JPH09160061A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH09160061A
JPH09160061A JP32030195A JP32030195A JPH09160061A JP H09160061 A JPH09160061 A JP H09160061A JP 32030195 A JP32030195 A JP 32030195A JP 32030195 A JP32030195 A JP 32030195A JP H09160061 A JPH09160061 A JP H09160061A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
layer
field
substrates
display
formed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32030195A
Other languages
Japanese (ja)
Inventor
Hitoshi Hado
Yuzo Hisatake
Takeshi Oyama
Makiko Satou
Kiyoshi Shobara
雄三 久武
摩希子 佐藤
毅 大山
潔 庄原
仁 羽藤
Original Assignee
Toshiba Corp
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a display element having high speed response and a wide visual field.
SOLUTION: In the display element formed by holding a liquid crystal cell, formed with plural pixels by holding a liquid crystal layer 14 between opposite two substrates 10a, 10b, between two polarizers, the double refractive index of the layer 14 is controlled by the control of an electric field. The substrates 10a, 10b are respectively provided with electrodes on the sides of the layer 14, the electrodes are oppositely arranged so as to impress an electric field to the layer 14 in each pixel and at least the electrode of one of the substrates 10a, 10b is formed by alternately arranging conductor parts 12a having thin width and non-conductor parts 11a in each pixel so that an oblique electric field is impressed to the layer 14.
COPYRIGHT: (C)1997,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は液晶表示素子に係わる。 The present invention relates to is related to a liquid crystal display element.

【0002】 [0002]

【従来の技術】近年、薄型軽量、低消費電力という大きな利点を持つ液晶表示素子は、日本語ワ−ドプロセッサやディスクトップパ−ソナルコンピュ−タ−等のパ−ソナルOA機器の表示装置として積極的に用いられている。 In recent years, thin and light, a liquid crystal display device having the great advantage that a low power consumption, Japanese word - as coarsely braided OA equipment display - de processor and desktop Pas - coarsely braided computer - data - such as the path It has been actively used. 液晶表示素子(以下LCDと略称)の殆どは、ネマティック液晶を用いており、表示方式としては、複屈折モ−ドと旋光モ−ドの2つの方式に大別できる。 Most of the liquid crystal display device (hereinafter LCD abbreviated), uses a nematic liquid crystal, as the display mode, birefringence mode - de and optical rotation mode - can be roughly classified into two types of de.

【0003】捩じれネマティック液晶を用いた複屈折モ−ドの表示方式のLCDは、例えば、180゜以上捩じれた分子配列からなるLCD(ST方式と呼ばれる)であり、急峻な電気光学特性を持つため、各画素ごとにスイッチング素子(薄膜トランジスタやダイオ−ド)が無くても時分割駆動により容易に大容量表示が得られる。 [0003] twisted birefringence mode using nematic liquid crystal - the LCD de display mode, for example, a LCD (called ST type) consisting of twisted molecular arrangement than 180 °, for having a steep electrooptical characteristic , each switching element for each pixel (thin film transistor or a diode - de) is easily large-capacity display by not be time-division driving is obtained.

【0004】しかしながら前述したST方式は応答速度が数百ミリ秒と遅く、また視角特性も狭いので高い表示性能を必要とする応用製品には適さない。 However ST method described above is slow and several hundred milliseconds response time, also not suitable for applications products requiring high display performance because the viewing angle characteristics narrow.

【0005】一方、旋光モ−ドのLCDは90゜捩じれた分子配列をもち(TN方式と呼ばれる)、高いコントラスト比を示すことから、時計や電卓、さらにはスイッチング素子を各画素ごとに設けることにより大表示容量で高コントラストな高い表示性能を持ったLCD(たとえばTFT−LCD)を実現することができる。 On the other hand, the optical rotation mode - the de of LCD (referred to as TN mode) has a molecular alignment twisted 90 °, because they exhibit a high contrast ratio, watches and calculators, to further provide a switching element for each pixel it is possible to realize a LCD with a high contrast high display performance large display capacity (for example, TFT-LCD) by.

【0006】近年、このTN方式のTFT−LCDは階調表示を行っているが、斜めから観察した場合には表示の反転や黒つぶれ、白抜けといった現象が生じる。 In recent years, although performed TFT-LCD gradation display of the TN type, crushed reversal or black display when viewed from an oblique, white phenomenon omission occurs. よって、視角特性は極めて狭い。 Thus, the viewing angle characteristic is extremely narrow.

【0007】また、このTN方式のTFT−LCDは高品位化に伴い、デスクトップモニタ等大型でかつ極めて高精細な応用製品にも用いられるようになった。 Further, TFT-LCD of the TN scheme with the higher quality, now also used desktop monitors such large size and very high-resolution applications product. こうした分野や、高品位のTV用途に応用する場合、極めて早い応答速度が必要になるが、前記TN方式は階調表示を行った場合、パタ−ン書き替えに要する応答時間は最大100ミリ秒と遅い。 These areas and, when applied to a high-quality TV applications, but would require a very fast response speed, the TN mode when performing gradation display pattern - the maximum response time required for the emission rewriting 100 ms When slow.

【0008】また、このTN方式は高いコントラスト特性を得るには、動作電圧が4〜5v必要であり、消費電力は高い。 [0008] The TN mode obtaining high contrast characteristics, the operating voltage is required 4 V to 5 V, the power consumption is high.

【0009】前述したTN方式の視角特性を改善する手段として、一画素内に液晶分子の起き上がる方向(プレチルト方向)が180゜異なる二領域を設けた液晶表示素子を用いて視角依存性を改善する方法(Two Domain [0009] As a means for improving the viewing angle characteristics of the TN method described above, to improve the viewing angle dependence by using a liquid crystal display device in which the direction of rise of the liquid crystal molecules in one pixel (pretilt direction) provided 180 ° two different areas method (Two Domain
TN:TDTNと略称 例えば、特開昭64−8852 TN: TDTN the abbreviation for example, JP-A-64-8852
0)や、スプレイ配列を用い、TDTNと同様の効果を得るDomain Divided TN(DDTNと略称 Y.Koike,e 0) and, using a splay alignment, Domain obtain the same effect as TDTN Divided TN (DDTN abbreviated Y.Koike, e
t.al.,1992,SID,p798)などが提案されている。 t.al., 1992, SID, p798) and the like have been proposed. これらは、前述した印加電圧−透過率特性の視角依存性が異なる二領域を一画素として、前述した極値を事実上なくすことを目的としている。 These above-mentioned applied voltage - the viewing angle dependence two different regions of the transmittance characteristics as one pixel, are intended to virtually eliminate extreme described above.

【0010】しかしながら、これらの手法は、微細な領域内でプレチルト方向を変えるためにレジストをパタ− [0010] However, these approaches pattern the resist to change the pretilt direction in a fine region -
ニングしてラビングしたり、微細な領域内で2種の配向膜(表面状態や材料)を形成するためにパタ−ニングやマスク露光をしたり、と従来のTN方式の工程より工程数が増え、著しくコスト高となるため、実用的でない。 Increasing the number of steps than the process or the training and mask exposure, the conventional TN-type - or rubbed by training, pattern for forming the two alignment films with a fine area (surface condition and material) , since the considerably high cost, is not practical.

【0011】また、ある程度の視角範囲では前述した極値をなくすことができるが、視角特性は視角依存性が異なる二領域の個々の特性の平均の特性であり、視角方向によっては極致をなくすことができない。 Further, although in some viewing angle range can be eliminated extreme described above, the viewing angle characteristics is the average of the properties of the individual characteristics of the viewing angle dependence is different second area, eliminating the perfection by viewing angle can not. また、コントラストについては、悪い特性と良い特性を平均化するので、平均的な特性となってしまい良い特性単体よりもコントラストが低下してしまう。 Also, the contrast, since averaging the poor characteristics and good characteristics, average characteristic and turned to cause good characteristics alone contrast than decreases. また、応答速度については従来のTN方式と変わりない。 In addition, the response speed is not the same as the conventional TN system.

【0012】これに対し、ヤマグチ(Y.Yamaguchi )らは、ツイストしていないスプレイ配列のネマティック液晶層に電圧を印加して、ベント配列としてこのベント配列を維持する印加電圧範囲内で液晶分子のチルト状態を印加電圧値により制御し、液晶層における位相差を電圧により制御する複屈折効果型の液晶表示モ−ド:OCB [0012] In contrast, Yamaguchi (Y.Yamaguchi) et al, by applying a voltage to the nematic liquid crystal layer of the splay alignment that is not twisted, the liquid crystal molecules in the applied voltage range to maintain the vent arrangement as vent sequence the tilting state is controlled by the applied voltage, the liquid crystal liquid crystal display of the birefringence effect of controlling the voltage phase difference in layer mode - de: OCB
モ−ド(Optically Compensated Birefringence mode) Mode - de (Optically Compensated Birefringence mode)
を提案している(Y.Yamaguchi,etal.SID93 DI It has proposed a (Y.Yamaguchi, etal.SID93 DI
GEST,pp277−280)。 GEST, pp277-280). また、ボス(P.Bos In addition, the boss (P.Bos
)らも同様の液晶表示モ−ドを提案している(P.Bos, ) Et a similar liquid crystal display mode - proposes de (P.Bos,
etal. SID´83 DIGEST,pp30−3 etal. SID'83 DIGEST, pp30-3
1)。 1).

【0013】このOCBモ−ドの液晶分子配列は、液晶層の上半分、下半分が常時対称な形状となっていることが特徴である。 [0013] The OCB mode - de crystal molecular arrangement of the upper half of the liquid crystal layer, is characterized in that the lower half has always symmetrical. 従って左右方位に視角(観察角度)を傾けても、その視角特性は対称となる。 Therefore, even if the viewing angle is inclined (observation angle) in the lateral direction, the viewing angle characteristics become symmetrical. さらに、2軸の位相差板を配置することにより、ある電圧状態にて、前記液晶層と前記2軸の位相差板の屈折率楕円体が球となり(つまり3次元的に屈折率異方性が無い光学媒体となること)、この状態からX方位に位相差を発生させることにより、種々の視角において位相差が0から2分の1波長まで変化する電圧制御が可能となり、前述した視角依存性が殆どない表示モ−ドとなっている。 Further, by arranging the retarder of two axes at a certain voltage condition, the refractive index ellipsoid of the phase difference plate of the two-axis and the liquid crystal layer becomes spherical (i.e. three-dimensional refractive index anisotropy be that there is no optical media), by generating a phase difference X direction from this state, it enables the voltage controlled phase difference in different viewing angle changes from 0 to a half wavelength, the viewing angle dependence of the aforementioned sex is almost no display mode - has become a de.

