JPH09160041A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH09160041A
JPH09160041A JP32030295A JP32030295A JPH09160041A JP H09160041 A JPH09160041 A JP H09160041A JP 32030295 A JP32030295 A JP 32030295A JP 32030295 A JP32030295 A JP 32030295A JP H09160041 A JPH09160041 A JP H09160041A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
substrate
pixel
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32030295A
Other languages
Japanese (ja)
Inventor
Takeshi Oyama
毅 大山
Yuzo Hisatake
雄三 久武
Kiyoshi Shobara
潔 庄原
Hitoshi Hado
仁 羽藤
Makiko Satou
摩希子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32030295A priority Critical patent/JPH09160041A/en
Publication of JPH09160041A publication Critical patent/JPH09160041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a display element having high speed response and a wide visibility angle. SOLUTION: This display element is formed by a liquid crystal cell 10 forming plural pixels by holding a liquid crystal layer 14 between two opposite substrates 10a, 10b and two polarizers 20a, 20b holding the cell 10 between them and constituted so as to control a double refraction rate by the impression of electric fields. The two substrates 10a, 10b are respectively provided with photoconductor parts (electrodes) 12a, 12b and alignment layers 13 on the sides of the layer 14. The electrodes 12a, 12b are oppositely arranged so as to impress electric fields to the layer 14, the electrode 12a or 12b of at least one of the substrates 10a, 10b has structure alternately arraying the electrodes 12a or 12b with thin width and non-conductive parts 11a or 11b in each pixel, and when both the substrates 10a, 10b are joined, the electrode of one substrate is opposed to the non-conductor part of the other substrate to form oblique electric fields in the layer 14. In each pixel, the alignment layers of the two substrates 10a, 10b orientate liquid crystal molecules in the layer 14 in a tilted state and the liquid crystal molecules are uniformed in the initial alignment state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は液晶表示素子に係わ
る。
TECHNICAL FIELD The present invention relates to a liquid crystal display device.

【0002】[0002]

【従来の技術】近年、薄型軽量、低消費電力という大き
な利点を持つ液晶表示素子は、日本語ワ−ドプロセッサ
やディスクトップパ−ソナルコンピュ−タ−等のパ−ソ
ナルOA機器の表示装置として積極的に用いられてい
る。液晶表示素子(以下LCDと略称)の殆どは、ネマ
ティック液晶を用いており、表示方式としては、複屈折
モ−ドと旋光モ−ドの2つの方式に大別できる。 捩じ
れネマティック液晶を用いた複屈折モ−ドの表示方式の
LCDは、例えば、180゜以上捩じれた分子配列から
なるLCD(ST方式と呼ばれる)であり、急峻な電気
光学特性を持つため、各画素ごとにスイッチング素子
(薄膜トランジスタやダイオ−ド)が無くても時分割駆
動により容易に大容量表示が得られる。
2. Description of the Related Art In recent years, liquid crystal display elements having the great advantages of thinness, light weight, and low power consumption have been used as display devices for personal OA equipment such as Japanese word processors and disk top personal computers. It is actively used. Most of the liquid crystal display elements (hereinafter abbreviated as LCD) use nematic liquid crystal, and the display system can be roughly classified into two systems, a birefringence mode and an optical rotation mode. An LCD of a birefringence mode display method using a twisted nematic liquid crystal is, for example, an LCD (called an ST method) having a molecular arrangement twisted by 180 ° or more, and has steep electro-optical characteristics. Even if there is no switching element (thin film transistor or diode), a large capacity display can be easily obtained by time-division driving.

【0003】しかしながら前述したST方式は応答そく
どが数百ミリ秒と遅く、また視角特性も狭いので高い表
示性能を必要とする応用製品には適さない。
However, the above-mentioned ST method is not suitable for application products which require high display performance because the response throat is as slow as several hundred milliseconds and the viewing angle characteristics are narrow.

【0004】一方、旋光モ−ドのLCDは90゜捩じれ
た分子配列をもち(TN方式と呼ばれる)、高いコント
ラスト比を示すことから、時計や電卓、さらにはスイッ
チング素子を各画素ごとに設けることにより大表示容量
で高コントラストな高い表示性能を持ったLCD(たと
えばTFT−LCD)を実現することができる。
On the other hand, since the LCD of the optical rotation mode has a molecular arrangement twisted by 90 ° (called the TN system) and exhibits a high contrast ratio, a clock, a calculator and a switching element are provided for each pixel. Thus, it is possible to realize an LCD (for example, TFT-LCD) having a large display capacity and high contrast and high display performance.

【0005】近年、このTN方式のTFT−LCDは階
調表示を行っているが、斜めから観察した場合には表示
の反転や黒つぶれ、白抜けといった現象が生じる。よっ
て、視角特性は極めて狭い。 また、このTN方式のT
FT−LCDは高品位化に伴い、デスクトップモニタ等
大型でかつ極めて高精細な応用製品にも用いられるよう
になった。こうした分野や、高品位のTV用途に応用す
る場合、極めて早い応答速度が必要になるが、前記TN
方式は階調表示を行った場合、パタ−ン書き替えに要す
る応答時間は最大100ミリ秒と遅い。
In recent years, this TN type TFT-LCD performs gradation display, but when observed obliquely, such phenomena as display reversal, blackout, and blank areas occur. Therefore, the viewing angle characteristic is extremely narrow. In addition, the T of this TN method
FT-LCDs have come to be used for large-sized and extremely high-definition application products such as desktop monitors as the quality has been improved. When applied to such fields and high-definition TV applications, extremely fast response speed is required.
In the method, when gradation display is performed, the response time required for pattern rewriting is as slow as 100 milliseconds at maximum.

【0006】また、このTN方式は高いコントラスト特
性を得るには、動作電圧が4〜5v必要であり、消費電
力は高い。
Further, in order to obtain high contrast characteristics, this TN method requires an operating voltage of 4 to 5 V and consumes high power.

【0007】前述したTN方式の視角特性を改善する手
段として、一画素内に液晶分子の起き上がる方向(プレ
チルト方向)が180゜異なる二領域を設けた液晶表示
素子を用いて視角依存性を改善する方法(Two Domain
TN:TDTNと略称 例えば、特開昭64−8852
0)や、スプレイ配列を用い、TDTNと同様の効果を
得るDomain Divided TN(DDTNと略称 Y.Koike,e
t.al.,1992,SID,p798)などが提案されている。これら
は、前述した印加電圧−透過率特性の視角依存性が異な
る二領域を一画素として、前述した極値を事実上なくす
ことを目的としている。
As a means for improving the viewing angle characteristics of the above-mentioned TN method, the viewing angle dependence is improved by using a liquid crystal display element in which two regions in which one liquid crystal molecule rising direction (pretilt direction) is different by 180 ° are provided in one pixel. Method (Two Domain
TN: Abbreviated as TDTN For example, JP-A-64-8852
0) and Domain Divided TN (DDTN abbreviated as Y.Koike, e) that achieves the same effect as TDTN by using a spray arrangement.
t.al., 1992, SID, p798) and the like have been proposed. The purpose of these is to effectively eliminate the above-mentioned extreme value by defining two regions having different viewing angle dependences of the applied voltage-transmittance characteristic as one pixel.

【0008】しかしながら、これらの手法は、微細な領
域内でプレチルト方向を変えるためにレジストをパタ−
ニングしてラビングしたり、微細な領域内で2種の配向
膜(表面状態や材料)を形成するためにパタ−ニングや
マスク露光をしたり、と従来のTN方式の工程より工程
数が増え、著しくコスト高となるため、実用的でない。
However, in these methods, the resist is patterned in order to change the pretilt direction in a fine region.
The number of processes is increased compared to the conventional TN process, such as patterning and rubbing, patterning and mask exposure to form two kinds of alignment films (surface condition and material) in a fine area. It is not practical because the cost will be significantly high.

【0009】また、ある程度の視角範囲では前述した極
値をなくすことができるが、視角特性は視角依存性が異
なる二領域の個々の特性の平均の特性であり、視角方向
によっては極致をなくすことができない。また、コント
ラストについては、悪い特性と良い特性を平均化するの
で、平均的な特性となってしまい良い特性単体よりもコ
ントラストが低下してしまう。また、応答速度について
は従来のTN方式と変わりない。
Further, although the above-described extreme value can be eliminated in a certain viewing angle range, the viewing angle characteristic is an average characteristic of the individual characteristics of the two regions having different viewing angle dependences, and it should be eliminated depending on the viewing angle direction. I can't. As for the contrast, since the bad characteristic and the good characteristic are averaged, the average characteristic is obtained, and the contrast is lower than that of the good characteristic alone. The response speed is the same as that of the conventional TN method.

【0010】これに対し、ヤマグチ(Y.Yamaguchi )ら
は、ツイストしていないスプレイ配列のネマティック液
晶層に電圧を印加して、ベント配列としてこのベント配
列を維持する印加電圧範囲内で液晶分子のチルト状態を
印加電圧値により制御し、液晶層における位相差を電圧
により制御する複屈折効果型の液晶表示モ−ド:OCB
モ−ド(Optically Compensated Birefringence mode)
を提案している(Y.Yamaguchi,etal.SID93 DI
GEST,pp277−280)。また、ボス(P.Bos
)らも同様の液晶表示モ−ドを提案している(P.Bos,e
tal.SID´83 DIGEST,pp30−3
1)。
On the other hand, Y. Yamaguchi et al. Apply a voltage to a nematic liquid crystal layer having a non-twisted splay alignment and, as a vent alignment, the liquid crystal molecules within the applied voltage range for maintaining this vent alignment. Birefringence effect type liquid crystal display mode: OCB in which the tilt state is controlled by the applied voltage value and the phase difference in the liquid crystal layer is controlled by the voltage
Mode (Optically Compensated Birefringence mode)
(Y. Yamaguchi, et al. SID93 DI
GEST, pp 277-280). Also, the boss (P.Bos
) Et al. Have proposed a similar liquid crystal display mode (P. Bos, e.
tal. SID'83 DIGEST, pp30-3
1).

【0011】このOCBモ−ドの液晶分子配列は、液晶
層の上半分、下半分が常時対称な形状となっていること
が特徴である。従って左右方位に視角(観察角度)を傾
けても、その視角特性は対称となる。さらに、2軸の位
相差板を配置することにより、ある電圧状態にて、前記
液晶層と前記2軸の位相差板の屈折率楕円体が球とな
り、つまり3次元的に屈折率異方性が無い光学媒体とな
り、この状態からX方位に位相差を発生させることによ
り、種々の視角において位相差が0から2分の1波長ま
で変化する電圧制御が可能となり、前述した視角依存性
が殆どない表示モ−ドとなっている。
The liquid crystal molecule arrangement in this OCB mode is characterized in that the upper half and the lower half of the liquid crystal layer are always symmetrical. Therefore, even if the viewing angle (observation angle) is tilted in the left and right directions, the viewing angle characteristics are symmetrical. Further, by disposing the biaxial retardation plate, the refractive index ellipsoid of the liquid crystal layer and the biaxial retardation plate becomes a sphere in a certain voltage state, that is, the three-dimensional refractive index anisotropy. It becomes an optical medium that does not have the above, and by generating a phase difference in the X direction from this state, it becomes possible to perform voltage control in which the phase difference changes from 0 to a half wavelength at various viewing angles, and the above-mentioned viewing angle dependence is almost eliminated. There is no display mode.

【0012】このようにOCBモ−ドは、前述した階調
性能、コントラスト性能の視角特性の点では優れてい
る。しかしながら、前記OCBモ−ドは、液晶分子配列
をスプレイ配列(電圧無印加状態)から、電圧印加によ
りベント配列に転移させる必要があり、これには強いエ
ネルギ−が必要で、実際には(転移後の)駆動電圧以上
の電圧を印加する必要があった。大容量で高精細な表示
を行う場合、TFTが必要となるが、このTFT素子で
は印加できない電圧であり、前記OCBモ−ドは大容量
で高精細な表示には実用できなかった。また、転移に要
する時間は1分以上も掛り、ディスプレイを立ち上げて
から表示が出るまで、まるで真空管を用いたCRTディ
スプレイのように時間が掛る。
As described above, the OCB mode is excellent in terms of the viewing angle characteristics of the gradation performance and the contrast performance described above. However, in the OCB mode, it is necessary to transfer the liquid crystal molecule array from the splay array (no voltage applied state) to the bent array by applying a voltage, which requires strong energy, and in fact It was necessary to apply a voltage higher than the driving voltage (after). Although a TFT is required for high-capacity and high-definition display, the voltage cannot be applied by this TFT element, and the OCB mode cannot be used for high-capacity and high-definition display. In addition, the time required for the transfer takes one minute or more, and it takes time from when the display is started to when the display is displayed, like a CRT display using a vacuum tube.

【0013】また、前記OCBモ−ドは、ベント配列を
維持する(スプレイ配列への転移を防止する)必要があ
り、このためにはある程度の電圧を常時全変調部に印加
しておく必要がある。素子の駆動電圧を少しでも低くす
るためには、前記ベント配列を維持する電圧を駆動電圧
範囲の下限とする必要がある。この場合、この印加電圧
においてベント配列が安定して維持される必要がある。
しかしながら、ベント配列が安定して維持される印加電
圧は、およそ2.5Vと高く、結果的に駆動電圧は高い
ものとなっていた。
Further, the OCB mode needs to maintain the vent arrangement (prevents the transition to the spray arrangement), and for this purpose, it is necessary to constantly apply a certain voltage to all the modulation sections. is there. In order to lower the driving voltage of the device as much as possible, it is necessary to set the voltage for maintaining the vent arrangement as the lower limit of the driving voltage range. In this case, the bent arrangement needs to be stably maintained at this applied voltage.
However, the applied voltage with which the vent arrangement is stably maintained is as high as about 2.5 V, and as a result, the drive voltage is high.

【0014】また、十分なコントラストを得るには動作
電圧として5〜8vも必要であり、消費電力は極めて高
い。
Further, in order to obtain a sufficient contrast, an operating voltage of 5 to 8 V is required, and the power consumption is extremely high.

