JPH07333617A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH07333617A
JPH07333617A JP6121630A JP12163094A JPH07333617A JP H07333617 A JPH07333617 A JP H07333617A JP 6121630 A JP6121630 A JP 6121630A JP 12163094 A JP12163094 A JP 12163094A JP H07333617 A JPH07333617 A JP H07333617A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
retardation
alignment
crystal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6121630A
Other languages
Japanese (ja)
Other versions
JP3292591B2 (en
Inventor
Yuzo Hisatake
雄三 久武
Makiko Satou
摩希子 佐藤
Masahito Ishikawa
正仁 石川
Takeshi Oyama
毅 大山
Hitoshi Hado
仁 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12163094A priority Critical patent/JP3292591B2/en
Publication of JPH07333617A publication Critical patent/JPH07333617A/en
Application granted granted Critical
Publication of JP3292591B2 publication Critical patent/JP3292591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To improve coloration and dependency upon visual angles by arranging a phase difference plate having an optical axis between at least one polarizing plates and a liquid crystal cell. CONSTITUTION:The liquid crystal cell 14 and the phase difference plate 13 having the optical axis in the plane direction of the element are arranged between two sheets of the polarizing plates 11 and 12. The liquid crystal cell 14 forms plural pixels and the respective pixels respectively consist of two regions (a), (b). The orientation directions of both cell substrates of the respective regions are parallel and intersect orthogonally with the orientation direction of the other region. The rubbing direction of the one region is arranged in parallel with the optical axis 13a of the phase difference plate. The retardation value of the phase difference plate is set at 255 to 295mum and the refractive index anisotropy And of the liquid crystals of the liquid crystal cell is set at 255 to 295mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶表示素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device.

【0002】[0002]

【従来の技術】ワードプロセッサやパーソナルコンピュ
ータなどのOA機器の表示装置として用いられている液
晶表示素子は偏光制御型が一般的であり、その液晶表示
素子の殆どは、ネマティック液晶を用いており、表示方
式として複屈折モードと旋光モードの2つの方式に大別
される。
2. Description of the Related Art A liquid crystal display element used as a display device of an office automation equipment such as a word processor or a personal computer is generally of a polarization control type, and most of the liquid crystal display elements use nematic liquid crystal. The methods are roughly classified into two methods of birefringence mode and optical rotation mode.

【0003】複屈折モードではネマティック液晶を捩じ
れ状態で用いる構造と、捩じれのない状態で用いる構造
があり、捩じれネマティック液晶を用いたものでは、例
えば、90°以上捩じれた分子配列を持ち(ST方式と
呼ばれる)、急峻な電気光学特性を持つため、各画素ご
とにスイッチング素子(薄膜トランジスタやダイオー
ド)が無くても時分割駆動により容易に大容量表示が得
られる。
In the birefringence mode, there are a structure in which the nematic liquid crystal is used in a twisted state and a structure in which the nematic liquid crystal is not twisted. In the one using the twisted nematic liquid crystal, for example, it has a molecular arrangement twisted by 90 ° or more (ST method). Since it has a steep electro-optical characteristic, a large capacity display can be easily obtained by time-division driving without a switching element (thin film transistor or diode) for each pixel.

【0004】また、捩じれのないネマティック液晶を用
いた構造では、例えば、ホモジニアス型や垂直配向型の
ECB方式があげられ、前記ST方式同様、急峻な電気
光学特性を持つため、各画素ごとにスイッチング素子が
無くても時分割駆動により容易に大容量表示が得られ
る。
Further, in a structure using a nematic liquid crystal having no twist, for example, a homogeneous type or a vertical alignment type ECB system can be mentioned. Since it has steep electro-optical characteristics like the ST system, switching is performed for each pixel. Large-capacity display can be easily obtained by time-division driving even without elements.

【0005】一方、旋光モードの素子は90°捩じれた
分子配列を持ち(TN方式と呼ばれる)応答速度が速く
(数十ミリ秒)高いコントラスト比を示すことから、時
計や電卓、さらにはスイッチング素子を各画素ごとに設
けることにより大表示容量で高コントラストな高い表示
性能を持った液晶表示素子(例えばTFT−LCD)を
実現する事ができる。近年、このTFT−LCDは階調
表示を行っているが、斜めから観察した場合には表示の
反転や黒つぶれ、白抜けといった現象が生じる。この現
象は、一つの画素内の液晶分子が方位性を持って一様に
変化するためであり、こうした問題を解決する手段とし
て、一画素の液晶分子配列を、液晶分子のチルトする方
向が180°逆となるように2種の分子配列とすること
が、種々提案されている。
On the other hand, since the optical rotation mode element has a molecular arrangement twisted by 90 ° (called TN method) and has a high response speed (tens of milliseconds) and a high contrast ratio, a clock, a calculator, and a switching element. It is possible to realize a liquid crystal display element (for example, a TFT-LCD) having a large display capacity and a high contrast and a high display performance by providing the above for each pixel. In recent years, this TFT-LCD performs gradation display, but when observed obliquely, phenomena such as display inversion, blackout, and white spots occur. This phenomenon is because the liquid crystal molecules in one pixel change azimuthally and uniformly, and as a means for solving such a problem, the liquid crystal molecule array of one pixel has a tilt direction of 180 degrees. ° Various proposals have been made that two kinds of molecular arrangements are reversed.

【0006】これら各種の液晶表示素子の電気光学特性
には波長依存性がある。これは、前記各種の液晶表示素
子が偏光板を用いた偏光制御型の液晶表示素子であるた
めである。これら偏光板を用いた偏光制御型の液晶表示
素子の透過率は、いずれも次の式で表すことができる。
The electro-optical characteristics of these various liquid crystal display elements have wavelength dependence. This is because the various liquid crystal display elements are polarization control type liquid crystal display elements using a polarizing plate. The transmittance of a polarization control type liquid crystal display device using these polarizing plates can be expressed by the following formula.

【0007】 Tr〜f(Δnd/λ)………………(0) Tr:液晶表示素子の透過率 f( ):関数 Δnd:液晶組成物の屈折率異方性Δnと液晶層厚dを
乗じた値 λ:入射光の波長 (0)式から明らかなように偏光制御型の液晶表示素子
の透過率は、入射光の波長によって異なる。このため、
これらの偏光制御型の液晶表示素子はΔndが0の状態
(例えば前記垂直配向型のECB方式の場合、電圧無印
加の状態)以外では、透過率に波長依存性を持ってしま
い、色付きが生じ問題となっていた。
Tr to f (Δnd / λ) (0) Tr: transmittance of liquid crystal display element f (): function Δnd: refractive index anisotropy Δn of liquid crystal composition and liquid crystal layer thickness d Λ: Wavelength of incident light As is apparent from the expression (0), the transmittance of the polarization control type liquid crystal display element varies depending on the wavelength of the incident light. For this reason,
These polarization control type liquid crystal display elements have wavelength dependence in the transmittance except when Δnd is 0 (for example, in the case of the vertical alignment type ECB method, in which no voltage is applied), coloration occurs. It was a problem.

【0008】[0008]

【発明が解決しようとする課題】前述したように、前記
従来の液晶表示素子には、その電気光学特性に波長依存
性があり、表示の色付きが生じる問題があった。
As described above, the conventional liquid crystal display device has a problem that the electro-optical characteristics thereof have wavelength dependence and the display is colored.

【0009】発明の目的は色付き現象を改善し、さらに
色付きの視角依存性を改善することができる液晶表示素
子を得るものである。
An object of the present invention is to obtain a liquid crystal display device capable of improving the coloring phenomenon and further improving the viewing angle dependence of the coloring.

【0010】[0010]

【課題を解決するための手段】本発明は、複数の画素を
形成する電極と前記電極上に形成され配向処理された配
向膜とを有する2枚の基板と前記基板間に挟持された正
の誘電異方性を示すネマティック液晶からなる液晶層と
を具備してなる液晶表示セルと、前記液晶セルを挟んで
配置された2枚の偏光板とからなる液晶表示素子におい
て、前記少なくとも一方の偏光板と前記液晶セルの間
に、光軸を有するようにリタデーション値が255〜2
95nmである位相差板を液晶表示素子の平面方向に光
軸を有するように配置し、前記液晶セルは一画素内にラ
ビングもしくは同等の効果を得る僅かなチルトを有する
水平配向処理の方向が2つあり、前記2つの方向は互い
にほぼ直交しており、一方の配向処理の方向は前記位相
差板の光軸と平行であり、上下基板のそれぞれ対向する
前記2つの水平配向処理の方向は互いに0°もしくは1
80°の角をなしており、前記液晶層の液晶は前記配向
処理にて液晶分子配列が捩じれを有しない構造となる液
晶であり、前記液晶層の屈折率異方性Δnと液晶層厚d
を乗じた値Δndが0.255μm乃至0.295μm
であることを特徴とする液晶表示素子を得るものであ
る。
According to the present invention, a positive electrode sandwiched between two substrates having electrodes forming a plurality of pixels and an alignment film formed on the electrodes and having been subjected to an alignment treatment. A liquid crystal display element comprising a liquid crystal display cell including a liquid crystal layer made of a nematic liquid crystal exhibiting dielectric anisotropy, and two polarizing plates arranged with the liquid crystal cell interposed therebetween, wherein at least one of the polarized light is Between the plate and the liquid crystal cell, the retardation value is 255 to 2 so as to have an optical axis.
A retardation plate having a wavelength of 95 nm is arranged so as to have an optical axis in the plane direction of the liquid crystal display element, and the liquid crystal cell has a direction of horizontal alignment treatment with rubbing in one pixel or a slight tilt for obtaining an equivalent effect. The two directions are substantially orthogonal to each other, one direction of the alignment process is parallel to the optical axis of the retardation plate, and the two directions of the two horizontal alignment processes of the upper and lower substrates facing each other are mutually parallel. 0 ° or 1
The liquid crystal of the liquid crystal layer has an angle of 80 ° and has a structure in which the alignment of the liquid crystal molecules is not twisted by the alignment treatment, and the refractive index anisotropy Δn of the liquid crystal layer and the liquid crystal layer thickness d
The value Δnd multiplied by 0.255 μm to 0.295 μm
To obtain a liquid crystal display element.

【0011】さらに、上記において液晶層に負の誘電異
方性を示すネマティック液晶を用い、一画素内にラビン
グもしくは同等の効果を得る僅かなチルトを有する垂直
配向処理の方向を2つ形成した液晶表示素子を得るもの
である。
Further, in the above, a nematic liquid crystal exhibiting a negative dielectric anisotropy is used for the liquid crystal layer, and two vertical alignment processing directions having rubbing or slight tilt to obtain the same effect are formed in one pixel. A display element is obtained.

【0012】さらに上記位相差板のリタデーション値が
255nm乃至295nmとした液晶表示素子を得るもので
ある。
Further, a liquid crystal display device in which the retardation value of the retardation plate is set to 255 nm to 295 nm is obtained.

【0013】さらに、複数の画素を形成する反射電極を
有する下基板と透明電極を有する上基板とこれら基板間
に挟持された負の誘電異方性を示すネマティック液晶の
液晶層とからなる液晶セルと、前記上基板側に設けられ
た1枚の偏光板とを具備してなる液晶表示素子におい
て、前記液晶セルと前記偏光板との間に、リタデーショ
ン値が110nm乃至138nmである位相差板を設け、
前記液晶セルは一画素内にラビングもしくは同等の効果
をえる僅かなチルトを有する垂直配向処理の方向が2つ
あり、前記2つの垂直配向処理の方向は互いに直交して
おり、一方の垂直配向処理の方向は前記位相差板の光軸
と平行であり、上下基板のそれぞれ対向する前記垂直配
向処理の方向は互いに0°もしくは180°の角をなし
ており、前記液晶層の液晶は前記配向処理にて液晶分子
配列が捩じれを有しない構造となる液晶であり、前記液
晶層の屈折率異方性Δnと液晶層厚dを乗じた値Δnd
が0.110μm以上であることを特徴とする液晶表示
素子を得るものである。
Further, a liquid crystal cell comprising a lower substrate having a reflective electrode forming a plurality of pixels, an upper substrate having a transparent electrode, and a nematic liquid crystal layer having a negative dielectric anisotropy sandwiched between these substrates. And a single polarizing plate provided on the upper substrate side, a retardation plate having a retardation value of 110 nm to 138 nm is provided between the liquid crystal cell and the polarizing plate. Provided,
The liquid crystal cell has two directions of vertical alignment processing having a slight tilt to obtain the same effect as rubbing in one pixel, and the two vertical alignment processing directions are orthogonal to each other, and one vertical alignment processing is performed. Is parallel to the optical axis of the retardation plate, the vertical alignment treatment directions of the upper and lower substrates facing each other form an angle of 0 ° or 180 ° with each other, and the liquid crystal of the liquid crystal layer is aligned with the alignment treatment. The liquid crystal has a structure in which the liquid crystal molecular arrangement has no twist, and the value Δnd is obtained by multiplying the liquid crystal layer thickness d by the refractive index anisotropy Δn of the liquid crystal layer.
Is 0.110 μm or more, to obtain a liquid crystal display element.

【0014】さらに、位相差板が液晶層からなる液晶表
示素子を得るものである。
Further, a liquid crystal display device in which the retardation plate is composed of a liquid crystal layer is obtained.

【0015】さらに、フィルム状の光学異方素子であ
り、素子平面方向の屈折率(nx ,ny )が等しく、素
子法線方向の屈折率(nz )が素子平面方向の屈折率と
異なる(nz ≠nx =ny )素子法線方向に光軸を有す
る光学異方素子を液晶セルと偏光板間に挿入したことを
特徴とする液晶表示素子を得るものである。
Further, it is a film-like optical anisotropic element, the refractive index (nx, ny) in the element plane direction is equal, and the refractive index (nz) in the element normal direction is different from the refractive index in the element plane direction (nz ≠ nx = ny) An optical anisotropic element having an optical axis in the element normal direction is inserted between a liquid crystal cell and a polarizing plate to obtain a liquid crystal display element.

【0016】[0016]

【作用】本発明は、複屈折効果の液晶表示素子であり、
この複屈折モード表示の原理はリタデーション値を制御
する液晶セルを一対の偏光板で挟んだ構成において、リ
タデーション値に応じて両偏光板の光路上の光を透過ま
たは遮断する。本発明は固定されたリタデーション値を
持つ位相差板と、リタデーション値に相当するΔndを
制御可能な液晶セルの組合わせを一対の偏光板で挟む構
成とし、かつ表示像の一つ一つの画素を得るための液晶
セルの各画素を特性の異なる2隣接領域(ア)(イ)で
構成し、分割画素領域型とするものである。上記位相差
板のリタデーション値を基準にして、分割画素領域のリ
タデーション値を位相差板のそれとほぼ同一値の相互に
正負のリタデーション値をもつように設定し、画素電極
への電圧印加制御により、各値を0と所定のリタデーシ
ョン値間で選択できるようにする。
The present invention is a liquid crystal display device having a birefringence effect,
The principle of this birefringence mode display is that a liquid crystal cell for controlling the retardation value is sandwiched between a pair of polarizing plates, and light on the optical paths of both polarizing plates is transmitted or blocked depending on the retardation value. The present invention is configured such that a combination of a retardation plate having a fixed retardation value and a liquid crystal cell capable of controlling Δnd corresponding to the retardation value is sandwiched by a pair of polarizing plates, and each pixel of a display image is Each pixel of the liquid crystal cell for obtaining is composed of two adjacent regions (a) and (a) having different characteristics to be a divided pixel region type. Based on the retardation value of the retardation plate, the retardation value of the divided pixel region is set to have mutually positive and negative retardation values of almost the same value as that of the retardation plate, by voltage application control to the pixel electrode, Allow each value to be selected between 0 and a given retardation value.