【0014】このようにOCBモ−ドは、前述した階調性能、コントラスト性能の視角特性の点では優れている。 [0014] OCB Thus mode - de the gray scale performance described above, in terms of viewing angle characteristics of contrast performance are excellent. しかしながら、前記OCBモ−ドは、液晶分子配列をスプレイ配列(電圧無印加状態)から、電圧印加によりベント配列に転移させる必要があり、これには強いエネルギ−が必要で、実際には(転移後の)駆動電圧以上の電圧を印加する必要があった。 However, the OCB mode - de is the alignment of liquid crystal molecules from the splay alignment (no voltage applied state), it is necessary to transfer to the vent sequence by applying voltage, which a strong energy - is required, in practice (metastasis after) it is necessary to apply a driving voltage higher than. 大容量で高精細な表示を行う場合、TFTが必要となるが、このTFT素子では印加できない電圧であり、前記OCBモ−ドは大容量で高精細な表示には実用できなかった。 When performing high-definition display with a large capacity, TFT but is required, a voltage can not be applied in the TFT element, the OCB mode - de could not be practical for high-definition display with a large capacity. また、転移に要する時間は1分以上も掛り、ディスプレイを立ち上げてから表示が出るまで、まるで真空管を用いたCRTディスプレイのように時間が掛る。 Also, the time required for metastasis consuming more than 1 minute, pending the display from launching the display time as a CRT display in which like using a vacuum tube consuming.

【0015】また、前記OCBモ−ドは、ベント配列を維持する(スプレイ配列への転移を防止する)必要があり、このためにはある程度の電圧を常時全変調部に印加しておく必要がある。 Further, the OCB mode - de is (prevents metastasis to splay alignment) to maintain the vent arrangement must, for this purpose is required to be applied at all times all modulation section some voltage is there. 素子の駆動電圧を少しでも低くするためには、前記ベント配列を維持する電圧を駆動電圧範囲の下限とする必要がある。 To reduce the driving voltage of the device even slightly, it is required to be the lower limit of the drive voltage range a voltage for maintaining the vent arrangement. この場合、この印加電圧においてベント配列が安定して維持される必要がある。 In this case, the vent arrangement in the applied voltage has to be maintained stably.
しかしながら、ベント配列が安定して維持される印加電圧は、およそ2.5Vと高く、結果的に駆動電圧は高いものとなっていた。 However, the applied voltage to vent sequence is stably maintained as high as approximately 2.5V, resulting in drive voltage had become high.

【0016】また、十分なコントラストを得るには動作電圧として5〜8vも必要であり、消費電力は極めて高い。 Further, 5~8V is also necessary as the operating voltage to obtain a sufficient contrast, the power consumption is very high.

【0017】また、高温状態では液晶相のリタデ−ションが変化するので表示特性が悪化するといった温度特性の問題もある。 Further, the liquid crystal phase Ritade in a high temperature state - is also a problem of the temperature characteristic such Deployment display characteristics deteriorate because changes. また、生産上、上下基板のプレチルト角を感ぜんに対称に制御する必要があり、面内におけるプレチルト角むらのマ−ジンが狭い。 Moreover, the production must be controlled symmetrically does Kanze pretilt angles of the upper and lower substrates, the pretilt angle unevenness in the surface Ma - gin is narrow. よって歩留まりが低いといった問題もある。 Therefore, the yield is also a problem such as low.

【0018】これに対し、大江らは一方に基板に基板平面方向に電界が印加できる電極を形成し、液晶分子の配列方向を基板平面方向において変化させるインプレイン(In-plane)モ−ドを改良し、単純な電極構造からなるTFTアレイ及びSSFLCのように45゜の分子配列変化としたTFT−LCDを提案したIPSモ−ド(M,O [0018] In contrast, Oye et forms an electrode capable field applied to the substrate plane direction of the substrate on one, in-plane (In-plane) to the alignment direction of liquid crystal molecules is changed in a substrate plane direction mode - a de improved, IPS mode was proposed TFT-LCD with a 45 ° molecular arrangement varies as the TFT array and SSFLC consisting simple electrode structure - de (M, O
he,et.al."Principles and Characteristics of Elect he, et.al. "Principles and Characteristics of Elect
ro-Optical BehaviourIn-Plane Switching Mode",ASIA ro-Optical BehaviourIn-Plane Switching Mode ", ASIA
DISPLAY '95 DIGEST PAPER p577-580,1995)がある。 DISPLAY '95 DIGEST PAPER p577-580,1995) there is.

【0019】このIPSモ−ドは、SSFLC同様、基板平面方向に液晶分子配列方向を変化させ、リタ−デ− [0019] The IPS mode - de is, SSFLC Similarly, changing the liquid crystal molecular alignment direction in the substrate plane direction, Rita - de -
ションの生じる光軸を電界により制御するものなので前述した階調表示性能やコントラスト性能の視角特性は極めて広い。 The optical axis of occurrence of Deployment because they are controlled by an electric field viewing angle characteristic of the gradation display performance and contrast performance described above is very wide. しかしながら、液晶分子の配向規制力(アンカリング)の影響を強く受けるため応答速度は遅い。 However, strongly receive since the response speed of the impact of the alignment regulating force (anchoring) of the liquid crystal molecules is slow. また、動作電圧も7vと高く消費電力は極めて高い。 Further, the operating voltage is high power consumption and 7v is very high. また、原理的に電極上の液晶分子を変化させることができないので電極上の光偏重は不可能であり、電極は遮光性のある金属を用いざる終えない。 Moreover, it is not possible to change the liquid crystal molecules on the principle electrode light overemphasis on the electrode is impossible, the electrode is not completed forced a metal with a light shielding property. よってTFT−LCD Therefore, TFT-LCD
としては開口率が低くなり、表示輝度は極めて暗くなる。 The aperture ratio is low, the display brightness is extremely dark.

【0020】 [0020]

【発明が解決しようとする課題】前述したように、従来の表示モ−ドは、視角特性、応答速度、駆動電圧(消費電力)、表示輝度、温度特性等の問題があり、これらを全て満足するLCDはなかった。 As described above [0008], the conventional display mode - De is the viewing angle characteristic, response speed, the driving voltage (power), there is the display brightness, such as temperature characteristic problem, satisfy all of these LCD was not to be.

【0021】本発明は、こうした従来の表示モ−ドの問題点を解決し、極めて優れた品位をえる新規な表示モ− [0021] The present invention is, these conventional display mode - to solve the problems of soil, display novel obtain a very good quality mode -
ドの構成等を提案することを目的とする。 An object of the present invention is to propose a soil structure and the like.

【0022】 [0022]

【課題を解決するための手段】本発明は、対向2枚の基板間に液晶層を狭持して複数の画素を形成する液晶セルとこの液晶セルを2つの偏光器で挟んでなる液晶表示素子において、前記2枚の基板は前記液晶層側にそれぞれ電極を有しており、前記電極は前記画素毎に前記液晶層に電界を印加できるように対向配置され、少なくとも一方の基板の電極が画素毎に細幅の導電体部と非導電体部とを前記液晶層に斜め電界がかかるように交互に配列して形成されることを特徴とする液晶表示素子を得るものである。 Means for Solving the Problems The present invention relates to a liquid crystal display between opposed two substrates formed by interposing the two polarizers a liquid crystal cell and the liquid crystal cell to form a plurality of pixels to hold the liquid crystal layer in the device, the two substrates has a respective electrode on the liquid crystal layer side, the electrode is disposed opposite so as to apply an electric field to the liquid crystal layer in each pixel, at least one of the substrates of the electrodes it is intended to obtain a liquid crystal display element characterized by an oblique electric field is formed by arranging alternately as according to each pixel and a conductive portion and a non-conductive portion of the narrow to the liquid crystal layer.

【0023】ここに非導電体部とは、導電体部間の間隙部分またはこの間隙に非導電体材料が形成された領域をいう。 [0023] Here the non-conductive portion, refers to a gap portion or region non-conductive material is formed in the gap between the conductive portions.

【0024】この電極の基本構成を図1に、また電極を組み合わせたセルの構成を図2に示す。 [0024] Figure 1 shows the basic configuration of the electrodes, also the configuration of the cell that combines electrodes in FIG. この液晶セルのように本発明の液晶表示素子は電圧を印加した場合、図2(c)に示したように液晶層に斜め電界が印加されることを特徴とする液晶表示素子である。 If this liquid crystal display device of the present invention as a liquid crystal cell on application of a voltage, a liquid crystal display element characterized by an oblique electric field is applied to the liquid crystal layer as shown in Figure 2 (c).

【0025】本発明の液晶表示素子では図2(c)に示すような周期的な斜め電界が液晶層に印加でき、液晶層全体について厚み方向に対しても、面内方向に対しても、また、電極上の液晶分子に対しても容易に電界が印加される。 [0025] In the liquid crystal display device of the present invention can be applied to a periodic oblique electric field the liquid crystal layer as shown in FIG. 2 (c), with respect to the thickness direction for the whole liquid crystal layer, also with respect to the in-plane direction, also, easy electric field is applied also to the liquid crystal molecules on the electrode.

【0026】2枚の偏光板間に前記液晶セルを挟持し、 The sandwiching the liquid crystal cell between two polarizing plates,
前述した従来の表示モード同様、偏光を制御し、入射した光の透過/吸収を制御するようにしているので直視型の液晶表示素子となる。 Similar conventional display mode described above, by controlling the polarization, a direct-view type liquid crystal display device because it is adapted to control the transmission / absorption of the incident light.

【0027】本発明に用いる液晶セルは発明者等の特願平06−121634号に示される液晶表示素子同様、 [0027] Similarly liquid crystal display device liquid crystal cell used in the present invention is shown in Japanese Patent Application No. 06-121634 of the inventors,
斜め電界を印加できる液晶セルを用いるものである。 It is to use a liquid crystal cell capable of applying an oblique electric field. しかしながら、特願平06−121634号に示される液晶表示素子はセルに偏光を入射させる手段は有するものの、検光子は設けていない。 However, the liquid crystal display device as shown in Japanese Patent Application No. 06-121634 although has means for entering a polarized cell, the analyzer is not provided. つまり、偏光板を2枚用いた構成ではない。 That is not a configuration using two polarizing plates. これに対し、本発明は液晶セルを2枚の偏光板に挟持した構成としている。 In contrast, the present invention is configured so as to sandwich the liquid crystal cell 2 polarizing plates. これは、前記特願平06−121634号に示される液晶表示素子は直視型ではなく、投射型用に液晶表示素子にて入射した光の透過/散乱を制御するものであり、構成上も機能上も異なるものである。 This liquid crystal display device as shown in Japanese Patent Application No. 06-121634 is not a direct view, and controls the transmission / scattering of light incident on the liquid crystal display device for projection, also the configuration function above is different. また、本発明は前述したように入射した光の透過/吸収を制御するものであり、本発明の目的に特に適した諸条件は、後述するように前記特願平06 Further, the present invention is to control the transmission / absorption of light incident as described above, conditions that are particularly suitable for the purposes of the present invention, the as described below Hei 06
−121634号とは異なっている。 It is different from the issue -121,634.

【0028】また、図4に示すように、液晶分子は電界の印加により電界方向に誘電率異方性により液晶分子が回転する。 Further, as shown in FIG. 4, the liquid crystal molecules are liquid crystal molecules are rotated by dielectric anisotropy field direction by application of an electric field. 図4は液晶分子が初期状態において、電極方向に対して45゜の方向に配向されている。 Figure 4 is the liquid crystal molecules are initially is oriented to the electrode direction in 45 ° direction. そして電圧が印加されることによって、液晶分子は45゜回転してほぼ電極方向に対して直交方向を向く。 And when a voltage is applied, liquid crystal molecules are oriented in the direction perpendicular to the substantially electrode direction rotated 45 °.

【0029】液晶層と偏光板との組み合わせによる透過率の計算式は以下のようになる。 The calculation formula of the transmission in combination with the liquid crystal layer and the polarizing filters are as follows.

