JPH0829812A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH0829812A
JPH0829812A JP16655794A JP16655794A JPH0829812A JP H0829812 A JPH0829812 A JP H0829812A JP 16655794 A JP16655794 A JP 16655794A JP 16655794 A JP16655794 A JP 16655794A JP H0829812 A JPH0829812 A JP H0829812A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
crystal display
display device
crystal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16655794A
Other languages
Japanese (ja)
Inventor
Makiko Satou
摩希子 佐藤
Yuzo Hisatake
雄三 久武
Takeshi Oyama
毅 大山
Masahito Ishikawa
正仁 石川
Hitoshi Hado
仁 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16655794A priority Critical patent/JPH0829812A/en
Publication of JPH0829812A publication Critical patent/JPH0829812A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a liquid crystal display device which has a steep electro-optic characteristic, a high bright contrast ratio and excellent gradation characteristic by arranging lifuid crystal molecules of a lifuid crystal layer in accondance with the orientation processing and using this lifuid crystal layer as guest-host type lifuid crystal layer to which dye in added. CONSTITUTION:This liquid crystal display device has an electrode arrangement which is obtd. by using a shape having conductor part 13a of waveform stripe as electrode 13 and is provided with the parts where the conductor parts 13a, 14b of both upper and lower substrates 11 and 12 are overlapped between the parts (FE and RE parts) where nonconductor parts 13b and 14b face each other in the conductor parts 13a and 14b between the upper and lower substrates 11 and 12. Diagonal electric field e which is an electric field having electric field components parallel with the substrate plane is formed within a liquid crystal layer added with dye as guest-host dichromatic dyestuff when a voltage is impressed between the electrodes from a power source 22 via the TFTs 21 of the lower substrate 12. Then, generation of a disturbance in many molecule arrangements within one pixel is made possible and the control of light transmission and light scattering by each pixel is made possible. A displayed image having a high contrast ratio is thus obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光散乱制御型液晶表示
素子を用いた液晶表示装置に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device using a light scattering control type liquid crystal display element.

【0002】[0002]

【従来の技術】液晶表示素子(以下LCDと略称)を光
制御の観点から分類すると、明暗の変化を液晶分子の偏
光効果と偏光子を組み合わせにより生じさせるものと、
液晶の相転移を利用し、光の散乱と透過により生じさせ
るもの、及び染料を添加し、染料の可視光吸収量を制御
し、色の濃淡変化により生じさせるるもの等に分けられ
る。
2. Description of the Related Art When a liquid crystal display element (hereinafter abbreviated as LCD) is classified from the viewpoint of light control, a change in brightness is caused by a combination of a polarization effect of liquid crystal molecules and a polarizer.
There are two types, one that uses the phase transition of liquid crystal and causes light scattering and transmission, and the other that adds a dye to control the visible light absorption amount of the dye and changes the light and shade of the color.

【0003】前者の偏光効果と偏光子を組み合わせたL
CDは、例えば90°捻れた分子配列をもつツイステッ
ドネマティック(TN)型液晶であり、原理的に薄い液
晶層厚、低電圧で偏光制御できることから、早い応答速
度、低消費電力にて、高いコントラスト比を示し、時計
や電卓、単純マトリクス駆動や、スイッチング素子を各
画素ごとに具備したアクティブマトリクス駆動で、ま
た、カラーフィルターと組み合わせて、フルカラーの表
示の液晶TVなどに応用されている。
L, which is a combination of the former polarization effect and a polarizer
The CD is, for example, a twisted nematic (TN) type liquid crystal having a 90 ° twisted molecular arrangement. In principle, the thin liquid crystal layer can control polarization with a low voltage, so that a high response speed, low power consumption, and high contrast are achieved. The ratio is used for a clock, a calculator, a simple matrix drive, an active matrix drive provided with a switching element for each pixel, and in combination with a color filter, it is applied to a full color display liquid crystal TV or the like.

【0004】しかし、これら偏光効果と偏光子を組み合
わせたLCDは、原理上偏光板を用いることから素子の
透過率が著しく低く、また分子配列の方位性により見る
角度・方位によって表示色やコントラスト比が大きく変
化するといった視角依存性を持ち陰極線管(CRT)の
表示性能を完全に越えるまでにはいたらない。
However, an LCD combining these polarization effects and a polarizer has a remarkably low transmissivity of the element since it uses a polarizing plate in principle, and the display color and the contrast ratio depend on the viewing angle / direction depending on the orientation of the molecular arrangement. Has a viewing angle dependency such as a large change, and it is not possible to completely exceed the display performance of a cathode ray tube (CRT).

【0005】一方、後者の液晶の総転移を利用したも
の、及び染料の可視光吸収量を制御したLCDは、例え
ば、ヘリカル構造の分子配列をもつコレステリック相か
らホメオトロピック分子配列のネマティック相への相転
移を電場印加で生じさせるPC形液晶及びこれに染料を
添加してなるWhite−Taylor型GH液晶であ
り、偏光子を用いず、原理的に偏光効果を用いないこと
から、明るく、広い視認角を示し、自動車機器や、投影
形表示器などに応用されている。
On the other hand, the latter one utilizing the total transition of liquid crystal and the LCD controlling the visible light absorption amount of the dye are, for example, from a cholesteric phase having a helical molecular arrangement to a homeotropic molecular nematic phase. A PC-type liquid crystal that causes a phase transition when an electric field is applied and a White-Taylor-type GH liquid crystal that is obtained by adding a dye to the PC-type liquid crystal. Since it does not use a polarizer and in principle does not use a polarization effect, it is bright and has a wide visual recognition. It indicates a corner and is applied to automobile equipment and projection type displays.

【0006】しかし、充分な光の散乱を得るには、液晶
相厚を充分厚くしたり、散乱を生じさせるヘリカル強度
を強めたりする必要があり、高い駆動電圧を要し、応答
速度も極めて遅いといった問題点をもっているため表示
量(画素数)の多い表示素子への応用は困難とされてい
た。また、印加電圧の増加に伴い、透過率が急激に変化
するために階調性をもたらすことも困難とされていた。
さらに、その印加電圧−透過率特性にヒステリシスがあ
り、マルチプレクス駆動することが困難など実用的に問
題があった。
However, in order to obtain sufficient light scattering, it is necessary to sufficiently thicken the liquid crystal phase and to increase the helical strength that causes the scattering, which requires a high driving voltage and a very slow response speed. Therefore, it has been difficult to apply it to a display element having a large display amount (number of pixels). In addition, it has been considered difficult to provide gradation because the transmittance changes abruptly as the applied voltage increases.
Further, the applied voltage-transmittance characteristic has a hysteresis, and there is a practical problem that it is difficult to perform multiplex driving.