【0017】例えば位相差板のリタデーション値を27
5nmとすると、電圧無印加時に位相差板から見た一画素
の領域(ア)のΔnd値は−275nm、領域(イ)のΔ
nd値を275nmとする。すなわち領域(ア)の光路
上の位相差板を含めた総加リタデーション値は0であ
り、領域(イ)の光路上の位相差板を含めた総加リタデ
ーション値は550nmである。電圧を印加した状態では
領域(ア)(イ)ともに0となり、両領域とも光路上の
総加リタデーション値は275nmとなる。
For example, the retardation value of the retardation plate is 27
If it is set to 5 nm, the Δnd value of one pixel area (a) viewed from the retardation plate when no voltage is applied is −275 nm, and the Δnd value of the area (b) is
The nd value is 275 nm. That is, the total retardation value including the retardation plate on the optical path of the region (a) is 0, and the total retardation value including the retardation plate on the optical path of the region (a) is 550 nm. When a voltage is applied, both regions (a) and (b) are 0, and the total additive retardation value on the optical path is 275 nm in both regions.

【0018】旋光性のない複屈折層を光路上、直交した
2枚の偏光板間に挟んだ場合の透過率Tr1は次式で表さ
れる。
The transmittance Tr1 when a birefringent layer having no optical rotatory power is sandwiched between two orthogonal polarizing plates on the optical path is expressed by the following equation.

【0019】Tr1=T0 ・sin2 (2θ)・sin2
(Rπ/λ)…………(1) T0 :偏光板の透過率 θ:偏光板吸収軸とリタデーションの生じる方位とのな
す角 R:リタデーション値(Δndに相当) λ:入射光波長 逆に、平行配置した2枚の偏光板間に挟んだ場合の透過
率Tr2は、次式で表される。
Tr1 = T0.sin 2 (2θ) .sin 2
(Rπ / λ) (1) T0: Transmittance of the polarizing plate θ: Angle between the polarizing plate absorption axis and the azimuth where retardation occurs R: Retardation value (corresponding to Δnd) λ: Incident light wavelength The transmittance Tr2 when sandwiched between two polarizing plates arranged in parallel is expressed by the following equation.

【0020】Tr2=1−Tr1………………………………
…………………………(2) これら(1)式、(2)式からリタデーション値に対す
る透過率Tr1、Tr2を可視光領域の青、緑、赤色光の3
波長λ=440,550,620nmについて計算する
と図10、11のようになる。
Tr2 = 1-Tr1 ……………………………………
………………………… (2) From these formulas (1) and (2), the transmittances Tr1 and Tr2 with respect to the retardation value can be calculated for blue, green and red light in the visible light region.
Calculations for wavelengths λ = 440, 550 and 620 nm are as shown in FIGS.

【0021】図10は直交した2枚の偏光板間に挟んだ
場合の透過率Tr1であり、図11は平行配置した2枚の
偏光板間に挟んだ場合の透過率Tr2を示している。両図
から明らかであるが光波長によって透過率が変化し、図
10の透過率1(100%)、図11の透過率0(0
%、遮蔽率)のリタデーション値はその値が0に近い領
域においても各波長でλ440 で215nm、λ550 で27
5nm、λ620 で310nmとばらつきがある。
FIG. 10 shows the transmittance Tr1 when sandwiched between two orthogonal polarizing plates, and FIG. 11 shows the transmittance Tr2 when sandwiched between two polarizing plates arranged in parallel. As is clear from both figures, the transmittance changes depending on the light wavelength, and the transmittance 1 (100%) in FIG. 10 and the transmittance 0 (0
%, The shielding rate) is 215 nm at λ440 and 27 at λ550 at each wavelength even in the region where the value is close to 0.
There is a variation of 310 nm at 5 nm and λ620.

【0022】上述の領域(ア)(イ)ともに、電圧を印
加状態で全リタデーション値を275nmとすると、図1
0から、波長λ440 の青色光の透過率は約85%、波長
λ550 の緑色光の透過率は100%、波長λ620 の赤色
光の透過率は約97%になる。一方、図11の関係では
そのまま遮蔽率となる。
When the total retardation value is 275 nm in the voltage applied state in both the above-mentioned regions (a) and (b), FIG.
From 0, the transmittance of blue light of wavelength λ440 is about 85%, the transmittance of green light of wavelength λ550 is 100%, and the transmittance of red light of wavelength λ620 is about 97%. On the other hand, in the relationship of FIG. 11, it becomes the shielding rate as it is.

【0023】すなわち、このようなリタデーション値の
光波長依存性は色付き現象となるのであるが、本発明は
位相差板と液晶セルの領域(ア)、(イ)の特性が相補
的に作用し、色付き現象を解消するもので、以下に説明
する。
That is, although the optical wavelength dependence of the retardation value causes a coloring phenomenon, in the present invention, the characteristics of the retardation plate and the liquid crystal cell regions (a) and (b) act complementarily. , Which eliminates the coloring phenomenon, will be described below.

【0024】本発明の代表的構成I 、II、III 、IV、V
およびVIを図1乃至図6に示す。いずれの図の構成も液
晶セルの一画素の構成を示すものである。(構成I ,I
I)、(構成III ,IV)、(構成V ,VI)はそれぞれグ
ループとしてまとめられるが、これらグループの異なる
3種の表示素子は構成が異なっても原理的に同一作用を
するものであり、いずれも図7に示すような光制御から
なりたっている。
Representative constitutions I, II, III, IV, V of the present invention
And VI are shown in FIGS. The configurations of all the figures show the configuration of one pixel of the liquid crystal cell. (Configuration I, I
I), (Structures III and IV), and (Structures V and VI) are grouped together, but the three types of display elements in different groups have the same principle even if the structures are different, Each of them consists of light control as shown in FIG.

【0025】すなわち、図7において、吸収軸をクロス
ニコル配置した上偏光板11と下偏光板12の間に、位
相差板13と液晶セル14が両偏光板で挟持されて配置
され液晶表示素子10を構成する。図では液晶セル14
は一画素のみを示しており、この画素は領域(ア)と領
域(イ)の2分割領域からなる。上下偏光板11,12
の吸収軸11a,12aは表示素子10の表示面の横方
向(または水平方向)をx軸、縦方向(または垂直方
向)をy軸、表示面法線をz軸とすると、y軸に対して
それぞれ左回りに45°、右回りに45°傾き、相互に
直交するクロスニコルの関係に配置されている。液晶セ
ル14の領域(ア)のラビング処理による平面配向方向
は矢印14aで示すようにy軸に平行とし、領域(イ)
のラビング処理による平面配向方向は矢印14bで示す
ようにx軸に平行とし、配向方向14a,14bが相互
に直交するように形成される。位相差板13はx軸に平
行な方向13aに最大屈折率を有し(光軸)、x軸およ
びz軸方向に同じ大きさの屈折率を有する屈折率異方性
を有する。この最大屈折率の方向は位相差板作製におい
てポリエチレンの素材などを延伸して得られるので、延
伸軸ともいう。
That is, in FIG. 7, the retardation plate 13 and the liquid crystal cell 14 are arranged between the upper and lower polarizing plates 11 and 12 whose absorption axes are arranged in the crossed Nicols state, and the liquid crystal cell is sandwiched between both polarizing plates. Make up 10. In the figure, the liquid crystal cell 14
Indicates only one pixel, and this pixel is composed of two divided areas of area (A) and area (A). Upper and lower polarization plates 11, 12
The absorption axes 11a and 12a of the display element 10 are the x-axis in the horizontal direction (or horizontal direction) of the display surface of the display element 10, the y-axis in the vertical direction (or the vertical direction), and the z-axis is the display surface normal. And are inclined 45 ° counterclockwise and 45 ° clockwise, respectively, and are arranged in a crossed Nicol relationship orthogonal to each other. The plane alignment direction of the region (a) of the liquid crystal cell 14 by the rubbing treatment is parallel to the y-axis as indicated by the arrow 14a, and the region (a)
The plane alignment direction by the rubbing process is parallel to the x-axis as shown by the arrow 14b, and the alignment directions 14a and 14b are formed so as to be orthogonal to each other. The retardation plate 13 has a maximum refractive index in the direction 13a parallel to the x-axis (optical axis), and has a refractive index anisotropy having the same refractive index in the x-axis and z-axis directions. Since the direction of the maximum refractive index is obtained by stretching a polyethylene material or the like in the production of the retardation plate, it is also referred to as a stretching axis.

【0026】この配置により、領域(ア)のラビング配
向方向14aと位相差板の光軸13aは直交し、領域
(イ)のラビング配向方向14bと位相差板の光軸13
aは平行となり、各々、偏光板の吸収軸11a,12a
に対して45°の角度配置となる。
With this arrangement, the rubbing orientation direction 14a in the region (a) and the optical axis 13a of the retardation plate are orthogonal to each other, and the rubbing orientation direction 14b in the region (a) and the optical axis 13 of the retardation plate 13a.
a is parallel, and the absorption axes 11a and 12a of the polarizing plates are
The angle arrangement is 45 ° with respect to.

【0027】図において領域(ア)および領域(イ)を
貫通する光路La,Lbを想定し、入射光が下偏光板1
2側から入射し、液晶セル14、位相差板13を経て上
偏光板11から出射する透過型表示素子であるとする。
In the drawing, optical paths La and Lb penetrating the area (a) and the area (a) are assumed, and the incident light is the lower polarizing plate 1.
It is assumed that the transmission type display element is one that enters from the second side and that exits from the upper polarizing plate 11 through the liquid crystal cell 14 and the retardation plate 13.

【0028】下偏光板12に入射した光は偏光されx軸
から左回り45°回転した直線偏光L12となる。この光
L12が液晶セル14の領域(ア)を通過すると、右回り
に90°回転した直線光L14a となり、さらに位相差板
13において逆に左回りに90°回転しL13a となり、
上偏光板11の吸収軸11aに平行になるため、この光
路La上の光は上偏光板11で吸収遮断される。
The light incident on the lower polarizing plate 12 is polarized and becomes a linearly polarized light L12 rotated 45 ° counterclockwise from the x-axis. When this light L12 passes through the area (a) of the liquid crystal cell 14, it becomes a straight light L14a rotated 90 ° clockwise, and further, in the phase difference plate 13, it rotates 90 ° counterclockwise to L13a.
Since it is parallel to the absorption axis 11a of the upper polarizing plate 11, the light on this optical path La is absorbed and blocked by the upper polarizing plate 11.

【0029】一方、液晶セル14の領域(イ)に入射し
た直線光L12は領域(イ)により左回りに90°回転
し、直線偏光L14b となる。さらに位相差板13におい
て左回りに90°回転しL13b となり、上偏光板11の
吸収軸11aに平行になるため、この光路Lb上の光は
上偏光板11で吸収遮断される。
On the other hand, the linear light L12 incident on the area (a) of the liquid crystal cell 14 is rotated 90 ° counterclockwise by the area (a) and becomes the linearly polarized light L14b. Further, the phase difference plate 13 is rotated counterclockwise by 90 ° to become L13b and becomes parallel to the absorption axis 11a of the upper polarizing plate 11, so that the light on this optical path Lb is absorbed and blocked by the upper polarizing plate 11.

【0030】この状態において、液晶セル14の電圧制
御により領域(ア),(イ)から配向機能を取り除く
と、光路La,Lb上の直線偏光光L12は位相差板13
によってのみ左回りに90°回転するので、上偏光板1
1の吸収軸11aに対して直交する直線偏光光になるた
め、両光路上の光は上偏光板を透過する。
In this state, if the alignment function is removed from the regions (a) and (a) by controlling the voltage of the liquid crystal cell 14, the linearly polarized light L12 on the optical paths La and Lb will be the phase difference plate 13.
Since it rotates 90 ° counterclockwise only by,
Since the light becomes linearly polarized light that is orthogonal to the first absorption axis 11a, the light on both optical paths passes through the upper polarizing plate.

【0031】図7の光制御系を具体化したのが、構成I
、II、III 、IV、V およびVIであり、図1乃至図6に
より説明する。なお、各図同符号のものは同様部分を示
す。
The configuration of the light control system of FIG.
, II, III, IV, V and VI, which will be described with reference to FIGS. The same reference numerals in each figure indicate similar parts.

【0032】図1は(構成I )を説明するもので、素子
断面(ii)を中心に、各部の配列および偏光に対する各
軸の関係(i )を左側に、液晶セルの液晶分子の配列状
態と位相差板の光軸の関係(iii )を右側に示してい
る。
FIG. 1 illustrates (Structure I). The arrangement state of liquid crystal molecules of a liquid crystal cell is shown on the left side, with the element cross section (ii) as the center, the arrangement of each part and the relationship (i) of each axis with respect to polarization. The relationship (iii) between and the optical axis of the retardation plate is shown on the right side.

【0033】液晶セル14はガラスでできた上基板20
と下基板21を有する。上基板20は一方の表面にIT
Oの上画素電極22を形成し、その電極表面上の各一画
素を区画する領域を領域(ア)と領域(イ)に2分し
て、配向膜23aと配向膜23bとが隣接して形成され
る。
The liquid crystal cell 14 is an upper substrate 20 made of glass.
And a lower substrate 21. The upper substrate 20 has IT on one surface
The upper pixel electrode 22 of O is formed, and the region that divides each pixel on the electrode surface is divided into a region (a) and a region (a), and the alignment film 23a and the alignment film 23b are adjacent to each other. It is formed.

【0034】下基板21の上基板に対向する表面にIT
Oの下画素電極24を形成し、領域(ア)と領域(イ)
の部分に配向膜25a,25bを形成する。配向膜にラ
ビング処理を施し、基板の配向膜間の間隙に正の誘電異
方性を示すネマテッイク液晶の液晶層26を充填し液晶
セル14とする。領域(ア)のおける配向膜23a,2
5aのラビング方向をy軸に平行でかつ相互に180°
逆の方向A1 ,A2 とし、また領域(イ)における配向
膜23b,25bのラビング方向をx軸に平行かつ相互
に180°逆の方向B1 ,B2 とする。この配向処理に
より、(ii)(iii )に示すように、液晶の分子26
a,26bは僅かにプレチルト角α0 を有するホモジニ
アス配列となり、両領域の分子配列は捩じれなしで直交
する。
IT is formed on the surface of the lower substrate 21 facing the upper substrate.
The lower pixel electrode 24 of O is formed, and the area (A) and the area (A) are formed.
Alignment films 25a and 25b are formed on the portions. The alignment film is subjected to a rubbing treatment, and a liquid crystal layer 26 of nematic liquid crystal exhibiting a positive dielectric anisotropy is filled in a gap between the alignment films of the substrate to form a liquid crystal cell 14. Alignment films 23a, 2 in the region (a)
The rubbing direction of 5a is parallel to the y-axis and 180 ° to each other.
The directions A1 and A2 are opposite to each other, and the rubbing directions of the alignment films 23b and 25b in the region (a) are directions B1 and B2 parallel to the x axis and 180 ° opposite to each other. By this alignment treatment, as shown in (ii) and (iii), the liquid crystal molecules 26
a and 26b are homogeneous arrays having a slight pretilt angle α0, and the molecular arrays in both regions are orthogonal without twist.

【0035】位相差板やネマティック液晶は屈折率異方
性を有し、一般にその光学特性をx,y,z軸方向の立
体屈折率楕円体で表すことができる。図(iii )におい
て、位相差板13の厚みをt、液晶層26の層厚をd、
さらに(ア)は領域(ア)の屈折率異方性、(イ)は領
域(イ)の屈折率異方性、(ウ)は位相差板13の屈折
率異方性を示し、かつそれぞれの配置関係を表してい
る。ここでnx ,ny ,nz は各軸の屈折率である。
The retardation plate and the nematic liquid crystal have a refractive index anisotropy, and their optical characteristics can be generally expressed by a three-dimensional refractive index ellipsoid in the x-, y-, and z-axis directions. In FIG. (Iii), the thickness of the retardation film 13 is t, the layer thickness of the liquid crystal layer 26 is d,
Further, (A) indicates the refractive index anisotropy of the region (A), (A) indicates the refractive index anisotropy of the region (A), (C) indicates the refractive index anisotropy of the retardation plate 13, and Represents the arrangement relationship of. Here, nx, ny, and nz are the refractive indices of each axis.

