JP3130682B2 - Liquid crystal display device - Google Patents
Liquid crystal display deviceInfo
- Publication number
- JP3130682B2 JP3130682B2 JP04284220A JP28422092A JP3130682B2 JP 3130682 B2 JP3130682 B2 JP 3130682B2 JP 04284220 A JP04284220 A JP 04284220A JP 28422092 A JP28422092 A JP 28422092A JP 3130682 B2 JP3130682 B2 JP 3130682B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- substrates
- electrode
- pixel
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133753—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133753—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
- G02F1/133757—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations
Landscapes
- Physics & Mathematics (AREA)
- Liquid Crystal (AREA)
- Nonlinear Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は偏光子と液晶セルを有す
る液晶表示素子に関し、とくに一画素を複数方向に配向
分割した液晶表示素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device having a polarizer and a liquid crystal cell, and more particularly to a liquid crystal display device in which one pixel is divided in a plurality of directions.
【0002】[0002]
【従来の技術】薄型軽量、低消費電力という利点により
液晶表示素子は、ワードプロセッサやデスクトップパー
ソナルコンピュータ等のパーソナルOA機器の表示装置
として積極的に用いられている。液晶表示素子(以下L
CDと略称)の殆どは、ネマティック液晶を用いてお
り、表示方式としては、このなかでも複屈折モ−ドと旋
光モードの2つの方式に大別できる。2. Description of the Related Art Liquid crystal display devices have been actively used as display devices for personal OA equipment such as word processors and desktop personal computers due to the advantages of thinness, light weight, and low power consumption. Liquid crystal display element (hereinafter L
Most of the CDs use nematic liquid crystals, and the display methods can be roughly classified into two types, a birefringence mode and an optical rotation mode.
【0003】ねじれネマティック液晶を用いた複屈折モ
ードのLCDは、例えば、90°以上ねじれた分子配列
をもち、(ST方式と呼ばれる)、急峻な電気光学特性
を持つため、各画素ごとにスイッチング素子(薄膜トラ
ンジスタやダイオード)が無くても時分割駆動により容
易に大容量表示が得られる。A birefringent mode LCD using a twisted nematic liquid crystal has, for example, a molecular arrangement twisted by 90 ° or more and has a steep electro-optical characteristic (referred to as an ST mode). Even if there is no thin film transistor or diode, large capacity display can be easily obtained by time division driving.
【0004】一方、旋光モードのLCDは90°ねじれ
た分子配列をもち(TN方式と呼ばれる)、応答速度が
速く(数十ミリ秒)高いコントラスト比を示すことか
ら、時計や電卓、さらにはスイッチング素子を各画素ご
とに設けることにより大表示容量で高コントラストな高
い表示性能を持ったLCD(たとえばTFT−LCD)
を実現することができる。On the other hand, the LCD in the optical rotation mode has a 90 ° twisted molecular arrangement (called a TN mode), and has a fast response speed (tens of milliseconds) and a high contrast ratio. An LCD (for example, a TFT-LCD) having a large display capacity, high contrast, and high display performance by providing an element for each pixel.
Can be realized.
【0005】近年、このTFT−LCDは階調表示を行
い、また、3色のカラーフィルターと組み合わせて他色
表示(例えば8階調なら512色)を実現している。こ
れらの階調表示は印加電圧を変化させることによって行
っている。ここで、TN方式の印加電圧−透過率特性の
一例を図15に示す。図から明らかなように、正面では
曲線は単調な減少曲線となっているが、斜めから観察し
た場合の曲線は極値を持っている。このため、TN方式
においては正面における印加電圧−透過率特性に基づい
て階調表示を行う駆動電圧を決めると、斜めから観察し
た場合には表示の反転や黒つぶれ、白抜けといった現象
が生じる。In recent years, this TFT-LCD performs gradation display, and realizes other color display (for example, 512 gradations for 8 gradations) in combination with three color filters. These gradation displays are performed by changing the applied voltage. Here, an example of the applied voltage-transmittance characteristic of the TN method is shown in FIG. As is clear from the figure, the curve is a monotonically decreasing curve in the front, but the curve when viewed obliquely has an extreme value. Therefore, In its contact to the TN scheme <br/> applied voltage in the front - when determining the driving voltage to perform gradation display based on transmittance characteristics, collapse reversal or black display when viewed from an oblique, white A phenomenon such as omission occurs.
【0006】これらの問題を解決する手段として、一画
素内に液晶分子の起き上がる方向が180°異なる二領
域を設けた液晶表示素子を用いて視角依存性を改善する
方法(Two Domain TN:TDTNと略称、例えば、特
開昭64−88520号公報)や、スプレイ配列を用
い、TDTNと同様の効果を得Domain Dibided TN
(DDTNと略称 Y.Koike,et.al.,1992,SID,p798 )
などが提案されている。これらは、前述した印加電圧−
透過率特性の視角依存性が異なる二領域を一画素とし
て、前述した極値を事実上なくすことを目的としてい
る。As a means for solving these problems, a method of improving the viewing angle dependency by using a liquid crystal display device having two regions in which the rising direction of liquid crystal molecules is different by 180 ° in one pixel (Two Domain TN: TDTN and Abbreviations, for example, JP-A-64-88520), and the same effect as TDTN can be obtained by using a spray arrangement.
(DDTN: Y.Koike, et.al., 1992, SID, p798)
And so on. These are applied voltage-
It is an object of the present invention to virtually eliminate the above-described extreme value by setting two regions having different viewing angle dependences of transmittance characteristics as one pixel.
【0007】しかしながら、TDTNでは、微細な各画
素内で、配向方向を2方向以上設ける必要があり、生産
上実用的であるラビング法では、実現しがたい。また、
DDTNでは、各画素内で、プレチルト角を2種以上設
ける必要があり、生産上実用的に実現する手法として
は、2種以上の配向膜をパターニング法等を用いて設け
ることになり、生産コストを大幅に増大させることにな
る。さらに、有機配向膜を用いる場合は、その成膜に際
し用いる溶剤が他の有機配向膜を溶かす能力を持ってい
るため、事実上2種の有機配向膜は成膜すら困難であ
る。TFT−LCDを作成する場合は、電荷保持率の観
点から、この有機配向膜を用いることが必要不可欠とさ
れており、実用上2種以上の配向膜をパターニング法等
を用いて設けることは困難であるといえる。つまりは、
一画素内で2種以上の配向状態を設けることは、実用上
問題があることになる。However, in the TDTN, it is necessary to provide two or more orientation directions in each fine pixel, and it is difficult to realize the rubbing method which is practical for production. Also,
In the case of DDTN, it is necessary to provide two or more types of pretilt angles in each pixel. As a method for practically realizing the production, two or more types of alignment films are provided by using a patterning method or the like. Will be greatly increased. Furthermore, when an organic alignment film is used, it is difficult to form even two organic alignment films because the solvent used for forming the film has the ability to dissolve the other organic alignment film. When manufacturing a TFT-LCD, it is considered indispensable to use this organic alignment film from the viewpoint of charge retention, and it is practically difficult to provide two or more types of alignment films using a patterning method or the like. You can say that. In other words,
Providing two or more alignment states in one pixel has a practical problem.