【0015】また、高温状態では液晶相のリタデ−ショ
ンが変化するので表示特性が悪化するといった温度特性
の問題もある。また、生産上、上下基板のプレチルト角
を完全に対称に制御する必要があり、面内におけるプレ
チルト角むらのマ−ジンが狭い。よって歩留まりが低い
といった問題もある。
Further, there is also a problem of temperature characteristics that the retardation of the liquid crystal phase changes at high temperature and the display characteristics deteriorate. Further, in production, it is necessary to control the pretilt angles of the upper and lower substrates completely symmetrically, and the margin of unevenness of the pretilt angle in the plane is narrow. Therefore, there is also a problem that the yield is low.

【0016】これに対し、大江らは一方に基板に基板平
面方向に電界が印加できる電極を形成し、液晶分子の配
列方向を基板平面方向において変化させるIn−pla
neモ−ドを改良し、単純な電極構造からなるTFTア
レイ及びSSFLCのように45゜の分子配列変化とし
たTFT−LCDを提案したIPSモ−ド(M,Oh-e,et.a
l."Principles and Characteristics of Electro-Optic
al Behaviour In-Plane Switching Mode",ASIA DISPLAY
'95 DIGEST PAPER p577-580,1995) がある。
On the other hand, Oe et al. Formed an In-Pla on one side of which an electrode capable of applying an electric field in the substrate plane direction was formed to change the alignment direction of liquid crystal molecules in the substrate plane direction.
The IPS mode (M, Oh-e, et.a.) was proposed in which the ne mode is improved and a TFT array having a simple electrode structure and a TFT-LCD having a molecular arrangement change of 45 ° like SSFLC are proposed.
l. "Principles and Characteristics of Electro-Optic
al Behavior In-Plane Switching Mode ", ASIA DISPLAY
'95 DIGEST PAPER p577-580, 1995).

【0017】このIPSモ−ドは、SSFLC同様、基
板平面方向に液晶分子配列方向を変化させ、リタ−デ−
ションの生じる光軸を電界により制御するものなので前
述した階調表示性能やコントラスト性能の視角特性は極
めて広い。しかしながら、液晶分子の配向規制力(アン
カリング)の影響を強く受けるため応答速度は遅い。ま
た、動作電圧も7vと高く消費電力は極めて高い。ま
た、原理的に電極上の液晶分子を変化させることができ
ないので電極上の光偏重は不可能であり、電極は遮光性
のある金属を用いざる終えない。よってTFT−LCD
としては開口率が低くなり、表示輝度は極めて暗くな
る。
This IPS mode, like SSFLC, changes the alignment direction of liquid crystal molecules in the plane direction of the substrate, and the retarder
Since the optical axis causing the distortion is controlled by the electric field, the viewing angle characteristics of the gradation display performance and the contrast performance described above are extremely wide. However, the response speed is slow because it is strongly influenced by the alignment regulating force (anchoring) of the liquid crystal molecules. Moreover, the operating voltage is as high as 7 V and the power consumption is extremely high. Further, in principle, liquid crystal molecules on the electrodes cannot be changed, so that the light cannot be deviated on the electrodes, and the electrodes must be made of a light-shielding metal. Therefore, TFT-LCD
As a result, the aperture ratio becomes low and the display brightness becomes extremely dark.

【0018】[0018]

【発明が解決しようとする課題】前述したように、従来
の表示モ−ドは、視角特性、応答速度、駆動電圧(消費
電力)、表示輝度、温度特性等の問題があり、これらを
全て満足するLCDはなかった。
As described above, the conventional display mode has problems such as viewing angle characteristics, response speed, driving voltage (power consumption), display brightness, temperature characteristics, etc., all of which are satisfied. There was no LCD to do.

【0019】本発明は、こうした従来の表示モ−ドの問
題点を解決し、極めて優れた品位をえる新規な表示モ−
ドの構成を提案することを目的とする。
The present invention solves the problems of the conventional display mode, and provides a novel display mode with an extremely high quality.
The purpose is to propose a configuration of code.

【0020】[0020]

【課題を解決するための手段】本発明は、第1に、対向
する2枚の基板間に液晶層を挟持して複数の画素を形成
する液晶セルとこの液晶セルを2つの偏光器で挟んでな
る液晶表示素子において、前記2枚の基板は前記液晶層
側にそれぞれ電極および配向膜を有しており、前記電極
は前記画素毎に前記液晶層に電界を印加できるように対
向配置され、少なくとも一方の基板の電極が画素毎に細
幅の導電体部と非導電体部とを交互に配列した構造を有
し、一方の基板の導電体部と他方の基板の非導電体部が
少なくとも一部において対向しており、各画素におい
て、前記2つの基板の配向膜が前記液晶層の液晶分子を
チルト配向させ、かつ、前記液晶分子が初期配向状態で
ユニフォーム状態であることを特徴とする液晶表示素子
を得るものである。
According to the present invention, firstly, a liquid crystal cell in which a liquid crystal layer is sandwiched between two opposing substrates to form a plurality of pixels, and this liquid crystal cell is sandwiched between two polarizers. In the liquid crystal display element, the two substrates each have an electrode and an alignment film on the liquid crystal layer side, and the electrodes are arranged facing each other so that an electric field can be applied to the liquid crystal layer for each pixel, The electrode of at least one of the substrates has a structure in which narrow conductor portions and non-conductor portions are alternately arranged for each pixel, and the conductor portion of one substrate and the non-conductor portion of the other substrate are at least Part of them are opposed to each other, and in each pixel, the alignment films of the two substrates tilt the liquid crystal molecules of the liquid crystal layer, and the liquid crystal molecules are in a uniform state in an initial alignment state. A liquid crystal display device is obtained.

【0021】ここに非導電体部とは、導電体部間の間隙
部分またはこの間隙に非導電体材料が形成された領域を
いう。
Here, the non-conductor portion means a gap portion between the conductor portions or a region in which a non-conductor material is formed in this gap.

【0022】前記電極の1画素の基本構成を図1に示
す。また、この電極を組み合わせた液晶セルの構成を図
2に示す。図1(a)に示すように観察側の上基板の電
極12Aは微細細幅のストライプ上導電体部12aとそ
の間隙を構成する非導電体部11aをそれぞれ交互に配
置した構造を有し、同じく対向側のアクティブマトリク
ス基板である下基板上の画素電極12Bは微細細幅のス
トライプ状導電体部12bとその間隙を構成する非導電
体部11bをそれぞれ交互に配置した構造を有してい
る。なお、15はTFTスイッチング素子を示す。
The basic structure of one pixel of the electrode is shown in FIG. The configuration of a liquid crystal cell in which this electrode is combined is shown in FIG. As shown in FIG. 1A, the electrode 12A on the upper substrate on the observation side has a structure in which stripe-shaped conductor portions 12a having a fine narrow width and non-conductor portions 11a constituting the gap are alternately arranged. Similarly, the pixel electrode 12B on the lower substrate, which is the active matrix substrate on the opposite side, has a structure in which the stripe-shaped conductor portions 12b having a fine width and the non-conductor portions 11b forming the gap are alternately arranged. . Reference numeral 15 represents a TFT switching element.

【0023】図2(a)のように検光子としての偏光器
20a、位相差板19、液晶セル10および偏光子とし
ての偏光器20bを順次重ねた配置において、Voff は
液晶セルの電極に電圧を印加しない状態すなわち液晶が
初期配向状態にある場合の各光軸、吸収軸(矢印で図
示)を示し、Vonは液晶セルの電極に電圧を印加した状
態の各光軸、吸収軸(矢印で図示)の角度を表してい
る。
In the arrangement in which the polarizer 20a as the analyzer, the retardation plate 19, the liquid crystal cell 10 and the polarizer 20b as the polarizer are sequentially stacked as shown in FIG. 2A, Voff is a voltage applied to the electrode of the liquid crystal cell. Shows an optical axis and an absorption axis (illustrated by an arrow) in a state where the liquid crystal is in an initial alignment state, and Von represents an optical axis and an absorption axis (indicated by an arrow when a voltage is applied to the electrodes of the liquid crystal cell). (Shown in the figure).

【0024】この場合、Voff で光は偏光器間を通過せ
ず、Vonで通過する。
In this case, light does not pass between the polarizers at Voff, but passes at Von.

【0025】図2(b)は電圧印加時の液晶分子14a
の配列の変化を示し、電極の導電体部12に平行に配列
された液晶が電極に電圧が印加されることにより、観察
側からみて捩じれ配向される様子を示している。これを
液晶層断面方向からみた図が(c)である。
FIG. 2B shows liquid crystal molecules 14a when a voltage is applied.
Shows that the liquid crystal arranged in parallel with the conductor portion 12 of the electrode is twisted and aligned when viewed from the observation side when a voltage is applied to the electrode. A view of this from the cross-sectional direction of the liquid crystal layer is (c).

【0026】この液晶セルのように本発明の液晶表示素
子は電圧を印加した場合、図2(c)に示したように液
晶層に斜め電界が印加され、液晶分子14aはこの斜め
電界に沿って配列する。
When a voltage is applied to the liquid crystal display element of the present invention like this liquid crystal cell, an oblique electric field is applied to the liquid crystal layer as shown in FIG. 2C, and the liquid crystal molecules 14a follow the oblique electric field. To arrange.

【0027】本発明の構成の液晶表示素子では図2
(c)に示すような周期的な斜め電界が液晶層に印加で
き、液晶層全体について厚み方向に対しても、面内方向
に対しても、また、電極上の液晶分子に対しても容易に
電界が印加される。符号21は電極に電圧を印加する電
源を示す。
The liquid crystal display device having the structure of the present invention is shown in FIG.
A periodic oblique electric field as shown in (c) can be applied to the liquid crystal layer, and the liquid crystal layer as a whole can be easily applied in the thickness direction, the in-plane direction, and the liquid crystal molecules on the electrodes. An electric field is applied to. Reference numeral 21 indicates a power source for applying a voltage to the electrodes.

【0028】2枚の偏光板20a、20b間に前記液晶
セル10を挟持し、前述した従来の表示モード同様、偏
光を制御し、入射した光の透過/吸収を制御するように
しているので直視型の液晶表示素子となる。
Since the liquid crystal cell 10 is sandwiched between the two polarizing plates 20a and 20b, the polarization is controlled and the transmission / absorption of the incident light is controlled as in the conventional display mode described above. Type liquid crystal display device.

【0029】本発明に用いる液晶セルは本発明者等によ
る特願平06−121634号に示される液晶表示素子
同様、斜め電界を印加できる液晶セルを用いるものであ
る。しかしながら、特願平06−121634号に示さ
れる液晶表示素子は、セルに偏光を入射させる手段は有
するものの、検光子は設けていない。つまり、偏光板を
2枚用いた構成ではない。これに対し、本発明は液晶セ
ルを2枚の偏光板に挟持した構成としている。これは、
前記特願平06−121634号に示される液晶表示素
子は直視型ではなく、投射型用に液晶表示素子にて入射
した光の透過/散乱を制御するものであり、構成上も機
能上も異なるものである。また、本発明は前述したよう
に入射した光の透過/吸収を制御するものであり、本発
明の目的に特に適した諸条件は、後述するように前記特
願平06−121634号とは異なっている。
The liquid crystal cell used in the present invention is a liquid crystal cell capable of applying an oblique electric field, like the liquid crystal display element disclosed in Japanese Patent Application No. 06-121634 by the present inventors. However, the liquid crystal display element disclosed in Japanese Patent Application No. 06-121634 does not have an analyzer, although it has a means for allowing polarized light to enter the cell. That is, the configuration does not use two polarizing plates. On the other hand, in the present invention, the liquid crystal cell is sandwiched between two polarizing plates. this is,
The liquid crystal display element disclosed in Japanese Patent Application No. Hei 06-121634 is not a direct-view type but a projection type for controlling transmission / scattering of incident light in the liquid crystal display element, and is different in structure and function. It is a thing. Further, the present invention controls transmission / absorption of incident light as described above, and various conditions particularly suitable for the purpose of the present invention are different from those in the above-mentioned Japanese Patent Application No. 06-121634, as will be described later. ing.

【0030】本発明の構成は、配向膜が液晶分子をチル
ト配向させる効果を有し、かつ液晶分子は初期配向状態
でユニフォーム状態となっている。これはセルの基板1
0b面に対して一方の方向をX方向、それと直角をなす
基板方向をY方向、基板法線方向をZ方向とすると、液
晶分子14aの光軸がX、Y面となす角がセル間におい
て+、−が変化しないことを特徴とする。この概念図を
図6に示す。またユニフォーム配列の概念図を図7
(a)に示す。液晶分子14aは斜め平行にチルトす
る。この構成において、光軸のX、Y方向についての回
転は規定されない。
In the constitution of the present invention, the alignment film has the effect of tilt-aligning the liquid crystal molecules, and the liquid crystal molecules are in the uniform state in the initial alignment state. This is the cell substrate 1
If one direction with respect to the 0b plane is the X direction, the substrate direction perpendicular to it is the Y direction, and the substrate normal direction is the Z direction, the angle between the optical axis of the liquid crystal molecule 14a and the X and Y planes is between cells. The feature is that + and-do not change. This conceptual diagram is shown in FIG. Figure 7 shows a conceptual diagram of uniform layout.
(A). The liquid crystal molecules 14a tilt obliquely in parallel. In this configuration, the rotation of the optical axis in the X and Y directions is not specified.

【0031】なお、図7は上下基板10a、10b間の
液晶配列を図示したものである。
FIG. 7 shows the liquid crystal alignment between the upper and lower substrates 10a and 10b.