【0030】 I=I0×sin2( 2θ)×sin2( Rπ/λ) このとき、Iは透過光強度、Iは入射光強度、θは偏光板と液晶分子の光軸との角度、Rは液晶層でのリタデーション、λは透過光の波長である。 [0030] I = I0 × sin2 (2θ) × sin2 (Rπ / λ) In this case, I is the transmitted light intensity, I is the incident light intensity, theta is the angle between the optical axis of the polarizing plate and the liquid crystal molecules, R represents a liquid crystal retardation of the layer, lambda is the wavelength of the transmitted light. (1)式を計算すると図4のようになる。 (1) Calculating the formula is as shown in FIG. 図から明らかなように、Rの値に対してもθの値に対してもIは極地を持つ。 As can be seen, also I have the polar to the value of even for values ​​of R theta. θを変化させることにより表示を行う本発明の液晶表示素子はRの値を可視光波長の1/2とすることにより、最も高い光強度を得る。 The liquid crystal display device of the present invention performs display by changing the θ is by 1/2 of visible light wavelength values ​​of R, to obtain the highest light intensity. θは0、及びπ/2で極小値0をとり、π θ takes a minimum value of 0 is 0, and π / 2, π
/4(+mπ/2 m:0、1、2、3)で極大I0× / 4 (+ mπ / 2 m: 0,1,2,3) at the maximum I0 ×
sin2(Rπ/λ)をとる。 Take a sin2 (Rπ / λ). よって高いコントラストを得るにはθの値が、少なくとも0からπ/4(π/4 Thus in order to obtain a high contrast value of θ is from at least 0 π / 4 (π / 4
から0)以上の変化、例えば0からπ/3、若しくはπ 0) or more changes, e.g. from 0 to [pi / 3, or [pi
/4からπ/2(π/2からπ/4)以上の変化をするように電界方位に対しての液晶分子配列方位を定めれば良い。 / 4 π / 2 (π / 2 from the [pi] / 4) may be set to the liquid crystal molecular arrangement orientation to the electric field direction to the above changes.

【0031】本発明の液晶表示素子は図2に示すように、十分な電界を印加した場合、誘電率異方性が△εが正のネマチック液晶の場合、液晶分子配列は電界方位に平行な状態をとる。 The liquid crystal display device of the present invention as shown in FIG. 2, when applying a sufficient electric field, when the dielectric anisotropy △ epsilon is positive nematic liquid crystal, the liquid crystal molecular alignment is parallel to the electric field orientation take the state. 従って電圧を印加していない状態での前記θの値を45゜から90゜とすれば、前述した高いコントラストを得る必要条件を満たすこととなる。 Thus if 90 ° the value of the θ in a state in which no voltage is applied from 45 °, and thus satisfy necessary to obtain a high contrast as described above. また、誘電率異方性△εが負のネマチック液晶の場合、液晶分子配列は電界方位と直交した方位に配列する。 Also, if the dielectric anisotropy △ epsilon is negative nematic liquid crystal, the liquid crystal molecular alignment is arranged in the orientation orthogonal to the electric field orientation. したがって、この状態でθの取り得る値の最小値はπ/2である。 Therefore, the minimum value of the possible values ​​in this state θ is [pi / 2. また、電圧を印加しない状態での液晶分子配列から取りうるθの値の最小値は0であるから、高いコントラストを得るためには、電圧を印加していない状態での前記θの値を0゜以上45゜未満とすればよい。 Further, since the minimum value of θ can be taken from the liquid crystal molecular alignment in a state where no voltage is applied is 0, in order to obtain a high contrast, the value of the θ in a state where a voltage is not applied 0 ° may be set to less than 45 °.

【0032】また、本発明は、対向する2枚の基板間に液晶層を狭持して複数の画素を形成する液晶セルとこの液晶セルを2つの偏光器で挟んでなる液晶表示素子において、前記2枚の基板は前記液晶層側にそれぞれ電極を有しており、前記電極は前記画素毎に前記液晶層に電界を印加できるように対向配置され、前記2つの基板の電極が画素毎に複数の細幅の導電体部と非導電体部とを互に配列して形成され、一方の基板の電極の導電体部が他方の基板の電極の非導電体部に実質的に対向しており、 Further, the present invention provides a liquid crystal display device formed by interposing the two polarizers a liquid crystal cell and the liquid crystal cell to form a plurality of pixels sandwiched a liquid crystal layer between two opposed substrates, said two substrates have respectively electrodes on the liquid crystal layer side, the electrode is disposed opposite so as to apply an electric field to the liquid crystal layer in each pixel, the two electrodes of the substrate for each pixel are formed by mutually arranging the conductor part and the non-conductive portion of the plurality of narrow, conductive portion of one substrate of the electrode is substantially opposite to the non-conductive portions of the other substrate electrode cage,
それぞれの電極の非導電体部の幅が導電体部の幅よりも大きいことを特徴とする液晶表示素子を提供するものである。 In which the width of the non-conductive portions of the respective electrodes to provide a liquid crystal display element characterized by greater than the width of the conductive portion.

【0033】さらに、対向する2枚の基板間に液晶層を狭持して複数の画素を形成する液晶セルとこの液晶セルを2つの偏光器で挟んでなる液晶表示素子において、前記2枚の基板は前記液晶層側にそれぞれ電極を有しており、前記電極は前記画素毎に前記液晶層に電界を印加できるように対向配置され、前記2つの基板の電極が画素毎に複数の細幅の導電体部と非導電体部とを互に配列して形成され、一方の基板の電極の導電体部が他方の基板の電極の非導電体部に実質的に対向しており、それぞれの電極の導電体部の幅が非導電体部の幅よりも大きいことを特徴とする液晶表示素子を得るものである。 Furthermore, in the liquid crystal display device formed by interposing the two polarizers a liquid crystal cell and the liquid crystal cell to form a plurality of pixels sandwiched a liquid crystal layer between two opposed substrates, the two substrate has a respective electrode on the liquid crystal layer side, the electrode is the said liquid crystal layer for each pixel are opposed so as to apply an electric field, the two of the plurality of narrow electrodes for each pixel of the substrate the conductive portions and the non-conductive portion and are the mutually formed by arranging, conductive portion of one substrate of the electrode is substantially opposite to the non-conductive portions of the other substrate electrode, respectively the width of the conductor portion of the electrode is to obtain a liquid crystal display element characterized by greater than the width of the non-conductive portion.

【0034】さらに、対向する2枚の基板間に液晶層を狭持して複数の画素を形成する液晶セルとこの液晶セルを2つの偏光器で挟んでなる液晶表示素子において、前記2枚の基板は前記液晶層側にそれぞれ電極を有しており、前記電極は前記画素毎に前記液晶層に電界を印加できるように対向配置され、前記2つの基板の電極が画素毎に複数の細幅の導電体部と非導電体部とを互に配列して形成され、一方の基板の電極の導電体部が他方の基板の電極の非導電体部に実質的に対向しており、それぞれの電極の導電体部の幅が非導電体部の幅が等しいことを特徴とする液晶表示素子を得るものである。 Furthermore, in the liquid crystal display device formed by interposing the two polarizers a liquid crystal cell and the liquid crystal cell to form a plurality of pixels sandwiched a liquid crystal layer between two opposed substrates, the two substrate has a respective electrode on the liquid crystal layer side, the electrode is the said liquid crystal layer for each pixel are opposed so as to apply an electric field, the two of the plurality of narrow electrodes for each pixel of the substrate the conductive portions and the non-conductive portion and are the mutually formed by arranging, conductive portion of one substrate of the electrode is substantially opposite to the non-conductive portions of the other substrate electrode, respectively the width of the conductor portion of the electrode is to obtain a liquid crystal display element, wherein the width of the non-conductive portion are equal.

【0035】さらに、電極の導電体部と非導電体部の幅が画素内で変化していることを特徴とする前記液晶表示素子を得るものである。 Furthermore, one in which the width of the conductive portion and the non-conductive portion of the electrode to obtain a liquid crystal display element characterized in that changes in the pixel.

【0036】さらに。 [0036] further. 電極の導電体部と非導電体部の幅が画素内で一定であることを特徴とする前記液晶表示素子を得るものである。 The width of conductive portions and the non-conductive portion of the electrode is to obtain a liquid crystal display device which is a constant within the pixel.

【0037】さらに、電極が画素毎に、最も狭い幅が5 Furthermore, electrodes for each pixel, the narrowest width of 5
0μm以下である細幅の導電体部と非導電体部からなることを特徴とする前記液晶表示素子を得るものである。 0μm is intended to obtain a liquid crystal display element characterized by comprising a conductive portion and a non-conductive portion of the is narrow or less.

【0038】さらに、電極の少なくとも一部が透明電極であることを特徴とする前記液晶表示素子を得るものである。 [0038] Further, it is to obtain a liquid crystal display device in which at least part of the electrode is characterized in that it is a transparent electrode.

【0039】さらに、2枚の偏光器は、吸収軸が相互に直交するように配置されており、電極に電圧を印加しない状態において液晶層の液晶分子の基板表面での配列方位が、前記2枚の偏光器の一方の吸収軸と平行に配置されていることを特徴とする前記液晶表示素子を得るものである。 [0039] Further, the two polarizers absorption axes are arranged to be perpendicular to each other, orientation direction in the substrate surface of the liquid crystal molecules of the liquid crystal layer when no voltage is applied to the electrodes, the two it is intended to obtain a liquid crystal display element characterized that are arranged in parallel with one of the absorption axis of the sheet polarizer.

【0040】さらに、少なくとも一方の基板がスイッチング素子と画素電極を有するアクティブマトリクス基板であることを特徴とする前記液晶表示素子を得るものである。 [0040] Further, it is to obtain a liquid crystal display element characterized in that at least one of the substrates is an active matrix substrate having a switching element and a pixel electrode.

【0041】さらに、少なくとも一方の基板にカラーフィルターを有することを特徴とする前記液晶表示素子を得るものである。 [0041] Further, it is to obtain a liquid crystal display element characterized by having a color filter on at least one of the substrates.

【0042】さらに、液晶層が誘電率異方性が負号の液晶組成物で構成されてなることを特徴とする前記液晶表示素子を得るものである。 [0042] Furthermore, one in which the liquid crystal layer dielectric anisotropy obtain the liquid crystal display element characterized by formed by a liquid crystal composition of the negative sign.

【0043】 [0043]

【発明の実施の形態】以下、本発明の実施の形態について、図面を用いて詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0044】図1に本発明の液晶表示素子の電極構造の1実施形態を示す。 [0044] shows an embodiment of the electrode structure of the liquid crystal display device of the present invention in FIG. (a)に示す観察側の上基板の電極構造は導電体部12aと非導電体部11aを有するストライプ電極構造であり、(b)に示す対向側のアクティブマトリクス基板である下基板はベたの導電体部の電極12b構造である。 Electrode structure of the substrate on the viewing side shown in (a) is a stripe electrode structure having a conductive portion 12a and the non-conductive portion 11a, the lower substrate is an active matrix substrate of the opposite side shown in (b) was Baie an electrode 12b of the structure of a conductive section.