【0008】[0008]
【発明が解決しようとする課題】前述したように、従来
のLCDには、階調表示を行う際、印加電圧−透過率特
性に極値が存在することによる表示の反転現象等の視角
依存性が生じていた。また、これらを解決する手段とし
ては、液晶分子の起き上がる方向を一画素内に2方向以
上設けて事実上の極値をなくすことが提案されている
が、従来の技術では、2種以上の配向状態を設けること
により成し得ようとしているので、実用上実現が困難で
あった。As described above, in the conventional LCD, when performing a gray scale display, the viewing angle dependence such as a display reversal phenomenon due to the presence of an extreme value in the applied voltage-transmittance characteristic. Had occurred. In order to solve these problems, it has been proposed that two or more directions in which liquid crystal molecules rise are provided in one pixel to eliminate a virtual extreme value. Since it is intended to be achieved by providing a state, it has been practically difficult to realize.
【0009】本発明はこれら不都合を解決するものであ
り、前述したように液晶分子の起き上がる方向を一画素
内に2方向以上設けて事実上の極値をなくすことを新規
なセル構成等により実現しようとするものである。The present invention solves these inconveniences, and as described above, a liquid crystal molecule is provided in two or more directions in one pixel to eliminate a virtual extreme value by a novel cell configuration or the like. What you want to do.
【0010】また、従来のTN型液晶では、Δn・dを
旋光性の観点から、0.4μm以下にすることは好まし
くなく、このため、コントラスト比の視角依存性も問題
となっていた。In the conventional TN type liquid crystal, it is not preferable to set Δn · d to 0.4 μm or less from the viewpoint of optical rotation. For this reason, the viewing angle dependence of the contrast ratio has also been a problem.
【0011】[0011]
【課題を解決するための手段】本発明は、前述した問題
点を解決する手段として、2枚の電極付き基板およびこ
れら基板間に挟持された誘電異方性が正のネマテイック
液晶の液晶層とからなる液晶セルと、この液晶セルを挟
む一対の偏光子とからなる液晶表示素子において、前記
2枚の基板表面における液晶の液晶分子の基板平面方向
の配列方向が平行とし、かつ液晶の屈折率異方性(Δ
n)と液晶層厚(d)の積(Δn・d)を0.25±
0.05μmとする手段と、一画素を形成する一方もし
くは双方の基板の前記電極に、この電極を区画する非電
極形成部分を設け、前記液晶層に電圧を印加したとき
に、前記液晶分子のチルト方向が横電界によって一画素
内で2方向以上となるようにする手段とからなることを
特徴とする液晶表示素子を提供するものである。According to the present invention, as a means for solving the above-mentioned problems, a substrate having two electrodes and a liquid crystal layer of a nematic liquid crystal having a positive dielectric anisotropy sandwiched between the substrates are provided. And a pair of polarizers sandwiching the liquid crystal cell, the liquid crystal molecules of the liquid crystal molecules on the surfaces of the two substrates are arranged in the direction parallel to the substrate plane, and the refractive index of the liquid crystal is Anisotropy (Δ
n) and the thickness (d) of the liquid crystal layer (Δnd) is 0.25 ±
A means having a thickness of 0.05 μm and a non-electrode forming portion for partitioning this electrode are provided on one or both substrates forming one pixel, and when a voltage is applied to the liquid crystal layer, Means for causing the tilt direction to be two or more directions in one pixel by a lateral electric field.
【0012】また、直交する偏光子間に前述した液晶セ
ル及び光学異方素子を挟持し、かつ、前記液晶セルと光
学異方素子の屈折率異方性と層厚の和がΔn・d=0.
25±0.05μmになるように選択することを特徴と
する。The liquid crystal cell and the optically anisotropic element described above are sandwiched between orthogonal polarizers, and the sum of the refractive index anisotropy and the layer thickness of the liquid crystal cell and the optically anisotropic element is Δn · d = 0.
The selection is made to be 25 ± 0.05 μm.
【0013】また、前述した液晶セルにおいて、前記2
枚の基板表面における液晶分子のチルト方向、及びプレ
チルト角が等しいか、もしくはプレチルト角がともに0
°であることを特徴とする。Further, in the above-mentioned liquid crystal cell,
The tilt direction and the pretilt angle of the liquid crystal molecules on the surface of one substrate are equal or the pretilt angles are both 0.
°.
【0014】[0014]
【作用】本発明は、上記目的を達成するものであり、以
下その達成原理及び手法について図面を用いて説明す
る。The present invention attains the above object, and the principle and method of achieving the object will be described below with reference to the drawings.
【0015】まず、本発明に用いる表示モードの表示原
理について説明する。First, the display principle of the display mode used in the present invention will be described.
【0016】本発明の液晶表示素子は誘電異方性が正の
液晶を用い、電圧無印加時の液晶分子配列が、ほぼ、い
わゆるホモジニアス配列をなす。これら分子の分子長軸
方向と偏光板吸収軸のなす角は45°である。したがっ
て、電圧無印加時の透過率は、次式で表せる。The liquid crystal display element of the present invention uses a liquid crystal having a positive dielectric anisotropy, and the liquid crystal molecule arrangement when no voltage is applied is substantially a so-called homogeneous arrangement. The angle between the long axis direction of these molecules and the absorption axis of the polarizing plate is 45 °. Therefore, the transmittance when no voltage is applied can be expressed by the following equation.