【0032】また、本発明の第2は、対向する2枚の基
板間に液晶層を挟持して複数の画素を形成する液晶セル
とこの液晶セルを2つの偏光器で挟んでなる液晶表示素
子において、前記2枚の基板は前記液晶層側にそれぞれ
電極および配向膜を有しており、前記電極は前記画素毎
に前記液晶層に電界を印加できるように対向配置され、
少なくとも一方の基板の電極が画素毎に細幅の導電体部
と非導電体部とを交互に配列した構造を有し、一方の基
板の導電体部と他方の基板の非導電体部が少なくとも一
部において対向しており、各画素において、前記2枚の
基板の配向膜が前記液晶層の液晶分子をチルト配向さ
せ、かつ、前記液晶分子が初期配向状態でスプレイ状態
であることを特徴とする液晶表示素子を得るものであ
る。
A second aspect of the present invention is a liquid crystal cell in which a liquid crystal layer is sandwiched between two opposing substrates to form a plurality of pixels, and a liquid crystal display element in which the liquid crystal cell is sandwiched by two polarizers. In the above, the two substrates each have an electrode and an alignment film on the liquid crystal layer side, and the electrodes are arranged so as to face each other so that an electric field can be applied to the liquid crystal layer for each pixel.
The electrode of at least one of the substrates has a structure in which narrow conductor portions and non-conductor portions are alternately arranged for each pixel, and the conductor portion of one substrate and the non-conductor portion of the other substrate are at least Some of them are opposed to each other, and in each pixel, the alignment films of the two substrates tilt the liquid crystal molecules of the liquid crystal layer, and the liquid crystal molecules are in a splay state in an initial alignment state. To obtain a liquid crystal display device.

【0033】本発明の構成は、配向膜が液晶分子をチル
ト配向させる効果を有し、かつ液晶分子は初期配向状態
でスプレイ状態となっている。これは図6の概念図にお
いてセルの基板面に対して一方の方向をX方向、それと
直角をなす基板方向をY方向、基板法線方向をZ方向と
すると、液晶分子の光軸についてX、Y面となす角がセ
ル間において、あるZ値においてX、Y面と一致し、そ
の前後で+、−が変化することを特徴とする。このスプ
レイ配列の概念図を図7(b)に示す。液晶分子14a
は層中央を挟んでチルト方向が逆になる。この構成にお
いて、光軸のX、Y方向についての回転は規定されな
い。
In the constitution of the present invention, the alignment film has the effect of tilt-aligning the liquid crystal molecules, and the liquid crystal molecules are in the splay state in the initial alignment state. In the conceptual diagram of FIG. 6, assuming that one direction is the X direction with respect to the substrate surface of the cell, the Y direction is the substrate direction perpendicular to the X direction, and the Z direction is the substrate normal direction, X is the optical axis of the liquid crystal molecule. It is characterized in that the angle formed with the Y plane coincides with the X and Y planes at a certain Z value between cells, and + and − change before and after that. A conceptual diagram of this spray arrangement is shown in FIG. Liquid crystal molecule 14a
Have opposite tilt directions with the center of the layer sandwiched. In this configuration, the rotation of the optical axis in the X and Y directions is not specified.

【0034】さらに、第3に、対向する2枚の基板間に
液晶層を挟持して複数の画素を形成する液晶セルとこの
液晶セルを2つの偏光器で挟んでなる液晶表示素子にお
いて、前記2枚の基板は前記液晶層側にそれぞれ電極お
よび配向膜を有しており、前記電極は前記画素毎に前記
液晶層に電界を印加できるように対向配置され、少なく
とも一方の基板の電極が画素毎に細幅の導電体部と非導
電体部とを交互に配列した構造を有し、一方の基板の導
電体部と他方の基板の非導電体部が少なくとも一部にお
いて対向しており、各画素において、前記2枚の基板の
配向膜が前記液晶層の液晶分子を基板面に対して水平に
配向させ、かつ、前記液晶分子が初期配向状態で前記基
板に対して水平な状態であることを特徴とする液晶表示
素子を得るものである。
Thirdly, in a liquid crystal display element in which a liquid crystal layer is sandwiched between two opposing substrates to form a plurality of pixels and a liquid crystal cell is sandwiched by two polarizers, The two substrates each have an electrode and an alignment film on the liquid crystal layer side, the electrodes are arranged so as to be able to apply an electric field to the liquid crystal layer for each pixel, and at least one of the substrates has an electrode. Each has a structure in which a narrow conductor portion and a non-conductor portion are arranged alternately, the conductor portion of one substrate and the non-conductor portion of the other substrate are opposed at least in part, In each pixel, the alignment films of the two substrates align the liquid crystal molecules of the liquid crystal layer horizontally with respect to the substrate surface, and the liquid crystal molecules are in an initial alignment state and horizontal with respect to the substrates. To obtain a liquid crystal display device characterized by That.

【0035】本発明の構成は、初期配向状態で液晶分子
が基板方向に水平に配列されている。これは図6の概念
図において、液晶分子の光軸がX、Y面となす角度が初
期状態においてどの位置においても0゜であるという構
成である。この水平配列の概念図を図7(c)に示す。
液晶分子配向が基板面に逆になる。この構成において、
光軸のX、Y方向についての回転は規定されない。
In the structure of the present invention, liquid crystal molecules are aligned horizontally in the substrate direction in the initial alignment state. In the conceptual diagram of FIG. 6, the angle formed by the optical axes of the liquid crystal molecules with the X and Y planes is 0 ° at any position in the initial state. A conceptual diagram of this horizontal array is shown in FIG.
The liquid crystal molecule orientation is opposite to the substrate surface. In this configuration,
The rotation of the optical axis in the X and Y directions is not specified.

【0036】さらに、第4に、対向する2枚の基板間に
液晶層を挟持して複数の画素を形成する液晶セルとこの
液晶セルを2つの偏光器で挟んでなる液晶表示素子にお
いて、前記2枚の基板は前記液晶層側にそれぞれ電極お
よび配向膜を有しており、前記電極は前記画素毎に前記
液晶層に電界を印加できるように対向配置され、少なく
とも一方の基板の電極が画素毎に細幅の導電体部と非導
電体部とを交互に配列した構造を有し、一方の基板の導
電体部と他方の基板の非導電体部が少なくとも一部にお
いて対向しており、各画素において、前記2枚の基板の
配向膜が前記液晶層の液晶分子をチルト配向させ、か
つ、前記液晶分子がベンド配列状態で動作することを特
徴とする液晶表示素子を得るものである。
Further, fourthly, in a liquid crystal display element comprising a liquid crystal cell sandwiching a liquid crystal layer between two opposing substrates to form a plurality of pixels and a liquid crystal cell sandwiched by two polarizers. The two substrates each have an electrode and an alignment film on the liquid crystal layer side, the electrodes are arranged so as to be able to apply an electric field to the liquid crystal layer for each pixel, and at least one of the substrates has an electrode. Each has a structure in which a narrow conductor portion and a non-conductor portion are arranged alternately, the conductor portion of one substrate and the non-conductor portion of the other substrate are opposed at least in part, In each pixel, the alignment films on the two substrates tilt-align the liquid crystal molecules of the liquid crystal layer, and the liquid crystal molecules operate in a bend alignment state to obtain a liquid crystal display element.

【0037】本発明の構成は、図6の概念図において、
特定の電圧以上で液晶分子が基板間中央で、液晶分子が
Z方向に配列し、基板面に近づくにつれ一方がX、Y面
に対しに対し+、もう一方が−方向となる構成である。
このベンド配列の概念図を図7(d)に示す。液晶分子
14aが層中央で垂直になる。この構成において、光軸
のX、Y方向についての回転は規定されない。
The structure of the present invention is as follows:
At a certain voltage or more, the liquid crystal molecules are arranged in the Z direction in the center between the substrates, and one is in the + direction with respect to the X and Y planes and the other is in the − direction as it approaches the substrate surface.
A conceptual diagram of this bend arrangement is shown in FIG. The liquid crystal molecules 14a become vertical at the center of the layer. In this configuration, the rotation of the optical axis in the X and Y directions is not specified.

【0038】さらに、第5に、対向する2枚の基板間に
液晶層を挟持して複数の画素を形成する液晶セルとこの
液晶セルを2つの偏光器で挟んでなる液晶表示素子にお
いて、前記2枚の基板は前記液晶層側にそれぞれ電極お
よび配向膜を有しており、前記電極は前記画素毎に前記
液晶層に電界を印加できるように対向配置され、少なく
とも一方の基板の電極が画素毎に細幅の導電体部と非導
電体部とを交互に配列した構造を有し、一方の基板の導
電体部と他方の基板の非導電体部が少なくとも一部にお
いて対向しており、各画素において、一方の基板の前記
画素にはチルト配向、もう一方の基板の前記画素には垂
直配向処理がなされて初期状態で液晶分子がハイブリッ
ト配列状態であることを特徴とする液晶表示素子を得る
ものである。
Fifthly, in a liquid crystal display element comprising a liquid crystal cell sandwiching a liquid crystal layer between two opposing substrates to form a plurality of pixels and a liquid crystal cell sandwiched by two polarizers, The two substrates each have an electrode and an alignment film on the liquid crystal layer side, the electrodes are arranged so as to be able to apply an electric field to the liquid crystal layer for each pixel, and at least one of the substrates has an electrode. Each has a structure in which a narrow conductor portion and a non-conductor portion are arranged alternately, the conductor portion of one substrate and the non-conductor portion of the other substrate are opposed at least in part, In each pixel, the liquid crystal display element is characterized in that the pixel on one substrate is tilt-aligned and the pixel on the other substrate is vertically aligned so that liquid crystal molecules are in a hybrid alignment state in an initial state. I will get it.

【0039】本発明の構成は、図6の概念図において、
液晶分子の光軸が一方の基板の界面でZ方向となり、そ
こから連続的に変化し、もう一方の基板に向かうに従っ
てX、Y平面方向に光軸が近づいていく構成である。こ
のハイブリット配列の概念図を図7(e)に示す。液晶
分子14aは下基板10b側で、チルト、上基板10b
側で垂直になる。この構成において、光軸のX、Y方向
についての回転は規定されない。
The structure of the present invention is as follows in the conceptual diagram of FIG.
The optical axis of the liquid crystal molecules is in the Z direction at the interface of one substrate, continuously changes from that direction, and the optical axis approaches the X and Y plane directions toward the other substrate. A conceptual diagram of this hybrid sequence is shown in FIG. The liquid crystal molecules 14a are tilted on the lower substrate 10b side, and the upper substrate 10b is tilted.
Become vertical on the side. In this configuration, the rotation of the optical axis in the X and Y directions is not specified.

【0040】さらに、第6に、各画素において、2枚の
基板の画素に垂直配向処理がなされ、初期状態で液晶分
子が垂直配列状態であることを特徴とする液晶表示素子
を得るものである。
Further, sixthly, in each pixel, a liquid crystal display element is obtained in which pixels on two substrates are subjected to vertical alignment treatment, and liquid crystal molecules are vertically aligned in an initial state. .

【0041】本発明の構成は、図6の概念図において、
液晶分子の光軸が一方の基板の界面でZ方向となり、そ
こから連続的にもう一方の基板に向かうに従ってX軸方
向に光軸が近づいていく構成である。この構成におい
て、光軸のY方向は規定されない。
The structure of the present invention is as follows in the conceptual diagram of FIG.
The optical axis of the liquid crystal molecules is in the Z direction at the interface of one substrate, and the optical axis approaches the other substrate continuously from there in the X axis direction. In this configuration, the Y direction of the optical axis is not specified.

【0042】さらに、本発明は、上記において、前記電
極の導電体部、非導電体部の幅は画素毎に、50μm以
下であることを特徴とする液晶表示素子を得るものであ
る。
Furthermore, the present invention provides a liquid crystal display device characterized in that, in the above, the width of the conductor portion and the non-conductor portion of the electrode is 50 μm or less for each pixel.

【0043】さらに、本発明は各画素において、液晶分
子が初期状態において基板間で捻れて配向されているこ
とを特徴とする。
Furthermore, the present invention is characterized in that in each pixel, liquid crystal molecules are twisted and aligned between the substrates in the initial state.

【0044】本発明の構成は液晶分子の光軸がセル間で
つねにZ方向に配列している。この垂直配列状態の概念
図を図7(f)に示す。液晶分子14aは基板法線Z方
向に配列する。
In the structure of the present invention, the optical axes of the liquid crystal molecules are always arranged in the Z direction between the cells. A conceptual diagram of this vertical arrangement state is shown in FIG. The liquid crystal molecules 14a are arranged in the substrate normal line Z direction.

【0045】さらに、本発明は、各画素において、液晶
分子が初期状態において基板間で0〜360゜捻れて配
向されていることを特徴とする。
Furthermore, the present invention is characterized in that, in each pixel, liquid crystal molecules are twisted and aligned by 0 to 360 ° between the substrates in the initial state.

【0046】本発明の構成は液晶分子の光軸がセル間で
Z方向の変化に対し、X、Y方向について0〜360゜
ツイストしている構成である。この構成において、光軸
のZ方向は規定されない。
The structure of the present invention is such that the optical axis of liquid crystal molecules is twisted by 0 to 360 ° in the X and Y directions with respect to the change in the Z direction between cells. In this configuration, the Z direction of the optical axis is not specified.

【0047】さらに、本発明は、各画素において、液晶
分子が初期状態において基板間で0〜180゜捻れて配
向されていることを特徴とする。
Furthermore, the present invention is characterized in that in each pixel, liquid crystal molecules are twisted and aligned by 0 to 180 degrees between the substrates in the initial state.

【0048】本発明の構成は液晶分子の光軸がセル間で
Z方向の変化に対し、X、Y方向について0〜180゜
ツイストしている構成である。この構成において、光軸
のZ方向は規定されない。
The structure of the present invention is such that the optical axis of liquid crystal molecules is twisted by 0 to 180 degrees in the X and Y directions with respect to changes in the Z direction between cells. In this configuration, the Z direction of the optical axis is not specified.

【0049】ツイスト角が0〜180゜までであれば、
液晶分子の回転は特定の方向のみになるので、液晶分子
は無理な歪みが生じることなく、スイッチングすること
ができる。
If the twist angle is 0 to 180 °,
Since the liquid crystal molecules rotate only in a specific direction, the liquid crystal molecules can be switched without undue strain.