【0007】また、図6に示す様に上下基板1、2で挟
んだ有機高分子3中に液晶4を球状に保持したNCAP
形LCDは散乱モードの液晶表示素子であり、偏光板を
用いないため、明るく、広い視認性を示し、自動車機器
や、投影型表示器などに応用されている。しかしなが
ら、外部から印加した電圧は有機高分子中と液晶とに分
圧され、液晶には印加電圧の一部しか印加されず、実用
的には動作電圧が高まり問題であった。また、充分な光
の散乱を得るには、液晶厚を充分厚くする必要があり、
応答速度も極めて遅いといった問題点をもっているため
表示量(画素数)の多い表示素子への応用は困難とされ
ていた。さらに、その印加電圧−透過率特性にヒステリ
シスがあり、マルチプレクス駆動することが困難など実
用的に問題があった。これと同様の動作原理で動作する
網目状有機高分子中に液晶を保持した高分子分散形LC
Dにおいても、同様の問題があった。
Further, as shown in FIG. 6, NCAP in which a liquid crystal 4 is spherically held in an organic polymer 3 sandwiched between upper and lower substrates 1 and 2.
The LCD is a scattering-mode liquid crystal display element, and since it does not use a polarizing plate, it is bright and has wide visibility, and is applied to automobile equipment, projection display devices, and the like. However, the voltage applied from the outside is divided into the organic polymer and the liquid crystal, and only a part of the applied voltage is applied to the liquid crystal, which causes a problem that the operating voltage is increased practically. Further, in order to obtain sufficient light scattering, it is necessary to make the liquid crystal thickness sufficiently thick,
Since it has a problem that the response speed is extremely slow, it has been difficult to apply it to a display element having a large display amount (number of pixels). Further, the applied voltage-transmittance characteristic has a hysteresis, and there is a practical problem that it is difficult to perform multiplex driving. Polymer-dispersed LC in which liquid crystal is retained in a network organic polymer that operates on the same principle as this.
D had the same problem.

【0008】さらに、偏光板を1枚だけ用いるか、省略
するゲストホスト型液晶(GH)が開発されたが、電気
光学特性のしきい値特性が急峻でないために、マルチプ
レックス駆動に不向きであるという問題がある。
Further, a guest-host type liquid crystal (GH) has been developed which uses only one polarizing plate or omits it, but it is not suitable for multiplex driving because the threshold value characteristic of electro-optical characteristics is not steep. There is a problem.

【0009】[0009]

【発明が解決しようとする課題】上述したように、現
在、液晶表示素子は透過率が低く、視角依存性を持つ
か、高い駆動電圧を要し、応答速度も遅いといった問題
点をもっていた。
As described above, at present, liquid crystal display devices have the problems of low transmittance, viewing angle dependence, high driving voltage, and slow response speed.

【0010】こうした背景のもとで、発明者等は先願の
特願平5−184273号において、対向して複数の画
素を形成する電極をそれぞれ有する2枚の基板間にネマ
ティック液晶からなる液晶層を狭持し、前記両基板の電
極が画素ごとに、最も広い幅が50μm以下である微細
な領域を単位とした導電体部と非導電体部(無導電体
部)からなり、両基板間で一方の電極の導電体部と他方
の電極の非導電体部の少なくとも一部が対向して配置さ
れてなることを特徴とした液晶表示素子を提案した。
Against this background, the inventors of the present invention, in Japanese Patent Application No. 5-184273, filed a liquid crystal consisting of a nematic liquid crystal between two substrates each having an electrode facing each other to form a plurality of pixels. The electrodes of both substrates sandwiching a layer are composed of a conductive portion and a non-conductive portion (non-conductive portion) in units of a fine region having a widest width of 50 μm or less for each pixel. A liquid crystal display device is proposed in which at least a part of a conductor part of one electrode and a non-conductor part of the other electrode are arranged so as to face each other.

【0011】この液晶表示素子は各画素の電極形状およ
び配置の特有性から基板平面方向の電界成分をもたせ、
すなわち液晶層内に斜め電界を生じるようにしており、
このため各画素内において斜め電界の方向が2以上とな
り、その電界の境界部に積極的に分子配列の乱れを形成
して光散乱状態を得て高いコントラスト比を達成するも
のであり、前述した諸々の問題点を解決し得るものであ
る。
This liquid crystal display element has an electric field component in the plane direction of the substrate due to the peculiarity of the electrode shape and arrangement of each pixel,
That is, an oblique electric field is generated in the liquid crystal layer,
For this reason, the direction of the oblique electric field becomes 2 or more in each pixel, and disorder of the molecular arrangement is positively formed at the boundary of the electric field to obtain a light scattering state to achieve a high contrast ratio. It can solve various problems.

【0012】すなわち、この液晶表示素子によれば、電
極への電圧印加制御により素子を透過する光を透過と散
乱のいずれかに制御することができる。
That is, according to this liquid crystal display element, the light passing through the element can be controlled to be either transmitted or scattered by controlling the voltage application to the electrodes.

【0013】そこで本発明では、上記した素子の特性を
応用してゲストホスト型液晶を有効に実用化する液晶表
示装置を得るもので、より応用範囲の広い表示性能を得
る新規な液晶表示装置を得ることを目的としている。
Therefore, in the present invention, a liquid crystal display device for effectively putting a guest-host type liquid crystal into practical use is obtained by applying the characteristics of the above-mentioned elements, and a novel liquid crystal display device having a wider application range is provided. The purpose is to get.

【0014】[0014]

【課題を解決するための手段】本発明は、相対向する領
域を一画素として複数の画素を形成するための第1の電
極を有する第1の基板および第2の電極を有する第2の
基板とこれら基板間に挟持されたネマティック液晶の液
晶層とからなる液晶表示素子と、前記第1の電極および
第2の電極間に電圧を印加する電圧源とを具備して前記
液晶表示素子に入射する入射光を光散乱制御する液晶表
示装置において、前記液晶表示素子は前記第1の電極が
一画素内に導電体部と非導電体部を有し、前記第2の電
極が一画素内に導電体部と非導電体部を有し、前記第1
の電極の導電体部が前記第2の電極の非導電体部の少な
くとも一部に面するように対向しており、前記第2の電
極の導電体部が第1の電極の非導電体部少なくともの一
部に面するように対向しており、前記第1の電極上に所
定の方向に液晶分子配向処理された第1の配向膜を有
し、前記第2の電極上に所定の方向に液晶分子配向処理
された第2の配向膜を有し、前記電圧源から前記電極に
電圧が印加されない状態において、前記液晶層の液晶分
子が前記第1および第2の配向膜の配向処理に応じた配
列をしており、前記液晶層が染料を添加したゲストホス
ト型液晶層であることを特徴とする液晶表示装置を得る
ものである。
According to the present invention, a first substrate having a first electrode and a second substrate having a second electrode for forming a plurality of pixels with regions facing each other as one pixel are provided. And a nematic liquid crystal liquid crystal layer sandwiched between these substrates, and a voltage source for applying a voltage between the first electrode and the second electrode. In the liquid crystal display device for controlling the light scattering of incident light, the first electrode has a conductor portion and a non-conductor portion in one pixel, and the second electrode in one pixel in the liquid crystal display element. The first portion having a conductor portion and a non-conductor portion,
The conductor portion of the second electrode faces at least a part of the non-conductor portion of the second electrode, and the conductor portion of the second electrode is the non-conductor portion of the first electrode. A first alignment film facing at least a part of the first electrode, the first alignment film having liquid crystal molecule alignment processing in a predetermined direction is provided on the first electrode, and the first alignment film is provided on the second electrode in a predetermined direction. A second alignment film that has been subjected to liquid crystal molecule alignment processing, and when no voltage is applied from the voltage source to the electrode, the liquid crystal molecules of the liquid crystal layer are used for alignment processing of the first and second alignment films. A liquid crystal display device is obtained in which the liquid crystal layers are arranged according to each other, and the liquid crystal layer is a guest-host type liquid crystal layer to which a dye is added.

【0015】さらに、第1の電極および第2の電極の導
電体部がストライプ形状であり、非導電体部がスリット
状である液晶表示装置を得るものである。
Further, it is intended to obtain a liquid crystal display device in which the conductor portions of the first electrode and the second electrode are stripe-shaped and the non-conductor portions are slit-shaped.