【0017】 T=T0 sin2 (Δn・dπ/λ)・・・・・・・・・・(1) T :透過率 T0 :平行配置の偏光板の透過率 Δn・d:実効的なリタデーション値 λ :入射光の波長 また、電圧を印加した場合、液晶分子は、印加電圧に応
じてセル平面と垂直の方向に傾いていくので、正面から
観察した場合の実効的なリタデーション値は小さくなっ
ていく(Δnが小さくなっていくため)。したがって、
正面から観察した場合の透過率も、(1)式より、電圧
印加に伴って、減少していくことになる。(液晶分子が
ほぼ垂直になると、透過率もほぼ0になる。)よって、
本発明の液晶表示素子は電圧無印加時に液晶組成物のΔ
nに等しいΔnによって、(1)式に基づいた透過光を
得て、電圧印加時は印加電圧に基づいた実効的なΔn、
しいてはリタデーション値に基づいた透過光を得る。T = T 0 sin 2 (Δn · dπ / λ) (1) T: transmittance T 0 : transmittance of polarizing plates arranged in parallel Δn · d: effective a retardation value lambda: wavelength of incident light in addition, when a voltage is applied, the liquid crystal molecules are gradually tilted in the direction of the cell perpendicular to the plane in accordance with the applied voltage, the effective specific retardation of when observed from the front Becomes smaller (because Δn becomes smaller). Therefore,
From the equation (1), the transmittance when observed from the front also decreases as the voltage is applied. (When the liquid crystal molecules are almost vertical, the transmittance becomes almost zero.)
The liquid crystal display device of the present invention has a ΔΔ
The transmitted light based on the expression (1) is obtained by Δn equal to n, and when a voltage is applied, an effective Δn based on the applied voltage,
Then, the transmitted light based on the retardation value is obtained.
【0018】ここで(1)式を、一般的にカラー表示に
要する3原色の波長=440nm,550nm,620
nmについて計算するとΔn・dとTの関係は図11の
ようになる。この図から明らかなように、電圧無印加時
のΔn・dを0.25μmまたはこの値を中心とする±
0.05μmの範囲にすると、各波長間の透過率の差が
小さくなるので、透過光はほぼ白色となる。また、電圧
を印加することによってΔn・dが減少することによっ
て、ほぼどの波長も透過光が減少することになるので、
本発明の液晶表示素子は、電圧無印加時:白色の透過光
から電圧印加時:黒色の透過光の制御がなされるわけで
ある。Here, the equation (1) is calculated based on the wavelengths of the three primary colors generally required for color display = 440 nm, 550 nm, and 620.
When calculated for nm, the relationship between Δn · d and T is as shown in FIG. As is apparent from this figure, Δn · d when no voltage is applied is 0.25 μm or ±
When the thickness is in the range of 0.05 μm, the difference in transmittance between the wavelengths becomes small, so that the transmitted light becomes almost white. Further, since Δn · d is reduced by applying a voltage, transmitted light is reduced at almost any wavelength.
In the liquid crystal display element of the present invention, when no voltage is applied: from white transmitted light, when voltage is applied: black transmitted light is controlled.
【0019】[0019]
【実施例】つぎに、本発明の実施例の液晶表示素子を図
面により説明する。Next, a liquid crystal display device according to an embodiment of the present invention will be described with reference to the drawings.
【0020】(実施例1)図1乃至図10は本発明のの
一実施例を示す。(Embodiment 1) FIGS. 1 to 10 show an embodiment of the present invention.
【0021】図1、図3、および図4において、板状偏
光子すなわち一対の偏光板11、12間に液晶セル13
が挟持される。上側偏光板11の吸収軸11aは、表示
面水平方向hに対して時計回りに45°傾くように配置
され、下側偏光板12の吸収軸12aは同じく水平方向
hに対して反時計回りに45°傾いて配置され、偏光板
相互の吸収軸の交差角は90°になっている。In FIG. 1, FIG. 3 and FIG. 4, a liquid crystal cell 13 is provided between a plate-like polarizer, ie, a pair of polarizers 11 and 12.
Is pinched. The absorption axis 11a of the upper polarizer 11 is disposed so as to be inclined 45 ° clockwise with respect to the display surface horizontal direction h, and the absorption axis 12a of the lower polarizer 12 is also counterclockwise with respect to the horizontal direction h. The polarizers are arranged at an angle of 45 °, and the crossing angle between the absorption axes of the polarizers is 90 °.
【0022】液晶セル13は透明共通電極14を有する
ガラスからなる上側基板15と、各画素ごとに区画され
た640×400個のマトリクス配列の電極16を有す
る下側基板17とを、各電極を4μmのセル厚で対向さ
せてこれら間に正の誘電異方性をもつネマティック液晶
(ZLI−1165、(株)メルクジャパン製)を挟持
させて、液晶層18とする。The liquid crystal cell 13 includes an upper substrate 15 made of glass having a transparent common electrode 14 and a lower substrate 17 having 640 × 400 matrix-arranged electrodes 16 defined for each pixel. A nematic liquid crystal having a positive dielectric anisotropy (ZLI-1165, manufactured by Merck Japan Ltd.) is sandwiched between them so as to form a liquid crystal layer 18.
【0023】この液晶の屈折率異方性Δnは0.062
5であり、したがってΔn×dは0.25μmである。The liquid crystal has a refractive index anisotropy Δn of 0.062.
5 , so Δn × d is 0.25 μm.
【0024】各基板の電極面にはポリイミドからなる配
向膜27、28(図4)が形成されており、上下基板い
ずれもが、水平方向hに対して90°傾いた表示面垂直
方向vにラビング処理15a、17aされている。この
ため、液晶の配向はツイストせずv方向に一様に向いて
いる。このラビング処理は一基板につき一度行えば良
い。この場合、図6に示すように、液晶分子18aは上
側基板15上においてプレチルト角α、下側基板17上
において上側基板とは反対方向に傾くプレチレルト角α
を有するから、液晶分子の一端maは相互に密接し、他
端mbは相互に疎となる分子配列(スプレイ配列)にな
る。ここで基板面に平行になる層厚方向の分子位置は中
央のC位置にある層厚をdとすると、d/2の位置にあ
る。Alignment films 27 and 28 (FIG. 4) made of polyimide are formed on the electrode surface of each substrate, and both upper and lower substrates are tilted 90 ° with respect to the horizontal direction h in the vertical direction v in the display surface. Rubbing treatments 15a and 17a are performed. For this reason, the orientation of the liquid crystal is not twisted and is uniformly oriented in the v direction. This rubbing treatment may be performed once for each substrate. In this case, as shown in FIG. 6, the liquid crystal molecules 18a have a pretilt angle α on the upper substrate 15 and a pretilt angle α on the lower substrate 17 which is inclined in a direction opposite to the upper substrate.