【0036】図2に示す(構成II)は、(構成I)にお
ける液晶分子の配列がホモジニアス配列であるのを、ス
プレイ配列に替えた以外は同構成である。スプレイ配列
にするために、図(i )のように、領域(ア)の上下配
向膜33a,35aをy軸に平行な同一ラビング方向A
1 ,A1 とし、領域(イ)の上下配向膜33b,35b
をx軸に平行な同一ラビング方向B1 ,B1 に配向処理
している。これにより(iii )に示すように液晶分子2
6a,26bはスプレイ配列となる。屈折率楕円体の関
係は(構成I )の構成と変わらない。
(Structure II) shown in FIG. 2 has the same structure except that the arrangement of liquid crystal molecules in (Structure I) is a homogeneous arrangement, but is changed to a splay arrangement. In order to form a splay array, the upper and lower alignment films 33a and 35a in the region (a) are aligned in the same rubbing direction A parallel to the y-axis as shown in FIG.
1, A1 and the upper and lower alignment films 33b and 35b in the region (a)
Are oriented in the same rubbing directions B1 and B1 parallel to the x-axis. As a result, as shown in (iii), the liquid crystal molecule 2
6a and 26b are spray arrangements. The relationship of the index ellipsoid is the same as that of (Structure I).

【0037】図3に示す(構成III )は、(構成I )に
おいて領域(ア)の配向膜43a,43b,および領域
(イ)の配向膜45a,45bに垂直配向処理を付加し
たもので、液晶層36に負の誘電異方性を示すネマティ
ック液晶を用いたものである。この構成では電圧無印加
時は液晶分子は配向膜に対して基板面法線から僅かに傾
いた配列をなし、この傾き状態は液晶層厚方向に一定の
ユニフォーム配列47である。電極に電圧を印加する
と、この液晶分子は基板面にほぼ平行に配列する。
The (Structure III) shown in FIG. 3 is obtained by adding vertical alignment treatment to the alignment films 43a and 43b in the region (a) and the alignment films 45a and 45b in the region (a) in the (Structure I). A nematic liquid crystal exhibiting a negative dielectric anisotropy is used for the liquid crystal layer 36. In this configuration, when no voltage is applied, the liquid crystal molecules are aligned slightly with respect to the alignment film from the substrate surface normal, and this tilted state is a uniform alignment 47 in the liquid crystal layer thickness direction. When a voltage is applied to the electrodes, the liquid crystal molecules are arranged almost parallel to the substrate surface.

【0038】図4に示す(構成IV)は、図2の(構成I
I)において領域(ア)の配向膜53a,55a,およ
び領域(イ)の配向膜53b,55bに垂直配向処理を
付加したもので、液晶層36に負の誘電異方性のネマテ
ィック液晶を用いたものである。この構成では電圧無印
加時は液晶分子は配向膜に対して基板面法線から僅かに
傾いた配列をなし、この傾き状態が液晶層厚方向に曲線
をもつベント配列57になる。電極に電圧を印加する
と、この液晶分子は基板面にほぼ平行に配列する。
(Structure IV) shown in FIG. 4 corresponds to (Structure I) of FIG.
The vertical alignment processing is added to the alignment films 53a and 55a in the region (a) and the alignment films 53b and 55b in the region (a) in I), and a nematic liquid crystal having a negative dielectric anisotropy is used for the liquid crystal layer 36. It was what I had. With this configuration, when no voltage is applied, the liquid crystal molecules are arranged slightly inclined with respect to the alignment film from the normal to the substrate surface, and this inclined state becomes a bent arrangement 57 having a curve in the liquid crystal layer thickness direction. When a voltage is applied to the electrodes, the liquid crystal molecules are arranged almost parallel to the substrate surface.

【0039】図5の(構成V )、図6の(構成VI)に示
すものは、光路上にアルミニウムの下画素電極40で形
成した反射板による光反射が1回含まれるものであり、
表示用液晶層、位相差板および偏光板は入射光、反射光
の2回、つまり光が各層を往復することによって、図7
に示す光路となる。
The (configuration V) of FIG. 5 and the configuration (VI) of FIG. 6 are those in which the light reflection by the reflector formed by the lower pixel electrode 40 of aluminum is included once in the optical path,
The liquid crystal layer for display, the retardation plate and the polarizing plate are incident light and reflected light twice, that is, the light travels back and forth through each layer, and
It becomes the optical path shown in.

【0040】図5の(構成V )が図3の(構成III )に
対応し、図6の(構成VI)が図4の(構成IV)に対応す
る。
The (configuration V) of FIG. 5 corresponds to the (configuration III) of FIG. 3, and the (configuration VI) of FIG. 6 corresponds to the (configuration IV) of FIG.

【0041】上記各構成において、(構成I )、(構成
II)に示すものは、電圧を印加していない状態で、位相
差板をふくめた光路上の全リタデーション値が、0およ
び550nmとなり、液晶分子をほぼ垂直に配列しうる
電圧を印加した場合に全リタデーション値が、275n
mとなる構成のものであり、(構成III )、(構成I
V)、(構成V )および(構成VI)では、逆に表示用液
晶層として、負の誘電異方性を示すネマティック液晶組
成物を僅かなチルトを有する垂直配向処理基板間に狭持
してなるものであるから、電圧を印加していない状態
で、全リタデーション値が、275nmとなり、液晶分
子をある程度チルトさせた状態、もしくは部分的にほぼ
水平に配列しうる電圧を印加した場合に全リタデーショ
ン値が、0および550nmとなる構成のものである。
In each of the above configurations, (configuration I), (configuration
In II), when no voltage is applied, the total retardation values on the optical path including the retardation plate are 0 and 550 nm, and when a voltage capable of arranging liquid crystal molecules almost vertically is applied. Total retardation value is 275n
m is the configuration, and (configuration III), (configuration I
V), (Structure V) and (Structure VI), conversely, a nematic liquid crystal composition exhibiting negative dielectric anisotropy is sandwiched between vertically aligned substrates having a slight tilt as a liquid crystal layer for display. Therefore, the total retardation value becomes 275 nm in the state where no voltage is applied, and the total retardation is obtained when the liquid crystal molecules are tilted to some extent or when a voltage that can be partially horizontally aligned is applied. The values are 0 and 550 nm.

【0042】図7に示すように、素子法線方向から観察
したとき液晶層のリタデーション値が実効的に275n
mとなるとき(状態A。状態Aは水平配向処理をした
(構成I )、(構成II)の構造の素子では電圧無印加時
に、垂直配向処理をした(構成III )、(構成IV)、の
構造の素子では電圧印加時に生じる)、液晶層(電圧無
印加時)、位相差板の光軸と液晶分子配列方向は、図7
の(ア)の領域が直交、図7(イ)の領域が平行となっ
ている。素子法線方向から観察したとき、図7(ア)の
領域の液晶層と位相差板(実効的なリタデーション値は
275nm)の全リタデーション値は、それぞれの光軸
が直交しているので、0となる。逆に図7(イ)の領域
では、それぞれの光軸が平行になっているので、液晶層
と位相差板との全リタデーション値は、それぞれのリタ
デーション値を足した値550nmとなる。
As shown in FIG. 7, the retardation value of the liquid crystal layer is effectively 275 n when observed from the normal direction of the device.
When m is reached (state A. state A is subjected to horizontal alignment treatment (configuration I), and the element having the structure of (configuration II) is subjected to vertical alignment treatment when no voltage is applied (configuration III), (configuration IV), 7 is generated when a voltage is applied), the liquid crystal layer (when no voltage is applied), the optical axis of the retardation plate and the liquid crystal molecule alignment direction are as shown in FIG.
The area (A) is orthogonal and the area (A) in FIG. 7 is parallel. When observed from the element normal direction, the total retardation values of the liquid crystal layer and the retardation film (effective retardation value is 275 nm) in the region of FIG. 7A are 0 because the respective optical axes are orthogonal to each other. Becomes On the contrary, in the region of FIG. 7A, since the respective optical axes are parallel to each other, the total retardation value of the liquid crystal layer and the retardation plate is 550 nm, which is the sum of the respective retardation values.

【0043】また、液晶層のリタデーション値が実効的
に0となるとき(状態B。水平配向処理をした(構成I
)、(構成II)の構造の素子では電圧印加時、垂直配
向処理をした(構成III )、(構成IV)、(構成V )、
(構成VI)の構造の素子では電圧無印加時)は、素子法
線方向から観察したとき、図7(ア)、(イ)の領域と
もに液晶層と位相差板のリタデーション値を総和した全
リタデーション値は、位相差板のリタデーション値のみ
となるので、275nmとなる。
Further, when the retardation value of the liquid crystal layer is effectively 0 (state B. horizontal alignment treatment (configuration I
), (Structure II), the element was subjected to vertical alignment treatment when voltage was applied (Structure III), (Structure IV), (Structure V),
When no voltage is applied to the element having the structure of (Structure VI), the total retardation values of the liquid crystal layer and the retardation film are summed in both regions (a) and (b) of FIG. 7 when observed from the element normal direction. The retardation value is 275 nm because it is only the retardation value of the retardation plate.

【0044】すなわち、図7(ア)の領域では、電界制
御により液晶層と位相差板のトータルのリタデーション
値を、0から275nm(275nmから0)に変化さ
せることができ、図7(イ)の領域では、電界制御によ
り液晶層と位相差板のトータルのリタデーション値を、
550nmから275nm(275nmから550n
m)に変化させることができるわけである。
That is, in the region of FIG. 7A, the total retardation value of the liquid crystal layer and the retardation film can be changed from 0 to 275 nm (275 nm to 0) by controlling the electric field. In the region of, the total retardation value of the liquid crystal layer and the retardation plate by electric field control,
550nm to 275nm (275nm to 550n
It can be changed to m).

【0045】したがって、図7(ア)、(イ)の領域に
おける印加電圧に対する液晶層と位相差板の全リタデー
ション値の変化をグラフ化すると図8、図9のようにな
ると考えられる。ここで図8は水平配向処理をした(構
成I )、(構成II)の構造の素子の場合、図9は垂直配
向処理をした(構成III )、(構成IV)、(構成V )、
(構成VI)の構造の素子の場合の理論図である。
Therefore, it is considered that the changes in the total retardation values of the liquid crystal layer and the retardation film with respect to the applied voltage in the regions of FIGS. 7A and 7B are graphed as shown in FIGS. 8 and 9. Here, FIG. 8 shows an element having a structure of (configuration I) and (configuration II) subjected to horizontal alignment processing, and FIG. 9 shows a configuration of vertical alignment processing (configuration III), (configuration IV), and (configuration V).
FIG. 6 is a theoretical diagram in the case of an element having a structure of (Configuration VI).

【0046】また、図1乃至図7に示すように、本発明
の液晶表示素子において入射光側の下偏光板吸収軸と液
晶層と位相差板の全リタデーションの生じる方位とのな
す角は、いずれの場合においても45°となる。
Further, as shown in FIGS. 1 to 7, the angle formed by the absorption axis of the lower polarizing plate on the incident light side and the azimuth in which the total retardation of the liquid crystal layer and the retardation plate occurs in the liquid crystal display element of the present invention is In any case, it becomes 45 °.

【0047】ここで図10、図11を参照して、λ=5
50nmの光について、透過率について考えてみる。図
7に示す領域(ア)と(イ)それぞれについて、本発明
の液晶表示素子の種々の構成における印加電圧に対する
透過率の変化を知るために図8の曲線と図10、11の
曲線を合成した。その結果を図12、13に示す。いず
れの図においても結果的に図7に示す領域(ア)と
(イ)は同一曲線となる。
Here, referring to FIGS. 10 and 11, λ = 5
Consider the transmittance for 50 nm light. The curves of FIG. 8 and the curves of FIGS. 10 and 11 are combined in order to know the change in the transmittance with respect to the applied voltage in various configurations of the liquid crystal display device of the present invention in each of the regions (A) and (B) shown in FIG. did. The results are shown in FIGS. In any of the figures, the regions (a) and (a) shown in FIG. 7 result in the same curve.

【0048】このように本発明の液晶表示素子は、一画
素が2つの配向領域からなり、これら2つの配向領域で
は、印加電圧に対するリタデーション値の変化が異なっ
ている(図8参照)が、結果的に印加電圧に対する透過
率の変化は、λ=550nmの光についてのみ考えれ
ば、いずれの領域でも同じ変化の仕方を示すこととなる
わけである。これは、液晶層と位相差板の総和の全リタ
デーションが、このλ=550nmの丁度1.0倍、
0.5倍、0倍となっているからであり、前記した透過
率を示す(1)、(2)式における(Rπ/λ)の値が
0,π/2,πと正弦関数の極小、極大値、0となる条
件になっているからである。
As described above, in the liquid crystal display device of the present invention, one pixel is composed of two alignment regions, and in these two alignment regions, the change in retardation value with respect to the applied voltage is different (see FIG. 8). Therefore, the change of the transmittance with respect to the applied voltage shows the same way of change in any of the regions if only the light of λ = 550 nm is considered. This means that the total retardation of the sum of the liquid crystal layer and the retardation plate is exactly 1.0 times this λ = 550 nm,
This is because it is 0.5 times and 0 times, and the value of (Rπ / λ) in the expressions (1) and (2) indicating the above-mentioned transmittance is 0, π / 2, π and the minimum of the sine function. This is because the condition is that the maximum value is 0.

【0049】次に、他の青色光、赤色光すなわちλ=4
40nm、620nmの場合どうなるかについて考えて
みる。図14、15、16および17は図12、図13
同様、図8の曲線と図10、11の曲線をλ=440n
m、620nmの場合について合成したものであり、印
加電圧に対する透過率の変化を図7に示す領域(ア)と
(イ)それぞれについて示したものである。図14、1
5はλ=440nmの結果で、図16、17はλ=62
0nmの結果である。また、図中、実線で示す曲線は図
12、13に示したλ=550nmでの合成結果の曲線
である。
Next, other blue light, red light, that is, λ = 4
Let's consider what happens in the case of 40 nm and 620 nm. 14, 15, 16 and 17 are shown in FIGS.
Similarly, the curve of FIG. 8 and the curves of FIGS.
FIG. 7 is a composite of m and 620 nm, and shows changes in transmittance with respect to an applied voltage for regions (a) and (a) shown in FIG. 7, respectively. 14 and 1
5 is the result of λ = 440 nm, and FIGS.
The result is 0 nm. Further, in the figure, the curve indicated by the solid line is the curve of the synthesis result at λ = 550 nm shown in FIGS.

【0050】図からわかるようにλ=440nm、62
0nmにおける(ア)と(イ)の領域の印加電圧に対す
る透過率の変化を示す曲線は、λ=550nmにおける
印加電圧に対する透過率の変化を示す曲線と異なってい
る。つまりはλ=550nmに対し、上にずれるか、下
にずれた形状となっている。しかしながら、いずれの図
においても、領域(ア)が上にずれていたら、領域
(イ)は下にずれており、(イ)が上にずれていたら、
(ア)は下にずれている。
As can be seen from the figure, λ = 440 nm, 62
The curve showing the change in the transmittance with respect to the applied voltage in the regions (A) and (A) at 0 nm is different from the curve showing the change in the transmittance with respect to the applied voltage at λ = 550 nm. That is, the shape is shifted upward or shifted downward with respect to λ = 550 nm. However, in any of the figures, if the area (a) is shifted upwards, the area (a) is shifted downwards, and if the area (a) is shifted upwards,
(A) is shifted downward.