【0016】さらに、第1の配向膜の液晶分子配向処理
方向と第2の配向膜の液晶分子配向処理方向により液晶
層の液晶分子をスプレイ配列してなる液晶表示装置を得
るものである。
Further, the present invention provides a liquid crystal display device in which liquid crystal molecules of a liquid crystal layer are splay arrayed according to the liquid crystal molecule alignment treatment direction of the first alignment film and the liquid crystal molecule alignment treatment direction of the second alignment film.

【0017】さらに、第1の配向膜の液晶分子配向処理
方向と第2の配向膜の液晶分子配向処理方向により液晶
層の液晶分子をベンド配列してなる液晶表示装置を得る
ものである。
Further, the present invention provides a liquid crystal display device in which the liquid crystal molecules of the liquid crystal layer are bend-aligned according to the liquid crystal molecule alignment treatment direction of the first alignment film and the liquid crystal molecule alignment treatment direction of the second alignment film.

【0018】さらに、液晶表示素子の第1の基板か前記
第2の基板のいずれか一方に直線偏光光を入射する偏光
装置を配置する液晶表示装置を得るものである。
Further, the present invention provides a liquid crystal display device in which a polarizing device for injecting linearly polarized light is arranged on either the first substrate or the second substrate of the liquid crystal display element.

【0019】[0019]

【作用】本発明は、上記目的を達成するものであり以下
その達成原理及び手法について説明する。
The present invention achieves the above object, and the principle and method of achieving the same will be described below.

【0020】本発明に用いる液晶表示素子の電極は、第
1の基板の第1の電極が一画素内に導電体部と非導電体
部を有し、第2の基板の記第2の電極が一画素内に導電
体部と非導電体部を有し、第1の電極の導電体部が第2
の電極の非導電体部の少なくとも一部に面するように対
向しており、第2の電極の導電体部が第1の電極の非導
電体部少なくともの一部に面するように対向している。
The electrode of the liquid crystal display element used in the present invention is such that the first electrode of the first substrate has a conductive portion and a non-conductive portion in one pixel, and the second electrode of the second substrate is used. Has a conductive portion and a non-conductive portion in one pixel, and the conductive portion of the first electrode is the second
Of the second electrode so as to face at least a part of the non-conductive portion of the second electrode, and the conductive portion of the second electrode so as to face at least a part of the non-conductive portion of the first electrode. ing.

【0021】すなわち、これら電極間に電圧を印加する
と、基板面に平行な電界成分をもつ電界である斜め電界
がゲストホストの二色色素として染料が添加された液晶
層内に形成される。
That is, when a voltage is applied between these electrodes, an oblique electric field, which is an electric field having an electric field component parallel to the substrate surface, is formed in the liquid crystal layer to which the dye is added as the guest host dichroic dye.

【0022】第1および第2の電極の導電体部と非導電
体部の対面配置によって、傾き方向が相互に逆となる2
方向の斜め電界が生じ、これら電界に沿って再配列する
液晶分子およびゲストの染料分子は電界の境界領域で分
子配列が乱れる。このためこの領域を通過する光は散乱
状態になる。一画素内で多くの分子配列の乱れが生じる
ようにすることで、画素ごとに光透過と光散乱を制御す
ることができて、高コントラスト比の表示画像を得るこ
とが可能になる。
Due to the facing arrangement of the conductor portion and the non-conductor portion of the first and second electrodes, the inclination directions are opposite to each other. 2
An oblique electric field is generated in the direction, and liquid crystal molecules and guest dye molecules rearranged along these electric fields are disordered in molecular alignment in the boundary region of the electric field. Therefore, the light passing through this area is in a scattered state. By causing a lot of disorder of the molecular arrangement in one pixel, the light transmission and the light scattering can be controlled for each pixel, and a display image with a high contrast ratio can be obtained.

【0023】電圧無印加状態では、配向膜の配向処理に
したがって液晶分子が一様に配向する。本発明では、第
1の電極上に所定の方向に液晶分子配向処理された第1
の配向膜を有し、第2の電極上に所定の方向に液晶分子
配向処理された第2の配向膜を有する。
When no voltage is applied, the liquid crystal molecules are uniformly aligned according to the alignment treatment of the alignment film. According to the present invention, the first liquid crystal molecules are aligned on the first electrode in a predetermined direction.
And the second alignment film that has been subjected to liquid crystal molecule alignment processing in a predetermined direction on the second electrode.

【0024】電圧無印加状態の液晶分子配列はスプレイ
配列またはベンド配列であることが望ましい。
It is desirable that the liquid crystal molecule arrangement in the state where no voltage is applied is a splay arrangement or a bend arrangement.

【0025】スプレイ配列を図5(a)に示す。図は上
基板11の配向膜15のラビング処理方向Fと下基板1
2の配向膜16のラビング処理方向Rを同方向とした場
合で、正の誘電異方性をもつネマティック液晶のねじれ
がない状態を示しており、両基板の液晶分子Mのプレチ
ルト角α0 が交差するために、液晶分子配列が一方に広
がった構造になる。なお、ラビング処理方向F、Rを交
差するように両基板を配置させた場合は、液晶分子は交
差角に応じてねじれ配列となる。
The spray arrangement is shown in FIG. The figure shows the rubbing direction F of the alignment film 15 on the upper substrate 11 and the lower substrate 1.
When the rubbing direction R of the second alignment film 16 is the same direction, the nematic liquid crystal having a positive dielectric anisotropy is not twisted, and the pretilt angle α 0 of the liquid crystal molecules M of both substrates intersect. Therefore, the structure is such that the liquid crystal molecular arrangement is spread to one side. When the two substrates are arranged so as to intersect the rubbing directions F and R, the liquid crystal molecules are twisted according to the crossing angle.

【0026】また、ベンド配列を図5(b)に示す。上
下基板11、12の配向膜15、16に垂直配向膜を用
い、これら膜をラビング処理し、その方向F、Rを一致
されるように基板を組み合わせると、負の誘電異方性の
ネマティック液晶の液晶分子Mは図のように配向膜付近
で処理方向F、Rに僅かに傾いた液晶配列部分と液晶層
中央部の垂直方向配列部分の組み合わせになる。
The bend sequence is shown in FIG. 5 (b). Vertical alignment films are used as the alignment films 15 and 16 of the upper and lower substrates 11 and 12, and these films are rubbed, and when the substrates are combined so that their directions F and R are aligned, a nematic liquid crystal having negative dielectric anisotropy is obtained. The liquid crystal molecules M are a combination of a liquid crystal alignment portion slightly tilted in the processing directions F and R near the alignment film and a vertical alignment portion in the central portion of the liquid crystal layer as shown in the figure.

【0027】スプレイ配列、ベンド配列ともに、基板間
に基板面方向に成分をもつ斜め電界を印加すると、液晶
分子が電界方向に沿って再配列しやすく、近接する領域
で方向の異なる斜め電界が発生すると、境界部に液晶分
子と染料分子の乱れが生じて、透過する光を散乱する。
In both the spray arrangement and the bend arrangement, when an oblique electric field having a component in the substrate surface direction is applied between the substrates, liquid crystal molecules are easily rearranged along the electric field direction, and an oblique electric field with a different direction is generated in the adjacent region. Then, the liquid crystal molecules and the dye molecules are disturbed at the boundary, and the transmitted light is scattered.