【0050】さらに、本発明は、上下基板の配向方向
が、上下基板ともに電極方向と45゜の角度をなすこと
を特徴とする。
Furthermore, the present invention is characterized in that the alignment directions of the upper and lower substrates form an angle of 45 ° with the electrode direction of both the upper and lower substrates.

【0051】複屈折効果は偏光板とのなす角度が45゜
のとき最大になるので、偏光板とのなす角度を45゜か
ら0゜の範囲でスイッチングさせれば、高い透過率が得
られる。
Since the birefringence effect is maximized when the angle with the polarizing plate is 45 °, high transmittance can be obtained by switching the angle with the polarizing plate in the range of 45 ° to 0 °.

【0052】さらに、本発明は、各画素において、液晶
分子が初期状態において基板間で90゜捻れて配向され
ていることを特徴とする。
Further, the present invention is characterized in that, in each pixel, liquid crystal molecules are twisted and aligned by 90 ° between the substrates in the initial state.

【0053】90゜ねじれて配向させた状態で、旋光性
させて、電圧を印加する事によってそのねじれをほどく
ようにさせると、マージンの広い液晶表示素子が得られ
る。
A liquid crystal display device having a wide margin can be obtained by twisting the liquid crystal in a state of being twisted by 90 ° and rotating the liquid crystal to untwist it by applying a voltage.

【0054】さらに、本発明は液晶組成物として、ネマ
チック液晶、コレステリック液晶、(ネマチック液晶に
カイラル剤を添加してカイラルピッチをもたせた場合も
含む)、スメクチック液晶またはディスコチック液晶を
用いることを特徴とする。
Further, the present invention is characterized in that a nematic liquid crystal, a cholesteric liquid crystal, a nematic liquid crystal (including a case where a chiral agent is added to a nematic liquid crystal to have a chiral pitch), a smectic liquid crystal or a discotic liquid crystal is used as the liquid crystal composition. And

【0055】さらに、本発明は、液晶組成物として、誘
電率異方性が負の液晶組成物を用いることを特徴とす
る。
Furthermore, the present invention is characterized in that a liquid crystal composition having a negative dielectric anisotropy is used as the liquid crystal composition.

【0056】さらに、本発明は、前記2つの偏光器は、
その吸収軸が直交するように配置されており、前記液晶
表示素子に電圧を印加しない状態において、前記液晶分
子の液晶表示素子平面での配列方位が、前記2枚の偏光
板の一方の吸収軸と平行に配置されていることを特徴と
する。
Further, in the present invention, the two polarizers are
The absorption axes are arranged so as to be orthogonal to each other, and in a state where no voltage is applied to the liquid crystal display element, the alignment orientation of the liquid crystal molecules in the liquid crystal display element plane is one absorption axis of the two polarizing plates. It is arranged in parallel with.

【0057】[0057]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を用いて、詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0058】(実施形態1)図1に本発明の1実施形態
の液晶表示素子の電極構造の1例を示す。(a)は上基
板の対向電極の1画素領域の平面図、(b)は下基板の
画素電極の平面図である。
(Embodiment 1) FIG. 1 shows an example of an electrode structure of a liquid crystal display device according to an embodiment of the present invention. (A) is a plan view of one pixel region of a counter electrode on an upper substrate, and (b) is a plan view of pixel electrodes on a lower substrate.

【0059】図3に本液晶表示素子の構成を示す。上基
板10aとして非画素部全域にクロムからなるブラック
マトリクス16を形成した共通基板用ITOパタ−ンニ
ングガラス基板を用い、下基板10bとしてTFTから
なるスイッチング素子15付きガラス基板を用いた。下
基板10bの画素電極12Bには上基板の電極12Aと
同様にITOを用いている。上下基板の各電極は図1に
示すようにストライプ状にパターニングされて、導電体
部12a、12bと非導電体部11a、11bが形成さ
れ、一方の電極の導電体部12a、12bの少なくとも
一部が他方の電極の非導電体部11b、11aに対向す
るように配置される。
FIG. 3 shows the structure of the present liquid crystal display device. An ITO patterning glass substrate for a common substrate in which a black matrix 16 made of chromium is formed on the entire non-pixel portion is used as the upper substrate 10a, and a glass substrate with a switching element 15 made of TFT is used as the lower substrate 10b. ITO is used for the pixel electrode 12B of the lower substrate 10b similarly to the electrode 12A of the upper substrate. As shown in FIG. 1, the electrodes on the upper and lower substrates are patterned in stripes to form conductor portions 12a and 12b and non-conductor portions 11a and 11b, and at least one of the conductor portions 12a and 12b of one electrode is formed. The portion is arranged so as to face the non-conductor portions 11b and 11a of the other electrode.

【0060】こうした基板を用いて、配向膜13として
(株)日本合成ゴム製のAL−3046(プレチルト角
測定値3゜)を形成し、ストライプ電極方向に対して、
45゜の方向にラビング処理を施した。このとき、上下
基板のラビング方向は反平行とした。そして、下基板側
に基板間隙剤として液晶層厚が2.5μmとなるよう
(株)積水ファインケミカル製の微粒子:ミクロパ−ル
(粒径2.5μm)を分散密度100個/mm2 となる
よう乾式散布法にて散布して、これら基板間に誘電異方
性が正の液晶材料(株)メルクジャパン製ZLI−11
32(Δn=0.14)からなる液晶沿う14を挟持して、
液晶セル10を得た。
Using such a substrate, AL-3046 (pretilt angle measured value 3 °) made by Japan Synthetic Rubber Co., Ltd. was formed as the alignment film 13, and the alignment electrode 13 was formed in the direction of the stripe electrodes.
Rubbing treatment was performed in the direction of 45 °. At this time, the rubbing directions of the upper and lower substrates were antiparallel. Then, as a substrate interstitial agent on the lower substrate side, the liquid crystal layer thickness was 2.5 μm, and microparticles (particle size 2.5 μm) manufactured by Sekisui Fine Chemical Co., Ltd. were dispersed at a density of 100 particles / mm 2. Liquid crystal material ZLI-11 manufactured by Merck Japan Co., Ltd., which has a positive dielectric anisotropy between the substrates, is sprayed by a dry spraying method.
Sandwiching the liquid crystal 14 consisting of 32 (Δn = 0.14),
A liquid crystal cell 10 was obtained.

【0061】さらに、旋光分散を補償するために、図2
に示すように位相差板19をセル上に配置し、この液晶
セルに対してラビング方向とそれと直交する方向に吸収
軸を合わせて偏光板20a、20bを配置し、ノーマリ
ーブラックモードの液晶表示素子を得た。
Further, in order to compensate the optical rotatory dispersion, FIG.
, A retardation plate 19 is arranged on the cell, and polarizing plates 20a and 20b are arranged on the liquid crystal cell so that the absorption axes are aligned with the rubbing direction and the direction orthogonal to the rubbing direction. The device was obtained.

【0062】なお、図2において、(a)は本実施形態
の液晶表示素子の光学構成を示す図であり、図2(b)
はその平面図、図2(c)は断面図である。図2(c)
に本実施形態の液晶表示素子のセル内部の液晶分子の配
列状態を示す。
Incidentally, FIG. 2A is a diagram showing an optical configuration of the liquid crystal display element of the present embodiment, and FIG.
Is a plan view thereof, and FIG. 2C is a sectional view thereof. Figure 2 (c)
The alignment state of the liquid crystal molecules inside the cell of the liquid crystal display element of this embodiment is shown in FIG.

【0063】基板法線方向からみた分子配列のモデルを
図4に示す。(a)は初期状態、(b)は電圧印加後の
分子配列状態を示す。ラビング方向は電極に対して45
゜の方向で液晶はホモジニアス配列としている。
FIG. 4 shows a model of the molecular arrangement viewed from the substrate normal direction. (A) shows the initial state, and (b) shows the molecular alignment state after voltage application. The rubbing direction is 45 with respect to the electrode.
The liquid crystal has a homogeneous alignment in the direction of °.

【0064】図4に示したように、初期状態では一様に
配向されているので、透過光はほぼ0となる。このセル
に電圧を印加していくとその電界の方向に液晶が徐々に
角度θで捩じれて配列していき、十分な電圧が印加され
た状態では図4(b)のような配列状態となる。(b)
に示したように、液晶分子14aは電圧が加わることに
よって、その斜め電界により非導電体部では電極方向か
ら45゜であったのが、90゜の方向に向かっていく。
偏光板は電極に対して45゜の方向となっているので、
電圧を印加していくことによって複屈折効果が生じるよ
うになり、透過光強度が増加していく。
As shown in FIG. 4, since the light is oriented uniformly in the initial state, the transmitted light becomes almost zero. When a voltage is applied to this cell, the liquid crystal is gradually twisted and arranged at an angle θ in the direction of the electric field, and when a sufficient voltage is applied, the liquid crystal becomes an arrangement state as shown in FIG. 4B. . (B)
As shown in FIG. 7, when a voltage is applied to the liquid crystal molecules 14a, the oblique electric field causes the liquid crystal molecules 14a to move from 45 ° from the electrode direction to 90 ° in the non-conductor portion.
Since the polarizing plate is oriented at 45 ° to the electrodes,
By applying a voltage, a birefringence effect starts to occur and the transmitted light intensity increases.

【0065】図2(c)に示すように、この素子に電圧
を印加した場合、液晶層には一方の導電体部分から他方
の基板の電極に対して斜めの電界がかかる。そこで液晶
分子はストライプ電極方向からみた場合、電極間でわず
かに傾いた分子配列状態となる。この傾きは電極毎に逆
向きになるので、画素内の液晶層のリタデーションは補
償され、それにより視野角の特性も補償される。従っ
て、本液晶表示素子では、良好な視野角特性が得られ
る。
As shown in FIG. 2C, when a voltage is applied to this element, an oblique electric field is applied to the liquid crystal layer from one conductor portion to the electrode of the other substrate. Therefore, when viewed from the stripe electrode direction, the liquid crystal molecules are in a molecular alignment state in which they are slightly inclined between the electrodes. Since this inclination is opposite for each electrode, the retardation of the liquid crystal layer in the pixel is compensated, and thereby the viewing angle characteristic is also compensated. Therefore, in the present liquid crystal display element, good viewing angle characteristics can be obtained.

【0066】このようにして得られた本液晶表示素子に
TFTを介して電圧を印加して電気光学特性(透過率−
印加電圧曲線)を測定した。図5にT−V特性を示す。
A voltage is applied to the liquid crystal display element thus obtained through a TFT, and electro-optical characteristics (transmittance-
The applied voltage curve) was measured. FIG. 5 shows the TV characteristic.

【0067】曲線aは上記液晶表示素子に位相差板を入
れなかった場合、曲線bは位相差板を入れた場合であ
る。この結果のようにこの液晶表示素子は低電圧で駆動
でき、また位相差板によって補償すれば高い透過率が得
られることがわかる。
The curve a is the case where the retardation plate is not inserted in the liquid crystal display element, and the curve b is the case where the retardation plate is inserted. As can be seen from this result, this liquid crystal display device can be driven at a low voltage, and if it is compensated by a retardation plate, a high transmittance can be obtained.

【0068】また、本発明の液晶表示素子の視野角を測
定したところ、上下左右とも60゜の領域でコントラス
ト10:1以上が得られた。
Further, when the viewing angle of the liquid crystal display device of the present invention was measured, a contrast of 10: 1 or more was obtained in the region of 60 ° both vertically and horizontally.

【0069】また、応答時間を測定したところ、立ち上
がり6ms、立ち下がり9msと高速な応答を得ること
ができた。
When the response time was measured, a high-speed response with a rising time of 6 ms and a falling time of 9 ms could be obtained.

【0070】このように、本液晶表示素子により、高速
応答、高コントラスト、広視野角の液晶表示素子を得る
ことができる。
As described above, the liquid crystal display device of the present invention makes it possible to obtain a liquid crystal display device having high-speed response, high contrast, and wide viewing angle.

【0071】(実施形態2)図3の構成において、下基
板にアクティブマトリクス基板、上基板にカラーフィル
ターを形成した基板を用いて、本実施形態の液晶表示素
子を得た。他の条件は実施形態1と同じである。
(Embodiment 2) In the structure of FIG. 3, a liquid crystal display device of this embodiment was obtained by using an active matrix substrate as a lower substrate and a substrate having a color filter formed on an upper substrate. The other conditions are the same as those in the first embodiment.

【0072】この液晶表示素子に画像を表示させたとこ
ろ、視野角の広い良好な特性が得られた。また、動画を
表示させたところ、応答時間の速い、見やすい画像が得
られた。
When an image was displayed on this liquid crystal display device, good characteristics with a wide viewing angle were obtained. In addition, when a moving image was displayed, an easy-to-see image with fast response time was obtained.

【0073】(実施形態3)本実施形態は実施形態1に
おいて、一方の基板のラビング方向を逆にして、液晶分
子のスプレイ配向状態を得た。チルト配向をさせた上記
実施例に比較してスプレイ配列では液晶分子の立ち上が
りの自由度が高いので、斜め電界によりその電界方向に
動いていくことになる。一方、前記実施例のチルト配向
セルでは一方の斜め電界ではそのままその方向に向くこ
とができるが、もう一方の電界に対してはチルト方向と
逆に立ち上がる必要があるため、ある程度の電圧が必要
となり、斜め電界の方向によりその液晶分子の動きに差
がでてしまう。これに対し、スプレイセルではどちらの
方向の斜め電界に対しても同様に立ち上がるので、より
良好な特性を得ることができる。
(Embodiment 3) In this embodiment, the rubbing direction of one of the substrates in Embodiment 1 is reversed to obtain a splay alignment state of liquid crystal molecules. In the splay alignment, the degree of freedom of rising of the liquid crystal molecules is higher than that in the above-described embodiment in which the tilt alignment is performed, and therefore the liquid crystal molecules move in the direction of the electric field due to the oblique electric field. On the other hand, in the tilt-aligned cell of the above-described embodiment, one oblique electric field can be directed in that direction as it is, but the other electric field needs to rise in the direction opposite to the tilt direction, so that a certain voltage is required. The movement of the liquid crystal molecules varies depending on the direction of the oblique electric field. On the other hand, in the spray cell, since it rises similarly with respect to the oblique electric field in either direction, better characteristics can be obtained.