【0051】前述したように、本発明の液晶表示素子は
1画素内に2つの配向領域、つまり図7に示す(ア)と
(イ)の領域を設けた構成となっている。したがって、
各画素における透過率は図7に示す(ア)と(イ)のそ
れぞれの領域における透過率の合成されたものとなる。
このため、図12乃至図17に示したそれぞれの液晶表
示素子のそれぞれの入射光波長における印加電圧に対す
る透過率の変化は、それぞれの図における領域(ア)と
(イ)の曲線の平均となる。ここで、図12、13に示
すλ=550nmの場合は、領域(ア)と(イ)の曲線
は重なっているため、当然その平均も重なっている。さ
らに、図16乃至図17に示すλ=440nm、620
nmの曲線は、前述したように、領域(ア)と(イ)
で、前記λ=550nmの曲線から相反する方向にずれ
ている。よって、図13乃至図17に示すλ=440n
m、620nmにおける(ア)と(イ)の曲線の平均
は、ほぼ図12、13に示すλ=550nmの曲線と一
致する。この結果、一画素をひとつの単位として本発明
の液晶表示素子の透過率を考えた場合、印加電圧に対す
る透過率の変化は、入射光の波長に関わらず、ほぼ同一
の曲線(変化の仕方)となるわけである。
As described above, the liquid crystal display element of the present invention has a structure in which two alignment regions, that is, regions (a) and (a) shown in FIG. 7 are provided in one pixel. Therefore,
The transmittance of each pixel is a combination of the transmittances of the areas (A) and (A) shown in FIG.
Therefore, the change in the transmittance with respect to the applied voltage at each incident light wavelength of each liquid crystal display element shown in FIGS. 12 to 17 is the average of the curves of the regions (a) and (a) in each of the diagrams. . Here, in the case of λ = 550 nm shown in FIGS. 12 and 13, the curves of the regions (A) and (A) overlap each other, and naturally the averages also overlap. Further, λ = 440 nm and 620 shown in FIGS.
As described above, the curve of nm has the regions (A) and (B).
Thus, the curves deviate from the curve of λ = 550 nm in opposite directions. Therefore, λ = 440n shown in FIGS.
The averages of the curves (a) and (a) at m and 620 nm substantially match the curves of λ = 550 nm shown in FIGS. As a result, when the transmittance of the liquid crystal display device of the present invention is considered with one pixel as one unit, the change in the transmittance with respect to the applied voltage is almost the same curve (how to change) regardless of the wavelength of the incident light. Will be.

【0052】このように本発明の液晶表示素子は極めて
波長依存性の少ない電気光学特性(透過率−印加電圧曲
線)を示す。
As described above, the liquid crystal display device of the present invention exhibits electro-optical characteristics (transmittance-applied voltage curve) with extremely little wavelength dependence.

【0053】次に本発明の液晶表示素子の3グループそ
れぞれの構成の特徴と作用を順に説明する。
Next, the features and functions of the configurations of the three groups of the liquid crystal display element of the present invention will be described in order.

【0054】(構成I )、(構成II)に示す構成のもの
は、いずれも透過型の液晶表示素子であり、前述したご
とく、一画素の配向処理が2分割されている。駆動用の
液晶表示セルの液晶分子配列は、(ア)と(イ)の領域
双方とも僅かなチルトを有する水平配向であり、且つ捩
じれを持たない分子配列となる。構成I においては、前
記僅かなチルトのチルト方向(つまりはラビング方向)
が上下基板で180°逆であり(こうした分子配列を一
般的にホモジニアス配列と言う)、(構成II)において
は、前記僅かなチルトのチルト方向が上下基板で同一方
向である(この分子配列を一般的にスプレイ配列と言
う)。これら(構成I )、(構成II)に示す構成のもの
は、素子の法線方向から観察した場合、電圧を印加して
いない状態では、ほぼ同様の複屈折性を示すが、斜めか
ら観察した場合、(構成I )と(構成II)では複屈折率
の観察方向依存性が異なる。(構成I )の構造では、液
晶層の分子配列がいわゆるホモジニアス配列となってい
るため、液晶分子のチルト方向は一様に一定方向を向い
ている。このため複屈折率には著しい観察方向依存性が
生じる。これに対し、(構成II)では、液晶層の分子配
列がいわゆるスプレイ配列となっているため、液晶分子
のチルト方向は液晶層の上半分とした半分で丁度180
°逆の方向となる。このため斜めから観察した場合、あ
る観察方向とその観察方向と180°逆の観察方向を比
較してもその複屈折値はほぼ同じ値となる。よって、こ
の構成では方位性が少ない分、複屈折率の観察方向依存
性が少ない。ただし、(構成II)では、その分子配列が
スプレイ配列となっているため、電圧印加時のチルト方
向が2方向取り得ることとなるため、上下基板において
基板表面の液晶分子チルト角を異ならせるといった方法
等を用いて前記電圧印加時のチルト方向が1方向としか
ならないような制御をしないと電圧印加時にチルトリバ
ースといった配向不良が生じてしまう。このように(構
成I )と(構成II)を比較すると一長一短はあるもの
の、これらの構成は次にのべる特長を持っている。
The structures shown in (Structure I) and (Structure II) are both transmissive liquid crystal display devices, and as described above, the alignment process for one pixel is divided into two. The liquid crystal molecular alignment of the driving liquid crystal display cell is a horizontal alignment having a slight tilt in both the regions (a) and (a) and has no twist. In the configuration I, the tilt direction of the slight tilt (that is, the rubbing direction)
Is 180 ° opposite on the upper and lower substrates (such a molecular arrangement is generally called a homogeneous arrangement), and in (Structure II), the tilt directions of the slight tilts are the same on the upper and lower substrates (this molecular arrangement is Generally called a spray arrangement). The structures shown in (Structure I) and (Structure II) have almost the same birefringence when no voltage is applied when observed from the direction normal to the device, but observed obliquely. In this case, the dependence of birefringence on the viewing direction is different between (Structure I) and (Structure II). In the structure of (Structure I), since the molecular alignment of the liquid crystal layer is a so-called homogeneous alignment, the tilt direction of the liquid crystal molecules is uniformly oriented in a fixed direction. For this reason, the birefringence is significantly dependent on the viewing direction. On the other hand, in (Structure II), since the molecular alignment of the liquid crystal layer is a so-called splay alignment, the tilt direction of the liquid crystal molecules is 180 degrees in the upper half of the liquid crystal layer.
° Reversed direction. Therefore, when observed obliquely, the birefringence value becomes almost the same value even if a certain observation direction is compared with the observation direction 180 ° opposite. Therefore, in this configuration, the birefringence is less dependent on the viewing direction because the orientation is small. However, in (Structure II), since the molecular arrangement is a splay arrangement, it is possible to take two tilt directions when a voltage is applied, so that the liquid crystal molecule tilt angles of the substrate surfaces are different between the upper and lower substrates. If the control is performed such that the tilt direction when the voltage is applied is only one direction by using a method or the like, an alignment defect such as tilt reverse occurs when the voltage is applied. In this way, although there are merits and demerits in comparing (Structure I) and (Structure II), these structures have the following features.

【0055】・液晶層の配向処理は僅かなチルトを有す
る水平配向であり、ラビング法等簡単で安価な製造方法
とすることができる。
The alignment treatment of the liquid crystal layer is horizontal alignment having a slight tilt, and a simple and inexpensive manufacturing method such as a rubbing method can be performed.

【0056】・電圧を印加した状態、つまり、液晶分子
がチルトした状態においてそのチルト方向は1画素内に
2方向(互いに直交)あり、相互で視角依存性を補償す
る効果が生じ、視角依存性の少ない液晶表示素子が実現
できる。
When a voltage is applied, that is, when the liquid crystal molecules are tilted, the tilt directions are two directions within one pixel (orthogonal to each other), and the effect of compensating for the viewing angle dependency is produced and the viewing angle dependency is obtained. It is possible to realize a liquid crystal display device with less power consumption.

【0057】・前述したように透過光の波長依存性を自
己補正するので複屈折効果型にもかかわらず色の視角依
存性が少ない。
As described above, since the wavelength dependence of transmitted light is self-corrected, the viewing angle dependence of color is small despite the birefringence effect type.

【0058】(構成III )、(構成IV)に示すものは、
(構成I )、(構成II)における液晶表示セルの液晶分
子配列をほぼ垂直配向とし、用いる液晶組成物を負の誘
電異方性を示すネマティック液晶組成物としたものであ
る。つまりは、実効的リタデーションが電圧を印加して
いない状態で0とし、電圧を印加することによって、ほ
ぼ275nmとなるように制御することにより、位相差板
のリタデーションと液晶表示セルのリタデーションの和
が、電圧を印加していない状態で275nmであり、電圧
を印加することによって0および550nmとなるように
したものである。
What is shown in (Structure III) and (Structure IV) is
The liquid crystal molecules of the liquid crystal display cell in (Structure I) and (Structure II) are almost vertically aligned, and the liquid crystal composition used is a nematic liquid crystal composition exhibiting negative dielectric anisotropy. In other words, the effective retardation is set to 0 when no voltage is applied, and by controlling the voltage to be approximately 275 nm, the sum of the retardation of the retardation plate and the retardation of the liquid crystal display cell is controlled. , 275 nm when no voltage is applied, and 0 and 550 nm when voltage is applied.

【0059】本構成は(構成I )、(構成II)に示す構
成のものと比較して、その電気光学特性が丁度逆になる
ものであって、電圧無印加時に前記位相差板のリタデー
ションと液晶表示セルのリタデーションの和が275n
mとなることから、この状態が低電圧(つまりは0V)
で得られることが特長となる。本発明の液晶表示素子は
前記位相差板のリタデーションと液晶表示セルのリタデ
ーションの和が275nmの状態と0および550nm
の状態とを電界により制御するものであるが、(構成I
)、(構成II)に示す構成のものはそのうち一方のリ
タデーション(275nm)をえるのに液晶分子配列を
ほぼ垂直配向とする必要がある。これには十分な電圧を
必要とし、実際には7〜8Vの実効電圧を必要とする。
これに対し(構成III )、(構成IV)に示す構成のもの
は前記位相差板のリタデーションと液晶表示セルのリタ
デーションの和が275nmの状態は電圧無印加によっ
て得られ、0および550nmの状態も、液晶層のΔn
dを大きくしておけば液晶分子を僅かに(水平方向に)
寝かせれば得られることとなるため低電圧の印加電圧
(2〜3V)により得られる。また、液晶層のΔndを
大きくしておけば、わずかな分子配列変化により前記液
晶層のリタデーションを変化させることができるので電
気光学特性も急峻となり、単純な電極構造でもマルチプ
レックス駆動により駆動することができ、安価な液晶表
示素子が実現できる。
Compared with the configurations shown in (Structure I) and (Structure II), this structure has exactly the opposite electro-optical characteristics, and has the same retardation as the retardation plate when no voltage is applied. Sum of retardation of liquid crystal display cell is 275n
Since it is m, this state is low voltage (that is, 0V)
It is a feature that can be obtained in. In the liquid crystal display device of the present invention, the sum of the retardation of the retardation plate and the retardation of the liquid crystal display cell is 275 nm and 0 and 550 nm.
And the state is controlled by an electric field.
) And (Structure II), it is necessary to align the liquid crystal molecules substantially vertically to obtain the retardation (275 nm) of one of them. This requires a sufficient voltage, in practice an effective voltage of 7-8V.
On the other hand, in the structures shown in (Structure III) and (Structure IV), the sum of the retardation of the retardation plate and the retardation of the liquid crystal display cell is 275 nm, which is obtained by no voltage application, and the 0 and 550 nm states are also obtained. , Δn of liquid crystal layer
If d is increased, the liquid crystal molecules will be slightly (horizontally).
Since it can be obtained by letting it lie down, it can be obtained by a low applied voltage (2 to 3 V). Further, if Δnd of the liquid crystal layer is made large, the retardation of the liquid crystal layer can be changed by a slight change in the molecular arrangement, so that the electro-optical characteristics become steep, and even a simple electrode structure can be driven by multiplex driving. Therefore, an inexpensive liquid crystal display device can be realized.

【0060】また、(構成III )と(構成IV)との違い
は、電圧無印加時における液晶分子配列がいわゆるベン
ド配列となっているか、ユニフォーム配列になっている
かの違いであって、具体的に説明するとその液晶分子配
列が前者のベンド配列は液晶分子の配列方向(チルト方
向)が液晶層厚方向の上半分と下半分とで丁度180°
逆になっている配列(これが(構成IV)の配列)であ
り、後者のユニフォーム配列は液晶分子の配列方向(チ
ルト方向)が液晶層厚方向で下から上まで一様な配列方
向となっているものである。(構成I )、(構成II)の
相違点と同様、こうした(構成III )と(構成IV)との
違いは、液晶表示素子の視角依存性の相違につながる。
つまり(構成III )と比較して(構成IV)のほうが視角
依存性は良好となる。また、(構成IV)の構成は(構成
II)の構成と異なり上下基板表面のチルト角が等しくて
も、電圧を印加した際の液晶分子の伏せる方向は2方向
となることができるため、電圧印加時にリバース等の配
向不良は生じることがなく、上下基板において、その配
向処理を差別化する必要がない。
Further, the difference between (Structure III) and (Structure IV) is whether the liquid crystal molecule arrangement is a so-called bend arrangement or a uniform arrangement when no voltage is applied. In the former bend arrangement, the arrangement direction (tilt direction) of the liquid crystal molecules is exactly 180 ° between the upper half and the lower half of the liquid crystal layer thickness direction.
The arrangement is reversed (this is the arrangement of (Structure IV)), and in the latter uniform arrangement, the liquid crystal molecules are arranged in a uniform direction (tilt direction) from bottom to top in the liquid crystal layer thickness direction. There is something. Similar to the difference between (Structure I) and (Structure II), such a difference between (Structure III) and (Structure IV) leads to a difference in viewing angle dependence of the liquid crystal display element.
That is, the viewing angle dependency is better in (configuration IV) than in (configuration III). Also, the configuration of (Configuration IV) is (Configuration
Unlike the configuration of II), even if the tilt angles of the upper and lower substrates are the same, the liquid crystal molecules can lie down in two directions when a voltage is applied, so that an alignment defect such as reverse may occur when a voltage is applied. In addition, there is no need to differentiate the alignment process between the upper and lower substrates.

【0061】また、(構成V )、(構成VI)に示す構成
のものは、本発明の作用を偏光板を1枚だけ用いた反射
型のLCDに適用した構成を示すものである。光路上、
各液晶層、位相差板層、偏光板層を入射光と反射光の2
回通過するため、各層のリタデーション値等は、(構成
III )、(構成IV)の半分の値としなくてはならない。
この(構成V )、(構成VI)に示す反射型構成のもの
は、(構成III )、(構成IV)に示す透過型構成同様、
電圧無印加時に液晶分子配列が垂直配向となっているた
め、(構成III )、(構成IV)に示す構成同様の特長を
もち、且つ、光路的に斜めから観察しても入射光と反射
光では液晶分子が(構成V )の構成であっても、(構成
VI)の構成であっても丁度逆の極性となるため、極めて
視角依存性の少ない表示が得られることとなる。
The structures shown in (Structure V) and (Structure VI) show a structure in which the operation of the present invention is applied to a reflection type LCD using only one polarizing plate. On the optical path,
Each of the liquid crystal layer, the phase difference plate layer, and the polarizing plate layer is used for the incident light and reflected light.
Since it passes twice, the retardation value of each layer is
III), half the value of (Structure IV).
The reflective structure shown in (Structure V) and (Structure VI) is similar to the transmissive structure shown in (Structure III) and (Structure IV).
Since the liquid crystal molecule alignment is vertically aligned when no voltage is applied, it has the same characteristics as those shown in (Structure III) and (Structure IV), and the incident light and the reflected light are observed even when observed obliquely from the optical path. Then, even if the liquid crystal molecule has the configuration (configuration V),
Even with the configuration of VI), since the polarities are just opposite, it is possible to obtain a display with very little viewing angle dependency.