, One end ma of the liquid crystal molecules is in close contact with each other, and the other end mb is in a mutually sparse molecular arrangement (spray arrangement). Here, the molecular position in the layer thickness direction parallel to the substrate surface is at d / 2, where d is the layer thickness at the center C position.
【0025】図2は下側基板17上のマトリクス配列さ
れた電極16中の一画素電極16aを示している。電極
16aは長方形に形成され、中央部に電極を領域Aと領
域Bに2分するように区画するスリットすなわち非電極
形成部21が形成され、このスリットの両端部分22、
23で電極がつながる構成を有している。本実施例で電
極寸法は、110μm×3300μm、スリットは90
μm×25μmである。FIG. 2 shows one pixel electrode 16a in the electrodes 16 arranged in a matrix on the lower substrate 17. The electrode 16a is formed in a rectangular shape, and a slit, ie, a non-electrode forming portion 21, is formed at the center to divide the electrode into a region A and a region B, that is, a non-electrode forming portion 21.
23 has a configuration in which electrodes are connected. In this embodiment, the electrode size is 110 μm × 3300 μm, and the slit is 90 μm.
μm × 25 μm.
【0026】領域Aの一隅にはa−Siでなる薄膜トラ
ンジスタのスイッチ素子24が配置されて、電極に接続
され、また電極周囲に配せんされた信号線電極25およ
びゲート線電極26に接続されている。この画素電極が
表示画面の一画素を構成し、これら画素電極の多数がマ
トリクス配列して液晶表示制御を行わせる。In one corner of the region A, a switching element 24 of a thin film transistor made of a-Si is arranged, connected to the electrodes, and connected to the signal line electrode 25 and the gate line electrode 26 arranged around the electrodes. I have. The pixel electrodes constitute one pixel of the display screen, and a large number of these pixel electrodes are arranged in a matrix to control liquid crystal display.
【0027】図4に駆動電源30から各電極に駆動電圧
を印加したときに発生する電界の様子を示す。この場
合、画素電極16aの非電極形成部21の存在により、
上側基板15上の対向電極14との間の画素電極領域内
に横電界成分をもつ電界Ea、Ebが発生する。この電
界により液晶分子のチルト配向方向が2分される。FIG. 4 shows an electric field generated when a drive voltage is applied from the drive power supply 30 to each electrode. In this case, due to the presence of the non-electrode forming portion 21 of the pixel electrode 16a,
Electric fields Ea and Eb having a horizontal electric field component are generated in the pixel electrode region between the upper electrode 15 and the counter electrode 14. This electric field divides the tilt alignment direction of the liquid crystal molecules into two.
【0028】すなわち、図5は同電界による画素電極1
6aの領域Aと領域B上の液晶分子の配列状態を示すも
ので、領域Aでは液晶分子18Aの層厚方向のほとんど
は下側基板17のプレチルトの方向に沿って並び、領域
Bでは液晶分子18Bの層厚方向のほとんどが上側基板
15のプレチルト角の方向に沿って並ぶ。いいかえる
と、図6のスプレイ配列の液晶分子が両基板と平行にな
る位置Cが、領域Aでは上側基板15側に、領域Bでは
下側基板17側に位置することになる。このため、両領
域の液晶分子の全体としての傾き方向が異なるので、視
角依存性も異なってくる。That is, FIG. 5 shows the pixel electrode 1 by the same electric field.
6A shows the alignment state of the liquid crystal molecules on the regions A and B of FIG. 6A. In the region A, most of the liquid crystal molecules 18A in the layer thickness direction are arranged along the pretilt direction of the lower substrate 17; Almost all of the layers 18B in the thickness direction are arranged along the direction of the pretilt angle of the upper substrate 15. In other words, the position C where the liquid crystal molecules in the splay arrangement in FIG. 6 are parallel to both substrates is located on the upper substrate 15 side in the region A and on the lower substrate 17 side in the region B. For this reason, since the tilt directions of the liquid crystal molecules as a whole in the two regions are different, the viewing angle dependence is also different.
【0029】ここで、視角依存性について考える。これ
ら、本実施例の液晶表示素子を斜めから観察した場合、
分子の傾く方向は2方向ある。このため、印加電圧−透
過率曲線は極値を持たず、前述した反転現象を緩和する
ことができる。Here, the viewing angle dependency will be considered. When observing the liquid crystal display device of this embodiment obliquely,
There are two directions in which molecules tilt. Therefore, the applied voltage-transmittance curve does not have an extreme value, and the above-described inversion phenomenon can be reduced.
【0030】例えば図5中、L方向からの観察を考えた
場合、領域Aの見かけ上のリタデーション変化は図7の
曲線Aのようになり、印加電圧−透過率曲線は図8の曲
線Aのようになる。また、領域Bでは、見かけ上のリタ
デーション変化は図7の曲線Bのようになり、印加電圧
−透過率曲線は図8の曲線Bのようになる。したがっ
て、全体としてのリタデーション変化は図7の曲線(A
+B)のようになり、印加電圧−透過率曲線は図8の曲
線(A+B)のようになる。これにより、本発明の液晶
表示素子は斜めから観察した場合においても、2領域の
印加電圧−透過率特性の視角依存性が緩和されるため、
印加電圧−透過率特性に極値を持たず、反転現象が実用
上ない液晶表示素子となるわけである。For example, when the observation from the L direction in FIG. 5 is considered, the apparent change in the retardation of the area A is as shown by the curve A in FIG. 7, and the applied voltage-transmittance curve is as shown by the curve A in FIG. Become like Further, in the region B, an apparent change in retardation is as shown by a curve B in FIG. 7, and an applied voltage-transmittance curve is as shown by a curve B in FIG. Therefore, the change in retardation as a whole is represented by the curve (A) in FIG.
+ B), and the applied voltage-transmittance curve is as shown by the curve (A + B) in FIG. Thereby, the viewing angle dependence of the applied voltage-transmittance characteristics in the two regions is reduced even when the liquid crystal display element of the present invention is observed obliquely.
The liquid crystal display element does not have an extreme value in the applied voltage-transmittance characteristic and has no practical inversion phenomenon.