【0074】このようにして得られた本液晶表示素子
に、上記と同様にT−V特性を測定したところ、図5の
曲線cのような結果を得ることができた。マトリクス基
板のTFTスイッチング素子を介して電圧を印加して諸
特性を測定したところ、透過率、コントラスト、視野
角、応答時間に関して、良好な特性が得られた。
When the TV characteristic of the liquid crystal display device thus obtained was measured in the same manner as described above, the result as shown by the curve c in FIG. 5 could be obtained. When various characteristics were measured by applying a voltage through the TFT switching element of the matrix substrate, good characteristics were obtained in terms of transmittance, contrast, viewing angle and response time.

【0075】(実施形態4)また、本実施形態の液晶表
示素子において、配向膜としてポリビニルアルコール
(PVA)を基板に塗布し、配向膜とした。このセルは
スプレイ配列と同様、立ち上がりの自由度が高いので、
斜め電界によりその電界方向に動いていくことになる。
(Embodiment 4) Further, in the liquid crystal display element of the present embodiment, polyvinyl alcohol (PVA) was applied to the substrate as an alignment film to form an alignment film. Since this cell has a high degree of freedom in rising, similar to the spray arrangement,
The oblique electric field causes movement in the electric field direction.

【0076】このようにして得られた本液晶表示素子
に、上記と同様にTFTを介して電圧を印加して諸特性
を測定したところ、透過率、コントラスト、視野角、応
答時間に関して、良好な特性が得られた。
A voltage was applied to the thus obtained liquid crystal display device through the TFT in the same manner as described above, and various characteristics were measured. As a result, excellent transmittance, contrast, viewing angle and response time were obtained. The characteristics were obtained.

【0077】(実施形態5)また、前記実施形態3のス
プレイ配向セルに電圧を印加してベント配列の液晶表示
素子を得た。このとき、配向膜を日産化学社製SE−1
50のポリイミドを用い、液晶組成物としてZLI−3
926(E・Merck 社製)とし、ミクロパールを6μmの
ものを用い、あとの条件は上記実施例と同様にした。
(Fifth Embodiment) Further, a voltage is applied to the splay alignment cell of the third embodiment to obtain a bent alignment liquid crystal display device. At this time, the alignment film is SE-1 manufactured by Nissan Chemical Co., Ltd.
As a liquid crystal composition, a polyimide of 50 is used.
926 (manufactured by E. Merck), micropearls having a size of 6 μm were used, and the other conditions were the same as those in the above-mentioned examples.

【0078】このようにして得られた本液晶表示素子
に、上記と同様にTFTを介して電圧を印加して諸特性
を測定したところ、透過率、コントラスト、視野角に関
して、良好な特性が得られた。また、応答時間について
はベンド配列であるため、立ち上がり2.5ms、立ち
下がり4.5μmと特に高速な値が得られた。
A voltage was applied to the liquid crystal display device thus obtained through a TFT in the same manner as above, and various characteristics were measured. As a result, excellent characteristics were obtained in terms of transmittance, contrast and viewing angle. Was given. Further, since the response time is a bend arrangement, a particularly fast value of 2.5 ms for rising and 4.5 μm for falling was obtained.

【0079】(実施形態6)図3の構成において、配向
膜として、上基板としてカラーフィルター基板を用い、
垂直配向用配向剤(ODS−E:チッソ製)を形成し、
TFT基板側には上記配向膜SE−150を塗布し、電
極方向に対して45゜の方向にラビングして配向膜を形
成した。そして3.5μmのミクロパールを散布し、そ
の他の条件は前記実施例と同様にし、液晶表示素子を形
成した。
(Embodiment 6) In the structure of FIG. 3, a color filter substrate is used as an upper substrate as an alignment film,
Forming an alignment agent for vertical alignment (ODS-E: manufactured by Chisso),
The alignment film SE-150 was applied to the TFT substrate side and rubbed in the direction of 45 ° with respect to the electrode direction to form the alignment film. Then, 3.5 μm of micropearl was dispersed, and the other conditions were the same as in the above-mentioned example to form a liquid crystal display element.

【0080】このようにして得られた本液晶表示素子
に、上記と同様にTFTを介して電圧を印加して諸特性
を測定したところ、透過率、コントラスト、視野角に関
して、良好な特性が得られた。また、応答時間について
はハイブリット配列であるため、立ち上がり4ms、立
ち下がり5msと特に高速な値が得られた。
A voltage was applied to the thus obtained liquid crystal display device through the TFT in the same manner as above, and various characteristics were measured. As a result, excellent characteristics were obtained in terms of transmittance, contrast and viewing angle. Was given. Further, since the response time is a hybrid arrangement, a particularly fast value of 4 ms for rising and 5 ms for falling was obtained.

【0081】(実施形態7)図3の構成において、配向
膜として、下基板としてアクティブマトリクス基板、上
基板としてカラーフィルター基板を用い、両方に垂直配
向用配向剤(ODS−E:チッソ製)を形成し、その他
は実施形態1と同様に、液晶表示素子を形成した。
(Embodiment 7) In the configuration of FIG. 3, as an alignment film, an active matrix substrate is used as a lower substrate, a color filter substrate is used as an upper substrate, and an alignment agent for vertical alignment (ODS-E: manufactured by Chisso) is used for both. A liquid crystal display element was formed in the same manner as in Embodiment 1 except for the above.

【0082】垂直配列させた液晶表示素子についても電
圧を印加した状態においては図4(b)のような分子配
列状態となり、十分な複屈折効果を生じる。また、液晶
分子の傾き方向は導電体の左右で逆方向になるので、視
野角が補償される。
The liquid crystal display elements arranged vertically also have a molecular arrangement as shown in FIG. 4B when a voltage is applied, and a sufficient birefringence effect is produced. Further, since the tilt directions of the liquid crystal molecules are opposite to the left and right of the conductor, the viewing angle is compensated.

【0083】このようにして得られた本液晶表示素子
に、上記と同様にTFTを介して電圧を印加して諸特性
を測定したところ、透過率、コントラスト、視野角、応
答時間に関して、良好な特性が得られた。
A voltage was applied to the thus obtained liquid crystal display device through the TFT in the same manner as described above, and various characteristics were measured. As a result, it was found that the transmittance, contrast, viewing angle and response time were good. The characteristics were obtained.

【0084】(実施形態8)実施形態2において、上基
板であるカラーフィルター基板の配向膜のラビング方向
を画素電極を有する上基板のラビング処理方向に対して
90゜の方向とし、また、注入する液晶材料にカイラル
剤を0.2wt%添加し、あとは実施形態2と同様にし
て液晶セルを作製し、偏光板は2枚とも電極方向と同一
方向として配置し、液晶表示素子を作製した。
(Embodiment 8) In Embodiment 2, the rubbing direction of the alignment film of the color filter substrate, which is the upper substrate, is set at 90 ° with respect to the rubbing direction of the upper substrate having the pixel electrodes, and implantation is performed. A chiral agent was added to the liquid crystal material in an amount of 0.2 wt%, and then a liquid crystal cell was prepared in the same manner as in Embodiment 2, and two polarizing plates were arranged in the same direction as the electrode direction to prepare a liquid crystal display element.

【0085】このセルは初期状態において、90゜液晶
分子がツイストした状態となっており、一方の偏光成分
が液晶層をツイストすることによって黒を出す。そし
て、電圧を印加することによりツイストしている液晶分
子が電界方向に向く用になるので、液晶分子は電極に対
してほぼ45゜の方向となり、複屈折効果により光が透
過するようになる。
In the initial state of this cell, 90 ° liquid crystal molecules are twisted, and one polarization component twists the liquid crystal layer to produce black. When a voltage is applied, the twisted liquid crystal molecules are oriented in the direction of the electric field, so that the liquid crystal molecules are oriented at about 45 ° with respect to the electrodes, and light is transmitted by the birefringence effect.

【0086】このようにして得られた本液晶表示素子
に、上記と同様にTFTを介して電圧を印加して諸特性
を測定したところ、透過率、コントラスト、視野角、応
答時間に関して、良好な特性が得られた。
A voltage was applied to the thus obtained liquid crystal display device through the TFT in the same manner as described above, and various characteristics were measured. As a result, it was found that the transmittance, contrast, viewing angle and response time were good. The characteristics were obtained.

【0087】(実施形態9)実施形態2において、ま
た、注入する液晶材料にカイラル剤を5wt%添加し、
また、スペーサとして2.0μmのシリカを用い、あと
は実施形態2と同様にして液晶表示素子を作製した。
(Embodiment 9) In Embodiment 2, 5 wt% of a chiral agent is added to the liquid crystal material to be injected,
In addition, a liquid crystal display device was produced in the same manner as in Embodiment 2 except that 2.0 μm silica was used as the spacer.

【0088】このセルは初期状態において、360゜液
晶分子がツイストした状態となっており、液晶分子は旋
光条件を完全にはずれているので、偏光板によって偏光
された光はもう一方の偏光板によって完全に遮断され、
黒表示となる。
In the initial state of this cell, 360 ° liquid crystal molecules are twisted, and since the liquid crystal molecules are completely out of the optical rotation condition, the light polarized by the polarizing plate is reflected by the other polarizing plate. Completely shut off,
The display becomes black.

【0089】そして斜め電界を印加すると液晶分子はそ
のツイスト状態をほどいて電極と直交方向に配列する。
そのため液晶分子の複屈折効果により光は透過するよう
になり、表示が可能になる。
Then, when an oblique electric field is applied, the liquid crystal molecules are unwound and aligned in the direction orthogonal to the electrodes.
Therefore, light is transmitted through the birefringence effect of liquid crystal molecules, and display is possible.

【0090】このようにして得られた本液晶表示素子
に、上記と同様にTFTを介して電圧を印加して諸特性
を測定したところ、透過率、コントラスト、視野角、応
答時間に関して、良好な特性が得られた。
A voltage was applied to the liquid crystal display device thus obtained through the TFT in the same manner as described above, and various characteristics were measured. As a result, it was found that the transmittance, contrast, viewing angle and response time were good. The characteristics were obtained.

【0091】(実施形態10)実施形態2において、液
晶材料をカラーフィルター基板側の配向膜のラビング方
向をマトリクス基板側のラビング処理方向から90゜の
方向とし、また、注入する液晶材料にカイラル剤を3w
t%添加し、さらに液晶セルと偏光板のあいだに位相差
板をいれ、あとは実施形態2と同様にして液晶表示素子
を作製した。このとき、液晶分子は液晶セル内で270
゜ねじれている。そして位相差板を配置し、ノーマリー
ブラックモードとしている。
(Embodiment 10) In Embodiment 2, the liquid crystal material is made to have a rubbing direction of the alignment film on the color filter substrate side at 90 ° from the rubbing treatment direction on the matrix substrate side, and the liquid crystal material to be injected has a chiral agent. 3w
A liquid crystal display device was manufactured in the same manner as in Embodiment 2 except that a phase difference plate was added between the liquid crystal cell and the polarizing plate after adding t%. At this time, the liquid crystal molecules 270 in the liquid crystal cell.
Twisted. Then, a retardation plate is arranged to set the normally black mode.

【0092】電圧を印加することにより、液晶分子は電
極と直交する方向に揃うようになるので、液晶層のリタ
デーションが変化し、光を透過するようになる。
By applying a voltage, the liquid crystal molecules are aligned in the direction orthogonal to the electrodes, so that the retardation of the liquid crystal layer is changed and light is transmitted.

【0093】このようにして得られた本液晶表示素子
に、上記と同様にTFTを介して電圧を印加して諸特性
を測定したところ、透過率、コントラスト、視野角、応
答時間に関して、良好な特性が得られた。
A voltage was applied to the thus obtained liquid crystal display device through the TFT in the same manner as described above, and various characteristics were measured. As a result, it was found that the transmittance, contrast, viewing angle and response time were excellent. The characteristics were obtained.

【0094】(実施形態11)液晶層としてチッソ石油
化学社製CS−2005を用い、また、ラビング方向を
電極と直交するようにして、また、スペーサとして1.
8μmのシリカを用い、他は実施形態2と同様にして液
晶セルを形成した。そして偏光板はラビング方向として
いる。
(Embodiment 11) CS-2005 manufactured by Chisso Petrochemical Co., Ltd. is used as a liquid crystal layer, and the rubbing direction is orthogonal to the electrodes.
A liquid crystal cell was formed in the same manner as in Embodiment 2 except that 8 μm of silica was used. The polarizing plate is in the rubbing direction.

【0095】電圧を印加することにより、液晶分子はC
S−2005のチルト角分スイッチングするので、複屈
折効果によって表示を行うことができる。
By applying a voltage, the liquid crystal molecules are converted into C
Since switching is performed by the tilt angle of S-2005, display can be performed by the birefringence effect.

【0096】このようにして得られた本液晶表示素子
に、上記と同様にTFTを介して電圧を印加して諸特性
を測定したところ、透過率、コントラスト、視野角、応
答時間に関して、良好な特性が得られた。
A voltage was applied to the thus obtained liquid crystal display device through the TFT in the same manner as described above, and various characteristics were measured. As a result, excellent transmittance, contrast, viewing angle and response time were obtained. The characteristics were obtained.

【0097】(実施形態12)液晶層としてチッソ製n
型液晶(EN−35)を用い、他は、他は実施形態2と
同様にして液晶セルを形成した。
(Embodiment 12) A liquid crystal layer manufactured by Chisso
A liquid crystal cell was formed in the same manner as in Embodiment 2 except that the type liquid crystal (EN-35) was used.