【0062】また、本発明の液晶表示素子は、いずれの
構成においても、素子方線方向から観察した場合にリタ
デーション値が0、斜めから観察した場合にリタデーシ
ョン値が0以外(>0もしくは<0)となるような光学
フィルムをさらに加えることによって、斜めから観察し
た場合に正面から観察した場合と表示が異なるといった
視角依存性が緩和されるような処置を施せばさらに優れ
た特性がえられることとなる。
In any of the constitutions of the liquid crystal display device of the present invention, the retardation value is 0 when observed from the direction of the device direction, and the retardation value is other than 0 (> 0 or <0 when observed obliquely). ), It is possible to obtain even more excellent properties by applying a treatment that reduces the viewing angle dependence, such as the display when viewed from the front when viewing from an angle, by adding an optical film that Becomes

【0063】例えば、(構成III )、(構成IV)、(構
成V )および(構成VI)の構成のものに対しては、屈折
率異方性が負であって、平面方向の屈折率が等価である
(つまり、nx =ny >nz (nz が法線方向の屈折
率)である屈折率異方性を示すフィルム)ような光学フ
ィルムを付加すればよい。
For example, with respect to the structures of (Structure III), (Structure IV), (Structure V) and (Structure VI), the refractive index anisotropy is negative and the refractive index in the plane direction is An optical film that is equivalent (that is, a film exhibiting a refractive index anisotropy in which nx = ny> nz (nz is a refractive index in the normal direction)) may be added.

【0064】なお、作用の説明において、位相差板のリ
タデーション値を275nmとした。この値は他の値を選
ぶことができ、図10、図11から270nmまたはその
近傍、実用的には255nmから295nmの範囲に選ぶこ
とにより、可視光域のほぼ全範囲の光制御が可能であ
る。(構成V )および(構成VI)の反射型素子では、こ
れらの値を1/2にすることはいうまでもない。
In the explanation of the operation, the retardation value of the retardation plate is 275 nm. Other values can be selected for this value, and light control of almost the entire visible light range is possible by selecting 270 nm or its vicinity from FIGS. 10 and 11 and practically a range of 255 nm to 295 nm. is there. It goes without saying that these values are halved in the reflective elements of (Structure V) and (Structure VI).

【0065】[0065]

【実施例】以下本発明の液晶表示素子の実施例を詳細に
説明する。
EXAMPLES Examples of the liquid crystal display device of the present invention will be described in detail below.

【0066】(実施例1)本実施例は(構成I )に関す
るものである。
Example 1 This example relates to (Structure I).

【0067】図1において、一画素pの大きさが100
μm×300μmであり、画素ピッチが110μm×3
30μmであり、画素数が(640×3)×480であ
る約10インチサイズのTFT基板24および前記TF
T基板の画素に対応したRGBカラーフィルターを備え
たITOべた電極付きコモン基板20を用意し、前記双
方の基板に配向膜23a,23b,25a,25bとし
てポリイミド((株)日本合成ゴム製のAL−3046
(平均的なプレチルト角が約4°))を印刷し、180
℃、30分の焼成後、各画素の配向処理方向が(構成I
)の(ア)の領域の方向となるよう前記双方の基板を
ラビングして、さらにこれにレジストを塗布して、レジ
スト現像により、前記(ア)の領域が被覆されるよう露
光処理を施し、現像工程を得て、(構成I )の(イ)の
領域が露出するようにして配向処理方向が(構成I )の
(イ)の領域の方向となるよう前記双方の基板をラビン
グし、しかる後、レジストを完全に除去し、本実施例の
液晶セル14用配向処理済基板とした。これら基板2
0,21を液晶層厚が4.4μmとなるように基板間隙
剤として(株)積水ファインケミカル製のミクロパール
(粒径4.4μm)を前記コモン基板側に散布し、前記
双方の基板を重ね合わせて、これら基板間に液晶として
正の誘電異方性を示すネマティック液晶材料((株)メ
ルクジャパン製のZLI−1695(Δn=0.062
5))を真空注入法にて注入して液晶層26とし、この
ときの注入口を紫外線硬化樹脂にて封止して本実施例に
用いる液晶セル14を得た。
In FIG. 1, the size of one pixel p is 100.
μm × 300 μm, pixel pitch is 110 μm × 3
The TFT substrate 24 having a size of 30 μm and the number of pixels of (640 × 3) × 480 and a size of about 10 inches and the TF.
A common substrate 20 with an ITO solid electrode having an RGB color filter corresponding to the pixels of the T substrate is prepared, and polyimide (ALS made by Nippon Synthetic Rubber Co., Ltd.) is used as alignment films 23a, 23b, 25a, 25b on both the substrates. -3046
(Average pretilt angle is about 4 °)
After baking at 30 ° C for 30 minutes, the orientation treatment direction of each pixel is (configuration I
) Both the substrates are rubbed in the direction of the area (a), and a resist is further applied to this, and an exposure process is performed by resist development so that the area (a) is covered, After the development step, the both substrates are rubbed so that the (A) region of (Structure I) is exposed and the orientation processing direction is the direction of the (A) region of (Structure I). After that, the resist was completely removed to obtain an alignment-treated substrate for the liquid crystal cell 14 of this example. These substrates 2
0 and 21 were used as a substrate interstitial agent so that the liquid crystal layer thickness would be 4.4 μm. In addition, a nematic liquid crystal material (ZLI-1695 manufactured by Merck Japan Co., Ltd. (Δn = 0.062) showing positive dielectric anisotropy as liquid crystal between these substrates.
5)) was injected by a vacuum injection method to form a liquid crystal layer 26, and the injection port at this time was sealed with an ultraviolet curable resin to obtain a liquid crystal cell 14 used in this example.

【0068】この液晶セル14に(構成I )の構造とな
るよう位相差板13として日東電工(株)のNRF54
0・NRF540・NRF280の3層積層リタデーシ
ョンフィルム(平均波長λ=550nmにおけるR=2
75nm,R/λ=λ/2)を本実施例の液晶セル14
に貼りあわせ、これらを吸収軸11a,12aが直交し
た偏光板11,12間に、偏光板の吸収軸と前記位相差
板のリタデーション方向(光軸方向)13aが45°の
角度をなすよう、前記位相差板13と液晶セル14を挿
入し、液晶表示素子10Iを得た。
The liquid crystal cell 14 has a structure (I) as a retardation plate 13 as NRF54 manufactured by Nitto Denko Corporation.
0-NRF540-NRF280 3-layer laminated retardation film (R = 2 at average wavelength λ = 550 nm)
75 nm, R / λ = λ / 2) to the liquid crystal cell 14 of the present embodiment.
And the absorption axes 11a and 12a are orthogonal to each other between the polarizing plates 11 and 12 so that the absorption axis of the polarizing plate and the retardation direction (optical axis direction) 13a of the retardation plate make an angle of 45 °. The retardation plate 13 and the liquid crystal cell 14 were inserted to obtain a liquid crystal display element 10I.

【0069】こうして得られた液晶表示素子の電気光学
特性をλ=440nm、550nm、620nmの光に
て測定した結果を図18に示す。図に示すごとく、極め
て波長依存性の少ない電気光学特性が得られることがわ
かった。さらに、得られた液晶表示素子の等コントラス
ト特性を印加電圧0−8Vにて測定したところ、正面で
コントラスト比150:1、視角30°までコントラス
ト比10:1以上と極めて広い視角依存性を得ることが
わかった。さらに、本実施例の液晶表示素子の表示色を
観察したところ、正面は無論のこと視角を変化させても
ほとんど色付きの生じない極めて優れた色味が得られる
ことがわかった。
The electro-optical characteristics of the liquid crystal display device thus obtained were measured with light of λ = 440 nm, 550 nm and 620 nm, and the results are shown in FIG. As shown in the figure, it was found that electro-optical characteristics having extremely little wavelength dependence can be obtained. Furthermore, when the isocontrast characteristics of the obtained liquid crystal display device were measured at an applied voltage of 0-8V, a contrast ratio of 150: 1 on the front side and a contrast ratio of 10: 1 or more up to a viewing angle of 30 ° were obtained, and a very wide viewing angle dependency was obtained. I understood it. Furthermore, when the display color of the liquid crystal display device of this example was observed, it was found that an extremely excellent tint with almost no coloring was obtained even if the front surface was changed in viewing angle.

【0070】(実施例2)(構成II) 図2において、実施例1同様の基板を用い、コモン基板
11側の配向膜33a,33bのみ、(株)日本合成ゴ
ム製のAL−1051(平均的なプレチルト角が約1
°)として、実施例1における各画素の配向処理方向を
(構成II)となるようにラビングを行う以外実施例1同
様の材料、条件、製法にて本実施例の液晶表示素子10
IIを得た。
(Example 2) (Structure II) In FIG. 2, the same substrate as in Example 1 was used, and only the alignment films 33a and 33b on the common substrate 11 side were manufactured by Nippon Synthetic Rubber Co., Ltd. AL-1051 (average). Pretilt angle is about 1
°), the liquid crystal display element 10 of the present example is prepared by using the same materials, conditions and manufacturing method as in Example 1 except that rubbing is performed so that the orientation treatment direction of each pixel in Example 1 is (Structure II).
I got II.

【0071】実施例1同様、得られた液晶表示素子の電
気光学特性をλ=440nm、550nm、620nm
の光にて測定したところ、実施例1とほとんど同じ結果
が得られた。また、得られた液晶表示素子の等コントラ
スト特性を印加電圧0−8Vにて測定したところ、正面
でコントラスト比150:1、視角30°までコントラ
スト比15:1以上と、実施例1以上に極めて広い視角
依存性を得ることがわかった。さらに、実施例1同様、
本実施例の液晶表示素子の表示色を観察したところ、実
施例1同様、正面は無論のこと視角を変化させてもほと
んど色付きの生じない極めて優れた色味が得られること
がわかった。
As in Example 1, the electro-optical characteristics of the obtained liquid crystal display element were determined to be λ = 440 nm, 550 nm and 620 nm.
When measured with the light, the almost same result as in Example 1 was obtained. Further, when the isocontrast characteristics of the obtained liquid crystal display device were measured at an applied voltage of 0 to 8 V, the contrast ratio was 150: 1 on the front side, and the contrast ratio was 15: 1 or more up to a viewing angle of 30 °, which is extremely higher than that of Example 1. It was found that a wide viewing angle dependence was obtained. Furthermore, as in Example 1,
When the display color of the liquid crystal display element of this example was observed, it was found that, as in the case of Example 1, of course, an extremely excellent tint with almost no coloring was obtained even when the viewing angle was changed.

【0072】(実施例3)(構成I ) 実施例1における位相差板13の変わりに位相差板とし
て図19に示す構成の液晶セルを用い、本実施例の液晶
表示素子を得た。ここで用いた図19(a)に示す構成
の液晶セルは厚さ0.3mmのガラス基板60,61に
配向膜62,63として(株)日本合成ゴム製のAL−
3046を、図19(a)に示す方向にラビングし、液
晶層64の層厚が6.5μmとなるように基板間隙剤と
して(株)積水ファインケミカル製のミクロパール(粒
径6.5μm)を前記一方の基板61上に散布し、前記
双方の基板60,61を重ね合わせて、これら基板間に
液晶組成物として、たとえ予期せぬ電場(静電気による
帯電等)や磁場が生じてもスプレイ分子配列65が変化
しないよう負の誘電異方性を示すネマティック液晶材料
として、(株)メルクジャパン製のZLI−2806
(Δn=0.042)を真空注入法にて注入して、この
ときの注入口を紫外線硬化樹脂にて封止して得たもので
ある。
(Example 3) (Structure I) A liquid crystal cell having the structure shown in FIG. 19 was used as a phase difference plate instead of the phase difference plate 13 in Example 1 to obtain a liquid crystal display element of this example. The liquid crystal cell having the structure shown in FIG. 19A used here has AL-made by Nippon Synthetic Rubber Co., Ltd. as alignment films 62 and 63 on glass substrates 60 and 61 having a thickness of 0.3 mm.
3046 was rubbed in the direction shown in FIG. 19A, and Micropearl (particle size 6.5 μm) manufactured by Sekisui Fine Chemical Co., Ltd. was used as a substrate gap agent so that the liquid crystal layer 64 had a layer thickness of 6.5 μm. The spray molecules are sprayed on the one substrate 61, the both substrates 60, 61 are superposed, and a liquid crystal composition is formed between the substrates as a liquid crystal composition even if an unexpected electric field (charging due to static electricity) or a magnetic field occurs. ZLI-2806 manufactured by Merck Japan Co., Ltd. is used as a nematic liquid crystal material exhibiting negative dielectric anisotropy so that the array 65 does not change.
(Δn = 0.042) was injected by a vacuum injection method, and the injection port at this time was sealed with an ultraviolet curable resin.

【0073】こうして得られた本実施例の液晶表示素子
に実施例1同様の評価を行ったところ、実施例1同様の
優れた諸特性が得られ、本発明の液晶表示素子は、位相
差板として、高分子フィルムの位相差板のかわりに、こ
れと同じ機能を有する液晶セルを用いても同様の効果が
得られることが確認された。
The liquid crystal display element of the present example thus obtained was evaluated in the same manner as in Example 1. As a result, excellent characteristics similar to those in Example 1 were obtained, and the liquid crystal display element of the present invention had a retardation plate. As a result, it was confirmed that a similar effect can be obtained by using a liquid crystal cell having the same function as the retardation plate of the polymer film instead of the retardation plate.

【0074】(実施例4)(構成III ) 図3において、実施例1と同じ基板20,21を用い、
前記双方の基板を(株)チッソ製のODS−E(垂直配
向処理剤)溶液に浸したのち150℃、30minの焼
成を行って、前記双方の基板表面に垂直配向膜43a,
43b,45a,45bを得た。しかる後、各画素の配
向処理方向が(構成III )の図3(ア)の領域の方向と
なるよう前記双方の基板をラビングA1 ,A2 して、さ
らにこれにレジストを塗布して、レジスト現像により、
前記(ア)の領域が被覆されるよう露光処理を施し、現
像工程を得て、(構成III )の図3(イ)の領域が露出
するようにして配向処理方向が(構成III )の(イ)の
領域の方向となるよう前記双方の基板をラビングB1 ,
B2 し、しかる後、レジストを完全に除去し、本実施例
の液晶表示素子用配向処理済基板とした。これら基板を
液晶層36の層厚が6.5μmとなるように基板間隙剤
として(株)積水ファインケミカル製のミクロパール
(粒径6.5μm)を前記コモン基板20側に散布し、
前記双方の基板を重ね合わせて、これら基板間に実施例
3に用いた負の誘電異方性を示すネマティック液晶材
料、ZLI−2806(Δn=0.042)を真空注入
法にて注入して、このときの注入口を紫外線硬化樹脂に
て封止して本実施例の液晶セルを得た。
Example 4 (Structure III) In FIG. 3, the same substrates 20 and 21 as in Example 1 were used,
Both of the substrates are immersed in an ODS-E (vertical alignment treatment agent) solution manufactured by Chisso Co., Ltd., and then baked at 150 ° C. for 30 minutes to form a vertical alignment film 43a on both substrate surfaces.
43b, 45a and 45b were obtained. After that, the both substrates are rubbed A1 and A2 so that the orientation processing direction of each pixel is the direction of the area of FIG. Due to
An exposure process is performed to cover the area (a), a development step is performed, and the alignment treatment direction (structure III) is set so that the area (FIG. 3A) in (structure III) is exposed. Rubbing the both substrates so that they are oriented in the area b),
After that, the resist was completely removed to obtain an alignment-treated substrate for a liquid crystal display device of this example. Micropearls (particle size 6.5 μm) manufactured by Sekisui Fine Chemical Co., Ltd. as a substrate interstitial agent were sprayed on the common substrate 20 side so that the liquid crystal layer 36 had a layer thickness of 6.5 μm.
Both of the above-mentioned substrates were superposed on each other, and the nematic liquid crystal material having negative dielectric anisotropy, ZLI-2806 (Δn = 0.042) used in Example 3 was injected between these substrates by a vacuum injection method. Then, the injection port at this time was sealed with an ultraviolet curable resin to obtain a liquid crystal cell of this example.