【0031】また、これらの効果を得るために従来技術
のように2領域間で配向処理を異ならせる必要がないた
め、前述した素子の高精細化に伴う問題等を生じない。Further, in order to obtain these effects, it is not necessary to make the alignment process different between the two regions unlike the prior art, so that the above-mentioned problem associated with the high definition of the element does not occur.
【0032】また、液晶セルのΔn・dは、原理的には
最小で0.25±0.05μmとすることができるの
で、この場合従来のTN型液晶表示素子よりも小さい設
定値となり、いわゆるコントラストの視角依存性を軽減
できる。Further, Δn · d of the liquid crystal cell can be set to a minimum of 0.25 ± 0.05 μm in principle. In this case, the set value is smaller than that of the conventional TN-type liquid crystal display element, and so-called The viewing angle dependency of the contrast can be reduced.
【0033】本実施例において、L方向の視角を振って
印加電圧−透過率特性を測定したところ、図9に示すよ
うに、どの視角方向においても、曲線に極値が生じなか
った。本発明の液晶表示素子を用いて、階調表示を行っ
たところ、どの視角においても反転現象の生じない良好
な白黒の表示が得られた。また、等コントラスト特性を
測定したところ、図10に示すように、極めて広い視角
依存性が得られた。In this embodiment, when the applied voltage-transmittance characteristic was measured while changing the viewing angle in the L direction, no extreme value was generated in the curve in any viewing angle direction as shown in FIG. When gradation display was performed using the liquid crystal display device of the present invention, good black-and-white display with no reversal phenomenon at any viewing angle was obtained. Further, when the isocontrast characteristics were measured, as shown in FIG. 10, an extremely wide viewing angle dependency was obtained.
【0034】(実施例2)実施例1と同様の電極構造に
て、ラビングした配向膜の変わりに配向膜として、微細
な2μmピッチのライン&スペースを有する感光性配向
膜プロビミド(チバガイギー(株))製を用い、液晶分
子が基板平面に対して実施例1と同様の方向に水平配列
し、尚かつプレチルト角が上下基板とも〜0°となるよ
うにした。(この配向処理方法は第17回液晶討論会講
演予稿集p26、2F108(1991)に詳しくのべ
られており、プレチルト角が0°となることを特徴とし
ている。)実施例1同様、視角を振って印加電圧−透過
率特性を測定したところ、実施例1と同等の効果がえら
れた。(Example 2) In the same electrode structure as in Example 1, instead of the rubbed alignment film, a photosensitive alignment film Provimid having fine 2 μm pitch lines and spaces (Ciba Geigy Co., Ltd.) was used as an alignment film. ), The liquid crystal molecules were horizontally aligned with respect to the substrate plane in the same direction as in Example 1, and the pretilt angles of both the upper and lower substrates were 〜0 °. (This alignment treatment method is described in detail in p. 26 of the 17th Symposium on Liquid Crystal Symposium, 2F108 (1991), and is characterized in that the pretilt angle is 0 °.) Similar to the first embodiment, the viewing angle is reduced. When the applied voltage-transmittance characteristic was measured by shaking, the same effect as in Example 1 was obtained.
【0035】(比較例1)実施例1のセル厚を6.0μ
mとする以外実施例1同様にセルを作成したところ、電
圧無印加時の透過光が黄色く着色し、白黒表示が実現で
きなかった。このことは、セルのリタデーションを0.
25±0.05μmにしないと電圧無印加時の透過光が
着色してしまうことを意味する。Comparative Example 1 The cell thickness of Example 1 was set to 6.0 μm.
When a cell was prepared in the same manner as in Example 1 except that the value was set to m, the transmitted light when no voltage was applied was colored yellow, and a monochrome display could not be realized. This means that the retardation of the cell is 0.
If the thickness is not set to 25 ± 0.05 μm, it means that transmitted light when no voltage is applied is colored.
【0036】(比較例2)実施例1において、片側基板
のラビング方向のみ逆とし、それ以外はすべて同じ条件
にてセルを作成した。このセルに電圧を印加したが液晶
分子配列状態は2種類にならなかった。このことから、
本発明のように横電界を用いて液晶分子の傾く方向を2
方向以上とする場合は、基板表面における配向処理が2
枚の基板表面における液晶分子のチルト方向、及びプレ
チルト角が等しい、もしくはプレチルト角がともに0°
であるとすることが必要であることを意味する。つま
り、上下で逆極性のプレチルトもしくは、ともにプレチ
ルト0°とすることによって、液晶分子が傾くことので
きる方向が2方向となるようにする必要があるわけであ
る。(Comparative Example 2) In Example 1, a cell was prepared under the same conditions except that only the rubbing direction of one substrate was reversed. A voltage was applied to this cell, but the liquid crystal molecule alignment state did not become two types. From this,
As in the present invention, the direction in which the liquid crystal molecules are tilted is set to 2 using a lateral electric field.
If the orientation is greater than or equal to the
The tilt direction and the pretilt angle of the liquid crystal molecules on the surfaces of the substrates are equal, or both the pretilt angles are 0 °.
It means that it is necessary to be That is, it is necessary to make the directions in which the liquid crystal molecules can be tilted in two directions by setting the pretilt of the opposite polarity to the upper and lower sides or the pretilt to be both 0 °.
【0037】(実施例3)実施例1において、液晶組成
物のΔnを0.1、セル厚を3.5μmとする以外実施
例1同様の条件にて、セルを作成し、このセルのラビン
グ方向と直交する方位に光軸が来るようにポリカーボネ
イトからなるR=100μmのリタデーションフィルム
を1枚重ねて、実施例1同様に直交偏光子間に挟み、本
発明の液晶表示素子を得た。Example 3 A cell was prepared under the same conditions as in Example 1 except that Δn of the liquid crystal composition was set to 0.1 and the cell thickness was set to 3.5 μm, and the cell was rubbed. One R = 100 μm retardation film made of polycarbonate was stacked so that the optical axis came in the direction orthogonal to the direction, and sandwiched between orthogonal polarizers as in Example 1, to obtain a liquid crystal display device of the present invention.
【0038】実施例1同様に印加電圧−透過率特性を測
定したところ正面において実施例1より、低電圧にて実
施例1同様のコントラスト比をえることができた。When the applied voltage-transmittance characteristics were measured in the same manner as in Example 1, a contrast ratio similar to that of Example 1 could be obtained at a lower voltage than in Example 1 in the front.