【0028】本発明に用いる液晶表示素子は代表的には
前述の特願平5−184273号に開示した液晶表示素
子の構成において液晶層内に染料が添加されている。
The liquid crystal display element used in the present invention typically has a dye added in the liquid crystal layer in the constitution of the liquid crystal display element disclosed in Japanese Patent Application No. 5-184273.

【0029】本発明の液晶表示素子の分子配列構造の一
例の概略を図1に示す。図示の分子配列構造は、いわゆ
るスプレイ配列およびそれに捩じれを加えた分子配列で
あり、なおかつ上下基板11、12表面における液晶分
子Mのプレチルト角が上下でほぼ等しいことを特徴とし
ている。こうした、分子配列では電界の印加の仕方によ
ってはその分子のチルト方向が図示するごとく、2方向
MF 、MR となる。これは電圧を印加しない状態での液
晶分子配列が液晶層20の上半分と下半分で対称な形を
していることによっている。つまり、液晶分子のチルト
方向が2以上の自由度を持っていることによる。添加し
た染料の分子Cも液晶分子Mに追随する。これによって
電極13、14に電圧を印加した際にのみ図1(c)に
示すように斜め電界eが発生し、分子Mのチルト方向の
境界部(図中DL)にディスクリネーションライン(ウ
ォール)を発生させることができ、入射光を散乱させる
機能を得ることができる。このように液晶分子のチルト
方向が2以上の自由度を持たせるには図1(c)のスプ
レイ分子配列構造の他、例えば、前記したベント配列す
なわち液晶組成物として負の誘電異方性を持つネマティ
ック液晶組成物を用い、液晶分子配列を上下基板におけ
るプレチルト角が90°である完全な垂直配列としても
同様の効果を得ることができる。この場合、液晶分子の
チルトダウン方向の自由度が2以上となる。
FIG. 1 schematically shows an example of the molecular arrangement structure of the liquid crystal display device of the present invention. The illustrated molecular arrangement structure is a so-called splay arrangement and a twisted molecular arrangement, and the pretilt angles of the liquid crystal molecules M on the surfaces of the upper and lower substrates 11 and 12 are substantially equal in the vertical direction. In such a molecular arrangement, the tilt directions of the molecules are two directions MF and MR depending on how the electric field is applied, as shown in the figure. This is because the liquid crystal molecule alignment in the state where no voltage is applied is symmetrical between the upper half and the lower half of the liquid crystal layer 20. That is, the tilt direction of liquid crystal molecules has two or more degrees of freedom. The added dye molecule C also follows the liquid crystal molecule M. As a result, an oblique electric field e is generated only when a voltage is applied to the electrodes 13 and 14, as shown in FIG. 1C, and a disclination line (wall) is formed at the boundary portion (DL in the drawing) of the molecule M in the tilt direction. ) Can be generated, and the function of scattering incident light can be obtained. In order to provide the liquid crystal molecules with two or more degrees of freedom in the tilt direction, in addition to the splay molecule arrangement structure shown in FIG. 1C, for example, the above-mentioned bent arrangement, that is, the liquid crystal composition has a negative dielectric anisotropy. The same effect can be obtained by using the nematic liquid crystal composition having the liquid crystal molecule arrangement so that the pretilt angle of the upper and lower substrates is 90 °. In this case, the degree of freedom in the tilt-down direction of the liquid crystal molecules is 2 or more.

【0030】いずれにせよ、このように液晶分子が電圧
を印加していない状態で実効的に一様な分子配列であ
り、液晶分子のチルトアップ方向、もしくはチルトダウ
ン方向の自由度が2以上である液晶分子配列に対し、斜
め電界が微細な領域毎に相反する2方向以上に印加され
るように考慮した電極であれば、前述した問題を解決し
た優れた表示性能を得ることができる。
In any case, the liquid crystal molecules have an effective uniform molecular arrangement in the state where no voltage is applied, and the degree of freedom in the tilt-up direction or the tilt-down direction of the liquid crystal molecules is 2 or more. With respect to a certain liquid crystal molecule arrangement, an electrode in which an oblique electric field is applied in two or more directions that are contradictory to each other in a fine region can provide excellent display performance that solves the above-mentioned problems.

【0031】この液晶表示素子の表示原理について、さ
らに詳細に説明する。図2はこの液晶表示素子の光学的
な説明図である。また、図3は液晶表示素子に電圧を印
加した状態における液晶分子配列の詳細な模式図であ
る。この液晶表示素子の液晶および染料は、前述したよ
うに電圧を印加しない状態では、例えばほぼ水平配列か
らなる分子配列を形成しており、液晶分子は光学的には
図2(a)に示すように一軸性の光学媒体となる。すな
わち、図中の回転楕円体Lは液晶の隣接領域の屈折率の
異方性を示す屈折率楕円を表しており、基板平面方向に
平行な最大屈折率ne を軸としてその垂直方向が最小屈
折率no である場合を示している。この状態で液晶層に
入射する光lは直進(透過)する。
The display principle of this liquid crystal display device will be described in more detail. FIG. 2 is an optical explanatory view of this liquid crystal display element. Further, FIG. 3 is a detailed schematic diagram of the alignment of liquid crystal molecules in the state where a voltage is applied to the liquid crystal display element. The liquid crystal and the dye of this liquid crystal display element form a molecular arrangement of, for example, a substantially horizontal arrangement when no voltage is applied as described above, and the liquid crystal molecules are optically as shown in FIG. 2 (a). It becomes a uniaxial optical medium. That is, the spheroid L in the figure represents a refractive index ellipse indicating the anisotropy of the refractive index of the adjacent region of the liquid crystal, and the maximum refractive index ne parallel to the plane direction of the substrate is the axis and the vertical direction is the minimum refractive index. The case where the rate is no is shown. In this state, the light 1 incident on the liquid crystal layer goes straight (transmits).

【0032】これに電圧を印加すると分子配列MAは図
3に示すように、スプレイ配列のほぼ水平な配列の領域
aから、垂直にチルトした領域bに連続的に分子配列M
Aが変化した領域を形成し、かつ斜め電界eが、方向が
交互になるよう印加されているため分子配列MAもその
チルト方向が交互に平面的に対向する形状をとってい
る。
When a voltage is applied to this, the molecular array MA, as shown in FIG. 3, is continuously arranged from a region a, which is a substantially horizontal array of the splay array, to a vertically tilted region b.
Since the regions where A is changed and the oblique electric fields e are applied so that the directions alternate, the molecular array MA also has a shape in which the tilt directions thereof alternately face each other.

【0033】これにセルに垂直な方向の光を入射した場
合を考える。液晶分子、液晶層には屈折率、誘電率に異
方性があるので、液晶層内で生じる光学現象は光の振動
方向によって異なる。電圧無印加時の液晶分子配列方位
の振動方向の光を入射させた場合、屈折率や屈折率楕円
Lは断面的にみて、図2(b1)、(c1)に示すよう
になる。マクロ的に見れば、図2(b1)のごとく、液
晶の最大屈折率ne (液晶分子がセル平面方向に配列し
ている領域)と最小屈折率no (液晶分子がセル法線方
向に配列している領域)が交互に配列した構成となって
いる。
Consider a case in which light in a direction perpendicular to the cell is incident on this. Since the liquid crystal molecules and the liquid crystal layer have anisotropy in the refractive index and the dielectric constant, the optical phenomenon occurring in the liquid crystal layer varies depending on the vibration direction of light. When light in the vibration direction of the liquid crystal molecule alignment direction when no voltage is applied is incident, the refractive index and the refractive index ellipse L are as shown in FIGS. 2 (b1) and 2 (c1) in a sectional view. Macroscopically, as shown in FIG. 2 (b1), the maximum refractive index ne of liquid crystal (a region where liquid crystal molecules are aligned in the cell plane direction) and the minimum refractive index no (liquid crystal molecules are aligned in the cell normal direction). Area) is alternately arranged.

【0034】このため、回折格子現象(光の回り込み)
が生じて、セルに垂直な方向に入射した光lは、その進
行方向がl0 、le に曲がる。つまりは光の散乱現象を
得る。また、ミクロ的に見れば、図2(c1)のごと
く、液晶分子(およそ図示した分子形状のごとく屈折率
楕円特性を示す)はセル平面方向での配列からセル法線
方向での配列に連続的に変化した構成をなしている。よ
って、屈折レンズが形成され、セルに垂直な法線方向z
に入射した光lは、セル法線方向からずれていき(法線
方向での旋光)、その進行方向が曲がる。つまりは前記
回折格子現象とは別の作用にて、さらなる光の散乱現象
を得る。このようにして、本発明に係わる液晶表示素子
は光の散乱現象を得ることができるが、前記電圧無印加
時の液晶分子配列方位の振動方向と直交した方位の光を
入射させた場合には、僅かな散乱効果しか得られない。
Therefore, the diffraction grating phenomenon (light wraparound)
Then, the light 1 which is incident on the cell in a direction perpendicular to the cell has its traveling direction bent to l0 and le. That is, a light scattering phenomenon is obtained. From a microscopic point of view, as shown in FIG. 2 (c1), the liquid crystal molecules (which exhibit a refractive index elliptic characteristic like the molecular shape shown in the figure) are continuous from the array in the cell plane direction to the array in the cell normal direction. The composition has changed. Therefore, a refraction lens is formed, and the normal direction z perpendicular to the cell is
The light 1 incident on is shifted from the cell normal direction (rotation in the normal direction), and its traveling direction is bent. That is, a further light scattering phenomenon is obtained by an action different from the diffraction grating phenomenon. In this way, the liquid crystal display element according to the present invention can obtain a light scattering phenomenon. However, when light of a direction orthogonal to the vibration direction of the liquid crystal molecule alignment direction when no voltage is applied is incident, However, only a slight scattering effect can be obtained.

【0035】図2(b2)(マクロ的に見た屈折率分
布)、(c2)(ミクロ的に見た屈折率分布)に、この
電圧無印加時の液晶分子配列方位の振動方向と直交した
方位の光を入射させた場合の屈折率や屈折率楕円を、図
2(b1)、(c1)と同様に示す。図から明らかなよ
うにこの方位に対する屈折率は面内に等方n0 である。
よって、前記2つの光散乱現象は生じない。
In FIG. 2 (b 2) (refractive index distribution viewed macroscopically) and (c 2) (refractive index distribution viewed microscopically), the direction of vibration of the liquid crystal molecule alignment direction when no voltage is applied is orthogonal to the vibration direction. The refractive index and the refractive index ellipse when the light of the azimuth is incident are shown in the same manner as in FIGS. 2B1 and 2C1. As is clear from the figure, the refractive index for this orientation is isotropic in the plane n0.
Therefore, the two light scattering phenomena do not occur.

【0036】以上から、本発明の液晶表示素子は、入射
する光の振動方位が電圧無印加時の液晶分子配列方位の
振動方向に偏っていればいるほど、すなわち実質的に平
行であれば全入射光に対する光の散乱度合いを高めるこ
とができる。高いコントラスト比を得るには、前記2つ
の光散乱現象が生じない光成分を20%以下に抑えるこ
とが望ましく、これを実現するには入射させる光の偏光
度合いを80%以上として、その偏光方向(偏光軸また
は振動面)を電圧無印加時の液晶分子配列方位の振動方
向とすればよいこととなる。具体的には入射光側の基板
の配向膜の配向処理方向であり、偏光方向をこの配向処
理方向に対して±10°以内に収めるようにする。
From the above, in the liquid crystal display device of the present invention, the more the vibration azimuth of incident light is biased to the vibration direction of the liquid crystal molecule alignment azimuth when no voltage is applied, that is, substantially parallel. The degree of scattering of light with respect to incident light can be increased. In order to obtain a high contrast ratio, it is desirable to suppress the light components in which the two light scattering phenomena do not occur to 20% or less. To realize this, the polarization degree of incident light is set to 80% or more, and the polarization direction The (polarization axis or vibration plane) should be the vibration direction of the liquid crystal molecule alignment direction when no voltage is applied. Specifically, it is the orientation processing direction of the orientation film of the substrate on the incident light side, and the polarization direction is set within ± 10 ° with respect to this orientation processing direction.

【0037】なお、用いる液晶表示素子は、液晶層の分
子配列が前述のスプレイ配列や、またはベンド配列にす
ると斜め電界の液晶分子応答性がよく電圧制御が容易で
あるが、ユニフォーム配列の場合でも斜め電界の発生を
強めることで制御が可能である。
In the liquid crystal display element used, when the liquid crystal layer has a splay alignment or a bend alignment as described above, the liquid crystal molecule responsiveness to an oblique electric field is good and voltage control is easy, but even in the uniform alignment. It can be controlled by increasing the generation of the oblique electric field.

【0038】[0038]

【実施例】以下本発明の実施例を詳細に説明する。Embodiments of the present invention will be described below in detail.

【0039】(実施例1)図4(a)に示すような構造
からなる上基板11として非画素部全域にクロムからな
るブラックマトリクスを形成し、各画素に屈曲ストライ
プパターンの非導電体部13bと導電体部13aからな
るITOの共通電極13を形成したガラス基板を用い、
下基板12として、導電体部14aと非導電体部14b
を屈曲ストライプパターンとした、TFTからなるスイ
ッチング素子21を一画素とする600×480の画素
電極14を有するガラス基板を用いた。
(Embodiment 1) As the upper substrate 11 having the structure shown in FIG. 4A, a black matrix made of chromium is formed over the entire non-pixel portion, and a non-conductor portion 13b having a bent stripe pattern is formed in each pixel. And a glass substrate on which an ITO common electrode 13 including a conductor portion 13a is formed,
As the lower substrate 12, a conductor portion 14a and a non-conductor portion 14b
A glass substrate having a 600 × 480 pixel electrode 14 having a switching element 21 made of TFT as one pixel and having a bent stripe pattern was used.

【0040】図4(b)は上電極13のパターンの一画
素分を示し、ストライプ延長方向に直交する方向の導電
体部13a幅は5μm、導電体部の山−山間幅は10μ
m、非導電体部13bの幅は10μmである。すなわ
ち、一画素領域内に複数のストライプが存在する。スト
ライプ幅は50μm以下であることが望ましい。矢印F
はラビング方向で液晶分子配向処理方向を示す。
FIG. 4B shows one pixel of the pattern of the upper electrode 13, the width of the conductor portion 13a in the direction orthogonal to the stripe extension direction is 5 μm, and the peak-to-peak width of the conductor portion is 10 μm.
m, and the width of the non-conductor portion 13b is 10 μm. That is, there are a plurality of stripes in one pixel area. The stripe width is preferably 50 μm or less. Arrow F
Indicates the rubbing direction, which is the orientation direction of the liquid crystal molecules.

【0041】図4(c)は下電極14の一画素のパター
ンを示しており、導電体部の幅は5μm、非導電体部の
幅は10μmである。上下基板を対向させた状態で、上
電極の導電体部13aと下電極の非導電体部14bが対
面し、下電極の導電体部14aと上電極の非導電体部1
3bが対面する。図中、矢印Rはラビング方向で上基板
の処理方向Fと同一方向としている。
FIG. 4C shows the pattern of one pixel of the lower electrode 14, where the width of the conductor portion is 5 μm and the width of the non-conductor portion is 10 μm. With the upper and lower substrates facing each other, the conductor portion 13a of the upper electrode and the non-conductor portion 14b of the lower electrode face each other, and the conductor portion 14a of the lower electrode and the non-conductor portion 1 of the upper electrode 1
3b faces each other. In the figure, the arrow R indicates the rubbing direction, which is the same as the processing direction F of the upper substrate.

【0042】こうした基板を用いて、配向膜15、16
(商品名AL−3046、日本合成ゴム社製)(プレチ
ルト角測定値3゜)を形成し、図に示す上記方向F、R
にラビング処理を施したのち、下基板側に基板間隙剤と
して液晶層20の層厚が7.5μmとなるよう微粒子
(商品名ミクロパ−ルSP、積水ファインケミカル製)
(粒径7.5μm)を分散密度100個/mm2 となる
よう乾式散布法にて散布して、上下基板を封止しセルと
した。セルの基板間に誘電異方性が正の液晶(商品名Z
LI−3926、メルクジャパン製)(Δn=0.2030)
に染料(商品名S−344、三井東圧化学社製)を2w
t%添加したものを充填して形成される液晶層20を挟
持して本実施例の液晶表示素子を得た。ここで、液晶層
厚を厚くし、液晶組成物のΔnを大きくしたのは、光散
乱状態における光散乱性を高めるためである。
Using such a substrate, the alignment films 15 and 16 are formed.
(Trade name AL-3046, manufactured by Japan Synthetic Rubber Co., Ltd.) (pretilt angle measurement value 3 °) is formed, and the above-mentioned directions F and R shown in the figure are formed.
After rubbing treatment, fine particles (trade name: Micropar SP, manufactured by Sekisui Fine Chemical Co., Ltd.) on the lower substrate side are used as a substrate spacing agent so that the liquid crystal layer 20 has a layer thickness of 7.5 μm.
(Particle size 7.5 μm) was sprayed by a dry spraying method so that the dispersion density was 100 particles / mm 2, and the upper and lower substrates were sealed to form a cell. Liquid crystal with positive dielectric anisotropy between cell substrates (trade name Z
LI-3926, manufactured by Merck Japan) (Δn = 0.2030)
2w of dye (product name S-344, manufactured by Mitsui Toatsu Chemicals, Inc.)
A liquid crystal display device of this example was obtained by sandwiching a liquid crystal layer 20 formed by filling a liquid crystal containing t% added. Here, the reason why the liquid crystal layer thickness is increased and Δn of the liquid crystal composition is increased is to enhance the light scattering property in the light scattering state.

【0043】このようにして得られた本実施例の液晶表
示素子10の電極に電源22を接続して1/480デュ
ーティでマルチプレックス駆動したところコントラスト
比3:1を得た。
A power source 22 was connected to the electrodes of the liquid crystal display element 10 of the present example obtained in this way, and multiplex driving was performed at 1/480 duty, and a contrast ratio of 3: 1 was obtained.

【0044】(実施例2)図1に示すように電極13と
して波型ストライプの導電体部13aを有する形状を用
い、上下基板11、12間で導電体部13a、14aと
非導電体部13b、14bとが、互いに対向している部
分(図1(b)のFEやREの部分)の間に上下基板と
も導電体部となって重なっているところを設けた電極配
置としている。すなわち上下基板の電極構造配置の断面
形状がFE・RE・EE・FE・EE・RE・EE・F
E・EE・…という順序で配列している。なお、図4と
同符号の部分は同様部分を示す。
(Embodiment 2) As shown in FIG. 1, a shape having a wave-shaped stripe conductor portion 13a is used as the electrode 13, and the conductor portions 13a and 14a and the non-conductor portion 13b are provided between the upper and lower substrates 11 and 12. , 14b are arranged such that a portion where the upper and lower substrates are overlapped with each other as a conductor portion is provided between portions (FE and RE portions in FIG. 1B) facing each other. That is, the cross-sectional shape of the electrode structure arrangement of the upper and lower substrates is FE / RE / EE / FE / EE / RE / EE / F.
They are arranged in the order of E, EE, ... The same reference numerals as those in FIG. 4 denote the same parts.

【0045】この電極構造の他は実施例1同様の構造
(図では配向膜を省略)とした液晶表示セルを用いてセ
ルの入射光側12側に下基板のラビング方向R(図1
(c))と2°の角度で交差する方位に透過軸を有した
偏光板30を配置し、本発明の液晶表示装置を得た。こ
の透過軸は電圧印加時の液晶配列方向に対して直交する
配置となる。
Using a liquid crystal display cell having a structure similar to that of Example 1 (the alignment film is omitted in the figure) except for this electrode structure, the rubbing direction R of the lower substrate is provided on the incident light side 12 side of the cell (see FIG. 1).
A polarizing plate 30 having a transmission axis was arranged in a direction intersecting with (c)) at an angle of 2 ° to obtain a liquid crystal display device of the present invention. This transmission axis is arranged orthogonal to the liquid crystal alignment direction when a voltage is applied.

【0046】この液晶表示装置に下基板のTFT21を
介して電源22から電圧を印加して電気光学特性(透過
率−印加電圧曲線)を測定した。透過率−印加電圧曲線
を求めるために、液晶表示装置にHe-Ne レーザー光を入
射させ、透過率を測定した。光のスポット径は2mmで、
透過したレーザー光は液晶表示装置から距離20cmのと
ころにあるフォトダイオードにより検出した。0Vから
徐々に印加電圧を4Vまで増加、4Vから徐々に0Vま
で減少させていったときの透過率−印加電圧特性は、電
圧を印加していない状態(0V印加)では透過率約45
%であった。また、印加電圧3.1V−3.9Vでは最
小透過率0.2%と、良好な散乱状態が得られた。ま
た、図から明らかなように電気光学特性にヒステリシス
は全くなかった。また、印加電圧3.1Vおよび0Vで
応答速度を測定したところ立上がり6msec、立ち下
がり18msecと極めて速い値を得た。
A voltage was applied from a power source 22 to the liquid crystal display device through the TFT 21 on the lower substrate to measure electro-optical characteristics (transmittance-applied voltage curve). In order to obtain the transmittance-applied voltage curve, He-Ne laser light was made incident on the liquid crystal display device, and the transmittance was measured. The spot diameter of light is 2mm,
The transmitted laser light was detected by a photodiode located at a distance of 20 cm from the liquid crystal display device. The transmittance-applied voltage characteristics when the applied voltage was gradually increased from 0 V to 4 V and gradually decreased from 4 V to 0 V, the transmittance was about 45 when no voltage was applied (0 V applied).
%Met. Further, when the applied voltage was 3.1 V to 3.9 V, the minimum transmittance was 0.2%, and a good scattering state was obtained. Further, as is clear from the figure, there was no hysteresis in the electro-optical characteristics. Further, when the response speed was measured at an applied voltage of 3.1 V and 0 V, an extremely fast value of 6 msec in rising and 18 msec in falling was obtained.