【0098】このようにして得られた本液晶表示素子
に、上記と同様にTFTを介して電圧を印加して諸特性
を測定したところ、透過率、コントラスト、視野角、応
答時間に関して、良好な特性が得られた。
A voltage was applied to the thus obtained liquid crystal display device through the TFT in the same manner as described above, and various characteristics were measured. As a result, excellent transmittance, contrast, viewing angle and response time were obtained. The characteristics were obtained.

【0099】(実施形態13)液晶層としてディスコテ
ィック液晶を用い、他の条件は実施形態2と同様にして
液晶表示素子を作製した。
(Embodiment 13) A liquid crystal display element was manufactured in the same manner as in Embodiment 2 except that discotic liquid crystal was used as the liquid crystal layer.

【0100】このようにして得られた本液晶表示素子
に、上記と同様にTFTを介して電圧を印加して諸特性
を測定したところ、透過率、コントラスト、視野角に関
して、良好な特性が得られた。
A voltage was applied to the thus obtained liquid crystal display device through the TFT in the same manner as above, and various characteristics were measured. As a result, excellent characteristics were obtained in terms of transmittance, contrast and viewing angle. Was given.

【0101】(実施形態14)液晶層としてディスコテ
ィック液晶とネマチック液晶ZLI−3926を合成し
たものを用い、他の条件は実施形態2と同様にして液晶
表示素子を作製した。
(Embodiment 14) A liquid crystal display device was manufactured in the same manner as in Embodiment 2 except that a discotic liquid crystal and a nematic liquid crystal ZLI-3926 were synthesized as the liquid crystal layer.

【0102】このようにして得られた本液晶表示素子
に、上記と同様にTFTを介して電圧を印加して諸特性
を測定したところ、透過率、コントラスト、視野角に関
して、良好な特性が得られた。
A voltage was applied to the thus obtained liquid crystal display device through the TFT in the same manner as above, and various characteristics were measured. As a result, excellent characteristics were obtained in terms of transmittance, contrast and viewing angle. Was given.

【0103】尚、実施例においては、特有の材料を用
い、特有の製法にて本発明の液晶表示素子を作製した
が、本発明の作用を得る材料及び条件であれば同様の効
果を得ることは言うまでもなく、また、用いるスイッチ
ング素子としては、MIMなど他の素子であっても、ま
た、素子を用いない単純マトリクス電極構造からなる表
示素子であっても、同様の効果を得ることは言うまでも
ない。
In addition, in the examples, the liquid crystal display element of the present invention was manufactured by using a specific material and a specific manufacturing method. However, similar effects can be obtained as long as the materials and conditions are such that the function of the present invention can be obtained. Needless to say, the same effect can be obtained even if the switching element to be used is another element such as MIM or a display element having a simple matrix electrode structure not using the element. .

【0104】さらに、本発明は、2つの偏光器の1つま
たは全部を省略できる2色性染料を混入したゲストホス
ト型液晶表示素子に適用することができる。その場合、
液晶セルを1枚だけでなく、複数枚重ねで用いることが
できる。
Further, the present invention can be applied to a guest-host type liquid crystal display device in which a dichroic dye capable of omitting one or all of the two polarizers is mixed. In that case,
It is possible to use not only one liquid crystal cell but also a plurality of liquid crystal cells.

【0105】[0105]

【発明の効果】本発明によれば、高速応答で広視野角の
液晶表示素子が得られる。
According to the present invention, it is possible to obtain a liquid crystal display element having a wide viewing angle and a high speed response.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を説明する1実施形態の電極構造を示す
もので、(a)は上基板の電極の平面図、(b)は下基
板の電極構造の平面図、
1A and 1B show an electrode structure of one embodiment for explaining the present invention, in which FIG. 1A is a plan view of an electrode on an upper substrate, and FIG. 1B is a plan view of an electrode structure on a lower substrate.

【図2】本発明の液晶表示素子を説明するもので、
(a)は各要素の光軸、吸収軸の関係を示す配置図、
(b)は液晶分子の捩じれ動作を説明する平面図、
(c)は液晶層の電界のかかる様子を示す断面図、
FIG. 2 illustrates a liquid crystal display device of the present invention.
(A) is a layout drawing showing the relationship between the optical axis and the absorption axis of each element,
(B) is a plan view for explaining the twisting motion of liquid crystal molecules,
(C) is a cross-sectional view showing how an electric field is applied to the liquid crystal layer,

【図3】本発明の1実施形態の液晶表示素子の構造を説
明する断面図、
FIG. 3 is a cross-sectional view illustrating the structure of the liquid crystal display element according to the embodiment of the present invention,

【図4】本発明の1実施形態の液晶表示素子の液晶分子
配列を説明するもので、(a)は初期状態を示す平面
図、(b)は電圧印加状態を示す平面図、
4A and 4B are views for explaining liquid crystal molecule alignment of a liquid crystal display element according to an embodiment of the present invention, FIG. 4A is a plan view showing an initial state, and FIG. 4B is a plan view showing a voltage application state;

【図5】本発明の各実施形態の電気光学特性を示す曲線
図、
FIG. 5 is a curve diagram showing electro-optical characteristics of each embodiment of the present invention,

【図6】本発明の液晶表示素子を説明するための方位を
定義する斜視図、
FIG. 6 is a perspective view defining an azimuth for explaining a liquid crystal display device of the present invention,

【図7】(a)乃至(f)は本発明の液晶表示素子の液
晶分子の配列状態を説明する概念図。
7 (a) to 7 (f) are conceptual diagrams for explaining an arrangement state of liquid crystal molecules of the liquid crystal display element of the present invention.

【符号の説明】[Explanation of symbols]

10…液晶セル 10a、10b…基板 11a、11b…非導電体部 12a、12b…導電体部 13…配向膜 14…液晶層 14a…液晶分子 15…スイッチング素子 16…ブラックマトリクス 19…位相差板 20a、20b…偏光器 10 ... Liquid crystal cell 10a, 10b ... Substrate 11a, 11b ... Non-conductor part 12a, 12b ... Conductor part 13 ... Alignment film 14 ... Liquid crystal layer 14a ... Liquid crystal molecule 15 ... Switching element 16 ... Black matrix 19 ... Retardation plate 20a , 20b ... Polarizer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽藤 仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 佐藤 摩希子 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Hato 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Stock company Toshiba Yokohama office (72) Inventor Makiko Sato 8 Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa Company Toshiba Yokohama Office

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 対向する2枚の基板間に液晶層を挟持し
て複数の画素を形成する液晶セルとこの液晶セルを2つ
の偏光器で挟んでなる液晶表示素子において、前記2枚
の基板は前記液晶層側にそれぞれ電極および配向膜を有
しており、前記電極は前記画素毎に前記液晶層に電界を
印加できるように対向配置され、少なくとも一方の基板
の電極が画素毎に細幅の導電体部と非導電体部とを交互
に配列した構造を有し、一方の基板の導電体部と他方の
基板の非導電体部が少なくとも一部において対向してお
り、 各画素において、前記2つの基板の配向膜が前記液晶層
の液晶分子をチルト配向させ、かつ、前記液晶分子が初
期配向状態でユニフォーム状態であることを特徴とする
液晶表示素子。
1. A liquid crystal display device comprising a liquid crystal cell sandwiching a liquid crystal layer between two opposing substrates to form a plurality of pixels, and a liquid crystal display device comprising the liquid crystal cell sandwiched between two polarizers. Each have an electrode and an alignment film on the liquid crystal layer side, the electrodes are arranged so as to face each other so that an electric field can be applied to the liquid crystal layer for each pixel, and at least one of the electrodes on the substrate has a narrow width for each pixel. Of a conductive portion and a non-conductive portion of the structure is alternately arranged, the conductive portion of the one substrate and the non-conductive portion of the other substrate are opposed at least in part, in each pixel, A liquid crystal display device, wherein the alignment films of the two substrates tilt the liquid crystal molecules of the liquid crystal layer and the liquid crystal molecules are in a uniform state in an initial alignment state.
【請求項2】 対向する2枚の基板間に液晶層を挟持し
て複数の画素を形成する液晶セルとこの液晶セルを2つ
の偏光器で挟んでなる液晶表示素子において、前記2枚
の基板は前記液晶層側にそれぞれ電極および配向膜を有
しており、前記電極は前記画素毎に前記液晶層に電界を
印加できるように対向配置され、少なくとも一方の基板
の電極が画素毎に細幅の導電体部と非導電体部とを交互
に配列した構造を有し、一方の基板の導電体部と他方の
基板の非導電体部が少なくとも一部において対向してお
り、 各画素において、前記2枚の基板の配向膜が前記液晶層
の液晶分子をチルト配向させ、かつ、前記液晶分子が初
期配向状態でスプレイ状態であることを特徴とする液晶
表示素子。
2. A liquid crystal display device comprising a liquid crystal cell sandwiching a liquid crystal layer between two opposing substrates to form a plurality of pixels, and a liquid crystal display device comprising the liquid crystal cell sandwiched between two polarizers. Each have an electrode and an alignment film on the liquid crystal layer side, the electrodes are arranged so as to face each other so that an electric field can be applied to the liquid crystal layer for each pixel, and at least one of the electrodes on the substrate has a narrow width for each pixel. Of the conductive material portion and the non-conductive material portion are alternately arranged, the conductive material portion of one substrate and the non-conductive material portion of the other substrate are opposed at least in part, in each pixel, A liquid crystal display element, wherein the alignment films of the two substrates align the liquid crystal molecules of the liquid crystal layer in a tilted state, and the liquid crystal molecules are in a splay state in an initial alignment state.
【請求項3】 対向する2枚の基板間に液晶層を挟持し
て複数の画素を形成する液晶セルとこの液晶セルを2つ
の偏光器で挟んでなる液晶表示素子において、前記2枚
の基板は前記液晶層側にそれぞれ電極および配向膜を有
しており、前記電極は前記画素毎に前記液晶層に電界を
印加できるように対向配置され、少なくとも一方の基板
の電極が画素毎に細幅の導電体部と非導電体部とを交互
に配列した構造を有し、一方の基板の導電体部と他方の
基板の非導電体部が少なくとも一部において対向してお
り、 各画素において、前記2枚の基板の配向膜が前記液晶層
の液晶分子を基板面に対して水平に配向させ、かつ、前
記液晶分子が初期配向状態で前記基板に対して水平な状
態であることを特徴とする液晶表示素子。
3. A liquid crystal display device comprising a liquid crystal cell having a liquid crystal layer sandwiched between two opposing substrates to form a plurality of pixels, and a liquid crystal display element having the liquid crystal cell sandwiched by two polarizers. Each have an electrode and an alignment film on the liquid crystal layer side, the electrodes are arranged so as to face each other so that an electric field can be applied to the liquid crystal layer for each pixel, and at least one of the electrodes on the substrate has a narrow width for each pixel. Of a conductive portion and a non-conductive portion of the structure is alternately arranged, the conductive portion of the one substrate and the non-conductive portion of the other substrate are opposed at least in part, in each pixel, The alignment films of the two substrates align the liquid crystal molecules of the liquid crystal layer horizontally with respect to the substrate surface, and the liquid crystal molecules are in an initial alignment state and in a horizontal state with respect to the substrates. Liquid crystal display device.
【請求項4】 対向する2枚の基板間に液晶層を挟持し
て複数の画素を形成する液晶セルとこの液晶セルを2つ
の偏光器で挟んでなる液晶表示素子において、前記2枚
の基板は前記液晶層側にそれぞれ電極および配向膜を有
しており、前記電極は前記画素毎に前記液晶層に電界を
印加できるように対向配置され、少なくとも一方の基板
の電極が画素毎に細幅の導電体部と非導電体部とを交互
に配列した構造を有し、一方の基板の導電体部と他方の
基板の非導電体部が少なくとも一部において対向してお
り、 各画素において、前記2枚の基板の配向膜が前記液晶層
の液晶分子をチルト配向させ、かつ、前記液晶分子がベ
ンド配列状態で動作することを特徴とする液晶表示素
子。
4. A liquid crystal cell in which a liquid crystal layer is sandwiched between two opposing substrates to form a plurality of pixels, and a liquid crystal display element in which the liquid crystal cell is sandwiched by two polarizers, the two substrates Each have an electrode and an alignment film on the liquid crystal layer side, the electrodes are arranged so as to face each other so that an electric field can be applied to the liquid crystal layer for each pixel, and at least one of the electrodes on the substrate has a narrow width for each pixel. Of a conductive portion and a non-conductive portion of the structure is alternately arranged, the conductive portion of the one substrate and the non-conductive portion of the other substrate are opposed at least in part, in each pixel, A liquid crystal display device, wherein the alignment films of the two substrates tilt-align the liquid crystal molecules of the liquid crystal layer, and the liquid crystal molecules operate in a bend alignment state.
【請求項5】 対向する2枚の基板間に液晶層を挟持し
て複数の画素を形成する液晶セルとこの液晶セルを2つ
の偏光器で挟んでなる液晶表示素子において、前記2枚
の基板は前記液晶層側にそれぞれ電極および配向膜を有
しており、前記電極は前記画素毎に前記液晶層に電界を
印加できるように対向配置され、少なくとも一方の基板
の電極が画素毎に細幅の導電体部と非導電体部とを交互
に配列した構造を有し、一方の基板の導電体部と他方の
基板の非導電体部が少なくとも一部において対向してお
り、 各画素において、一方の基板の前記画素にはチルト配
向、もう一方の基板の前記画素には垂直配向処理がなさ
れて初期状態で液晶分子がハイブリット配列状態である
ことを特徴とする液晶表示素子。
5. A liquid crystal display device comprising a liquid crystal cell sandwiching a liquid crystal layer between two opposing substrates to form a plurality of pixels, and a liquid crystal display element comprising the liquid crystal cell sandwiched between two polarizers. Each have an electrode and an alignment film on the liquid crystal layer side, the electrodes are arranged so as to face each other so that an electric field can be applied to the liquid crystal layer for each pixel, and at least one of the electrodes on the substrate has a narrow width for each pixel. Of a conductive portion and a non-conductive portion of the structure is alternately arranged, the conductive portion of the one substrate and the non-conductive portion of the other substrate are opposed at least in part, in each pixel, A liquid crystal display device, wherein the pixels on one substrate are subjected to tilt alignment, and the pixels on the other substrate are subjected to vertical alignment treatment so that liquid crystal molecules are in a hybrid alignment state in an initial state.
【請求項6】 各画素において、2枚の基板の画素に垂
直配向処理がなされ、初期状態で液晶分子が垂直配列状
態であることを特徴とする請求項1に記載の液晶表示素
子。
6. The liquid crystal display device according to claim 1, wherein in each pixel, pixels on two substrates are subjected to vertical alignment treatment, and liquid crystal molecules are vertically aligned in an initial state.
【請求項7】 電極の導電体部幅および非導電体部幅が
画素毎に、最大幅が50μm以下であることを特徴とす
る請求項1乃至6のいずれかに記載の液晶表示素子。
7. The liquid crystal display element according to claim 1, wherein the width of the conductor portion and the width of the non-conductor portion of the electrode is 50 μm or less for each pixel.
【請求項8】 各画素において液晶分子が初期状態にお
いて基板間で捻れて配向されていることを特徴とする請
求項1乃至5のいずれかに記載の液晶表示素子。
8. The liquid crystal display element according to claim 1, wherein liquid crystal molecules in each pixel are twisted and aligned between the substrates in an initial state.
【請求項9】 各画素において、液晶分子が初期状態に
おいて基板間で0〜360゜の範囲で捻れて配向されて
いることを特徴とする請求項8に記載の液晶表示素子。
9. The liquid crystal display device according to claim 8, wherein in each pixel, liquid crystal molecules are twisted and aligned in a range of 0 to 360 ° between the substrates in an initial state.
【請求項10】 各画素において、液晶分子が初期状態
において基板間で0〜180゜の範囲で捻れて配向され
ていることを特徴とする請求項8に記載の液晶表示素
子。
10. The liquid crystal display device according to claim 8, wherein in each pixel, liquid crystal molecules are twisted and aligned in a range of 0 to 180 ° between the substrates in an initial state.
【請求項11】 2枚の基板の配向処理方向が、両基板
ともに電極方向と45゜の角度をなすことを特徴とする
請求項1乃至4のいずれかに記載の液晶表示素子。
11. The liquid crystal display element according to claim 1, wherein the orientation treatment directions of the two substrates form an angle of 45 ° with the electrode direction of both substrates.
【請求項12】 各画素において、液晶分子が初期状態
において2枚の基板間で90゜捻れて配向されているこ
とを特徴とする請求項1乃至5のいずれかに記載の液晶
表示素子。
12. The liquid crystal display element according to claim 1, wherein, in each pixel, liquid crystal molecules are twisted and aligned by 90 ° between the two substrates in an initial state.
【請求項13】 液晶層にネマチック液晶、コレステリ
ック液晶、スメクチック液晶またはディスコチック液晶
を用いることを特徴とする請求項1乃至5のいずれかに
記載の液晶表示素子。
13. The liquid crystal display device according to claim 1, wherein a nematic liquid crystal, a cholesteric liquid crystal, a smectic liquid crystal or a discotic liquid crystal is used for the liquid crystal layer.
【請求項14】 液晶層がポリマーにより挟持されるこ
とを特徴とする請求項1乃至5のいずれかに記載の液晶
表示素子。
14. The liquid crystal display device according to claim 1, wherein the liquid crystal layer is sandwiched between polymers.
【請求項15】 液晶組成物が高分子化されていること
を特徴とする請求項1乃至5に記載の液晶表示素子。
15. The liquid crystal display device according to claim 1, wherein the liquid crystal composition is polymerized.
【請求項16】 液晶層に誘電率異方性が負の液晶組成
物を用いることを特徴とする請求項1乃至5のいずれか
に記載の液晶表示素子。
16. The liquid crystal display device according to claim 1, wherein a liquid crystal composition having a negative dielectric anisotropy is used for the liquid crystal layer.
【請求項17】 2つの偏光器は、吸収軸が互いに直交
するように配置されており、液晶セルに電圧を印加しな
い状態において、液晶層の液晶分子の基板平面での配列
方位が、前記2つの偏光器の一方の吸収軸と平行に配置
されていることを特徴とする請求項1乃至5のいずれか
に記載の液晶表示素子。
17. The two polarizers are arranged such that their absorption axes are orthogonal to each other, and in a state where no voltage is applied to the liquid crystal cell, the alignment orientation of the liquid crystal molecules of the liquid crystal layer on the substrate plane is 2 or more. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is arranged in parallel with one absorption axis of one of the two polarizers.
JP32030295A 1995-12-08 1995-12-08 Liquid crystal display element Pending JPH09160041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32030295A JPH09160041A (en) 1995-12-08 1995-12-08 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32030295A JPH09160041A (en) 1995-12-08 1995-12-08 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH09160041A true JPH09160041A (en) 1997-06-20