【0075】この液晶セルに(構成III )の構成となる
よう、実施例1同様位相差板として日東電工(株)のN
RF540・NRF540・NRF280の3層積層リ
タデーションフィルム(平均波長λ=550nmにおけ
るR=275nm,R/λ=λ/2)を前記本実施例に
おける液晶表示セルに貼りあわせ、これらを直交した偏
光板11,12間に、偏光板の吸収軸11a,12aと
前記位相差板のリタデーション方向(光軸方向)13a
が45°の角度をなすよう、前記位相差板13と液晶セ
ル14を挿入し、本実施例の液晶表示素子10III を得
た。
As in Example 1, the liquid crystal cell has a structure of (Structure III) as N retarder of Nitto Denko Corporation as a retardation plate.
A three-layer laminated retardation film of RF540 / NRF540 / NRF280 (R = 275 nm at the average wavelength λ = 550 nm, R / λ = λ / 2) was attached to the liquid crystal display cell in the present example, and the polarizing plate 11 was formed by intersecting them orthogonally. , 12 between the absorption axes 11a and 12a of the polarizing plate and the retardation direction (optical axis direction) 13a of the retardation plate.
The retardation plate 13 and the liquid crystal cell 14 were inserted so that the angle of 45 ° was 45 ° to obtain a liquid crystal display element 10III of this example.

【0076】こうして得られた液晶表示素子の電気光学
特性をλ=440nm、550nm、620nmの光に
て測定した結果を図20に示す。図に示すごとく、極め
て波長依存性の少ない電気光学特性が得られることがわ
かった。さらに、得られた液晶表示素子の等コントラス
ト特性を印加電圧0−6Vにて測定したところ、正面で
コントラスト比200:1、視角30°までコントラス
ト比10:1以上と極めて広い視角依存性を得ることが
わかった。さらに、本発明の液晶表示素子の表示色を観
察したところ、正面は無論のこと視角を変化させてもほ
とんど色付きの生じない極めて優れた色みがえられるこ
とがわかった。
FIG. 20 shows the results of measuring the electro-optical characteristics of the liquid crystal display device thus obtained with light of λ = 440 nm, 550 nm and 620 nm. As shown in the figure, it was found that electro-optical characteristics having extremely little wavelength dependence can be obtained. Further, when the isocontrast characteristics of the obtained liquid crystal display device were measured at an applied voltage of 0-6V, a contrast ratio of 200: 1 on the front side and a contrast ratio of 10: 1 or more up to a viewing angle of 30 ° were obtained, which was a very wide viewing angle dependency. I understood it. Further, when the display color of the liquid crystal display device of the present invention was observed, it was found that, of course, even if the viewing angle was changed, an extremely excellent tint was obtained with almost no coloring.

【0077】(実施例5)(構成IV) 図4において、実施例4同様の基板を用い、実施例4に
おける各画素の配向膜53a,53b,55a,55b
の配向処理方向を(構成IV)となるようにラビングを行
う以外、実施例4同様の材料、条件、製法にて本実施例
の液晶表示素子10IVを得た。
(Fifth Embodiment) (Structure IV) In FIG. 4, the same substrate as in the fourth embodiment is used, and the alignment films 53a, 53b, 55a, 55b of the respective pixels in the fourth embodiment are used.
A liquid crystal display element 10IV of this example was obtained by using the same materials, conditions, and manufacturing method as in Example 4, except that rubbing was performed so that the alignment treatment direction was (Structure IV).

【0078】実施例4同様、得られた液晶表示素子の電
気光学特性をλ=440nm、550nm、620nm
の光にて測定したところ、実施例4とほとんど同じ結果
が得られた。また、得られた液晶表示素子の等コントラ
スト特性を印加電圧0−5Vにて測定したところ、正面
でコントラスト比200:1、視角30°までコントラ
スト比15:1以上と、実施例4以上に極めて広い視角
依存性を得ることがわかった。さらに、実施例4同様、
本実施例の液晶表示素子の表示色を観察したところ、実
施例4同様、正面は無論のこと視角を変化させてもほと
んど色付きの生じない極めて優れた色みがえられること
がわかった。
The electro-optical characteristics of the obtained liquid crystal display device were set to λ = 440 nm, 550 nm and 620 nm as in Example 4.
When measured with the light of, the almost same result as in Example 4 was obtained. Further, when the isocontrast characteristics of the obtained liquid crystal display element were measured at an applied voltage of 0-5V, the contrast ratio was 200: 1 on the front side, and the contrast ratio was 15: 1 or more up to a viewing angle of 30 °, which is extremely higher than that of Example 4. It was found that a wide viewing angle dependence was obtained. Furthermore, as in Example 4,
When the display color of the liquid crystal display element of this example was observed, it was found that, as in the case of Example 4, the front side could have an extremely excellent tint with almost no coloring even when the viewing angle was changed.

【0079】(実施例6)(構成III ) 図3において、基板20として電極22をストライプ状
としその幅が100μmであり、パターンピッチが11
0μmであり、電極本数が(640×3)であり、各電
極パターン毎に異なる色(RGB)のカラーフィルター
を具備した信号電極用ITOパターニング基板および、
電極幅が300μmであり、パターンピッチが330μ
mであり、電極本数が480である走査電極用ITOパ
ターニング基板21を用い、実施例4と同様の配向処理
を施して、これら基板を液晶層厚が6.5μmとなるよ
うに基板間隙剤として(株)積水ファインケミカル製の
ミクロパール(粒径6.5μm)を前記下基板21側に
散布し、前記双方の基板を重ね合わせて、これら基板間
に実施例3に用いた負の誘電異方性を示すネマティック
液晶材料、ZLI−4850(Δn=0.208)を真
空注入法にて注入して、このときの注入口を紫外線硬化
樹脂にて封止して(構成III )の構成となる本発明に用
いる液晶セルを得た。
(Example 6) (Structure III) In FIG. 3, the electrodes 22 are formed in a stripe shape as the substrate 20, the width thereof is 100 μm, and the pattern pitch is 11
0 μm, the number of electrodes is (640 × 3), and an ITO patterning substrate for signal electrodes, which is equipped with color filters of different colors (RGB) for each electrode pattern, and
The electrode width is 300 μm and the pattern pitch is 330 μm.
m, and the ITO electrode patterned substrate 21 for scanning electrodes having 480 electrodes was subjected to the same alignment treatment as in Example 4, and these substrates were used as a substrate gap agent so that the liquid crystal layer thickness was 6.5 μm. Micropearl (particle size 6.5 μm) manufactured by Sekisui Fine Chemical Co., Ltd. was sprayed on the lower substrate 21 side, both the substrates were superposed, and the negative dielectric anisotropic used in Example 3 between these substrates. A nematic liquid crystal material exhibiting properties, ZLI-4850 (Δn = 0.208), is injected by a vacuum injection method, and the injection port at this time is sealed with an ultraviolet curable resin to form a structure (III). A liquid crystal cell used in the present invention was obtained.

【0080】こうして得られた液晶表示セルを(構成II
I )の構成となるよう実施例4同様、位相差板13、偏
光板11,12と組み合わせ、本実施例の液晶表示素子
を得た。
The liquid crystal display cell thus obtained has
The liquid crystal display element of this example was obtained by combining the retardation plate 13 and the polarizing plates 11 and 12 in the same manner as in Example 4 so as to obtain the structure I).

【0081】実施例1、4同様に電気光学特性を測定し
たところ、図21に示す結果を得た。図から明らかなよ
うに、実施例1、4同様波長依存性が極めて少ないこと
は無論のこと、その特性が極めて急峻であり、本実施例
の液晶表示素子はマルチプレックス駆動に適した特性で
あることが確認された。
Electro-optical characteristics were measured in the same manner as in Examples 1 and 4, and the results shown in FIG. 21 were obtained. As is apparent from the figure, it is needless to say that the wavelength dependence is extremely small as in Examples 1 and 4, and the characteristics are extremely steep, and the liquid crystal display element of this example is a characteristic suitable for multiplex driving. It was confirmed.

【0082】さらに、実施例1、4同様に液晶表示素子
の等コントラスト特性を、1/480duty駆動のマ
ルチプレックス駆動(駆動実行電圧3−4V)にて測定
したところ、正面でコントラスト比40:1、視角30
°までコントラスト比5:1以上と極めて広い視角依存
性を得ることがわかった。さらに、本発明の液晶表示素
子の表示色を観察したところ、正面は無論のこと視角を
変化させてもほとんど色付きの生じない極めて優れた色
みがえられることがわかった。
Further, as in Examples 1 and 4, the isocontrast characteristics of the liquid crystal display device were measured by multiplex driving (driving execution voltage 3-4V) of 1/480 duty driving. , Viewing angle 30
It was found that a very wide viewing angle dependency with a contrast ratio of 5: 1 or more up to ° was obtained. Further, when the display color of the liquid crystal display device of the present invention was observed, it was found that, of course, even if the viewing angle was changed, an extremely excellent tint was obtained with almost no coloring.

【0083】(実施例7)(構成V ) 基板として図22に示すような凹凸のある反射画素電極
40とアクリル樹脂の絶縁層71を有する不透明(黒
色)のガラス基板70を用い画素ごとにTFTスイッチ
ング素子72をもつTFT基板(一画素の大きさは30
0μm×300μmであり、画素ピッチが304μm×
304μmであり、画素数が640×480である約9
インチサイズ)21および、図5のように、べたITO
電極22を形成したコモン基板20を用い、実施例4同
様の配向処理を各画素の配向処理方向A1 ,A2 ,B1
,B2 が(構成V )のようになるよう施した後、これ
ら基板を液晶層厚が4.5μmとなるように基板間隙剤
として(株)積水ファインケミカル製のミクロパール
(粒径4.5μm)を前記コモン基板20側に散布し、
前記双方の基板を重ね合わせて、これら基板間に実施例
3、4、5に用いた負の誘電異方性を示すネマティック
液晶材料、ZLI−2806(Δn=0.042)を真
空注入法にて注入して液晶層36とし、このときの注入
口を紫外線硬化樹脂にて封止して本実施例に用いる液晶
セル14を得た。液晶層36のΔndは137μmとし
ている。
(Embodiment 7) (Structure V) An opaque (black) glass substrate 70 having a concave and convex reflective pixel electrode 40 and an acrylic resin insulating layer 71 as shown in FIG. 22 is used as a substrate, and a TFT is provided for each pixel. TFT substrate with switching element 72 (the size of one pixel is 30
0 μm × 300 μm with a pixel pitch of 304 μm ×
304 μm and the number of pixels is 640 × 480, about 9
(Inch size) 21 and solid ITO as shown in FIG.
Using the common substrate 20 on which the electrodes 22 are formed, the same alignment treatment as in Embodiment 4 is performed in the alignment treatment directions A1, A2, B1 of the respective pixels.
, B2 as shown in (Structure V), and used as a substrate gap agent for these substrates so that the liquid crystal layer thickness is 4.5 μm. Micropearl (particle size 4.5 μm) manufactured by Sekisui Fine Chemical Co., Ltd. On the common substrate 20 side,
Both of the substrates were superposed, and a nematic liquid crystal material having negative dielectric anisotropy, ZLI-2806 (Δn = 0.042) used in Examples 3, 4, and 5 was vacuum-injected between the substrates. To form a liquid crystal layer 36, and the injection port at this time was sealed with an ultraviolet curable resin to obtain a liquid crystal cell 14 used in this example. Δnd of the liquid crystal layer 36 is 137 μm.

【0084】この液晶セルに(構成V )の構成となるよ
う、実施例1等同様位相差板として日東電工(株)のN
RF270・NRF270・NRF140の3層積層リ
タデーションフィルム(平均波長λ=550nmにおけ
るR=137nm,R/λ=λ/4)を前記本実施例に
おける液晶表示セルのコモン基板20外側に貼りあわ
せ、これらに偏光板11を、偏光板の吸収軸11aと前
記位相差板のリタデーション方向(光軸方向)13aが
45°の角度をなすよう、前記位相差板上に貼りあわ
せ、本実施例の液晶表示素子11V を得た。
As in Example 1, the liquid crystal cell had a structure (V) as a retardation plate manufactured by Nitto Denko Corp.
A three-layer laminated retardation film of RF270 / NRF270 / NRF140 (R = 137 nm at the average wavelength λ = 550 nm, R / λ = λ / 4) was attached to the outside of the common substrate 20 of the liquid crystal display cell in the present embodiment, and these were adhered to them. The polarizing plate 11 is laminated on the retardation plate so that the absorption axis 11a of the polarizing plate and the retardation direction (optical axis direction) 13a of the retardation plate form an angle of 45 °, and the liquid crystal display device of the present embodiment. I got 11V.

【0085】こうして得られた液晶表示素子の電気光学
特性(印加電圧に対する反射光強度)をλ=440n
m、550nm、620nmの光にて測定した結果を図
23に示す。図に示すごとく、極めて波長依存性の少な
い電気光学特性が得られることがわかった。さらに、得
られた液晶表示素子の等コントラスト特性を印加電圧0
−4Vにて測定したところ、正面でコントラスト比1
0:1、視角30°までコントラスト比3:1以上と極
めて広い視角依存性を得ることがわかった。また、電圧
印加時の最大反射率を測定したところ、44.8%と極
めて高い反射率であることがわかった。さらに、本発明
の液晶表示素子の表示色を観察したところ、正面は無論
のこと視角を変化させてもほとんど色付きの生じない極
めて優れた色みが得られることがわかった。
The electro-optical characteristic (reflected light intensity with respect to the applied voltage) of the liquid crystal display element thus obtained was λ = 440n.
FIG. 23 shows the results of measurement with light of m, 550 nm, and 620 nm. As shown in the figure, it was found that electro-optical characteristics having extremely little wavelength dependence can be obtained. Furthermore, the isocontrast characteristics of the obtained liquid crystal display element were measured by applying no applied voltage.
When measured at -4V, the contrast ratio is 1 at the front.
It was found that a very wide viewing angle dependency was obtained with a contrast ratio of 3: 1 or more up to 0: 1 and a viewing angle of 30 °. Further, the maximum reflectance when a voltage was applied was measured, and it was found that the reflectance was extremely high at 44.8%. Further, when the display color of the liquid crystal display device of the present invention was observed, it was found that, of course, an extremely excellent tinge with almost no coloring was obtained even when the viewing angle was changed.