【0045】図2に図1の電極をもつ本実施形態の液晶表示素子のセル構造の一例を示す。 [0045] Figure 2 shows an example of a cell structure of a liquid crystal display device of the present embodiment having the electrode of Figure 1. (a)は図1 (A) Figure 1
(a)、(b)を組み合わせたときのセル構造の概略を示す斜視図であり、10a、10bはそれぞれ上基板、 (A), a perspective view schematically showing the cell structure when a combination of (b), 10a, on each of 10b substrate,
下基板を示す。 Showing the lower substrate. (b)はその断面図で、13は配向膜を示す。 (B) is a sectional view thereof, 13 denotes an alignment film. 図2(c)に本実施形態の液晶表示素子のセル内部の電圧印加時の液晶14の液晶分子14aの配列状態を示す。 Figure 2 shows the alignment state of the liquid crystal molecules 14a of the liquid crystal 14 when a voltage is applied to the cell interior of the liquid crystal display device of the present embodiment (c).

【0046】図3に本実施形態の液晶表示素子の構成を示す。 [0046] showing a configuration of a liquid crystal display device of this embodiment in FIG.

【0047】上基板10aとして非画素部全域にクロムからなるブラックマトリクスを形成したCOM基板用I [0047] For COM substrate to form a black matrix made of chromium to the non-pixel portions throughout the upper substrate 10a I
TOパタ−ンニングガラス基板を用い、下基板10bとしてTFTからなるスイッチング素子15付きガラス基板を用いた。 TO pattern - with emissions training glass substrate, a glass substrate with a switching element 15 composed of a TFT as a lower substrate 10b. 下基板10bの画素電極12bには上基板10aの電極と同様にITOの透明膜を用いている。 And a transparent film of ITO as with the electrode of the upper substrate 10a to the pixel electrode 12b of the lower substrate 10b. そして、上基板の電極12Aのみ50μm以下、望ましくは30μm以下の細幅のストライプ状にパターニングされている。 Then, only the electrode 12A of the upper substrate 50μm or less, preferably are patterned in stripes in the following narrow 30 [mu] m. このITO電極はストライプ状の配列とし、 The ITO electrode is a stripe-shaped arrangement,
ITO導電体部12aとそれが取り除かれて形成された非導電体部11aの各幅EL、SSはともに8μmとなっている。 ITO conductive portions 12a and it removed and formed the width EL of the non-conductive portion 11a, SS are both a 8 [mu] m.

【0048】こうした基板を用いて、配向膜13として(株)日本合成ゴム製のAL−3046(プレチルト角測定値3゜)を形成し、上下基板ともにストライプの電極延長方向に対して、45゜の方向にラビング処理を、 [0048] Using such a substrate, to form a as an alignment film 13 Co. Japan Synthetic Rubber Ltd. of AL-3046 (pre-tilt angles measured 3 °), with respect to the electrode extension direction of the stripe in both the upper and lower substrates, 45 ° a rubbing treatment in the direction of,
これら両基板を組合わせたときに基板相互のラビング方向が直交するように施したのち、下基板側に基板間隙剤として液晶層厚が2.5μmとなるよう(株)積水ファインケミカル製の微粒子:ミクロパ−ル(粒径2.5μ After the rubbing direction of the substrate mutually when combined these two substrates were subjected to orthogonal, so that the liquid crystal layer thickness becomes 2.5μm as the substrate gap agent the lower substrate side Corporation Sekisui Fine Chemical Co. of microparticles: Mikuropa - Le (particle size 2.5μ
m)を分散密度100個/mm 2となるよう乾式散布法にて散布して、これら基板間に誘電異方性が正の液晶材料として(株)メルクジャパン製ZLI−1132(Δ The m) was applied by a dispersion density of 100 / mm 2 to become as dry spraying method, a liquid crystal material positive dielectric anisotropy of between these substrates Co. Merck Japan Ltd. ZLI-1132 (delta
n=0.14)を挟持して、液晶セルを得た。 n = 0.14) was sandwiched to obtain a liquid crystal cell. ここに15はTFTスイッチング素子、16はフラックマトリクスを示す。 Here 15 TFT switching element, 16 indicates a flux matrix.

【0049】そして、この液晶セルに対してラビング方向と直交する方向に板状の偏光器20a、20bを配置し、ノーマリーブラックモードの液晶表示素子を得た。 [0049] Then, a plate-like polarizer 20a in a direction perpendicular to the rubbing direction with respect to the liquid crystal cell, disposed 20b, to obtain a liquid crystal display element of normally black mode.

【0050】基板法線方向からみた分子配列のモデルを図4に示す。 [0050] A model of a molecular arrangement viewed from the substrate normal direction in FIG. (a)は初期状態、(b)は電圧印加後の分子配列状態を示す。 (A) an initial state, (b) shows a molecular arrangement state after voltage application. ラビング方向は電極に対して45 The rubbing direction 45 relative to electrode
゜の方向でホモジニアス配列としている。 It is a homogeneous alignment in ° direction.

【0051】図4に示したように、初期状態では分子1 [0051] As shown in FIG. 4, molecules 1 in the initial state
4aはラビング方向に沿って一様に配向されているので、両偏光器間を通過する透過光はほぼ零となる。 Because 4a is uniformly oriented in the rubbing direction, the transmitted light that passed between the polarizers is almost zero. このセルに電圧を印加していくとその電界の方向に液晶が配列していき、十分な電圧が印加された状態では図4 As you apply a voltage to the cell continue to the liquid crystal is arranged in the direction of the electric field, the figure in the state where a sufficient voltage is applied 4
(b)のような配列状態となる。 The arrangement state shown in (b). (b)に示したように、液晶分子は電圧が加わることによって、液晶層に斜め電界がかかる。 As shown (b), the liquid crystal molecules when a voltage applied, an oblique electric field is applied to the liquid crystal layer. その斜め電界により非導電体部領域では液晶分子14aの長軸が電極延長方向から45゜に位置していたものが、90゜の方向に向かっていく。 Its is a non-conductive region by an oblique electric field which long axes of liquid crystal molecules 14a had 45 ° position from the electrode extension direction, go toward the 90 ° direction. 電圧を印加していくことによって複屈折効果が生じるようになり、偏光器の吸収軸は電極に対して45゜の方向となっているので、透過光強度が増加していく。 Now birefringence effect occurs due to continue to apply a voltage, the absorption axis of the polarizer so that a 45 ° direction with respect to the electrode, the transmitted light intensity increases.

【0052】図2に示すように、この素子に電源21によって電圧を印加した場合、液晶層14には一方の導電体部分から他の基板の電極の導電体部に対して斜めの電界がかかる。 [0052] As shown in FIG. 2, when a voltage is applied by the power source 21 to the device, takes oblique electric field to the conductive portions of one conductor portion from the other substrate electrode to the liquid crystal layer 14 . この素子ではストライプ状の電極とベたの電極とが対向しているので、対向している部分には基板法線方向の電界が、また、非導電体部と導電体部が対向している部分では非導電体部の隣の導電体部からもう一方の基板の導電体部に対して斜め方向に電界が生じている。 Since the stripe-shaped electrode and the base was electrodes in this device are opposed, the electric field of the substrate normal direction in a portion facing is also non-conductive portion and the conductive portion is opposed electric field is generated in an oblique direction with respect to the conductor portion of the other substrate from the conductive portion of the adjacent non-conductive portion in part. 従って、このセルに液晶分子が配向されているとすると、非導電体部と導電体部が対向している部分では斜め電界により液晶分子はストライプ電極の垂直方向に斜めに配列されるようになる。 Therefore, the liquid crystal molecules in the cell is to be oriented, so that the liquid crystal molecules are obliquely arranged in the vertical direction of the stripe electrodes by an oblique electric field in a portion where the non-conductive portion and the conductive portion is opposed . そしてその電界は非導電体部の領域において、導電体部から離れれば離れるほど基板面方向に近づくので、液晶分子の配列も基板面方向に近づいていく。 And in the region of the electric field is non-conductive portion, the closer to the substrate surface direction further away from the conductive portion, the arrangement of the liquid crystal molecules even approaches the substrate surface direction.

【0053】このようにして得られた本実施形態の液晶表示素子に各画素のTFTスイッチング素子を介して電圧を印加して電気光学特性(透過率−印加電圧曲線)を測定した。 Was measured - (applied voltage curve transmittance) [0053] In this manner the electro-optical properties by applying a voltage through the TFT switching element of each pixel in the liquid crystal display device of the present embodiment obtained. 透過率−印加電圧曲線を求めるために液晶表示素子にHe-Ne レーザー光を入射させ、透過率を測定した。 Permeability - is incident He-Ne laser beam to the liquid crystal display device in order to determine the applied voltage curve was measured for transmittance. 光のスポット径は2mmで、透過したレーザー光は液晶表示素子から距離20cmのところにあるフォトダイオードにより検出した。 In spot diameter 2mm light, laser light transmitted was detected by the photodiode located at a distance 20cm from the liquid crystal display device.

【0054】図5に0Vから徐々に印加電圧を3.3V [0054] gradually applied voltage from 0V in Figure 5 3.3V
まで増加、3.3Vから徐々に0Vまで減少させていったときの透過率−印加電圧曲線を示す。 Shows the applied voltage curve - increased to, transmittance when is gradually reduced to 0V from 3.3V. 電気光学特性にヒステリシスは全くなかった。 Hysteresis was not at all to the electro-optical characteristics. また、曲線aに示すように、印加電圧3.1V及び0Vにて、応答速度を測定したところ立上がり5msec、立ち下がり8msecと極めて速い値を得た。 Further, as shown by the curve a, at an applied voltage of 3.1V and 0V, 5 msec rise was measured response speed, to obtain a very fast value falling 8 msec.

【0055】また、視野角を測定したところ、上下左右とも50゜の領域でコントラスト10:1以上が得られた。 [0055] In addition, when the viewing angle was measured, up, down, left and right with contrast 10 at 50 ° area: 1 or more was obtained.

【0056】以上のように、本実施形態の液晶表示素子により、高速応答、高コントラスト、広視野角の液晶表示素子を得ることができる。 [0056] As described above, the liquid crystal display device of the present embodiment, it is possible to obtain a high speed response, high contrast, the liquid crystal display device of wide viewing angle. また、この方法であると片面のみのパターニング工程で済むので、生産性も確保できる。 Moreover, since With this method requires only patterning process only one side, the productivity can be secured.