【0047】次に下基板のTFT21を介して電圧を印
加して、前述したウォ−ルDLの維持状態を偏光顕微鏡
による分子配列観察及び透過率測定による光散乱状態測
定によって調べた。本実施例においては印加電圧3.1
Vを印加しつづけた場合、1時間経過しても初期のウォ
−ル配列を維持していることが確認された。
Next, a voltage was applied through the TFT 21 on the lower substrate, and the maintenance state of the wall DL was examined by observing the molecular arrangement by a polarization microscope and measuring the light scattering state by the transmittance measurement. In the present embodiment, the applied voltage 3.1
When V was continuously applied, it was confirmed that the initial wall arrangement was maintained even after 1 hour.

【0048】実施例1同様のマルチプレックス駆動によ
るコントラスト比は5:1であった。
The contrast ratio by the multiplex driving similar to that in Example 1 was 5: 1.

【0049】[0049]

【発明の効果】本発明によれば、マルチプレックス駆動
に適した急峻な電気光学特性をもち、明るくコントラス
ト比の高い階調性に優れた低コストの液晶表示装置が得
られる。
According to the present invention, it is possible to obtain a low-cost liquid crystal display device which has a sharp electro-optical characteristic suitable for multiplex driving, is bright, has a high contrast ratio, and is excellent in gradation.

【0050】本発明による液晶表示装置は、TFT駆動
のほか、MIMなどのスイッチング素子による駆動によ
る大表示容量のディスプレーに適し、また、優れた散乱
特性が得られることから投影型ディスプレーへの応用に
適している。
The liquid crystal display device according to the present invention is suitable not only for TFT driving but also for display of a large display capacity by driving by a switching element such as MIM, and since it has excellent scattering characteristics, it is suitable for projection display applications. Is suitable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すもので、(a)は電極
パターンを示す斜視図、(b)は(a)のX−X´線上
の素子の断面図、(c)は電圧印加状態の液晶分子の様
子とウォールの発生を示す図。
1A and 1B show an embodiment of the present invention, in which FIG. 1A is a perspective view showing an electrode pattern, FIG. 1B is a sectional view of an element taken along line XX ′ in FIG. 1A, and FIG. FIG. 3 is a diagram showing a state of liquid crystal molecules in an applied state and generation of walls.

【図2】本発明の作用を説明するもので、(a)は液晶
分子の屈折率楕円を示す図、(b1)、(b2)はマク
ロ的に見た液晶層の屈折率の概要を説明する図、(c
1)、(c2)はミクロ的に見た液晶層の光に対する屈
折の様子を説明する図。
2A and 2B are diagrams for explaining the operation of the present invention, in which FIG. 2A is a diagram showing a refractive index ellipse of a liquid crystal molecule, and FIGS. 2B1 and 2B2 are schematic views of a refractive index of a liquid crystal layer in a macroscopic view. Figure, (c
1) and (c2) are views for explaining how the liquid crystal layer refracts with respect to light when viewed microscopically.

【図3】本発明に用いる液晶表示素子の電極構成および
電圧印加時の分子配列構成の一例を説明する図。
FIG. 3 is a diagram illustrating an example of an electrode configuration of a liquid crystal display element used in the present invention and a molecular arrangement configuration when a voltage is applied.

【図4】本発明の他の実施例の液晶表示装置で、(a)
は装置の断面図、(b)は上電極の一画素分の電極パタ
ーンの平面図、(c)は下電極の一画素分の電極パター
ンの平面図。
FIG. 4 shows a liquid crystal display device according to another embodiment of the present invention,
Is a cross-sectional view of the device, (b) is a plan view of an electrode pattern for one pixel of the upper electrode, and (c) is a plan view of an electrode pattern for one pixel of the lower electrode.

【図5】(a)、(b)は本発明に用いるスプレイ配
列、ベンド配列を説明する略図。
5A and 5B are schematic diagrams illustrating a splay array and a bend array used in the present invention.

【図6】従来技術のカプセル型高分子分散型液晶表示素
子を示す図。
FIG. 6 is a view showing a conventional polymer dispersion liquid crystal display device of capsule type.

【符号の説明】[Explanation of symbols]

10…液晶表示素子 11…上基板 12…下基板 13、14…電極 15、16…配向膜 21…TFTスイッチング素子 22…電源 30…偏光板 M…液晶分子 C…染料分子 F、R…液晶分子配向処理方向 10 ... Liquid crystal display element 11 ... Upper substrate 12 ... Lower substrate 13, 14 ... Electrode 15, 16 ... Alignment film 21 ... TFT switching element 22 ... Power source 30 ... Polarizing plate M ... Liquid crystal molecule C ... Dye molecule F, R ... Liquid crystal molecule Orientation direction

フロントページの続き (72)発明者 石川 正仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 羽藤 仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内Front page continuation (72) Masahito Ishikawa, 8 Shinsita-cho, Isogo-ku, Yokohama, Kanagawa, Kanagawa, Ltd. In the company's Toshiba Yokohama office In the office

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 相対向する領域を一画素として複数の画
素を形成するための第1の電極を有する第1の基板およ
び第2の電極を有する第2の基板とこれら基板間に挟持
されたネマティック液晶の液晶層とからなる液晶表示素
子と、前記第1の電極および第2の電極間に電圧を印加
する電圧源とを具備して前記液晶表示素子に入射する入
射光を光散乱制御する液晶表示装置において、 前記液晶表示素子は前記第1の電極が一画素内に導電体
領域と非導電体領域を有し、前記第2の電極が一画素内
に導電体領域と非導電体領域を有し、前記第1の電極の
導電体領域が前記第2の電極の非導電体領域の少なくと
も一部に面するように対向しており、前記第2の電極の
導電体領域が第1の電極の非導電体領域少なくともの一
部に面するように対向しており、 前記第1の電極上に所定の方向に液晶分子配向処理され
た第1の配向膜を有し、前記第2の電極上に所定の方向
に液晶分子配向処理された第2の配向膜を有し、前記電
圧源から前記電極に電圧が印加されない状態において、
前記液晶層の液晶分子が前記第1および第2の配向膜の
配向処理に応じた配列をしており、 前記液晶層が染料を添加したゲストホスト型液晶層であ
ることを特徴とする液晶表示装置。
1. A first substrate having a first electrode and a second substrate having a second electrode for forming a plurality of pixels with mutually facing regions as one pixel, and the substrate is sandwiched between these substrates. A liquid crystal display device including a liquid crystal layer of nematic liquid crystal and a voltage source for applying a voltage between the first electrode and the second electrode are provided to control light scattering of incident light entering the liquid crystal display device. In the liquid crystal display device, in the liquid crystal display element, the first electrode has a conductor region and a non-conductor region in one pixel, and the second electrode has a conductor region and a non-conductor region in one pixel. And a conductor region of the first electrode faces at least a part of a non-conductor region of the second electrode, and the conductor region of the second electrode has a first region. Facing so as to face at least part of the non-conductive area of the electrode of A second alignment film having a liquid crystal molecule alignment treatment in a predetermined direction on the first electrode, and a liquid crystal molecule alignment treatment in a predetermined direction on the second electrode. And having no voltage applied to the electrodes from the voltage source,
Liquid crystal display, wherein liquid crystal molecules of the liquid crystal layer are arranged according to the alignment treatment of the first and second alignment films, and the liquid crystal layer is a guest-host type liquid crystal layer to which a dye is added. apparatus.
【請求項2】 第1の電極および第2の電極の導電体領
域がストライプ形状であり、非導電体領域がスリット状
である請求項1記載の液晶表示装置
2. The liquid crystal display device according to claim 1, wherein the conductor regions of the first electrode and the second electrode are stripe-shaped, and the non-conductor regions are slit-shaped.
【請求項3】 第1の配向膜の液晶分子配向処理方向と
第2の配向膜の液晶分子配向処理方向により液晶層の液
晶分子をスプレイ配列してなる請求項1記載の液晶表示
装置
3. The liquid crystal display device according to claim 1, wherein the liquid crystal molecules of the liquid crystal layer are splay arrayed according to the liquid crystal molecule alignment treatment direction of the first alignment film and the liquid crystal molecule alignment treatment direction of the second alignment film.
【請求項4】 第1の配向膜の液晶分子配向処理方向と
第2の配向膜の液晶分子配向処理方向により液晶層の液
晶分子をベンド配列してなる請求項1記載の液晶表示装
4. The liquid crystal display device according to claim 1, wherein the liquid crystal molecules of the liquid crystal layer are bend-aligned according to the liquid crystal molecule alignment treatment direction of the first alignment film and the liquid crystal molecule alignment treatment direction of the second alignment film.
【請求項5】 液晶表示素子の前記第1の基板か前記第
2の基板のいずれか一方に直線偏光光を入射する偏光装
置を配置することを特徴とする請求項1記載の液晶表示
装置。
5. The liquid crystal display device according to claim 1, further comprising a polarizing device for irradiating linearly polarized light on one of the first substrate and the second substrate of the liquid crystal display element.
JP16655794A 1994-07-19 1994-07-19 Liquid crystal display device Pending JPH0829812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16655794A JPH0829812A (en) 1994-07-19 1994-07-19 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16655794A JPH0829812A (en) 1994-07-19 1994-07-19 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH0829812A true JPH0829812A (en) 1996-02-02

Family

ID=15833474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16655794A Pending JPH0829812A (en) 1994-07-19 1994-07-19 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH0829812A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111627A (en) * 1997-11-25 2000-08-29 Hyundai Electronics Industries Co., Ltd. In-plane switching mode liquid crystal display having electrode for preventing static electricity
KR100311210B1 (en) * 1998-12-29 2002-09-17 주식회사 하이닉스반도체 Liquid crystal display
JP2003322832A (en) * 2002-05-08 2003-11-14 Matsushita Electric Ind Co Ltd Liquid crystal panel and method for manufacturing the same
US6859248B2 (en) 2000-07-05 2005-02-22 Nec Lcd Technologies, Ltd. Liquid crystal display device and method of fabricating the same with non-parallel chevron shaped electrodes
US6987551B2 (en) * 1996-11-06 2006-01-17 Nec Corporation In-plane switching liquid crystal display unit having tinting compensation
JP2009025834A (en) * 1998-06-23 2009-02-05 Sharp Corp Liquid crystal display apparatus
US7570332B2 (en) 1998-05-16 2009-08-04 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
US7583345B2 (en) 1999-10-01 2009-09-01 Samsung Electronics Co., Ltd. Liquid crystal display
US8031286B2 (en) 2001-11-22 2011-10-04 Samsung Electronics Co., Ltd. Liquid crystal display having a particular arrangement of pixel electrodes
US8310643B2 (en) 2002-06-28 2012-11-13 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US8922737B2 (en) 2010-04-28 2014-12-30 Sharp Kabushiki Kaisha Display device
US9041891B2 (en) 1997-05-29 2015-05-26 Samsung Display Co., Ltd. Liquid crystal display having wide viewing angle

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6987551B2 (en) * 1996-11-06 2006-01-17 Nec Corporation In-plane switching liquid crystal display unit having tinting compensation
US9041891B2 (en) 1997-05-29 2015-05-26 Samsung Display Co., Ltd. Liquid crystal display having wide viewing angle
US6111627A (en) * 1997-11-25 2000-08-29 Hyundai Electronics Industries Co., Ltd. In-plane switching mode liquid crystal display having electrode for preventing static electricity
US7573554B2 (en) 1998-05-16 2009-08-11 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
US7570332B2 (en) 1998-05-16 2009-08-04 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
JP4629135B2 (en) * 1998-06-23 2011-02-09 シャープ株式会社 Liquid crystal display device
JP2009025834A (en) * 1998-06-23 2009-02-05 Sharp Corp Liquid crystal display apparatus
KR100311210B1 (en) * 1998-12-29 2002-09-17 주식회사 하이닉스반도체 Liquid crystal display
US8174651B2 (en) 1999-10-01 2012-05-08 Samsung Electronics Co., Ltd. Liquid crystal display
US7583345B2 (en) 1999-10-01 2009-09-01 Samsung Electronics Co., Ltd. Liquid crystal display
US8456597B2 (en) 1999-10-01 2013-06-04 Samsung Display Co., Ltd. Liquid crystal display
US8817213B2 (en) 1999-10-01 2014-08-26 Samsung Display Co., Ltd. Liquid crystal display
US7227608B2 (en) 2000-07-05 2007-06-05 Nec Lcd Technologies, Ltd. Liquid crystal display device and method of fabricating the same
US6859248B2 (en) 2000-07-05 2005-02-22 Nec Lcd Technologies, Ltd. Liquid crystal display device and method of fabricating the same with non-parallel chevron shaped electrodes
US8031286B2 (en) 2001-11-22 2011-10-04 Samsung Electronics Co., Ltd. Liquid crystal display having a particular arrangement of pixel electrodes
US8248566B2 (en) 2001-11-22 2012-08-21 Samsung Electronics Co., Ltd. Liquid crystal display
JP2003322832A (en) * 2002-05-08 2003-11-14 Matsushita Electric Ind Co Ltd Liquid crystal panel and method for manufacturing the same
US8743331B2 (en) 2002-06-28 2014-06-03 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US8698990B2 (en) 2002-06-28 2014-04-15 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US8310643B2 (en) 2002-06-28 2012-11-13 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US9477121B2 (en) 2002-06-28 2016-10-25 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US10620488B2 (en) 2002-06-28 2020-04-14 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US10969635B2 (en) 2002-06-28 2021-04-06 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US8922737B2 (en) 2010-04-28 2014-12-30 Sharp Kabushiki Kaisha Display device
US9366902B2 (en) 2010-04-28 2016-06-14 Sharp Kabushiki Kaisha Display device

Similar Documents

Publication Publication Date Title
KR0148502B1 (en) Lcd device
JP3529460B2 (en) Liquid crystal display
JP3529434B2 (en) Liquid crystal display device
JPH09160042A (en) Liquid crystal display element
KR100826372B1 (en) Display element and display device
JPH09160041A (en) Liquid crystal display element
JP4451299B2 (en) Display element and display device
JPH09160061A (en) Liquid crystal display element
JPH0862586A (en) Liquid crystal display element
KR100688265B1 (en) Liquid crystal display
JPH0829812A (en) Liquid crystal display device
JP3432293B2 (en) Liquid crystal display device
WO2000031582A1 (en) Vertically aligned helix-deformed liquid crystal display
JP3144329B2 (en) Liquid crystal display device
JP3130682B2 (en) Liquid crystal display device
JPH08136941A (en) Liquid crystal display element
JPH07199205A (en) Liquid crystal display element
JP3026901B2 (en) LCD panel
JPH0792458A (en) Liquid crystal display element
JPH0876077A (en) Electric field control diffraction grating and liquid crystal element
JPH0756148A (en) Liquid crystal display element
JPH06110068A (en) Liquid crystal display device
JPH07333611A (en) Liquid crystal display device
JPH11160716A (en) Liquid crystal display device
JP3055416B2 (en) Liquid crystal element, liquid crystal display panel and method of manufacturing the same