【0039】ここで電圧印加時の分子配列変化について
説明する。図12はセル厚み方向に対する液晶分子のチ
ルト角を示したものである。この図から明らかなように
基板表面の液晶分子のチルト角は印加電圧に対しあまり
変化しない。このことは実効的なリタデーション値が0
になりにくいことを意味する。したがって、透過率も0
になりにくい。このことから、リタデーション値を0に
するには、電圧印加時に残存するリタデーション値(図
12においてチルト角が0にならない液晶分子により、
生ずるリタデーション)を相殺するリタデーションを持
つ光学異方素子をあらかじめ加えて、0.25±0.0
5μmとなるようにすればよい。本実施例におけるR=
0.35μmの液晶セルでは、その分子配列方向と直交
する方位に光軸を持つ0.1μmのリタデーション値を
もつリタデーションフィルムを加えればよい。こうする
ことにより、本発明の液晶表示素子は、ほぼ所望の駆動
電圧にて、高いコントラスト比を得ることができる。Here, a change in molecular arrangement upon application of a voltage will be described. FIG. 12 shows the tilt angle of the liquid crystal molecules with respect to the cell thickness direction. As is clear from this figure, the tilt angle of the liquid crystal molecules on the substrate surface does not change much with the applied voltage. This means that the effective retardation value is 0
It means that it is difficult to become. Therefore, the transmittance is also 0.
It is hard to become. From this, in order to set the retardation value to 0, the remaining retardation value when a voltage is applied (the liquid crystal molecules whose tilt angle does not become 0 in FIG.
Optical anisotropic element having a retardation that cancels out the resulting retardation, 0.25 ± 0.0
What is necessary is just to make it 5 micrometers. In this embodiment, R =
For a 0.35 μm liquid crystal cell, a retardation film having a 0.1 μm retardation value having an optical axis in the direction orthogonal to the molecular alignment direction may be added. By doing so, the liquid crystal display device of the present invention can obtain a high contrast ratio at almost a desired drive voltage.
【0040】また、前述した光学異方素子のリタデーシ
ョン値を変えることによって、印加電圧−透過率特性の
急峻性を自由に制御することができるので、スイッチン
グ素子を用いない単純な電極構造を用いても、大容量表
示が可能となる。Further, by changing the retardation value of the above-described optically anisotropic element, the steepness of the applied voltage-transmittance characteristic can be freely controlled, so that a simple electrode structure without using a switching element can be used. Also, a large-capacity display is possible.
【0041】(実施例4)図13において吸収軸31
a、32aを直交して配置した一対の偏光板31、32
で単純マトリクス構造の液晶セル33を挟持している。
さらに上側偏光板31と液晶セル33間に光学異方性素
子としてリタデーションフィルム39を配置する。液晶
セル33は行方向に延在する多数のストライプ状電極3
4を有する上側基板35と、列方向に延在する多数のス
トライプ状電極36を有する下側基板37を各基板の電
極を対向させて、一定間隔(液晶セル厚)を置いて配置
される。この間隙に液晶層(図示しない)が挟まれる。(Embodiment 4) In FIG.
a, 32a are arranged at right angles to a pair of polarizing plates 31, 32
Sandwiches a liquid crystal cell 33 having a simple matrix structure.
Further, a retardation film 39 is disposed between the upper polarizing plate 31 and the liquid crystal cell 33 as an optically anisotropic element. The liquid crystal cell 33 has a large number of striped electrodes 3 extending in the row direction.
4 and a lower substrate 37 having a large number of stripe-shaped electrodes 36 extending in the column direction are arranged at regular intervals (liquid crystal cell thickness) with the electrodes of each substrate facing each other. A liquid crystal layer (not shown) is sandwiched between the gaps.
【0042】図14に示すように、上側基板35の電極
34と下側基板37の基板36とが交差する領域40を
1画素としてこれら電極の電圧印加により液晶表示を行
う。本実施例では図において下側基板の電極36の画素
領域40を形成している中央部に領域を2分するように
スリット状の非電極形成部41が形成される。この非電
極形成部41により、両電極34、36に駆動電圧を印
加したときに液晶層内に横電界成分(基板面方向)をも
つ電界を発生させる。図4と同様に非電極形成部を境に
して領域内の横電界は反対方向になるので同じく図5の
ように同一電極領域内に2種類の液晶分子配向が形成さ
れる。このため配向のラビング処理は各基板ともに一度
でよく、製造工程が簡略化される。As shown in FIG. 14, an area 40 where the electrode 34 of the upper substrate 35 and the substrate 36 of the lower substrate 37 intersect is defined as one pixel, and liquid crystal display is performed by applying voltages to these electrodes. In this embodiment, a slit-shaped non-electrode forming portion 41 is formed in the center of the lower substrate where the pixel region 40 of the electrode 36 is formed so as to divide the region into two. The non-electrode forming portion 41 generates an electric field having a horizontal electric field component (in the direction of the substrate surface) in the liquid crystal layer when a driving voltage is applied to both the electrodes 34 and 36. The transverse electric field of FIG. 4 and to <br/> the boundary of the non-electrode formation portion in the same manner in the region of two liquid crystal molecular orientation is formed in the same electrode area as well 5 since in the opposite direction . Therefore, the rubbing treatment of the orientation may be performed once for each substrate, and the manufacturing process is simplified.
【0043】本実施例では、液晶セル33の液晶のΔn
を0.2、セル厚を5.0μmとし、R=750μmの
リタデーションフィルムを用いた。実施例3と同様にし
て印加電圧−透過率特性を測定したところ実施例3以上
に曲線は急峻となった。この液晶表示素子を用い、1/
400デューティのマルチプレックス駆動を行ったとこ
ろ表示面正面にて200:1のコントラスト比を得た。
また、コントラスト比の視角依存性も対称的な方位性を
示した。In this embodiment, Δn of the liquid crystal of the liquid crystal cell 33
Was 0.2, the cell thickness was 5.0 μm, and a retardation film with R = 750 μm was used. When the applied voltage-transmittance characteristic was measured in the same manner as in Example 3, the curve became steeper than in Example 3. Using this liquid crystal display element, 1 /
When a multiplex drive of 400 duty was performed, a contrast ratio of 200: 1 was obtained in front of the display surface.
The viewing angle dependence of the contrast ratio also showed a symmetric azimuth.