【0057】図6(a)、(b)、(c)に両基板とも導電体部と非導電体部を細幅ストライプ状とした電極をもつ実施形態を示す。 [0057] FIG. 6 (a), the indicating the (b), the embodiment with electrodes both substrates with conductive portions and non-conductive portion of the narrow stripes (c). 図示のように、本実施形態の液晶表示素子は上下の基板10a、10bで導電体部と非導電体部がある構造になっている。 As shown, the liquid crystal display device of this embodiment the upper and lower substrates 10a, has a structure in which there is a conductor portion and a non-conductive portion at 10b. すなわち、上基板10 In other words, the upper substrate 10
aの電極は細幅の導電体部12aとその間隙の非導電体部11aからなり、下基板10bの電極は細幅の導電体部12bとその間隙の非導電体部11bからなり、一方の電極の導電体部12aが他方の非導電体部11bに、 a electrode of a non-conductive portions 11a of the gap between the conductive portions 12a of the narrow, the electrode of the lower substrate 10b made of non-conductive portions 11b of the gap between conductive portion 12b of the narrow, of one conductive portions 12a of the electrodes to the other of the non-conductive portions 11b,
他方の電極の導電体部12bが一方の電極の非導電体部11aに対向する配置となっている。 Conductive portions 12b of the other electrode is in the arrangement that faces the non-conductive portions 11a of the one electrode. このため、液晶層に印加される電圧はどの領域においても基板法線方向から傾いた斜め電界になる。 Therefore, the voltage applied to the liquid crystal layer becomes oblique electric field which is inclined from the normal direction of the substrate in any region. 従って、液晶分子14aは電極に電圧を印加した場合、ストライプの導電体部と直交する方向を向くようになる。 Therefore, if the liquid crystal molecules 14a a voltage is applied to the electrode, it comes to face a direction perpendicular to the conductor portion of the stripe. そのため、前記の実施形態と同様に、ラビング方向とそれと直交する方位に偏光器の吸収軸を配置するようにすれば、複屈折効果により表示を行うことが可能になる。 Therefore, similarly to the above embodiment, when to place the absorption axis of the polarizer to the orientation perpendicular to the rubbing direction and it becomes possible to perform display by birefringence effect.

【0058】また、図6(c)にはn型の液晶を用いた分子配列の1例を示す。 [0058] Further, in FIG. 6 (c) shows an example of a molecular arrangement using n-type liquid crystal. 誘電異方性が負号すなわちn型の液晶を用いた場合には液晶分子は電圧が印加された場合、図のように単軸が電界方向を向くので、分子の長軸は両電極のストライプ導電体部12a、12b方向に向くようになる。 When the liquid crystal molecules of voltage when the dielectric anisotropy is a liquid crystal of negative signs i.e. n-type is applied, the uniaxial as shown in FIG faces the electric field direction, the long axis of the molecules of the electrodes stripe conductive portion 12a, comes to face the 12b direction. そのため、初期状態で電極から45゜の方向で配向させておけば、電圧を印加することにより4 Therefore, if by orienting at 45 ° direction in the initial state from the electrode, 4 by applying a voltage
5゜電極方向まで、スイッチングさせることができる。 Up to 5 ° electrode direction, it can be switched.

【0059】このn型液晶を用いた場合、液晶分子はアンカリングの影響を受けてほぼ水平方向を保ったまま、 [0059] while the n-type when using a liquid crystal, liquid crystal molecules keeping the substantially horizontal direction under the influence of anchoring,
スイッチングする。 Switching. そのため、p型に比べて広視野角が得られる。 For this reason, a wide viewing angle can be obtained as compared to the p-type.

【0060】上記実施形態の上下基板の画素電極を導電体部の幅EL、非導電体部の幅SSがともに8μmとなるようにパターニングし、セルを構成した。 [0060] width EL conductor portion pixel electrodes of the upper and lower substrates of the above embodiments, the width SS of the non-conductive portion is patterned so as to both become 8 [mu] m, to constitute a cell. そのとき、 then,
図6(b)のように導電体部と非導電体部が対向するように基板10a、10bを組み合わせた。 Figure conductor portion and the non-conductive portion as in 6 (b) is a combination of a substrate 10a, 10b so as to face. 液晶組成物としてチッソ製n型液晶(型番:EN−35)を用い、あとは同様の部材、方法を用いてセルを作製した。 Chisso n-type liquid crystal (model number: EN-35) as a liquid crystal composition using, after was prepared cell using the same member, the method.

【0061】本実施形態の液晶表示素子の視野角を測定したところ、上下左右とも60゜の領域でコントラスト10:1以上が得られた。 [0061] When the viewing angle of the liquid crystal display device of this embodiment was measured, vertically and horizontally with contrast 10 in 60 ° area: 1 or more was obtained. このセルについて電気光学特性を測定したところ、画素の全領域において変調がなされ、図5の特性曲線bに示すように前記実施形態の特性aよりも高い透過率が得られた。 This cell where the electro-optical properties were measured, the modulation in the entire region of the pixel is made higher transmittance than the characteristic a of the embodiment, as shown in characteristic curve b in Fig. 5 were obtained.

【0062】このように、本発明の液晶表示素子では高速応答、広視野角が得られる。 [0062] Thus, fast response, wide viewing angle is obtained in the liquid crystal display device of the present invention.

【0063】また、図7に示すように、アクティブマトリクス基板である下基板の各画素電極を、導電体部の幅EL、非導電体部の幅SSがそれぞれ10μm、8μm [0063] Further, as shown in FIG. 7, each pixel electrode of the lower substrate is an active matrix substrate, the width EL conductor portion, the width SS of the non-conductive portions, each 10 [mu] m, 8 [mu] m
となるようにパターニングし、上基板は上記と同様、8 Patterned such that, similarly to the upper substrate above, 8
μm、8μmとなるようにパターニングし、液晶組成物として(株)メルクジャパン製ZLI−1132を用い、あとは同様の部材、方法を用いてセルを作製した。 [mu] m, and patterned such that the 8 [mu] m, using a liquid crystal composition (Ltd.) by Merck Japan Ltd. ZLI-1132, after was prepared cell using the same member, the method.
以下図6と同符号の部分は同部分を示す。 The following portion of the FIG. 6 the same reference numerals indicate the same parts.

【0064】本液晶表示素子の視野角を測定したところ、上下左右とも60゜の領域でコントラスト10:1 [0064] The present liquid crystal display where the viewing angle was measured of the element, contrast 10 in the up, down, left and right with 60 ° area: 1
以上が得られた。 Or more was obtained. このセルについて電気光学特性を測定したところ、図5の特性曲線cに示すように前記実施形態と同様、高い透過率が得られた。 This cell where the electro-optical properties were measured, as in the embodiment as shown in characteristic curve c of FIG. 5, a high transmittance was obtained.

【0065】また、図8に示すように、上下基板の電極を導電体部幅EL、非導電体部幅SSがそれぞれ8μ [0065] Further, as shown in FIG. 8, the electrodes of the upper and lower substrates conductive portions width EL, non-conductive portion width SS respectively 8μ
m、10μmとなるようにパターニングし、液晶材料として(株)メルクジャパン製ZLI−1132を用い、 m, and patterned so that 10 [mu] m, as the liquid crystal material Co. Merck Japan Ltd. ZLI-1132 used,
あとは同様の部材、方法を用いてセルを作製した。 After that it was produced cell by using the same member, the method.

【0066】本液晶表示素子の視野角を測定したところ、上下左右とも60゜の領域でコントラスト10:1 [0066] The present liquid crystal display where the viewing angle was measured of the element, contrast 10 in the up, down, left and right with 60 ° area: 1
以上が得られた。 Or more was obtained. このセルについて電気光学特性を測定したところ、図5の特性曲線dに示すように前記実施形態と同様、高い透過率が得られた。 This cell where the electro-optical properties were measured, as in the embodiment as shown in the characteristic curve d in FIG. 5, a high transmittance was obtained.

【0067】なお、上記実施形態においては、特有の材料を用い、特有の製法にて本発明の液晶表示素子を作製したが、本発明の作用を得る材料及び条件であれば同様の効果を得ることは言うまでもない。 [0067] In the above embodiment, using a specific material, but to produce a liquid crystal display device of the present invention in specific production method, the same effect as long as the material and conditions to obtain the effect of the present invention it goes without saying. 例えば電極の導電体部にITOのほかに透明膜となるSiOxなどの材料を用いることができる。 Materials such as SiOx serving as the other transparent film of ITO for example, conductive portions of the electrodes can be used. また、アクティブマトリクス基板に用いるスイッチング素子としては、TFT以外にM Further, as a switching element used in the active matrix substrate, M in addition to TFT
IMなどTFDなどの他の素子であっても、また、素子を用いない単純マトリクス電極構造からなる表示素子であっても、同様の効果を得ることは言うまでもない。 Even other elements, such as TFD such as IM, also be a display device consisting of a simple matrix electrode structure without using an element, it goes without saying that the same effect.

【0068】さらに、本発明は、一方の基板にカラーフィルターを形成したものにも適用することができるものである。 [0068] Further, the present invention can also be applied to those forming a color filter on one of the substrates.

【0069】なお、上記実施形態で説明した導電体部の幅ELと非導電体部の幅SSは上記実施形態に限られるものでなく、1画素内で幅を変えてもよく、幅の異なる導電体部(例えば12b)や非導電体部を形成することもできる。 [0069] The width SS width EL and nonconductive portion of the conductive portions described in the above embodiment is not limited to the above embodiment, may be changing the width in one pixel, different widths conductor portion (e.g. 12b) and the non-conductive portion may also be formed.

【0070】また、幅EL、SSを同じ幅にすることも可能である。 [0070] In addition, it is also possible to width EL, the SS to the same width.

【0071】さらに、図9(a)の上基板電極、(b) [0071] Further, the substrate electrode on the FIG. 9 (a), (b)
下基板電極のように、導電体部12cを波形ストライプに形成し、組み合わせるすることもできる。 As the lower substrate electrode, a conductor portion 12c is formed in the waveform stripes can be combined.

【0072】 [0072]

【発明の効果】本発明によれば、高速応答で広視野角の液晶表示素子が得られる。 According to the present invention, a liquid crystal display device with a wide viewing angle can be obtained in high-speed response.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の1実施形態の電極を示し、(a)は上基板の電極の平面図、(b)は下基板の電極の平面図、 [1] shows the electrode of one embodiment of the present invention, (a) is a plan view of the upper substrate electrode, (b) is a plan view of the lower substrate electrode,

【図2】図1の電極構造をもつ1実施形態の液晶セルを説明するもので、(a)は斜視図、(b)は(a)の断面図、(c)は動作状態を説明する断面図、 [2] The liquid crystal cell of an embodiment having the electrode structure of FIG. 1 but described, illustrates a cross-sectional view, (c) the operating state of (a) is a perspective view, (b) is (a) sectional view,

【図3】本発明の1実施形態の液晶表示素子を説明する断面図、 3 is a cross-sectional view illustrating a liquid crystal display device of an embodiment of the present invention,

【図4】本発明の1実施形態の液晶表示素子の動作を説明するもので、(a)は初期状態を示す平面図、(b) [4], serve to explain the operation of the liquid crystal display device of an embodiment of the present invention, (a) is a plan view showing an initial state, (b)
は電圧印加状態を示す平面図、 Plan view showing a voltage application state,

【図5】本発明の各実施形態の液晶表示素子の電気光学特性を示す曲線図、 [5] curves illustrating electro-optical characteristics of the liquid crystal display device of the embodiments of the present invention,

【図6】本発明の他の実施形態の液晶表示素子を説明するもので、(a)は斜視図、(b)は(a)の断面図、 [6] serve to explain the liquid crystal display device of another embodiment of the present invention, (a) is a perspective view, cross-sectional view of (b) is (a),
(c)は動作状態を説明する断面図、 (C) is a sectional view illustrating an operating state,

【図7】本発明の他の実施形態の液晶表示素子を説明するもので、(a)は斜視図、(b)は(a)の断面図、 [7] intended to explain a liquid crystal display device of another embodiment of the present invention, (a) is a perspective view, cross-sectional view of (b) is (a),
(c)は動作状態を説明する断面図、 (C) is a sectional view illustrating an operating state,

【図8】本発明の他の実施形態の液晶表示素子を説明するもので、(a)は斜視図、(b)は(a)の断面図、 [8] serve to explain the liquid crystal display device of another embodiment of the present invention, (a) is a perspective view, cross-sectional view of (b) is (a),
(c)は動作状態を説明する断面図、 (C) is a sectional view illustrating an operating state,

【図9】本発明の他の実施形態の電極を示すもので、 [9] shows the electrode of another embodiment of the present invention,
(a)は上基板の電極の平面図、(b)は下基板の電極の平面図。 (A) is a plan view of the upper substrate electrode, (b) is a plan view of the lower substrate electrodes.