Family

ID=18119986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32030295A Pending JPH09160041A (en) 1995-12-08 1995-12-08 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH09160041A (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296594A (en) * 2001-03-30 2002-10-09 Fujitsu Ltd Liquid crystal display device
CN1306325C (en) * 1998-09-18 2007-03-21 夏普株式会社 Liquid crystal display apparatus
CN102749765A (en) * 2011-04-22 2012-10-24 株式会社日本显示器中部 Liquid crystal display device
JP2013506165A (en) * 2009-09-29 2013-02-21 シーリアル テクノロジーズ ソシエテ アノニム Light modulator for display presenting 2D and / or 3D image content
JP2013045050A (en) * 2011-08-26 2013-03-04 Japan Display Central Co Ltd Liquid crystal display device
US8421976B2 (en) 2011-07-28 2013-04-16 Japan Display Central Inc. Liquid crystal display device
US8421977B2 (en) 2008-02-14 2013-04-16 Japan Display Central Inc. Liquid crystal display device with pixel electrode having trapezoidal shape
US8542329B2 (en) 2010-03-29 2013-09-24 Japan Display Central Inc. Liquid crystal display device
KR20130131463A (en) 2011-04-08 2013-12-03 가부시키가이샤 재팬 디스프레이 Liquid crystal display device
JP2013246291A (en) * 2012-05-25 2013-12-09 Japan Display Inc Liquid crystal display device
US8605244B2 (en) 2011-08-08 2013-12-10 Japan Display Inc. Liquid crystal display device
US8692947B2 (en) 2011-09-16 2014-04-08 Japan Display Inc. Liquid crystal display device
US8724065B2 (en) 2011-09-12 2014-05-13 Japan Display Inc. Liquid crystal display device
US8743332B2 (en) 2011-01-13 2014-06-03 Japan Display Inc. Liquid crystal display device
US8749726B2 (en) 2011-11-21 2014-06-10 Japan Display Inc. Liquid crystal display device
US8786534B2 (en) 2011-09-27 2014-07-22 Japan Display Inc. Liquid crystal display device
US8786790B2 (en) 2011-03-29 2014-07-22 Japan Display Inc. Liquid crystal display device
US8797482B2 (en) 2011-08-05 2014-08-05 Japan Display Inc. Liquid crystal display device
US8867006B2 (en) 2012-04-23 2014-10-21 Japan Display Inc. Liquid crystal display device
US8873008B2 (en) 2011-03-31 2014-10-28 Japan Display Inc. Liquid crystal display device
US8873009B2 (en) 2011-09-02 2014-10-28 Japan Display Inc. Liquid crystal display device
US8873010B2 (en) 2011-10-17 2014-10-28 Japan Display Inc. Liquid crystal display device
TWI459102B (en) * 2010-10-20 2014-11-01 Japan Display Central Inc Liquid crystal display device
US8885132B2 (en) 2011-03-17 2014-11-11 Japan Display Inc. Liquid crystal display device
US8896795B2 (en) 2011-04-19 2014-11-25 Japan Display Inc. Liquid crystal display device
US8902390B2 (en) 2011-07-08 2014-12-02 Japan Display Inc. Liquid crystal display device having a cross-shaped pixel electrode
US8902391B2 (en) 2011-08-31 2014-12-02 Japan Display Inc. Liquid crystal display device and method of manufacturing liquid crystal display device
US8953130B2 (en) 2011-07-13 2015-02-10 Japan Display Inc. Liquid crystal display device
US9019439B2 (en) 2011-10-14 2015-04-28 Japan Display Inc. Liquid crystal display device
US9025101B2 (en) 2011-08-11 2015-05-05 Japan Display Inc. Liquid crystal display
US9030393B2 (en) 2013-01-15 2015-05-12 Japan Display Inc. Liquid crystal display device
US9046719B2 (en) 2011-04-25 2015-06-02 Japan Display Inc. Liquid crystal display device
US9052555B2 (en) 2011-12-28 2015-06-09 Japan Display Inc. Liquid crystal display device
US9075278B2 (en) 2012-05-22 2015-07-07 Japan Display Inc. Liquid crystal display device
US9075271B2 (en) 2011-09-06 2015-07-07 Japan Display Inc. Liquid crystal display device
US9081242B2 (en) 2011-09-28 2015-07-14 Japan Display Inc. Liquid crystal display device
US9086602B2 (en) 2011-09-01 2015-07-21 Japan Display Inc. Liquid crystal display device
US9097944B2 (en) 2012-05-29 2015-08-04 Japan Display Inc. Liquid crystal display device having particular electrodes structure
US9110341B2 (en) 2012-03-14 2015-08-18 Japan Display Inc. Liquid crystal display device
US9116568B2 (en) 2011-11-08 2015-08-25 Japan Display Inc. Liquid crystal display device
US9122111B2 (en) 2012-03-28 2015-09-01 Japan Display Inc. Liquid crystal display device
US9134576B2 (en) 2012-10-31 2015-09-15 Japan Display Inc. Liquid crystal display device
US9135873B2 (en) 2012-09-04 2015-09-15 Japan Display Inc. Liquid crystal display device
US9134577B2 (en) 2011-01-19 2015-09-15 Japan Display Inc. Liquid crystal display device
US9134578B2 (en) 2013-01-15 2015-09-15 Japan Display Inc. Liquid crystal display device
US9140938B2 (en) 2012-04-06 2015-09-22 Japan Display Inc. Liquid crystal display device
US9146434B2 (en) 2012-10-30 2015-09-29 Japan Display Inc. Liquid crystal display device having particular electrodes structure
US9164330B2 (en) 2012-03-19 2015-10-20 Japan Display Inc. Liquid crystal display with horizontal inter-electrode distance and dielectric constant anisotropy of a liquid crystal layer
US9164333B2 (en) 2013-03-14 2015-10-20 Japan Display Inc. Liquid crystal display device
US9182639B2 (en) 2011-09-28 2015-11-10 Japan Display Inc. Liquid crystal display device
US9217904B2 (en) 2012-05-31 2015-12-22 Japan Display Inc. Liquid crystal display device with a lateral electric field
US9235086B2 (en) 2011-11-08 2016-01-12 Japan Display Inc. Liquid crystal display device
US9244322B2 (en) 2011-08-05 2016-01-26 Japan Display Inc. Liquid crystal display device
US9250486B2 (en) 2011-09-08 2016-02-02 Japan Display Inc. Liquid crystal display device
US9268179B2 (en) 2012-06-06 2016-02-23 Japan Display Inc. Liquid crystal display device utilizing a lateral electric field
US9268178B2 (en) 2011-10-11 2016-02-23 Japan Display Inc. Liquid crystal display device
US9274386B2 (en) 2011-08-09 2016-03-01 Japan Display Inc. Liquid crystal display apparatus
US9280016B2 (en) 2013-02-18 2016-03-08 Japan Display Inc. Liquid crystal display device
US9291862B2 (en) 2011-08-12 2016-03-22 Japan Display Inc. Liquid crystal display apparatus with first and second spacers
US9291865B2 (en) 2011-08-23 2016-03-22 Japan Display Inc. Liquid crystal display device
US9304343B2 (en) 2012-05-11 2016-04-05 Japan Display Inc. Liquid crystal display device
US9310652B2 (en) 2012-07-13 2016-04-12 Japan Display Inc. Liquid crystal display device
US9316872B2 (en) 2013-09-30 2016-04-19 Japan Display Inc. Liquid crystal display device that expands the transmissive area
WO2016067948A1 (en) * 2014-10-27 2016-05-06 シャープ株式会社 Liquid crystal display apparatus
US9341900B2 (en) 2011-08-25 2016-05-17 Japan Display Inc. Liquid crystal display device
US9424786B2 (en) 2011-04-08 2016-08-23 Japan Display Inc. Liquid crystal display device
US9436042B2 (en) 2012-05-08 2016-09-06 Japan Display Inc. Liquid crystal display device including first to third wirings and a pixel electrode, and method of manufacturing the same
US9470938B2 (en) 2013-07-03 2016-10-18 Japan Display Inc. Liquid crystal display device
US9709860B2 (en) 2015-01-22 2017-07-18 Japan Display Inc. Liquid crystal display device
US9791757B2 (en) 2014-09-09 2017-10-17 Japan Display Inc. Liquid crystal display device and display device
US9915840B2 (en) 2013-05-31 2018-03-13 Japan Display Inc. Liquid crystal display device
US10007138B2 (en) 2014-10-24 2018-06-26 Japan Display Inc. Liquid crystal display device and substrate for display device
WO2018113061A1 (en) * 2016-12-22 2018-06-28 深圳市华星光电技术有限公司 Array substrate, colour film substrate and liquid crystal panel

Cited By (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306325C (en) * 1998-09-18 2007-03-21 夏普株式会社 Liquid crystal display apparatus
JP2002296594A (en) * 2001-03-30 2002-10-09 Fujitsu Ltd Liquid crystal display device
US8867007B2 (en) 2008-02-14 2014-10-21 Japan Display Inc. Liquid crystal display device having a strip-shaped electrode
US8421977B2 (en) 2008-02-14 2013-04-16 Japan Display Central Inc. Liquid crystal display device with pixel electrode having trapezoidal shape
US8497969B2 (en) 2008-02-14 2013-07-30 Japan Display Central Inc. Liquid crystal display device having particular electrodes
JP2013506165A (en) * 2009-09-29 2013-02-21 シーリアル テクノロジーズ ソシエテ アノニム Light modulator for display presenting 2D and / or 3D image content
US8687134B2 (en) 2010-03-29 2014-04-01 Japan Display Inc. Liquid crystal display device
US8542329B2 (en) 2010-03-29 2013-09-24 Japan Display Central Inc. Liquid crystal display device
TWI459102B (en) * 2010-10-20 2014-11-01 Japan Display Central Inc Liquid crystal display device
US9395586B2 (en) 2010-10-20 2016-07-19 Japan Display Inc. Liquid crystal display device
US8743332B2 (en) 2011-01-13 2014-06-03 Japan Display Inc. Liquid crystal display device
US9134577B2 (en) 2011-01-19 2015-09-15 Japan Display Inc. Liquid crystal display device
US8885132B2 (en) 2011-03-17 2014-11-11 Japan Display Inc. Liquid crystal display device
US9235094B2 (en) 2011-03-17 2016-01-12 Japan Display Inc. Liquid crystal display device
US8786790B2 (en) 2011-03-29 2014-07-22 Japan Display Inc. Liquid crystal display device
US8873008B2 (en) 2011-03-31 2014-10-28 Japan Display Inc. Liquid crystal display device
US9151985B2 (en) 2011-03-31 2015-10-06 Japan Display Inc. Liquid crystal display device
KR20130131463A (en) 2011-04-08 2013-12-03 가부시키가이샤 재팬 디스프레이 Liquid crystal display device
US9025097B2 (en) 2011-04-08 2015-05-05 Japan Display Inc. Liquid crystal display device
US9424786B2 (en) 2011-04-08 2016-08-23 Japan Display Inc. Liquid crystal display device
US9207510B2 (en) 2011-04-19 2015-12-08 Japan Display Inc. Liquid crystal display device
US8896795B2 (en) 2011-04-19 2014-11-25 Japan Display Inc. Liquid crystal display device
CN102749765A (en) * 2011-04-22 2012-10-24 株式会社日本显示器中部 Liquid crystal display device
US9298049B2 (en) 2011-04-22 2016-03-29 Japan Display Inc. Liquid crystal display device
US9052552B2 (en) 2011-04-22 2015-06-09 Japan Display Inc. Liquid crystal display device
JP2012226283A (en) * 2011-04-22 2012-11-15 Japan Display Central Co Ltd Liquid crystal display device
TWI480631B (en) * 2011-04-22 2015-04-11 Japan Display Central Inc Liquid crystal display device
CN102749765B (en) * 2011-04-22 2015-04-01 株式会社日本显示器中部 Liquid crystal display device
US9046719B2 (en) 2011-04-25 2015-06-02 Japan Display Inc. Liquid crystal display device
US9817284B2 (en) 2011-04-25 2017-11-14 Japan Display Inc. Liquid crystal display device
US9341898B2 (en) 2011-07-08 2016-05-17 Japan Display Inc. Liquid crystal display device
US8902390B2 (en) 2011-07-08 2014-12-02 Japan Display Inc. Liquid crystal display device having a cross-shaped pixel electrode
US8953130B2 (en) 2011-07-13 2015-02-10 Japan Display Inc. Liquid crystal display device
US8879037B2 (en) 2011-07-28 2014-11-04 Japan Display Inc. Liquid crystal display device
US8421976B2 (en) 2011-07-28 2013-04-16 Japan Display Central Inc. Liquid crystal display device
US8797482B2 (en) 2011-08-05 2014-08-05 Japan Display Inc. Liquid crystal display device
US9244322B2 (en) 2011-08-05 2016-01-26 Japan Display Inc. Liquid crystal display device
US8780302B2 (en) 2011-08-08 2014-07-15 Japan Display Inc. Liquid crystal display device
US8605244B2 (en) 2011-08-08 2013-12-10 Japan Display Inc. Liquid crystal display device
US9274386B2 (en) 2011-08-09 2016-03-01 Japan Display Inc. Liquid crystal display apparatus
US11106097B2 (en) 2011-08-09 2021-08-31 Japan Display Inc. Liquid crystal display apparatus
US10345654B2 (en) 2011-08-09 2019-07-09 Japan Display Inc. Liquid crystal display apparatus
US9025101B2 (en) 2011-08-11 2015-05-05 Japan Display Inc. Liquid crystal display
US9810959B2 (en) 2011-08-11 2017-11-07 Japan Display Inc. Liquid crystal display including a mainpixel electrode
US9140943B2 (en) 2011-08-11 2015-09-22 Japan Display Inc. Liquid crystal display
US9291862B2 (en) 2011-08-12 2016-03-22 Japan Display Inc. Liquid crystal display apparatus with first and second spacers
US9291865B2 (en) 2011-08-23 2016-03-22 Japan Display Inc. Liquid crystal display device
US9341900B2 (en) 2011-08-25 2016-05-17 Japan Display Inc. Liquid crystal display device
US9030636B2 (en) 2011-08-26 2015-05-12 Japan Display Inc. Liquid crystal display apparatus
JP2013045050A (en) * 2011-08-26 2013-03-04 Japan Display Central Co Ltd Liquid crystal display device
US8902391B2 (en) 2011-08-31 2014-12-02 Japan Display Inc. Liquid crystal display device and method of manufacturing liquid crystal display device
US9086602B2 (en) 2011-09-01 2015-07-21 Japan Display Inc. Liquid crystal display device
US9134579B2 (en) 2011-09-02 2015-09-15 Japan Display Inc. Liquid crystal display device
US8873009B2 (en) 2011-09-02 2014-10-28 Japan Display Inc. Liquid crystal display device
US9075271B2 (en) 2011-09-06 2015-07-07 Japan Display Inc. Liquid crystal display device
US9250486B2 (en) 2011-09-08 2016-02-02 Japan Display Inc. Liquid crystal display device
US8724065B2 (en) 2011-09-12 2014-05-13 Japan Display Inc. Liquid crystal display device
US8830435B2 (en) 2011-09-16 2014-09-09 Japan Display Inc. Liquid crystal display device
US9841641B2 (en) 2011-09-16 2017-12-12 Japan Display Inc. Liquid crystal display device
US9013663B2 (en) 2011-09-16 2015-04-21 Japan Display, Inc. Liquid crystal display device
US9372372B2 (en) 2011-09-16 2016-06-21 Japan Display Inc. Liquid crystal display device
US8692947B2 (en) 2011-09-16 2014-04-08 Japan Display Inc. Liquid crystal display device
US8786534B2 (en) 2011-09-27 2014-07-22 Japan Display Inc. Liquid crystal display device
US9182639B2 (en) 2011-09-28 2015-11-10 Japan Display Inc. Liquid crystal display device
US9880430B2 (en) 2011-09-28 2018-01-30 Japan Display Inc. Liquid crystal display device
US9081242B2 (en) 2011-09-28 2015-07-14 Japan Display Inc. Liquid crystal display device
US9268178B2 (en) 2011-10-11 2016-02-23 Japan Display Inc. Liquid crystal display device
US9019439B2 (en) 2011-10-14 2015-04-28 Japan Display Inc. Liquid crystal display device
US8873010B2 (en) 2011-10-17 2014-10-28 Japan Display Inc. Liquid crystal display device
US9235086B2 (en) 2011-11-08 2016-01-12 Japan Display Inc. Liquid crystal display device
US9116568B2 (en) 2011-11-08 2015-08-25 Japan Display Inc. Liquid crystal display device
US8749726B2 (en) 2011-11-21 2014-06-10 Japan Display Inc. Liquid crystal display device
US9052555B2 (en) 2011-12-28 2015-06-09 Japan Display Inc. Liquid crystal display device
US9110341B2 (en) 2012-03-14 2015-08-18 Japan Display Inc. Liquid crystal display device
US9164330B2 (en) 2012-03-19 2015-10-20 Japan Display Inc. Liquid crystal display with horizontal inter-electrode distance and dielectric constant anisotropy of a liquid crystal layer
US9122111B2 (en) 2012-03-28 2015-09-01 Japan Display Inc. Liquid crystal display device
US9341906B2 (en) 2012-03-28 2016-05-17 Japan Display Inc. Liquid crystal display device
US9140938B2 (en) 2012-04-06 2015-09-22 Japan Display Inc. Liquid crystal display device
US9104075B2 (en) 2012-04-23 2015-08-11 Japan Display Inc. Liquid crystal display device
US8867006B2 (en) 2012-04-23 2014-10-21 Japan Display Inc. Liquid crystal display device
US9470936B2 (en) 2012-04-23 2016-10-18 Japan Display, Inc. Liquid crystal display device
US9436042B2 (en) 2012-05-08 2016-09-06 Japan Display Inc. Liquid crystal display device including first to third wirings and a pixel electrode, and method of manufacturing the same
US9304343B2 (en) 2012-05-11 2016-04-05 Japan Display Inc. Liquid crystal display device
US9075278B2 (en) 2012-05-22 2015-07-07 Japan Display Inc. Liquid crystal display device
US9459507B2 (en) 2012-05-22 2016-10-04 Japan Display Inc. Liquid crystal display device
US9810957B2 (en) 2012-05-25 2017-11-07 Japan Display Inc. Liquid crystal display device
JP2013246291A (en) * 2012-05-25 2013-12-09 Japan Display Inc Liquid crystal display device
US9116402B2 (en) 2012-05-25 2015-08-25 Japan Display Inc. Liquid crystal display device
US9097944B2 (en) 2012-05-29 2015-08-04 Japan Display Inc. Liquid crystal display device having particular electrodes structure
US9733533B2 (en) 2012-05-29 2017-08-15 Japan Display Inc. Liquid crystal display device
US9217904B2 (en) 2012-05-31 2015-12-22 Japan Display Inc. Liquid crystal display device with a lateral electric field
US9268179B2 (en) 2012-06-06 2016-02-23 Japan Display Inc. Liquid crystal display device utilizing a lateral electric field
US9310652B2 (en) 2012-07-13 2016-04-12 Japan Display Inc. Liquid crystal display device
US9135873B2 (en) 2012-09-04 2015-09-15 Japan Display Inc. Liquid crystal display device
US9146434B2 (en) 2012-10-30 2015-09-29 Japan Display Inc. Liquid crystal display device having particular electrodes structure
US9134576B2 (en) 2012-10-31 2015-09-15 Japan Display Inc. Liquid crystal display device
US9551911B2 (en) 2013-01-15 2017-01-24 Japan Display Inc. Liquid crystal display device
US9030393B2 (en) 2013-01-15 2015-05-12 Japan Display Inc. Liquid crystal display device
US9134578B2 (en) 2013-01-15 2015-09-15 Japan Display Inc. Liquid crystal display device
US9280016B2 (en) 2013-02-18 2016-03-08 Japan Display Inc. Liquid crystal display device
US9164333B2 (en) 2013-03-14 2015-10-20 Japan Display Inc. Liquid crystal display device
US9915840B2 (en) 2013-05-31 2018-03-13 Japan Display Inc. Liquid crystal display device
US9470938B2 (en) 2013-07-03 2016-10-18 Japan Display Inc. Liquid crystal display device
US9316872B2 (en) 2013-09-30 2016-04-19 Japan Display Inc. Liquid crystal display device that expands the transmissive area
US9791757B2 (en) 2014-09-09 2017-10-17 Japan Display Inc. Liquid crystal display device and display device
US10353259B2 (en) 2014-09-09 2019-07-16 Japan Display Inc. Liquid crystal display device and display device
US10007138B2 (en) 2014-10-24 2018-06-26 Japan Display Inc. Liquid crystal display device and substrate for display device
WO2016067948A1 (en) * 2014-10-27 2016-05-06 シャープ株式会社 Liquid crystal display apparatus
US10203568B2 (en) 2015-01-22 2019-02-12 Japan Display Inc. Liquid crystal display device
US10613395B2 (en) 2015-01-22 2020-04-07 Japan Display Inc. Liquid crystal display device
US9709860B2 (en) 2015-01-22 2017-07-18 Japan Display Inc. Liquid crystal display device
WO2018113061A1 (en) * 2016-12-22 2018-06-28 深圳市华星光电技术有限公司 Array substrate, colour film substrate and liquid crystal panel

Similar Documents

Publication Publication Date Title
JPH09160041A (en) Liquid crystal display element
JPH09160042A (en) Liquid crystal display element
KR0148502B1 (en) Lcd device
JP3322197B2 (en) Liquid crystal display
JPH09160061A (en) Liquid crystal display element
US5748275A (en) Liquid crystal display device and liquid crystal display apparatus
JP3529434B2 (en) Liquid crystal display device
US5822031A (en) Liquid crystal device
JP2921813B2 (en) Electrode structure of liquid crystal display
WO2000031582A1 (en) Vertically aligned helix-deformed liquid crystal display
JPH0843861A (en) Liquid crystal display element
JPH0829812A (en) Liquid crystal display device
JP3130682B2 (en) Liquid crystal display device
KR100412125B1 (en) Liquid crystal display device
JP3026901B2 (en) LCD panel
JPH09105957A (en) Liquid crystal display element
JPH07199205A (en) Liquid crystal display element
JPH08136941A (en) Liquid crystal display element
JP3324606B2 (en) Liquid crystal display
JPH0876077A (en) Electric field control diffraction grating and liquid crystal element
JPH08136935A (en) Liquid crystal display device
JPH0996790A (en) Liquid electro-optical element
JP3657708B2 (en) Liquid crystal electro-optical device
JPH09197429A (en) Liquid crystal display element
JPH11160716A (en) Liquid crystal display device