【0086】(実施例8)(構成V ) 図5において、信号電極基板20として、電極22の幅
が300μmであり、パターンピッチが330μmであ
り、電極本数が640×3である信号電極用ITOパタ
ーニング基板20および、図24に示すような表面を凹
凸にしたアクリル樹脂絶縁層81の上に凹凸のある電極
幅が300μmであり、パターンピッチが330μmで
あり、電極本数が480である反射電極40を有する不
透明(黒色)のガラス基板80を用いた走査電極用パタ
ーニング基板21を用い、実施例4同様の配向処理を各
画素の配向処理方向が(構成V )のようになるよう施し
た後、これら基板を液晶層厚が6.5μmとなるように
基板間隙剤として(株)積水ファインケミカル製のミク
ロパール(粒径6.5μm)を一方の基板側に散布し、
前記双方の基板を重ね合わせて、これら基板間に実施例
3、4、5に用いた負の誘電異方性を示すネマティック
液晶材料、ZLI−4850(Δn=0.208)を真
空注入法にて注入して液晶層36とし、このときの注入
口を紫外線硬化樹脂にて封止して本実施例に用いる液晶
セルを得た。
(Embodiment 8) (Structure V) In FIG. 5, as the signal electrode substrate 20, the ITO for signal electrodes in which the width of the electrodes 22 is 300 μm, the pattern pitch is 330 μm, and the number of electrodes is 640 × 3. The patterning substrate 20 and the reflective electrode 40 having an uneven electrode width of 300 μm, a pattern pitch of 330 μm, and the number of electrodes of 480 on the acrylic resin insulating layer 81 having an uneven surface as shown in FIG. After using the scanning electrode patterning substrate 21 using the opaque (black) glass substrate 80 having the above, the same alignment treatment as in Example 4 is performed so that the alignment treatment direction of each pixel is as shown in (Structure V). One of the substrates was Micropearl (particle size 6.5 μm) manufactured by Sekisui Fine Chemical Co., Ltd. as a substrate gap agent so that the liquid crystal layer thickness of these substrates was 6.5 μm. Sprinkle on the side,
Both of the substrates were superposed, and a nematic liquid crystal material having negative dielectric anisotropy, ZLI-4850 (Δn = 0.208) used in Examples 3, 4 and 5 was vacuum-injected between the substrates. Was injected to form a liquid crystal layer 36, and the injection port at this time was sealed with an ultraviolet curable resin to obtain a liquid crystal cell used in this example.

【0087】この液晶セルに(構成V )の構成となるよ
う、実施例7同様に位相差板13、偏光板11を貼りあ
わせ、本実施例の液晶表示素子を得た。
A retardation plate 13 and a polarizing plate 11 were attached to this liquid crystal cell in the same manner as in Example 7 so that the liquid crystal cell had the configuration (V) to obtain a liquid crystal display element of this example.

【0088】こうして得られた液晶表示素子の電気光学
特性(印加電圧に対する反射光強度)をλ=440n
m、550nm、620nmの光にて測定した結果を図
25に示す。実施例6同様本実施例の電気光学特性は極
めて急峻であり、本実施例の液晶表示素子はマルチプレ
ックス駆動に適した特性であることが確認された。
The electro-optical characteristic (reflected light intensity with respect to the applied voltage) of the liquid crystal display element thus obtained was λ = 440n.
FIG. 25 shows the results of measurement with light of m, 550 nm, and 620 nm. As in Example 6, the electro-optical characteristics of this example were extremely steep, and it was confirmed that the liquid crystal display element of this example was suitable for multiplex driving.

【0089】さらに、実施例6同様に液晶表示素子の等
コントラスト特性を、1/480duty駆動のマルチ
プレックス駆動(駆動実効電圧2−3V)にて測定した
ところ、正面でコントラスト比6:1、視角30°まで
コントラスト比3:1以上と極めて広い視角依存性を得
ることがわかった。さらに、本発明の液晶表示素子の表
示色を観察したところ、正面は無論のこと視角を変化さ
せてもほとんど色付きの生じない極めて優れた色味がえ
られることがわかった。
Further, the same contrast characteristics of the liquid crystal display element were measured by a 1/480 duty driving multiplex driving (driving effective voltage 2-3V) as in Example 6, and a contrast ratio of 6: 1 at the front and a viewing angle were obtained. It was found that an extremely wide viewing angle dependency with a contrast ratio of 3: 1 or more up to 30 ° was obtained. Further, when the display color of the liquid crystal display device of the present invention was observed, it was found that, of course, even if the viewing angle was changed, an extremely excellent tint was obtained with almost no coloring.

【0090】(実施例9)(構成VI) 図6において、実施例7におけるラビング方向A1 ,B
1 を実施例5において実施例4から変更したのと同様に
(構成VI)となるようにする以外、実施例7同様の材
料、条件、製法にて本実施例の液晶表示素子10VIを得
た。
(Embodiment 9) (Structure VI) In FIG. 6, rubbing directions A 1 and B in embodiment 7 are shown.
A liquid crystal display element 10VI of the present example was obtained by using the same materials, conditions and manufacturing method as in Example 7, except that (Structure VI) was the same as in Example 1 except that Example 1 was changed from Example 4. .

【0091】実施例7同様、得られた液晶表示素子の電
気光学特性をλ=440nm、550nm、620nmの光に
て測定したところ、さらに、得られた液晶表示素子の等
コントラスト特性を円か電圧0−4Vにて測定したとこ
ろ、正面でコントラスト比10:1、視角30°までコ
ントラスト比4:1以上と実施例7以上に極めて広い視
角依存性を得ることがわかった。また、電圧印加時の最
大反射率を測定したところ、実施例7同様、極めて高い
反射率であることがわかった。さらに、本発明の液晶表
示素子の表示色を観察したところ、正面は無論のこと視
角を変化させてもほとんど色付きの生じない極めて優れ
た色みが得られることがわかった。
Similarly to Example 7, the electro-optical characteristics of the obtained liquid crystal display element were measured with light of λ = 440 nm, 550 nm and 620 nm. When measured at 0 to 4 V, it was found that a contrast ratio of 10: 1 on the front side and a contrast ratio of 4: 1 or more up to a viewing angle of 30 ° were obtained, which is extremely wide viewing angle dependency as compared with Example 7 or more. In addition, when the maximum reflectance when a voltage was applied was measured, it was found that the reflectance was extremely high as in Example 7. Further, when the display color of the liquid crystal display device of the present invention was observed, it was found that, of course, an extremely excellent tinge with almost no coloring was obtained even when the viewing angle was changed.

【0092】(実施例10)図1において、(構成I )
の実施例1における液晶表示素子の位相差板13と偏光
板11の間に、実施例7〜9に用いたフィルム状光学異
方素子である位相差板を2枚直交配置したものをそれぞ
れの光軸が位相差板の光軸13aと45°の角度をなす
よう挿入した。
(Embodiment 10) In FIG. 1, (Structure I)
In the liquid crystal display device in Example 1, two retardation plates, which are the film-shaped optical anisotropic elements used in Examples 7 to 9, are arranged orthogonally between the retardation plate 13 and the polarizing plate 11. The optical axis was inserted so as to form an angle of 45 ° with the optical axis 13a of the retardation plate.

【0093】この異方素子は素子平面方向(x軸、y
軸)の屈折率nx ,ny が等しく(nx =ny )、素子
法線(z軸)方向の屈折率nz が平面方向屈折率と異な
る(nnx ≠nz ,nz ≠ny )光学フィルムである。
本例では屈折率異方性が負(nx =ny >nz )(リタ
デーションR=−100nm) である光学フィルムを用い
た。屈折率nx ,ny ,nz はそれぞれnx ,ny =1.
55616 、nz =1.55601、フィルム厚は80.0μmで
ある。フィルム(商品名VAC−100、住友化学工業
(株))などを用いることができる。
This anisotropic element has an element plane direction (x axis, y
The optical films have the same refractive index nx and ny (nx = ny) in the axial direction, and the refractive index nz in the element normal line (z axis) direction is different from the planar direction refractive index (nnx ≠ nz, nz ≠ ny).
In this example, an optical film having a negative refractive index anisotropy (nx = ny> nz) (retardation R = -100 nm) was used. The refractive indices nx, ny and nz are nx and ny = 1, respectively.
55616, nz = 1.55601, film thickness 80.0 μm. A film (trade name: VAC-100, Sumitomo Chemical Co., Ltd.) or the like can be used.

【0094】実施例1同様、電気光学特性を測定したと
ころ、実施例1同様の結果が得られ、また、等コントラ
スト特性を印加電圧0−8Vにて測定したところ、正面
でコントラスト比130:1、視角30°までコントラ
スト比30:1以上と実施例1以上に極めて広い視角依
存性を得ることがわかった。さらに、本実施例の液晶表
示素子の表示色を観察したところ、実施例1同様、正面
は無論のこと視角を変化させてもほとんど色付きの生じ
ない極めて優れた色みがえられることがわかった。 以
上実施例では、位相差板のリタデーション値Rと液晶セ
ルのΔndの変化範囲を同じに設定したが、多少相違し
た値にしても実用的に同様の効果が得られる。
When the electro-optical characteristics were measured in the same manner as in Example 1, the same results as in Example 1 were obtained, and when the isocontrast characteristics were measured at an applied voltage of 0-8V, the contrast ratio of 130: 1 on the front side was obtained. It was found that a contrast ratio of 30: 1 or more up to a viewing angle of 30 ° and an extremely wide viewing angle dependency were obtained as compared with Example 1 or more. Further, when the display color of the liquid crystal display device of this example was observed, it was found that, as in the case of Example 1, the front side could have an extremely excellent tint with almost no coloring even when the viewing angle was changed. . In the above embodiments, the retardation value R of the retardation plate and the variation range of Δnd of the liquid crystal cell are set to be the same, but the same effect can be practically obtained even if the values are slightly different.

【0095】[0095]

【発明の効果】本発明によれば、極めて波長依存性の少
ない電気光学特性が得られ、また、極めて広い視角依存
性を得ることができる。さらに、正面は無論のこと視角
を変化させてもほとんど色付きの生じない極めて優れた
色みが得られる。
According to the present invention, it is possible to obtain electro-optical characteristics with extremely little wavelength dependence and to obtain a very wide viewing angle dependence. Furthermore, of course, even if the viewing angle is changed on the front side, an extremely excellent tint with almost no coloring is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成I の実施例を説明する図。FIG. 1 is a diagram for explaining an embodiment of configuration I of the present invention.

【図2】本発明の構成IIの実施例を説明する図。FIG. 2 is a diagram illustrating an example of configuration II of the present invention.

【図3】本発明の構成III の実施例を説明する図。FIG. 3 is a diagram illustrating an embodiment of configuration III of the present invention.

【図4】本発明の構成IVの実施例を説明する図。FIG. 4 is a diagram illustrating an example of configuration IV of the present invention.

【図5】本発明の構成V の実施例を説明する図。FIG. 5 is a diagram for explaining an embodiment of configuration V of the present invention.

【図6】本発明の構成VIの実施例を説明する図。FIG. 6 is a diagram illustrating an example of configuration VI of the present invention.

【図7】本発明の液晶表示素子の光学的構成および作用
を説明する概略図。
FIG. 7 is a schematic diagram illustrating an optical configuration and action of the liquid crystal display element of the present invention.

【図8】本発明の作用を説明する印加電圧−リタデーシ
ョン値曲線図。
FIG. 8 is an applied voltage-retardation value curve diagram for explaining the operation of the present invention.

【図9】本発明の作用を説明する印加電圧−リタデーシ
ョン値曲線図。
FIG. 9 is an applied voltage-retardation value curve diagram for explaining the operation of the present invention.

【図10】リタデーション値に対する透過率の関係(ク
ロスニコル時)を示す曲線図。
FIG. 10 is a curve diagram showing the relationship between transmittance and retardation value (at the time of crossed Nicols).

【図11】リタデーション値に対する透過率の関係(平
行時)を示す曲線図。
FIG. 11 is a curve diagram showing the relationship between transmittance and retardation value (when parallel).

【図12】本発明の作用を説明する透過率−印加電圧特
性(クロスニコル時λ=550nmの場合)を示す曲線
図。
FIG. 12 is a curve diagram showing a transmittance-applied voltage characteristic (when crossed Nicols λ = 550 nm) for explaining the operation of the present invention.

【図13】本発明の作用を説明する透過率−印加電圧特
性(平行時λ=550nmの場合)を示す曲線図。
FIG. 13 is a curve diagram showing the transmittance-applied voltage characteristics (when parallel λ = 550 nm) for explaining the operation of the present invention.

【図14】本発明の作用を説明する透過率−印加電圧特
性(クロスニコル時λ=440nmの場合)を示す曲線
図。
FIG. 14 is a curve diagram showing transmittance-applied voltage characteristics (when crossed Nicols λ = 440 nm) for explaining the operation of the present invention.

【図15】本発明の作用を説明する透過率−印加電圧特
性(平行時λ=440nmの場合)を示す曲線図。
FIG. 15 is a curve diagram showing the transmittance-applied voltage characteristics (when parallel λ = 440 nm) for explaining the operation of the present invention.

【図16】本発明の作用を説明する透過率−印加電圧特
性(クロスニコル時λ=620nmの場合)を示す曲線
図。
FIG. 16 is a curve diagram showing transmittance-applied voltage characteristics (when crossed Nicols λ = 620 nm) for explaining the operation of the present invention.

【図17】本発明の作用を説明する透過率−印加電圧特
性(平行時λ=620nmの場合)を示す曲線図。
FIG. 17 is a curve diagram showing the transmittance-applied voltage characteristics (when parallel λ = 620 nm) for explaining the operation of the present invention.

【図18】本発明の液晶表示素子の一実施例の透過率−
印加電圧特性測定結果を示す曲線図。
FIG. 18 shows the transmittance of an embodiment of the liquid crystal display device of the present invention-
The curve diagram which shows the applied voltage characteristic measurement result.

【図19】本発明の液晶表示素子の一実施例の位相差板
を示すもので、(a)はラビング方向を示す図、(b)
は構成を示す断面略図。
FIG. 19 shows a retardation plate of one embodiment of the liquid crystal display device of the present invention, (a) showing a rubbing direction, (b).
Is a schematic sectional view showing the structure.

【図20】本発明の液晶表示素子の一実施例の透過率−
印加電圧特性測定結果を示す曲線図。
FIG. 20 shows the transmittance of an example of the liquid crystal display device of the present invention.
The curve diagram which shows the applied voltage characteristic measurement result.

【図21】本発明の液晶表示素子の一実施例の透過率−
印加電圧特性測定結果を示す曲線図。
FIG. 21 shows the transmittance of an embodiment of the liquid crystal display device of the present invention-
The curve diagram which shows the applied voltage characteristic measurement result.

【図22】本発明の液晶表示素子の一実施例に用いたT
FT基板の断面図。
FIG. 22 shows a T used in an example of the liquid crystal display element of the present invention.
Sectional drawing of an FT board.

【図23】本発明の液晶表示素子の一実施例の透過率−
印加電圧特性測定結果を示す曲線図。
FIG. 23 shows the transmittance of an embodiment of the liquid crystal display element of the present invention-
The curve diagram which shows the applied voltage characteristic measurement result.

【図24】本発明の液晶表示素子の一実施例に用いた基
板の断面図。
FIG. 24 is a sectional view of a substrate used in an example of the liquid crystal display element of the present invention.

【図25】本発明の液晶表示素子の一実施例の透過率−
印加電圧特性測定結果を示す曲線図。
FIG. 25 shows the transmittance of an example of the liquid crystal display element of the present invention-
The curve diagram which shows the applied voltage characteristic measurement result.