【符号の説明】 DESCRIPTION OF SYMBOLS

10a、10b…基板 11a、11b…非導電体部 12a、12b…導電体部 13…配向膜 14…液晶層 14a…液晶分子 15…スイッチング素子 16…ブラックマトリクス 18…電界 20a、20b…偏光器 EL…導電体部幅 SS…非導電体部幅 10a, 10b ... substrate 11a, 11b ... non-conductive portion 12a, 12b ... conductive portion 13 ... orientation film 14 ... liquid crystal layer 14a ... liquid crystal molecules 15 ... switching device 16 ... black matrix 18 ... field 20a, 20b ... polarizer EL ... conductor portion width SS ... non-conductive section width

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽藤 仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 佐藤 摩希子 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Hitoshi Hato Yokohama, Kanagawa Prefecture Isogo-ku, Shinsugita-cho, address 8 Co., Ltd. Toshiba Yokohama workplace (72) inventor Sato MaNoriko Yokohama, Kanagawa Prefecture Isogo-ku, Shinsugita-cho, address 8 shares company Toshiba Yokohama workplace

Claims (12)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 対向するの基板間に液晶層を狭持して複数の画素を形成する液晶セルとこの液晶セルを2つの偏光器で挟んでなる液晶表示素子において、前記2枚の基板は前記液晶層側にそれぞれ電極を有しており、前記電極は前記画素毎に前記液晶層に電界を印加できるように対向配置され、少なくとも一方の基板の電極が画素毎に細幅の導電体部と非導電体部とを前記液晶層に斜め電界がかかるように交互に配列して形成されることを特徴とする液晶表示素子。 1. A liquid crystal cell and the liquid crystal display device of the liquid crystal cell formed by interposing the two polarizers to form a plurality of pixels to hold the liquid crystal layer between the substrates to face, the two substrates each have a electrode on the liquid crystal layer side, the electrode is disposed opposite so as to apply an electric field to the liquid crystal layer in each pixel, conductor portion narrow at least one of the substrates of the electrodes for each pixel the liquid crystal display element characterized by oblique electric field is formed by arranging alternately to take a non-conductive portion to the liquid crystal layer and.
  2. 【請求項2】 対向する2枚の基板間に液晶層を狭持して複数の画素を形成する液晶セルとこの液晶セルを2つの偏光器で挟んでなる液晶表示素子において、前記2枚の基板は前記液晶層側にそれぞれ電極を有しており、前記電極は前記画素毎に前記液晶層に電界を印加できるように対向配置され、前記2つの基板の電極が画素毎に複数の細幅の導電体部と非導電体部とを互に配列して形成され、 一方の基板の電極の導電体部が他方の基板の電極の非導電体部に実質的に対向しており、それぞれの電極の非導電体部の幅が導電体部の幅よりも大きいことを特徴とする液晶表示素子。 2. A two opposing liquid crystal display device of the liquid crystal cell and the liquid crystal cell formed by interposing the two polarizers to form a plurality of pixels to hold the liquid crystal layer between the substrates, the two substrate has a respective electrode on the liquid crystal layer side, the electrode is the said liquid crystal layer for each pixel are opposed so as to apply an electric field, the two of the plurality of narrow electrodes for each pixel of the substrate the conductive portions and the non-conductive portion and are the mutually formed by arranging, conductive portion of one substrate of the electrode is substantially opposite to the non-conductive portions of the other substrate electrode, respectively the liquid crystal display element, wherein the width of the non-conductive portion of the electrode is larger than the width of the conductive portion.
  3. 【請求項3】 対向する2枚の基板間に液晶層を狭持して複数の画素を形成する液晶セルとこの液晶セルを2つの偏光器で挟んでなる液晶表示素子において、前記2枚の基板は前記液晶層側にそれぞれ電極を有しており、前記電極は前記画素毎に前記液晶層に電界を印加できるように対向配置され、前記2つの基板の電極が画素毎に複数の細幅の導電体部と非導電体部とを互に配列して形成され、 一方の基板の電極の導電体部が他方の基板の電極の非導電体部に実質的に対向しており、それぞれの電極の導電体部の幅が非導電体部の幅よりも大きいことを特徴とする液晶表示素子。 3. A two opposing liquid crystal display device of the liquid crystal cell and the liquid crystal cell formed by interposing the two polarizers to form a plurality of pixels to hold the liquid crystal layer between the substrates, the two substrate has a respective electrode on the liquid crystal layer side, the electrode is the said liquid crystal layer for each pixel are opposed so as to apply an electric field, the two of the plurality of narrow electrodes for each pixel of the substrate the conductive portions and the non-conductive portion and are the mutually formed by arranging, conductive portion of one substrate of the electrode is substantially opposite to the non-conductive portions of the other substrate electrode, respectively the liquid crystal display device the width of the conductive portion of the electrode is equal to or greater than the width of the non-conductive portion.
  4. 【請求項4】 対向する2枚の基板間に液晶層を狭持して複数の画素を形成する液晶セルとこの液晶セルを2つの偏光器で挟んでなる液晶表示素子において、前記2枚の基板は前記液晶層側にそれぞれ電極を有しており、前記電極は前記画素毎に前記液晶層に電界を印加できるように対向配置され、前記2つの基板の電極が画素毎に複数の細幅の導電体部と非導電体部とを互に配列して形成され、 一方の基板の電極の導電体部が他方の基板の電極の非導電体部に実質的に対向しており、それぞれの電極の導電体部の幅が非導電体部の幅が等しいことを特徴とする液晶表示素子。 4. A two opposing liquid crystal display device of the liquid crystal cell and the liquid crystal cell formed by interposing the two polarizers to form a plurality of pixels to hold the liquid crystal layer between the substrates, the two substrate has a respective electrode on the liquid crystal layer side, the electrode is the said liquid crystal layer for each pixel are opposed so as to apply an electric field, the two of the plurality of narrow electrodes for each pixel of the substrate the conductive portions and the non-conductive portion and are the mutually formed by arranging, conductive portion of one substrate of the electrode is substantially opposite to the non-conductive portions of the other substrate electrode, respectively the liquid crystal display device the width of the conductive portion of the electrode, wherein the width of the non-conductive portion are equal.
  5. 【請求項5】 電極の導電体部と非導電体部の幅が画素内で変化していることを特徴とする請求項1乃至4のいずれかに記載の液晶表示素子。 The liquid crystal display device according to any one of claims 1 to 4 the width of the conductive portion and the non-conductive portion of 5. electrode is characterized in that changes in the pixel.
  6. 【請求項6】 電極の導電体部と非導電体部の幅が画素内で一定であることを特徴とする請求項1乃至4のいずれかに記載の液晶表示素子。 6. A liquid crystal display device according to any one of claims 1 to 4 the width of the conductive portion of the electrode and the non-conductive portion is characterized in that it is a constant within the pixel.
  7. 【請求項7】電極が画素毎に、最も狭い幅が50μm以下である細幅の導電体部と非導電体部からなることを特徴とする請求項1乃至4のいずれかに記載の液晶表示素子。 7. A respective electrode is a pixel, the liquid crystal display according to any one of claims 1 to 4, characterized in that the narrowest width of the conductive portion and the non-conductive portion of the narrow is 50μm or less element.
  8. 【請求項8】 電極の少なくとも一部が透明電極であることを特徴とする請求項1乃至4のいずれかに記載の液晶表示素子。 8. A liquid crystal display device according to any one of claims 1 to 4, at least a portion of the electrode is characterized in that it is a transparent electrode.
  9. 【請求項9】 2枚の偏光器は、吸収軸が相互に直交するように配置されており、電極に電圧を印加しない状態において液晶層の液晶分子の基板表面での配列方位が、 9. two polarizers absorption axes are arranged to be perpendicular to each other, orientation direction in the substrate surface of the liquid crystal molecules of the liquid crystal layer when no voltage is applied to the electrode,
    前記2枚の偏光器の一方の吸収軸と平行に配置されていることを特徴とする請求項1乃至4のいずれかに記載の液晶表示素子。 The liquid crystal display device according to any one of claims 1 to 4, characterized in that arranged parallel to the one of the absorption axis of the two polarizers.
  10. 【請求項10】 少なくとも一方の基板がスイッチング素子と画素電極を有するアクティブマトリクス基板であることを特徴とする請求項1乃至4のいずれかに記載の液晶表示素子。 10. The liquid crystal display device according to any one of claims 1 to 4, characterized in that an active matrix substrate having at least one of the substrates of the switching element and the pixel electrode.
  11. 【請求項11】 少なくとも一方の基板にカラーフィルターを有することを特徴とする請求項1乃至4のいずれかに記載の液晶表示素子。 11. The liquid crystal display device according to any one of claims 1 to 4, wherein a color filter on at least one of the substrates.
  12. 【請求項12】 液晶層が誘電率異方性が負号の液晶組成物で構成されてなることを特徴とする請求項1乃至4 12. The method of claim 1 to 4 liquid crystal layer, characterized in that the dielectric anisotropy is formed by a liquid crystal composition of the negative sign
    のいずれかにに記載の液晶表示素子。 The liquid crystal display device according to any crab.
JP32030195A 1995-12-08 1995-12-08 Liquid crystal display element Pending JPH09160061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32030195A JPH09160061A (en) 1995-12-08 1995-12-08 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32030195A JPH09160061A (en) 1995-12-08 1995-12-08 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH09160061A true true JPH09160061A (en) 1997-06-20

Family

ID=18119974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32030195A Pending JPH09160061A (en) 1995-12-08 1995-12-08 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH09160061A (en)