【0044】[0044]
【発明の効果】本発明のよれば、同一基板上で同一であ
る配向処理にて、液晶分子の傾く方向を2方向以上とす
ることができ、容易に安価で安定して、反転現象等の生
じない極めて広視角の液晶表示素子を実現できる。According to the present invention, in the same alignment treatment on the same substrate, the tilt direction of the liquid crystal molecules can be set to two or more directions. An extremely wide viewing angle liquid crystal display element that does not occur can be realized.
【0045】また、実施例では、説明を省略したが、本
発明はMIMからなるスイッチング素子を用いても同様
の効果を得ることは言うまでもなく、また、3原色のカ
ラーフィルターを用いての表示のカラー化をなしても同
様の同様の効果を得ることは言うまでもない。Although the description has been omitted in the embodiments, it goes without saying that the present invention can obtain the same effect even if a switching element made of MIM is used. it goes without saying that even if Na colorization obtain similar same effect.
【0046】また、斜めから観察した場合に発生する実
効的なリタデーションを補償しうる光学異方素子を加味
すればさらなる広視角化が望めることも言うまでもな
い。In addition, the actual condition that occurs when obliquely observed
Needless to say, a wider viewing angle can be expected by adding an optically anisotropic element that can compensate for effective retardation.
【図1】本発明の一実施例を示す分解斜視図。FIG. 1 is an exploded perspective view showing an embodiment of the present invention.
【図2】図1の要部を説明する斜視図。FIG. 2 is a perspective view illustrating a main part of FIG. 1;
【図3】図1の実施例の構成を示す略図。FIG. 3 is a schematic diagram showing a configuration of the embodiment of FIG. 1;
【図4】本発明の一実施例における電極に電圧を印加し
た場合の電界のかかり方の一例を説明する断面図。FIG. 4 is a cross-sectional view illustrating an example of how an electric field is applied when a voltage is applied to an electrode in one embodiment of the present invention.
【図5】図4における電圧を印加した状態の液晶分子配
列を説明する断面図。5 is a cross-sectional view illustrating a liquid crystal molecule arrangement in a state where a voltage is applied in FIG.
【図6】液晶分子のスプレイ配列を説明する略図。FIG. 6 is a schematic diagram illustrating a splay arrangement of liquid crystal molecules.
【図7】本発明の一実施例の印加電圧に対するリタデー
ション値の変化を説明する図。FIG. 7 is a diagram illustrating a change in a retardation value with respect to an applied voltage according to one embodiment of the present invention.
【図8】本発明の一実施例の印加電圧−透過率特性の一
例を示す図。FIG. 8 is a diagram showing an example of an applied voltage-transmittance characteristic according to one embodiment of the present invention.
【図9】本発明の一実施例の印加電圧−透過率特性の測
定結果の一例を示す図。FIG. 9 is a diagram showing an example of a measurement result of an applied voltage-transmittance characteristic of one example of the present invention.
【図10】本発明の一実施例の等コントラスト曲線の測
定結果の一例を示す図。FIG. 10 is a view showing an example of a measurement result of an equal contrast curve according to one embodiment of the present invention.
【図11】本発明の液晶表示素子のリタデーション値に
対する透過光強度の関係を計算した図。FIG. 11 is a diagram showing a calculation result of a relationship between transmitted light intensity and retardation value of the liquid crystal display element of the present invention.
【図12】本発明の他の実施例の液晶層厚方向に対する
液晶分子チルト角の関係を説明する図。FIG. 12 is a view for explaining the relationship between the liquid crystal molecule tilt angle and the liquid crystal layer thickness direction in another embodiment of the present invention.
【図13】本発明の他の実施例の構成を説明する分解斜
視図。FIG. 13 is an exploded perspective view illustrating the configuration of another embodiment of the present invention.
【図14】図13の要部を拡大して示す部分的斜視図FIG. 14 is an enlarged partial perspective view showing a main part of FIG. 13;
【図15】従来のTN型液晶表示素子の印加電圧−透過
率特性の一例を示す曲線図。FIG. 15 is a curve diagram showing an example of an applied voltage-transmittance characteristic of a conventional TN type liquid crystal display element.
11、12…偏光板、 13…液晶セル、 14、16…電極 15…上側基板、 17…下側基板、 18…液晶層 21…非電極形成部 A、B…一画素内の領域 Ea、Eb…横電界成分を有する電界 11, 12: polarizing plate, 13: liquid crystal cell, 14, 16: electrode 15: upper substrate, 17: lower substrate, 18: liquid crystal layer 21: non-electrode formation part A, B: area within one pixel Ea, Eb ... Electric field with horizontal electric field component
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 富章 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 横浜事業所内 (72)発明者 羽藤 仁 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 横浜事業所内 (56)参考文献 特開 平3−98018(JP,A) 特開 平3−261914(JP,A) 特開 昭61−121087(JP,A) 特開 平6−43461(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1337 G02F 1/1343 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomiaki Yamamoto 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Toshiba Corporation Yokohama Office (72) Inventor Hitoshi Hato 8 Shin-Sugita-cho, Isogo-ku, Yokohama-shi, Kanagawa (56) References JP-A-3-98018 (JP, A) JP-A-3-261914 (JP, A) JP-A-61-121087 (JP, A) JP-A-6-43461 (JP) , A) (58) Field surveyed (Int. Cl. 7 , DB name) G02F 1/1337 G02F 1/1343
Claims (3)
に挟持された誘電異方性が正のネマテイック液晶の液晶
層とからなる液晶セルと、この液晶セルを挟む一対の偏
光子とからなる液晶表示素子において、 前記2枚の基板表面における液晶の液晶分子の基板平面
方向の配列方向が平行とし、かつ液晶の屈折率異方性
(Δn)と液晶層厚(d)の積(Δn・d)を0.25
±0.05μmとする手段と、 一画素を形成する一方もしくは双方の基板の前記電極
に、この電極を区画する非電極形成部分を設け、前記液
晶層に電圧を印加したときに、前記液晶分子のチルト方
向が横電界によって一画素内で2方向以上となるように
する手段とからなることを特徴とする液晶表示素子。1. A liquid crystal cell comprising two substrates with electrodes, a liquid crystal layer of nematic liquid crystal having a positive dielectric anisotropy sandwiched between these substrates, and a pair of polarizers sandwiching the liquid crystal cell. In the liquid crystal display device, the arrangement direction of the liquid crystal molecules of the liquid crystal on the surfaces of the two substrates is parallel to each other, and the product of the refractive index anisotropy (Δn) of the liquid crystal and the thickness (d) of the liquid crystal layer (Δn · d) is 0.25
A means for setting ± 0.05 μm, and a non-electrode forming portion for partitioning this electrode is provided on one or both substrates forming one pixel, and when a voltage is applied to the liquid crystal layer, the liquid crystal molecules are Means for making the tilt directions of two or more directions within one pixel by a lateral electric field.