【符号の説明】[Explanation of symbols]

10I ,10II,10III ,10IV,10V ,10VI…
液晶表示素子 11,12…偏光板 13…位相差板 14…液晶セル 20…上基板 21…下基板 22…上電極 23a,23b…配向膜 24…下電極 25a,25b…配向膜 26…液晶層 A1 ,A2 ,B1 ,B2 …配向処理方向 11a,12a…吸収軸 13a…光軸
10I, 10II, 10III, 10IV, 10V, 10VI ...
Liquid crystal display device 11, 12 ... Polarizing plate 13 ... Retardation plate 14 ... Liquid crystal cell 20 ... Upper substrate 21 ... Lower substrate 22 ... Upper electrodes 23a, 23b ... Alignment film 24 ... Lower electrodes 25a, 25b ... Alignment film 26 ... Liquid crystal layer A1, A2, B1, B2 ... Orientation direction 11a, 12a ... Absorption axis 13a ... Optical axis

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大山 毅 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 羽藤 仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Oyama 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Co., Ltd. Toshiba Corporation Yokohama Works (72) Inventor Hitoshi Hato 8 Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa Company Toshiba Yokohama Office

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の画素を形成する電極と前記電極上
に形成され配向処理された配向膜とを有する2枚の基板
と前記基板間に挟持された正の誘電異方性を示すネマテ
ィック液晶からなる液晶層とを具備してなる液晶表示セ
ルと、前記液晶セルを挟んで配置された2枚の位相差板
とからなる液晶表示素子において、 前記少なくとも一方の偏光板と前記液晶セルの間に、光
軸を有するようにリタデーション値が255〜295n
mである偏光板を液晶表示素子の平面方向に光軸を有す
るように配置し、 前記液晶セルは一画素内にラビングもしくは同等の効果
を得る僅かなチルトを有する水平配向処理の方向が2つ
あり、前記2つの方向は互いにほぼ直交しており、一方
の配向処理の方向は前記位相差板の光軸と平行であり、
上下基板のそれぞれ対向する前記2つの水平配向処理の
方向は互いに0°もしくは180°の角をなしており、
前記液晶層の液晶は前記配向処理にて液晶分子配列が捩
じれを有しない構造となる液晶であり、前記液晶層の屈
折率異方性Δnと液晶層厚dを乗じた値Δndが0.2
55μm乃至0.295μmであることを特徴とする液
晶表示素子。
1. A nematic liquid crystal having a positive dielectric anisotropy sandwiched between two substrates having electrodes for forming a plurality of pixels and an alignment film formed on the electrodes and having been subjected to an alignment treatment. A liquid crystal display element comprising a liquid crystal display cell comprising a liquid crystal layer comprising the liquid crystal layer and two retardation plates arranged with the liquid crystal cell sandwiched between the at least one polarizing plate and the liquid crystal cell. Has a retardation value of 255 to 295n so as to have an optical axis.
A polarizing plate of m is arranged so as to have an optical axis in the plane direction of the liquid crystal display device, and the liquid crystal cell has two directions of horizontal alignment processing with rubbing or a slight tilt to obtain the same effect in one pixel. And the two directions are substantially orthogonal to each other, and the direction of one orientation process is parallel to the optical axis of the retardation plate,
The directions of the two horizontal alignment treatments of the upper and lower substrates facing each other form an angle of 0 ° or 180 ° with each other,
The liquid crystal of the liquid crystal layer is a liquid crystal in which the alignment of the liquid crystal molecules is not twisted by the alignment treatment, and the value Δnd obtained by multiplying the refractive index anisotropy Δn of the liquid crystal layer and the liquid crystal layer thickness d is 0.2.
A liquid crystal display device having a thickness of 55 μm to 0.295 μm.
【請求項2】 複数の画素を形成する電極と前記電極上
に形成され配向処理された配向膜とを有する2枚の基板
と前記基板間に挟持されたネマティック液晶からなる液
晶層とを具備してなる液晶表示セルと、前記液晶セルを
挟んで配置された2枚の偏光板とからなる液晶表示素子
において、 前記少なくとも一方の偏光板と前記液晶セルの間に、光
軸を有するようにリタデーション値が255〜295n
mである位相差板を液晶表示素子の平面方向に光軸を有
するように配置し、 前記液晶セルは一画素内にラビングもしくは同等の効果
を得る僅かなチルトを有する垂直配向処理の方向が2つ
あり、前記2つの方向は互いにほぼ直交しており、一方
の配向処理の方向は前記位相差板の光軸と平行であり、
上下基板のそれぞれ対向する前記2つの水平配向処理の
方向は互いに0°もしくは180°の角をなしており、
前記液晶層の液晶は負の誘電異方性を示すネマティック
液晶で前記配向処理にて液晶分子配列が捩じれを有しな
い構造となる液晶であり、前記液晶層の屈折率異方性Δ
nと液晶層厚dを乗じた値Δndが0.22μm乃至
0.295μmであることを特徴とする液晶表示素子。
2. A liquid crystal layer comprising a nematic liquid crystal sandwiched between the two substrates having electrodes forming a plurality of pixels and an alignment film formed on the electrodes and having been subjected to an alignment treatment. In a liquid crystal display element comprising a liquid crystal display cell formed by the above and two polarizing plates arranged with the liquid crystal cell interposed therebetween, retardation is performed so that an optical axis is provided between the at least one polarizing plate and the liquid crystal cell. Value is 255-295n
The retardation plate of m is arranged so as to have the optical axis in the plane direction of the liquid crystal display element, and the liquid crystal cell has a direction of vertical alignment treatment having a slight tilt for rubbing or obtaining the same effect in one pixel. And the two directions are substantially orthogonal to each other, and the direction of one alignment treatment is parallel to the optical axis of the retardation plate,
The directions of the two horizontal alignment treatments of the upper and lower substrates facing each other form an angle of 0 ° or 180 ° with each other,
The liquid crystal of the liquid crystal layer is a nematic liquid crystal exhibiting a negative dielectric anisotropy and is a liquid crystal having a structure in which the alignment of the liquid crystal molecules does not have a twist by the alignment treatment.
A value Δnd obtained by multiplying n by the liquid crystal layer thickness d is 0.22 μm to 0.295 μm.
【請求項3】 位相差板のリタデーション値が230nm
乃至270nmである請求項1または請求項2に記載の液
晶表示素子。
3. The retardation value of the retardation plate is 230 nm.
3. The liquid crystal display element according to claim 1, wherein the liquid crystal display element has a thickness of 270 nm to 270 nm.
【請求項4】 複数の画素を形成する反射電極を有する
下基板と透明電極を有する上基板とこれら基板間に挟持
された負の誘電異方性を示すネマティック液晶の液晶層
とからなる液晶セルと、前記上基板側に設けられた1枚
の偏光板とを具備してなる液晶表示素子において、 前記液晶セルと前記偏光板との間に、リタデーション値
が110nm乃至138nmである位相差板を設け、 前記液晶セルは一画素内にラビングもしくは同等の効果
をえる僅かなチルトを有する垂直配向処理の方向が2つ
あり、前記2つの垂直配向処理の方向は互いに直交して
おり、一方の垂直配向処理の方向は前記位相差板の光軸
と平行であり、上下基板のそれぞれ対向する前記垂直配
向処理の方向は互いに0°もしくは180°の角をなし
ており、前記液晶層の液晶は前記配向処理にて液晶分子
配列が捩じれを有しない構造となる液晶であり、前記液
晶層の屈折率異方性Δnと液晶層厚dを乗じた値Δnd
が0.110μm以上であることを特徴とする液晶表示
素子。
4. A liquid crystal cell comprising a lower substrate having a reflective electrode forming a plurality of pixels, an upper substrate having a transparent electrode, and a liquid crystal layer of nematic liquid crystal exhibiting negative dielectric anisotropy sandwiched between these substrates. And a retardation plate having a retardation value of 110 nm to 138 nm between the liquid crystal cell and the polarizing plate, in a liquid crystal display device comprising: a polarizing plate provided on the upper substrate side. The liquid crystal cell has two vertical alignment processing directions having a slight tilt to obtain the same effect as rubbing in one pixel, and the two vertical alignment processing directions are orthogonal to each other. The direction of the alignment treatment is parallel to the optical axis of the retardation plate, the vertical alignment treatment directions of the upper and lower substrates facing each other form an angle of 0 ° or 180 °, and the liquid crystal of the liquid crystal layer is At serial alignment treatment is a liquid crystal which is a structure having no liquid crystal molecular arrangement twist, the value Δnd multiplied by the refractive index anisotropy Δn and liquid crystal layer thickness d of said liquid crystal layer
Is 0.110 μm or more, a liquid crystal display device.
【請求項5】 位相差板が液晶層からなる請求項1、2
または3に記載の液晶表示素子。
5. The phase difference plate comprises a liquid crystal layer.
Alternatively, the liquid crystal display element according to item 3.
【請求項6】 フィルム状の光学異方素子であり、素子
平面方向の屈折率(nx ,ny )が等しく、素子法線方
向の屈折率(nz )が素子平面方向の屈折率と異なる
(nz ≠nx =ny )素子法線方向に光軸を有する光学
異方素子を液晶セルと偏光板間に挿入したことを特徴と
する請求項1、2または4に記載の液晶表示素子。
6. A film-shaped optical anisotropic element, wherein the refractive index (nx, ny) in the element plane direction is equal and the refractive index (nz) in the element normal direction is different from the refractive index in the element plane direction (nz 5. The liquid crystal display element according to claim 1, 2 or 4, wherein an optical anisotropic element having an optical axis in the direction normal to the element is inserted between the liquid crystal cell and the polarizing plate.
JP12163094A 1994-06-03 1994-06-03 Liquid crystal display device Expired - Fee Related JP3292591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12163094A JP3292591B2 (en) 1994-06-03 1994-06-03 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12163094A JP3292591B2 (en) 1994-06-03 1994-06-03 Liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH07333617A true JPH07333617A (en) 1995-12-22
JP3292591B2 JP3292591B2 (en) 2002-06-17

Family

ID=14816023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12163094A Expired - Fee Related JP3292591B2 (en) 1994-06-03 1994-06-03 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3292591B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100304226B1 (en) * 1997-08-28 2001-11-05 마찌다 가쯔히꼬 Liquid crystal display device
JP2003066450A (en) * 2001-08-27 2003-03-05 Asahi Glass Co Ltd Liquid crystal element and optical attenuator
US6628359B1 (en) 1998-12-18 2003-09-30 Sharp Kabushiki Kaisha Liquid crystal display device including phase difference compensation element
US6642984B1 (en) 1998-12-08 2003-11-04 Fujitsu Display Technologies Corporation Liquid crystal display apparatus having wide transparent electrode and stripe electrodes
US6650386B1 (en) 1998-06-29 2003-11-18 Sharp Kabushiki Kaisha Nematic liquid crystal display device with multi-domain pixels and compensation with nc>na>nb
US7084846B2 (en) 2000-03-29 2006-08-01 Sharp Kabushiki Kaisha Liquid crystal display device
US7167224B1 (en) 1997-06-12 2007-01-23 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
CN100437241C (en) * 2005-03-09 2008-11-26 卡西欧计算机株式会社 Liquid crystal display device
US7570332B2 (en) 1998-05-16 2009-08-04 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
US7583345B2 (en) 1999-10-01 2009-09-01 Samsung Electronics Co., Ltd. Liquid crystal display
US9041891B2 (en) 1997-05-29 2015-05-26 Samsung Display Co., Ltd. Liquid crystal display having wide viewing angle
JP2018060151A (en) * 2016-05-27 2018-04-12 住友化学株式会社 Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
JP2018060148A (en) * 2016-03-31 2018-04-12 住友化学株式会社 Set of polarizing plates and ips mode liquid crystal display using the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041891B2 (en) 1997-05-29 2015-05-26 Samsung Display Co., Ltd. Liquid crystal display having wide viewing angle
US7304703B1 (en) 1997-06-12 2007-12-04 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
USRE43123E1 (en) 1997-06-12 2012-01-24 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
US7760305B2 (en) 1997-06-12 2010-07-20 Sharp Kabushiki Kaisha Liquid crystal display device with multiple alignment structures
US7167224B1 (en) 1997-06-12 2007-01-23 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
US7224421B1 (en) 1997-06-12 2007-05-29 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
US6373542B1 (en) 1997-08-28 2002-04-16 Sharp Kabushiki Kaisha Liquid crystal display device free from viewing-angle-dependent coloring of an image displayed on liquid crystal element
KR100304226B1 (en) * 1997-08-28 2001-11-05 마찌다 가쯔히꼬 Liquid crystal display device
US7573554B2 (en) 1998-05-16 2009-08-11 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
US7570332B2 (en) 1998-05-16 2009-08-04 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
US6650386B1 (en) 1998-06-29 2003-11-18 Sharp Kabushiki Kaisha Nematic liquid crystal display device with multi-domain pixels and compensation with nc>na>nb
US7327424B2 (en) 1998-06-29 2008-02-05 Sharp Kabushiki Kaisha Nematic liquid crystal display device with multi-domain pixels and six phase difference compensators
US7190429B2 (en) 1998-12-08 2007-03-13 Sharp Kabushiki Kaisha Liquid crystal display apparatus having wide transparent electrode and stripe electrodes
US6642984B1 (en) 1998-12-08 2003-11-04 Fujitsu Display Technologies Corporation Liquid crystal display apparatus having wide transparent electrode and stripe electrodes
US6628359B1 (en) 1998-12-18 2003-09-30 Sharp Kabushiki Kaisha Liquid crystal display device including phase difference compensation element
US8817213B2 (en) 1999-10-01 2014-08-26 Samsung Display Co., Ltd. Liquid crystal display
US7583345B2 (en) 1999-10-01 2009-09-01 Samsung Electronics Co., Ltd. Liquid crystal display
US9557612B2 (en) 1999-10-01 2017-01-31 Samsung Display Co., Ltd. Liquid crystal display
US8174651B2 (en) 1999-10-01 2012-05-08 Samsung Electronics Co., Ltd. Liquid crystal display
US8456597B2 (en) 1999-10-01 2013-06-04 Samsung Display Co., Ltd. Liquid crystal display
US7084846B2 (en) 2000-03-29 2006-08-01 Sharp Kabushiki Kaisha Liquid crystal display device
JP2003066450A (en) * 2001-08-27 2003-03-05 Asahi Glass Co Ltd Liquid crystal element and optical attenuator
CN100437241C (en) * 2005-03-09 2008-11-26 卡西欧计算机株式会社 Liquid crystal display device
JP2018060148A (en) * 2016-03-31 2018-04-12 住友化学株式会社 Set of polarizing plates and ips mode liquid crystal display using the same
JP2018060151A (en) * 2016-05-27 2018-04-12 住友化学株式会社 Set of polarizing plates for ips mode and ips mode liquid crystal display using the same

Also Published As

Publication number Publication date
JP3292591B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
US8294860B2 (en) Liquid crystal display device
JP4080245B2 (en) Liquid crystal display
JP3851941B2 (en) NW type liquid crystal display having a delay film for visual field improvement
JP3410666B2 (en) Liquid crystal display
US5241408A (en) Liquid crystal display device with compensation and lc twist angle varying in a nonlinear fashion in the thickness direction
JP3529434B2 (en) Liquid crystal display device
JPH09160042A (en) Liquid crystal display element
JP3410663B2 (en) Liquid crystal display
JP4714187B2 (en) Liquid crystal display device
JP3292591B2 (en) Liquid crystal display device
JP2005292709A (en) Liquid crystal display element
JP3130682B2 (en) Liquid crystal display device
JPH10239683A (en) Reflective-type liquid crystal; display device
US6195144B1 (en) Multiple domain-divided twisted nematic liquid crystal display with compensation film
JP4714188B2 (en) Liquid crystal display device
JP4749391B2 (en) Liquid crystal display
JP2007249244A (en) Liquid crystal display device
JPH0876077A (en) Electric field control diffraction grating and liquid crystal element
JP3619506B2 (en) Liquid crystal display
JPH09197429A (en) Liquid crystal display element
JPH03259221A (en) Liquid crystal display element
JP3619507B2 (en) Liquid crystal display
KR100734233B1 (en) color liquid crystal display
JPH0519251A (en) Liquid crystal display device
JPH09222601A (en) Liquid crystal display element and optically anisotropic element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees