡の有無を検査するものであればよい。   In each of the above embodiments, a non-defective product that has been inspected in advance is used as the reference battery 110s. The battery used as a reference is not limited to this, and any battery including a defective product may be used as a reference. In short, one electrode of the reference battery and one electrode of the battery to be inspected are used. Are connected with the same polarity, and the presence or absence of an internal short circuit of the battery may be inspected based on the voltage difference between the other electrode opened between the reference battery and the battery to be inspected.
・上記各実施の形態では、内部短絡検査の対象として、角形密閉式電池を構成するニッケル水素蓄電池(単電池)を用いることとした。これに限らず、上記構成される角形密閉式電池、あるいは、ニッケルカドミウム電池、リチウムイオン電池等の二次電池やマンガン乾電池やアルカリ乾電池等の一次電池であってもよい。   In each of the above embodiments, a nickel-metal hydride storage battery (unit cell) constituting a square sealed battery is used as an object for the internal short circuit inspection. However, the present invention is not limited thereto, and may be a rectangular sealed battery configured as described above, or a secondary battery such as a nickel cadmium battery or a lithium ion battery, or a primary battery such as a manganese dry battery or an alkaline dry battery.
以下に、この明細書中に記載された事項から把握される技術思想に基づいて追記する。
(イ)正極と負極とを有する電池の内部短絡の有無を検査する電池の内部短絡検査方法であって、複数の電池の一方の電極を互いに同極同士で電気的に接続するとともに、それら複数の電池の互いに開放された他方の電極間を流れる電流を計測し、この計測した電流に基づいて電池の内部短絡の有無を検査することを特徴とする電池の内部短絡検査方法。
The following is added based on the technical idea grasped from the matters described in this specification.
(A) A battery internal short-circuit inspection method for inspecting the presence or absence of an internal short circuit of a battery having a positive electrode and a negative electrode, wherein one electrode of a plurality of batteries is electrically connected to each other with the same polarity, An internal short circuit inspection method for a battery, comprising: measuring a current flowing between the other open electrodes of the battery and inspecting the battery for an internal short circuit based on the measured current.
(ロ)同極同士で電気的に接続する複数の電池が3個以上の電池からなり、前記3個以上の電池に対する前記検査を同時実行するものであって、前記計測した電流の方向を検出し、この検出された電流のうち異なる方向に電流が流れる電池を不良品として判別する(イ)に記載の電池の内部短絡検査方法。   (B) A plurality of batteries electrically connected at the same polarity are composed of three or more batteries, and simultaneously execute the inspection on the three or more batteries, and detect the direction of the measured current. Then, the battery internal short-circuit inspection method according to (a), wherein a battery in which a current flows in a different direction among the detected currents is determined as a defective product.
(ハ)前記異なる方向に流れる電流に対して許容できる内部短絡の度合いを判定するための判定値を設け、前記異なる方向に流れる電流の値が前記判定値を超える電池を不良品として判別する(ロ)に記載の電池の内部短絡検査方法。   (C) A determination value for determining an allowable degree of internal short circuit with respect to the current flowing in the different direction is provided, and a battery in which the value of the current flowing in the different direction exceeds the determination value is determined as a defective product ( (B) Internal short circuit inspection method for batteries
上述のように、同極同士が接続された電池間を流れる電流の方向や大きさは、それら各電池の相対的な電圧差に応じたものであり、内部短絡の生じていない相対的に電圧の高い
単電池から内部短絡に起因して相対的に電圧が低下した単電池に向かって電流が流れ込むようになる。このため、検査対象とする各電池間を流れる電流の方向に基づいて電池の内部短絡の有無を検査する上では、予め「良品」と判定された基準とする電池を用いることなく同検査を実施することも可能であり、こうした検査を含む電池の生産性もより向上されるようになる。
As described above, the direction and magnitude of the current flowing between the batteries having the same polarity connected to each other are in accordance with the relative voltage difference between the batteries, and the relative voltage with no internal short circuit is generated. Current flows from the high unit cell toward the unit cell whose voltage is relatively lowered due to the internal short circuit. For this reason, when inspecting the presence or absence of an internal short circuit of a battery based on the direction of current flowing between the batteries to be inspected, the same inspection is carried out without using a reference battery that has been determined as “good” in advance. It is also possible to improve the productivity of the battery including such inspection.
100…一体電槽、110、110a〜110e…単電池、110s…基準電池、120…隔壁、130…電槽、140…極板群、141a…リード部、150、160…集電板、151、161…接続突部、170…貫通孔、200…蓋体、300、301〜305…リード線、400…直列治具、Sw1〜Sw5…スイッチ、TMG1、TMG2…検査装置、TM…接続端子、AM1〜AM5…電流計、VM1〜VM5…電圧計。   DESCRIPTION OF SYMBOLS 100 ... Integrated battery case 110, 110a-110e ... Single cell, 110s ... Reference battery, 120 ... Bulkhead, 130 ... Battery case, 140 ... Electrode plate group, 141a ... Lead part, 150, 160 ... Current collector plate, 151, 161: Connection protrusion, 170: Through hole, 200: Lid, 300, 301 to 305 ... Lead wire, 400 ... Series jig, Sw1 to Sw5 ... Switch, TMG1, TMG2 ... Inspection device, TM ... Connection terminal, AM1 ~ AM5 ... ammeter, VM1-VM5 ... voltmeter.

Claims (7)

  1. 正極と負極とを有する電池の内部短絡の有無を検査する電池の内部短絡検査方法であって、
    複数の電池の一方の電極を互いに同極同士で電気的に接続するとともに、該複数の電池の一つを基準とし、基準とする電池と基準とする電池以外の電池との互いに開放された他方の電極間での電圧もしくは電流を計測し、該計測した電圧もしくは電流に基づいて前記基準とする電池以外の電池の内部短絡の有無を検査する
    ことを特徴とする電池の内部短絡検査方法。
    A battery internal short circuit inspection method for inspecting the presence or absence of an internal short circuit of a battery having a positive electrode and a negative electrode,
    The electrodes of the plurality of batteries are electrically connected to each other with the same polarity, and the other of the batteries serving as a reference and a battery other than the reference battery open to each other based on one of the plurality of batteries A battery internal short circuit inspection method, comprising: measuring a voltage or current between the electrodes of the battery and inspecting the presence or absence of an internal short circuit of a battery other than the reference battery based on the measured voltage or current.
  2. 前記計測の対象が前記電圧であり、前記基準とする電池と基準とする電池以外の電池との間での電圧差に対して許容できる内部短絡の度合いを判定するための判定値を設け、前記計測した電圧差が該判定値を超える電池を不良品として判別する
    請求項1に記載の電池の内部短絡検査方法。
    The measurement target is the voltage, and a determination value is provided for determining an allowable degree of internal short circuit with respect to a voltage difference between the reference battery and a battery other than the reference battery, The battery internal short circuit inspection method according to claim 1, wherein a battery whose measured voltage difference exceeds the determination value is determined as a defective product.
  3. 前記電圧差を単位時間当たりの電圧変化量として計測する
    請求項2に記載の電池の内部短絡検査方法。
    The battery internal short circuit inspection method according to claim 2, wherein the voltage difference is measured as a voltage change amount per unit time.
  4. 前記計測の対象が前記電流であるとともに、前記基準とする電池を含めて同極同士で電気的に接続する複数の電池が3個以上の電池からなって、前記基準とする電池以外の2個以上の電池に対する前記検査を同時実行するものであり、前記計測した電流の方向を検出し、前記基準とする電池の電流の方向と異なる方向に電流が流れる電池を不良品として判別する
    請求項1に記載の電池の内部短絡検査方法。
    The measurement target is the current, and a plurality of batteries electrically connected in the same polarity including the reference battery are composed of three or more batteries, and two batteries other than the reference battery 2. The above-described inspection for the battery is performed simultaneously, the direction of the measured current is detected, and a battery in which a current flows in a direction different from the direction of the current of the reference battery is determined as a defective product. The internal short circuit inspection method of the battery as described in 2.
  5. 前記基準とする電池の電流の方向と異なる方向に流れる電流に対して許容できる内部短絡の度合いを判定するための判定値を設け、前記基準とする電池の電流方向と異なる方向に電流が流れてかつ、該電流値が前記判定値を超える電池を不良品として判別する
    請求項4に記載の電池の内部短絡検査方法。
    A determination value is provided for determining an allowable degree of internal short-circuit for a current flowing in a direction different from the direction of the reference battery current, and the current flows in a direction different from the reference battery current direction. The battery internal short circuit inspection method according to claim 4, wherein a battery whose current value exceeds the determination value is determined as a defective product.
  6. 前記基準とする電池を含めて同極同士で電気的に接続する複数の電池は同一仕様の二次電池であり、前記検査に先立ち、全ての電池を同一SOCになるまで充電する
    請求項1〜5のいずれか一項に記載の電池の内部短絡検査方法。
    The plurality of batteries that are electrically connected with the same polarity including the reference battery are secondary batteries having the same specification, and prior to the inspection, all the batteries are charged until they have the same SOC. 6. The internal short circuit inspection method for a battery according to any one of 5 above.
  7. 前記基準とする電池を含めて同極同士で電気的に接続する複数の電池として同一ロットにて生産された電池を用いる
    請求項1〜6のいずれか一項に記載の電池の内部短絡検査方法。
    The internal short circuit inspection method for a battery according to any one of claims 1 to 6, wherein a battery produced in the same lot is used as a plurality of batteries electrically connected with the same polarity including the reference battery. .
JP2009076452A 2009-03-26 2009-03-26 Method for inspecting internal short circuit of battery Pending JP2010231948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009076452A JP2010231948A (en) 2009-03-26 2009-03-26 Method for inspecting internal short circuit of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009076452A JP2010231948A (en) 2009-03-26 2009-03-26 Method for inspecting internal short circuit of battery

Publications (1)

Publication Number Publication Date
JP2010231948A true JP2010231948A (en) 2010-10-14

Family

ID=43047596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009076452A Pending JP2010231948A (en) 2009-03-26 2009-03-26 Method for inspecting internal short circuit of battery

Country Status (1)

Country Link
JP (1) JP2010231948A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054931A (en) * 2011-09-05 2013-03-21 Toyota Motor Corp Inspection apparatus of secondary battery and inspection method of secondary battery
JP2015087372A (en) * 2013-09-27 2015-05-07 トヨタ自動車株式会社 Secondary battery inspection method and secondary battery inspection device
JP2015125900A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Inspecting method for secondary battery
KR20150132370A (en) * 2013-03-13 2015-11-25 티악스 엘엘씨 System and methods for detection of internal shorts in batteries
WO2018043222A1 (en) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 Management device and power storage system
KR20210042679A (en) * 2019-10-10 2021-04-20 삼성에스디아이 주식회사 Battery system and control method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054931A (en) * 2011-09-05 2013-03-21 Toyota Motor Corp Inspection apparatus of secondary battery and inspection method of secondary battery
KR102210162B1 (en) 2013-03-13 2021-02-02 티악스 엘엘씨 System and methods for detection of internal shorts in batteries
KR20150132370A (en) * 2013-03-13 2015-11-25 티악스 엘엘씨 System and methods for detection of internal shorts in batteries
JP2016519284A (en) * 2013-03-13 2016-06-30 ティアックス エルエルシーTiax Llc Battery internal short detection system and method
US10295606B2 (en) 2013-03-13 2019-05-21 Tiax Llc System and methods for detection of internal shorts in batteries
JP2015087372A (en) * 2013-09-27 2015-05-07 トヨタ自動車株式会社 Secondary battery inspection method and secondary battery inspection device
JP2015125900A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Inspecting method for secondary battery
WO2018043222A1 (en) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 Management device and power storage system
JPWO2018043222A1 (en) * 2016-08-30 2019-06-24 パナソニックIpマネジメント株式会社 Management device and storage system
KR20210042679A (en) * 2019-10-10 2021-04-20 삼성에스디아이 주식회사 Battery system and control method thereof
KR102267785B1 (en) * 2019-10-10 2021-06-21 삼성에스디아이 주식회사 Battery system and control method thereof

Similar Documents

Publication Publication Date Title
JP2010231948A (en) Method for inspecting internal short circuit of battery
US7239147B2 (en) Method and device for inspecting secondary battery precursor and method for manufacturing secondary battery using the inspection method
US9091733B2 (en) Method of inspecting secondary battery
JP2002107427A (en) Method for detecting residual capacity of secondary battery
KR20190063439A (en) Method of evaluating power storage device, method of manufacturing power storage device, and test system
JP2005251538A (en) Inspection method and device of secondary cell
Banaei et al. Real time condition monitoring in Li-Ion batteries via battery impulse response
WO2006075740A1 (en) Method and apparatus for judging conformity of lead storage battery
Wildfeuer et al. Experimental Characterization of Li-Ion Battery Resistance at the Cell, Module and Pack Level
JPH0915311A (en) Failure detection device for battery set
RU2326473C1 (en) Electric method of accumulator batteries quality control
JP2018132487A (en) Deterioration determination method of secondary battery and deterioration determination device of secondary battery
JP2012221648A (en) Manufacturing method of nonaqueous electrolyte secondary battery
Shi et al. Nondestructive forensic pathology of lead-acid batteries
JP2003045500A (en) Method and device for inspecting battery
JP5625282B2 (en) Battery deterioration determination device and battery deterioration determination method
JP2000195565A (en) Inspection method of secondary battery
JP2005019241A (en) Method for manufacturing nonaqueous electrolyte secondary cell
KR20180001351A (en) Method of the electrical and physical defect inspection between Lead-acid battery cell
JP2002313435A (en) Battery inspection method
Yuan et al. Effect of external resistance on SOH measurement of LFP cells
JP2001296341A (en) Method for diagnosing deterioration of module battery
KR101544935B1 (en) Apparatus and method for measuring voltage of battery
JP6742937B2 (en) Secondary battery state determination method and secondary battery state determination device
JP2021131952A (en) Battery inspection method