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296594A (en) * 2001-03-30 2002-10-09 Fujitsu Ltd Liquid crystal display device
US6707519B1 (en) 1998-02-04 2004-03-16 Seiko Epson Corporation Three state transflective liquid crystal display
JP2008129050A (en) * 2006-11-16 2008-06-05 Stanley Electric Co Ltd Liquid crystal display element
KR100871225B1 (en) * 2005-03-25 2008-12-01 엡슨 이미징 디바이스 가부시키가이샤 Liquid crystal device and electronic apparatus
JP2009025834A (en) * 1998-06-23 2009-02-05 Sharp Corp Liquid crystal display apparatus
US7573554B2 (en) 1998-05-16 2009-08-11 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
US7623201B2 (en) 1998-10-28 2009-11-24 Dai Nippon Printing Co., Ltd. Liquid-crystal display
JP2010026536A (en) * 2009-11-04 2010-02-04 Sharp Corp Liquid crystal display element
US8031286B2 (en) 2001-11-22 2011-10-04 Samsung Electronics Co., Ltd. Liquid crystal display having a particular arrangement of pixel electrodes
US8310643B2 (en) 2002-06-28 2012-11-13 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US8421977B2 (en) 2008-02-14 2013-04-16 Japan Display Central Inc. Liquid crystal display device with pixel electrode having trapezoidal shape
US8421976B2 (en) 2011-07-28 2013-04-16 Japan Display Central Inc. Liquid crystal display device
US8542329B2 (en) 2010-03-29 2013-09-24 Japan Display Central Inc. Liquid crystal display device
US8605244B2 (en) 2011-08-08 2013-12-10 Japan Display Inc. Liquid crystal display device
US8692947B2 (en) 2011-09-16 2014-04-08 Japan Display Inc. Liquid crystal display device
US8724065B2 (en) 2011-09-12 2014-05-13 Japan Display Inc. Liquid crystal display device
US8743332B2 (en) 2011-01-13 2014-06-03 Japan Display Inc. Liquid crystal display device
US8749726B2 (en) 2011-11-21 2014-06-10 Japan Display Inc. Liquid crystal display device
US8786534B2 (en) 2011-09-27 2014-07-22 Japan Display Inc. Liquid crystal display device
US8786790B2 (en) 2011-03-29 2014-07-22 Japan Display Inc. Liquid crystal display device
US8797482B2 (en) 2011-08-05 2014-08-05 Japan Display Inc. Liquid crystal display device
US8867006B2 (en) 2012-04-23 2014-10-21 Japan Display Inc. Liquid crystal display device
US8873010B2 (en) 2011-10-17 2014-10-28 Japan Display Inc. Liquid crystal display device
US8873009B2 (en) 2011-09-02 2014-10-28 Japan Display Inc. Liquid crystal display device
US8873008B2 (en) 2011-03-31 2014-10-28 Japan Display Inc. Liquid crystal display device
US8885132B2 (en) 2011-03-17 2014-11-11 Japan Display Inc. Liquid crystal display device
US8896795B2 (en) 2011-04-19 2014-11-25 Japan Display Inc. Liquid crystal display device
US8902391B2 (en) 2011-08-31 2014-12-02 Japan Display Inc. Liquid crystal display device and method of manufacturing liquid crystal display device
US8902390B2 (en) 2011-07-08 2014-12-02 Japan Display Inc. Liquid crystal display device having a cross-shaped pixel electrode
US8953130B2 (en) 2011-07-13 2015-02-10 Japan Display Inc. Liquid crystal display device
US9019439B2 (en) 2011-10-14 2015-04-28 Japan Display Inc. Liquid crystal display device
US9025097B2 (en) 2011-04-08 2015-05-05 Japan Display Inc. Liquid crystal display device
US9025101B2 (en) 2011-08-11 2015-05-05 Japan Display Inc. Liquid crystal display
US9030393B2 (en) 2013-01-15 2015-05-12 Japan Display Inc. Liquid crystal display device
US9030636B2 (en) 2011-08-26 2015-05-12 Japan Display Inc. Liquid crystal display apparatus
US9041891B2 (en) 1997-05-29 2015-05-26 Samsung Display Co., Ltd. Liquid crystal display having wide viewing angle
US9046719B2 (en) 2011-04-25 2015-06-02 Japan Display Inc. Liquid crystal display device
US9052552B2 (en) 2011-04-22 2015-06-09 Japan Display Inc. Liquid crystal display device
US9052555B2 (en) 2011-12-28 2015-06-09 Japan Display Inc. Liquid crystal display device
US9075278B2 (en) 2012-05-22 2015-07-07 Japan Display Inc. Liquid crystal display device
US9075271B2 (en) 2011-09-06 2015-07-07 Japan Display Inc. Liquid crystal display device
US9081242B2 (en) 2011-09-28 2015-07-14 Japan Display Inc. Liquid crystal display device
US9086602B2 (en) 2011-09-01 2015-07-21 Japan Display Inc. Liquid crystal display device
US9097944B2 (en) 2012-05-29 2015-08-04 Japan Display Inc. Liquid crystal display device having particular electrodes structure
US9110341B2 (en) 2012-03-14 2015-08-18 Japan Display Inc. Liquid crystal display device
US9116402B2 (en) 2012-05-25 2015-08-25 Japan Display Inc. Liquid crystal display device
US9116568B2 (en) 2011-11-08 2015-08-25 Japan Display Inc. Liquid crystal display device
US9122111B2 (en) 2012-03-28 2015-09-01 Japan Display Inc. Liquid crystal display device
US9134578B2 (en) 2013-01-15 2015-09-15 Japan Display Inc. Liquid crystal display device
US9134576B2 (en) 2012-10-31 2015-09-15 Japan Display Inc. Liquid crystal display device
US9134577B2 (en) 2011-01-19 2015-09-15 Japan Display Inc. Liquid crystal display device
US9135873B2 (en) 2012-09-04 2015-09-15 Japan Display Inc. Liquid crystal display device
US9140938B2 (en) 2012-04-06 2015-09-22 Japan Display Inc. Liquid crystal display device
US9146434B2 (en) 2012-10-30 2015-09-29 Japan Display Inc. Liquid crystal display device having particular electrodes structure
US9164330B2 (en) 2012-03-19 2015-10-20 Japan Display Inc. Liquid crystal display with horizontal inter-electrode distance and dielectric constant anisotropy of a liquid crystal layer
US9164333B2 (en) 2013-03-14 2015-10-20 Japan Display Inc. Liquid crystal display device
US9182639B2 (en) 2011-09-28 2015-11-10 Japan Display Inc. Liquid crystal display device
US9217904B2 (en) 2012-05-31 2015-12-22 Japan Display Inc. Liquid crystal display device with a lateral electric field
US9235086B2 (en) 2011-11-08 2016-01-12 Japan Display Inc. Liquid crystal display device
US9244322B2 (en) 2011-08-05 2016-01-26 Japan Display Inc. Liquid crystal display device
US9250486B2 (en) 2011-09-08 2016-02-02 Japan Display Inc. Liquid crystal display device
US9268178B2 (en) 2011-10-11 2016-02-23 Japan Display Inc. Liquid crystal display device
US9268179B2 (en) 2012-06-06 2016-02-23 Japan Display Inc. Liquid crystal display device utilizing a lateral electric field
US9274386B2 (en) 2011-08-09 2016-03-01 Japan Display Inc. Liquid crystal display apparatus
US9280016B2 (en) 2013-02-18 2016-03-08 Japan Display Inc. Liquid crystal display device
US9291862B2 (en) 2011-08-12 2016-03-22 Japan Display Inc. Liquid crystal display apparatus with first and second spacers
US9291865B2 (en) 2011-08-23 2016-03-22 Japan Display Inc. Liquid crystal display device
US9304343B2 (en) 2012-05-11 2016-04-05 Japan Display Inc. Liquid crystal display device
US9310652B2 (en) 2012-07-13 2016-04-12 Japan Display Inc. Liquid crystal display device
US9316872B2 (en) 2013-09-30 2016-04-19 Japan Display Inc. Liquid crystal display device that expands the transmissive area
US9341900B2 (en) 2011-08-25 2016-05-17 Japan Display Inc. Liquid crystal display device
US9395586B2 (en) 2010-10-20 2016-07-19 Japan Display Inc. Liquid crystal display device
US9424786B2 (en) 2011-04-08 2016-08-23 Japan Display Inc. Liquid crystal display device
US9436042B2 (en) 2012-05-08 2016-09-06 Japan Display Inc. Liquid crystal display device including first to third wirings and a pixel electrode, and method of manufacturing the same
US9470938B2 (en) 2013-07-03 2016-10-18 Japan Display Inc. Liquid crystal display device
US9557612B2 (en) 1999-10-01 2017-01-31 Samsung Display Co., Ltd. Liquid crystal display
US9709860B2 (en) 2015-01-22 2017-07-18 Japan Display Inc. Liquid crystal display device
US9791757B2 (en) 2014-09-09 2017-10-17 Japan Display Inc. Liquid crystal display device and display device
US9915840B2 (en) 2013-05-31 2018-03-13 Japan Display Inc. Liquid crystal display device
US10007138B2 (en) 2014-10-24 2018-06-26 Japan Display Inc. Liquid crystal display device and substrate for display device

Cited By (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041891B2 (en) 1997-05-29 2015-05-26 Samsung Display Co., Ltd. Liquid crystal display having wide viewing angle
US6707519B1 (en) 1998-02-04 2004-03-16 Seiko Epson Corporation Three state transflective liquid crystal display
US7573554B2 (en) 1998-05-16 2009-08-11 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
JP4629135B2 (en) * 1998-06-23 2011-02-09 シャープ株式会社 The liquid crystal display device
JP2009025834A (en) * 1998-06-23 2009-02-05 Sharp Corp Liquid crystal display apparatus
US7623201B2 (en) 1998-10-28 2009-11-24 Dai Nippon Printing Co., Ltd. Liquid-crystal display
US7932971B2 (en) 1998-10-28 2011-04-26 Dai Nippon Printing Co., Ltd. Liquid-crystal display
US9557612B2 (en) 1999-10-01 2017-01-31 Samsung Display Co., Ltd. Liquid crystal display
JP2002296594A (en) * 2001-03-30 2002-10-09 Fujitsu Ltd Liquid crystal display device
US8248566B2 (en) 2001-11-22 2012-08-21 Samsung Electronics Co., Ltd. Liquid crystal display
US8031286B2 (en) 2001-11-22 2011-10-04 Samsung Electronics Co., Ltd. Liquid crystal display having a particular arrangement of pixel electrodes
US8698990B2 (en) 2002-06-28 2014-04-15 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US8310643B2 (en) 2002-06-28 2012-11-13 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US9477121B2 (en) 2002-06-28 2016-10-25 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US8743331B2 (en) 2002-06-28 2014-06-03 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
KR100871225B1 (en) * 2005-03-25 2008-12-01 엡슨 이미징 디바이스 가부시키가이샤 Liquid crystal device and electronic apparatus
JP2008129050A (en) * 2006-11-16 2008-06-05 Stanley Electric Co Ltd Liquid crystal display element
US8421977B2 (en) 2008-02-14 2013-04-16 Japan Display Central Inc. Liquid crystal display device with pixel electrode having trapezoidal shape
US8497969B2 (en) 2008-02-14 2013-07-30 Japan Display Central Inc. Liquid crystal display device having particular electrodes
US8867007B2 (en) 2008-02-14 2014-10-21 Japan Display Inc. Liquid crystal display device having a strip-shaped electrode
JP2010026536A (en) * 2009-11-04 2010-02-04 Sharp Corp Liquid crystal display element
US8542329B2 (en) 2010-03-29 2013-09-24 Japan Display Central Inc. Liquid crystal display device
US8687134B2 (en) 2010-03-29 2014-04-01 Japan Display Inc. Liquid crystal display device
US9395586B2 (en) 2010-10-20 2016-07-19 Japan Display Inc. Liquid crystal display device
US8743332B2 (en) 2011-01-13 2014-06-03 Japan Display Inc. Liquid crystal display device
US9134577B2 (en) 2011-01-19 2015-09-15 Japan Display Inc. Liquid crystal display device
US8885132B2 (en) 2011-03-17 2014-11-11 Japan Display Inc. Liquid crystal display device
US9235094B2 (en) 2011-03-17 2016-01-12 Japan Display Inc. Liquid crystal display device
US8786790B2 (en) 2011-03-29 2014-07-22 Japan Display Inc. Liquid crystal display device
US8873008B2 (en) 2011-03-31 2014-10-28 Japan Display Inc. Liquid crystal display device
US9151985B2 (en) 2011-03-31 2015-10-06 Japan Display Inc. Liquid crystal display device
US9424786B2 (en) 2011-04-08 2016-08-23 Japan Display Inc. Liquid crystal display device
US9025097B2 (en) 2011-04-08 2015-05-05 Japan Display Inc. Liquid crystal display device
US8896795B2 (en) 2011-04-19 2014-11-25 Japan Display Inc. Liquid crystal display device
US9207510B2 (en) 2011-04-19 2015-12-08 Japan Display Inc. Liquid crystal display device
US9052552B2 (en) 2011-04-22 2015-06-09 Japan Display Inc. Liquid crystal display device
US9298049B2 (en) 2011-04-22 2016-03-29 Japan Display Inc. Liquid crystal display device
US9817284B2 (en) 2011-04-25 2017-11-14 Japan Display Inc. Liquid crystal display device
US9046719B2 (en) 2011-04-25 2015-06-02 Japan Display Inc. Liquid crystal display device
US9341898B2 (en) 2011-07-08 2016-05-17 Japan Display Inc. Liquid crystal display device
US8902390B2 (en) 2011-07-08 2014-12-02 Japan Display Inc. Liquid crystal display device having a cross-shaped pixel electrode
US8953130B2 (en) 2011-07-13 2015-02-10 Japan Display Inc. Liquid crystal display device
US8879037B2 (en) 2011-07-28 2014-11-04 Japan Display Inc. Liquid crystal display device
US8421976B2 (en) 2011-07-28 2013-04-16 Japan Display Central Inc. Liquid crystal display device
US8797482B2 (en) 2011-08-05 2014-08-05 Japan Display Inc. Liquid crystal display device
US9244322B2 (en) 2011-08-05 2016-01-26 Japan Display Inc. Liquid crystal display device
US8780302B2 (en) 2011-08-08 2014-07-15 Japan Display Inc. Liquid crystal display device
US8605244B2 (en) 2011-08-08 2013-12-10 Japan Display Inc. Liquid crystal display device
US9274386B2 (en) 2011-08-09 2016-03-01 Japan Display Inc. Liquid crystal display apparatus
US9810959B2 (en) 2011-08-11 2017-11-07 Japan Display Inc. Liquid crystal display including a mainpixel electrode
US9140943B2 (en) 2011-08-11 2015-09-22 Japan Display Inc. Liquid crystal display
US9025101B2 (en) 2011-08-11 2015-05-05 Japan Display Inc. Liquid crystal display
US9291862B2 (en) 2011-08-12 2016-03-22 Japan Display Inc. Liquid crystal display apparatus with first and second spacers
US9291865B2 (en) 2011-08-23 2016-03-22 Japan Display Inc. Liquid crystal display device
US9341900B2 (en) 2011-08-25 2016-05-17 Japan Display Inc. Liquid crystal display device
US9030636B2 (en) 2011-08-26 2015-05-12 Japan Display Inc. Liquid crystal display apparatus
US8902391B2 (en) 2011-08-31 2014-12-02 Japan Display Inc. Liquid crystal display device and method of manufacturing liquid crystal display device
US9086602B2 (en) 2011-09-01 2015-07-21 Japan Display Inc. Liquid crystal display device
US8873009B2 (en) 2011-09-02 2014-10-28 Japan Display Inc. Liquid crystal display device
US9134579B2 (en) 2011-09-02 2015-09-15 Japan Display Inc. Liquid crystal display device
US9075271B2 (en) 2011-09-06 2015-07-07 Japan Display Inc. Liquid crystal display device
US9250486B2 (en) 2011-09-08 2016-02-02 Japan Display Inc. Liquid crystal display device
US8724065B2 (en) 2011-09-12 2014-05-13 Japan Display Inc. Liquid crystal display device
US8830435B2 (en) 2011-09-16 2014-09-09 Japan Display Inc. Liquid crystal display device
US8692947B2 (en) 2011-09-16 2014-04-08 Japan Display Inc. Liquid crystal display device
US9013663B2 (en) 2011-09-16 2015-04-21 Japan Display, Inc. Liquid crystal display device
US9841641B2 (en) 2011-09-16 2017-12-12 Japan Display Inc. Liquid crystal display device
US9372372B2 (en) 2011-09-16 2016-06-21 Japan Display Inc. Liquid crystal display device
US8786534B2 (en) 2011-09-27 2014-07-22 Japan Display Inc. Liquid crystal display device
US9880430B2 (en) 2011-09-28 2018-01-30 Japan Display Inc. Liquid crystal display device
US9081242B2 (en) 2011-09-28 2015-07-14 Japan Display Inc. Liquid crystal display device
US9182639B2 (en) 2011-09-28 2015-11-10 Japan Display Inc. Liquid crystal display device
US9268178B2 (en) 2011-10-11 2016-02-23 Japan Display Inc. Liquid crystal display device
US9019439B2 (en) 2011-10-14 2015-04-28 Japan Display Inc. Liquid crystal display device
US8873010B2 (en) 2011-10-17 2014-10-28 Japan Display Inc. Liquid crystal display device
US9116568B2 (en) 2011-11-08 2015-08-25 Japan Display Inc. Liquid crystal display device
US9235086B2 (en) 2011-11-08 2016-01-12 Japan Display Inc. Liquid crystal display device
US8749726B2 (en) 2011-11-21 2014-06-10 Japan Display Inc. Liquid crystal display device
US9052555B2 (en) 2011-12-28 2015-06-09 Japan Display Inc. Liquid crystal display device
US9110341B2 (en) 2012-03-14 2015-08-18 Japan Display Inc. Liquid crystal display device
US9164330B2 (en) 2012-03-19 2015-10-20 Japan Display Inc. Liquid crystal display with horizontal inter-electrode distance and dielectric constant anisotropy of a liquid crystal layer
US9341906B2 (en) 2012-03-28 2016-05-17 Japan Display Inc. Liquid crystal display device
US9122111B2 (en) 2012-03-28 2015-09-01 Japan Display Inc. Liquid crystal display device
US9140938B2 (en) 2012-04-06 2015-09-22 Japan Display Inc. Liquid crystal display device
US9104075B2 (en) 2012-04-23 2015-08-11 Japan Display Inc. Liquid crystal display device
US9470936B2 (en) 2012-04-23 2016-10-18 Japan Display, Inc. Liquid crystal display device
US8867006B2 (en) 2012-04-23 2014-10-21 Japan Display Inc. Liquid crystal display device
US9436042B2 (en) 2012-05-08 2016-09-06 Japan Display Inc. Liquid crystal display device including first to third wirings and a pixel electrode, and method of manufacturing the same
US9304343B2 (en) 2012-05-11 2016-04-05 Japan Display Inc. Liquid crystal display device
US9075278B2 (en) 2012-05-22 2015-07-07 Japan Display Inc. Liquid crystal display device
US9459507B2 (en) 2012-05-22 2016-10-04 Japan Display Inc. Liquid crystal display device
US9810957B2 (en) 2012-05-25 2017-11-07 Japan Display Inc. Liquid crystal display device
US9116402B2 (en) 2012-05-25 2015-08-25 Japan Display Inc. Liquid crystal display device
US9097944B2 (en) 2012-05-29 2015-08-04 Japan Display Inc. Liquid crystal display device having particular electrodes structure
US9733533B2 (en) 2012-05-29 2017-08-15 Japan Display Inc. Liquid crystal display device
US9217904B2 (en) 2012-05-31 2015-12-22 Japan Display Inc. Liquid crystal display device with a lateral electric field
US9268179B2 (en) 2012-06-06 2016-02-23 Japan Display Inc. Liquid crystal display device utilizing a lateral electric field
US9310652B2 (en) 2012-07-13 2016-04-12 Japan Display Inc. Liquid crystal display device
US9135873B2 (en) 2012-09-04 2015-09-15 Japan Display Inc. Liquid crystal display device
US9146434B2 (en) 2012-10-30 2015-09-29 Japan Display Inc. Liquid crystal display device having particular electrodes structure
US9134576B2 (en) 2012-10-31 2015-09-15 Japan Display Inc. Liquid crystal display device
US9030393B2 (en) 2013-01-15 2015-05-12 Japan Display Inc. Liquid crystal display device
US9551911B2 (en) 2013-01-15 2017-01-24 Japan Display Inc. Liquid crystal display device
US9134578B2 (en) 2013-01-15 2015-09-15 Japan Display Inc. Liquid crystal display device
US9280016B2 (en) 2013-02-18 2016-03-08 Japan Display Inc. Liquid crystal display device
US9164333B2 (en) 2013-03-14 2015-10-20 Japan Display Inc. Liquid crystal display device
US9915840B2 (en) 2013-05-31 2018-03-13 Japan Display Inc. Liquid crystal display device
US9470938B2 (en) 2013-07-03 2016-10-18 Japan Display Inc. Liquid crystal display device
US9316872B2 (en) 2013-09-30 2016-04-19 Japan Display Inc. Liquid crystal display device that expands the transmissive area
US9791757B2 (en) 2014-09-09 2017-10-17 Japan Display Inc. Liquid crystal display device and display device
US10007138B2 (en) 2014-10-24 2018-06-26 Japan Display Inc. Liquid crystal display device and substrate for display device
US9709860B2 (en) 2015-01-22 2017-07-18 Japan Display Inc. Liquid crystal display device

Similar Documents

Publication Publication Date Title
US6285429B1 (en) Liquid crystal display device and method for its production
US6781665B2 (en) Liquid crystal display and method of manufacturing the same
US5570211A (en) Color liquid crystal display device using birefringence
US5434690A (en) Liquid crystal device with pixel electrodes in an opposed striped form
US6201592B1 (en) Liquid crystal display device and method for producing the same
US6678027B2 (en) Fringe field switching mode LCD
EP0854377A2 (en) Liquid crystal display device and method for producing the same
US5973759A (en) Liquid crystal projector
US20010019390A1 (en) Liquid crystal display apparatus
US6424393B1 (en) Liquid crystal display apparatus
US6501524B1 (en) Liquid crystal display device
EP0793133A2 (en) Liquid crystal display device operating in a vertically aligned mode
US5541753A (en) Liquid crystal display and device having a total retardance of (M+1) λ/2 and (Mλ/2) at first and second operating voltages
US6384889B1 (en) Liquid crystal display with sub pixel regions defined by sub electrode regions
US5241408A (en) Liquid crystal display device with compensation and lc twist angle varying in a nonlinear fashion in the thickness direction
US20020008827A1 (en) In-plane switching LCD panel
US20020135725A1 (en) Liquid crystal display device and method for producing the same
US7176999B2 (en) Liquid crystal display device
US20060215096A1 (en) Liquid crystal display
JP2004206091A (en) Liquid crystal display and its manufacturing method
US20020047968A1 (en) Liquid crystal display device
JPH09258269A (en) Liquid crystal display device
JPH07159786A (en) Liquid crystal display device
WO1996010774A1 (en) Viewing angle enhancement for vertically aligned cholesteric liquid crystal displays
JPH11133408A (en) Horizontal electric field type liquid crystal display device