に挟持された誘電異方性が正のネマテイック液晶の液晶
層とからなる液晶セルと、この液晶セルを挟む一対の偏
光子とからなる液晶表示素子において、 一画素を形成する一方もしくは双方の基板の前記電極
に、この電極を区画する非電極形成部分を設け、前記液
晶層に電圧を印加したときに、前記液晶分子のチルト方
向が横電界によって一画素内で2方向以上となるように
する手段を有する液晶セルと、 少なくとも前記一方の偏光子と前記液晶セルとの間に配
置されリタデーション値がRの光学異方素子と、 前記液晶セルの液晶層の屈折率異方性Δnと層厚dの積
Δn・dと、前記光学異方性素子のRの総和が0.25
±0.05μmになるようにする手段とを具備すること
を特徴とする液晶表示素子。2. A liquid crystal cell comprising two substrates with electrodes, a liquid crystal layer of a nematic liquid crystal having a positive dielectric anisotropy sandwiched between these substrates, and a pair of polarizers sandwiching the liquid crystal cell. In the liquid crystal display element, a non-electrode forming portion for partitioning the electrode is provided on the electrode of one or both substrates forming one pixel, and when a voltage is applied to the liquid crystal layer, the tilt direction of the liquid crystal molecules is changed. A liquid crystal cell having a means for causing two or more directions in one pixel by a lateral electric field; an optically anisotropic element having a retardation value of R disposed between at least one of the polarizers and the liquid crystal cell; The sum of the product Δn · d of the refractive index anisotropy Δn of the liquid crystal layer of the liquid crystal cell and the layer thickness d and the R of the optically anisotropic element is 0.25.
A liquid crystal display element comprising: means for adjusting the thickness to ± 0.05 μm.
ト方向およびプレチルト角が等しいかもしくはプレチル
ト角がともに0°であることを特徴とする請求項1また
は請求項2記載の液晶表示素子。3. The liquid crystal display element according to claim 1, wherein the tilt directions and the pretilt angles of the liquid crystal molecules on the surfaces of the two substrates are equal or both the pretilt angles are 0 °.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04284220A JP3130682B2 (en) | 1992-10-22 | 1992-10-22 | Liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04284220A JP3130682B2 (en) | 1992-10-22 | 1992-10-22 | Liquid crystal display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06130394A JPH06130394A (en) | 1994-05-13 |
JP3130682B2 true JP3130682B2 (en) | 2001-01-31 |
Family
ID=17675730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04284220A Expired - Lifetime JP3130682B2 (en) | 1992-10-22 | 1992-10-22 | Liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3130682B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS628483A (en) * | 1985-07-03 | 1987-01-16 | 柏原 武明 | Fast combustor of ignition plug for internal combustion engine |
US6157428A (en) * | 1997-05-07 | 2000-12-05 | Sanyo Electric Co., Ltd. | Liquid crystal display |
KR100476038B1 (en) * | 1996-11-28 | 2005-06-20 | 비오이 하이디스 테크놀로지 주식회사 | LCD and its manufacturing method |
JPH11109391A (en) | 1997-10-01 | 1999-04-23 | Sanyo Electric Co Ltd | Liquid crystal display device |
JP3398025B2 (en) | 1997-10-01 | 2003-04-21 | 三洋電機株式会社 | Liquid crystal display |
JP3212946B2 (en) | 1998-06-02 | 2001-09-25 | 日本電気株式会社 | Active matrix type liquid crystal display |
US6221444B1 (en) * | 1998-06-10 | 2001-04-24 | Canon Kabushiki Kaisha | Liquid crystal device |
JP4041610B2 (en) | 1998-12-24 | 2008-01-30 | シャープ株式会社 | Liquid crystal display |
KR20040105934A (en) * | 2003-06-10 | 2004-12-17 | 삼성전자주식회사 | Liquid crystal display having multi domain and panel for the same |
JP2008203780A (en) * | 2007-02-22 | 2008-09-04 | Infovision Optoelectronics Holdings Ltd | Liquid crystal panel and liquid crystal display device |
-
1992
- 1992-10-22 JP JP04284220A patent/JP3130682B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06130394A (en) | 1994-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100248210B1 (en) | Liquid crystal display device | |
NL1008688C2 (en) | Method for producing two domains in a layer, and liquid crystal display device and method for manufacturing the same. | |
JPH09160042A (en) | Liquid crystal display element | |
JP3529434B2 (en) | Liquid crystal display device | |
KR100233187B1 (en) | Liquid crystal display with an improved optical compensation layer | |
JPH09160061A (en) | Liquid crystal display element | |
JPH09160041A (en) | Liquid crystal display element | |
JPH0980424A (en) | Active matrix type liquid crystal display device | |
JP2002090764A (en) | Liquid crystal display device | |
JP4041610B2 (en) | Liquid crystal display | |
JP2828073B2 (en) | Active matrix liquid crystal display | |
JP3130682B2 (en) | Liquid crystal display device | |
JP3432293B2 (en) | Liquid crystal display device | |
JPH07333617A (en) | Liquid crystal display element | |
JP2856942B2 (en) | Liquid crystal display element and optically anisotropic element | |
JPH0876077A (en) | Electric field control diffraction grating and liquid crystal element | |
JP3207374B2 (en) | Liquid crystal display device | |
JP3130686B2 (en) | Liquid crystal display device | |
JPH07199205A (en) | Liquid crystal display element | |
JP3231910B2 (en) | Liquid crystal display device | |
JP3628094B2 (en) | Liquid crystal display element and optical anisotropic element | |
KR100735272B1 (en) | Optically compensated bend mode lcd | |
JP3643439B2 (en) | Liquid crystal display element | |
JP4266209B2 (en) | Liquid crystal display element and optical anisotropic element | |
JP3896135B2 (en) | Liquid crystal display element and optical anisotropic element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071117 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081117 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081117 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091117 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091117 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 12 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |