JPH08136941A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH08136941A
JPH08136941A JP27740694A JP27740694A JPH08136941A JP H08136941 A JPH08136941 A JP H08136941A JP 27740694 A JP27740694 A JP 27740694A JP 27740694 A JP27740694 A JP 27740694A JP H08136941 A JPH08136941 A JP H08136941A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
substrate
electric field
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27740694A
Other languages
Japanese (ja)
Inventor
Takeshi Oyama
毅 大山
Yuzo Hisatake
雄三 久武
Makiko Satou
摩希子 佐藤
Masahito Ishikawa
正仁 石川
Hitoshi Hado
仁 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27740694A priority Critical patent/JPH08136941A/en
Publication of JPH08136941A publication Critical patent/JPH08136941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE: To provide a bright liquid crystal display device with high diffusibility, a low drive voltage, a high contrast ratio and with an excellent gradational property by providing an electrode pattern forming oblique electric field at least in the four directions. CONSTITUTION: A transparent upper electrode 13 of a checkered pattern is formed on one surface of an upper substrate 11, and a transparent lower electrode 14 is formed on one surface opposing to each other of a lower substrate 12. The upper electrode 13 is constituted so that a conductive body unit 13a1 of which a transparent conductive body part 13a is a nearly square is connected at respective corner parts conductively to be integrated, and it forms them pattern surrounding a non-conductive body part 13b between the conductive body parts. The lower electrode 14 is formed to the checkered pattern between the transparent conductive body parts 14a and the non-conductive body parts 14b. The upper electrode pattern is symmetrical with the lower electrode pattern, and when a voltage is applied between both electrodes 13, 14 by a power source 30, the oblique electric field being the electric field having an electric field component parallel to a substrate surface in addition to the electric field in the normal direction of substrate is formed in a liquid crystal layer 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光散乱制御型液晶表示
素子に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light scattering control type liquid crystal display device.

【0002】[0002]

【従来の技術】液晶表示素子(以下LCDと略称)を光
制御の観点から分類すると、明暗の変化を液晶分子の偏
光効果と偏光子を組み合わせにより生じさせるものと、
液晶の相転移を利用し、光の散乱と透過により生じさせ
るもの、及び染料を添加し、染料の可視光吸収量を制御
し、色の濃淡変化により生じさせるるもの等に分けられ
る。
2. Description of the Related Art When a liquid crystal display element (hereinafter abbreviated as LCD) is classified from the viewpoint of light control, a change in brightness is caused by a combination of a polarization effect of liquid crystal molecules and a polarizer.
There are two types, one that uses the phase transition of liquid crystal and causes light scattering and transmission, and the other that adds a dye to control the visible light absorption amount of the dye and changes the light and shade of the color.

【0003】前者の偏光効果と偏光子を組み合わせたL
CDは、例えば90°捻れた分子配列をもつツイステッ
ドネマティック(TN)型液晶であり、原理的に薄い液
晶層厚、低電圧で偏光制御できることから、早い応答速
度、低消費電力にて、高いコントラスト比を示し、時計
や電卓、単純マトリクス駆動や、スイッチング素子を各
画素ごとに具備したアクティブマトリクス駆動で、ま
た、カラーフィルターと組み合わせて、フルカラーの表
示の液晶TVなどに応用されている。
L, which is a combination of the former polarization effect and a polarizer
The CD is, for example, a twisted nematic (TN) type liquid crystal having a 90 ° twisted molecular arrangement. In principle, the thin liquid crystal layer can control polarization with a low voltage, so that a high response speed, low power consumption, and high contrast are achieved. The ratio is used for a clock, a calculator, a simple matrix drive, an active matrix drive provided with a switching element for each pixel, and in combination with a color filter, it is applied to a full color display liquid crystal TV or the like.

【0004】しかし、これら偏光効果と偏光子を組み合
わせたLCDは、原理上偏光板を用いることから素子の
光透過率が著しく低く、また分子配列の方位性により見
る角度・方位によって表示色やコントラスト比が大きく
変化するといった視角依存性を持ち陰極線管の表示性能
を完全に越えるまでにはいたらない。
However, an LCD combining these polarization effects and a polarizer has a remarkably low light transmittance of a device because a polarizing plate is used in principle, and the display color and contrast depend on the viewing angle / direction depending on the orientation of the molecular arrangement. It has a viewing angle dependency such as a large change in the ratio, and cannot completely exceed the display performance of a cathode ray tube.

【0005】一方、後者の液晶の相転移を利用したも
の、および染料の可視光吸収量を制御したLCDは、例
えば、ヘリカル構造の分子配列をもつコレステリック相
からホメオトロピック分子配列のネマティック相への相
転移を電場印加で生じさせるPC形液晶およびこれに染
料を添加してなるホワイト・テーラ(White−Ta
ylor)型GH液晶であり、偏光子を用いず、原理的
に偏光効果を用いないことから、明るく、広い視認角を
示し、自動車機器や、投影形表示器などに応用されてい
る。
On the other hand, the latter one utilizing the phase transition of liquid crystal and the LCD in which the visible light absorption amount of the dye is controlled, for example, from a cholesteric phase having a molecular structure of helical structure to a nematic phase of homeotropic molecular alignment. A PC-type liquid crystal that causes a phase transition by applying an electric field and a white-tailer (White-Ta) obtained by adding a dye to the liquid crystal.
Yor) type GH liquid crystal, which is bright and has a wide viewing angle because it does not use a polarizer and does not use a polarization effect in principle, and is applied to automobile devices, projection type displays and the like.

【0006】しかし、充分な光の散乱を得るには、液晶
層厚を充分厚くしたり、散乱を生じさせるヘリカル強度
を強めたりする必要があり、高い駆動電圧を要し、応答
速度も極めて遅いといった問題点をもっているため表示
量(画素数)の多い表示素子への応用は困難とされてい
た。また、印加電圧の増加に伴い、透過率が急激に変化
するために階調性をもたらすことも困難とされていた。
さらに、その印加電圧−透過率特性にヒステリシスがあ
り、マルチプレクス駆動することが困難など実用的に問
題があった。
However, in order to obtain sufficient light scattering, it is necessary to make the liquid crystal layer thick enough or to increase the helical strength that causes the scattering, which requires a high driving voltage and an extremely slow response speed. Therefore, it has been difficult to apply it to a display element having a large display amount (number of pixels). In addition, it has been considered difficult to provide gradation because the transmittance changes abruptly as the applied voltage increases.
Further, the applied voltage-transmittance characteristic has a hysteresis, and there is a practical problem that it is difficult to perform multiplex driving.

【0007】また、図8に示すように上下基板1、2で
挟んだ有機高分子3中に液晶4を球状に保持したNCA
P形LCDは散乱モードの液晶表示素子であり、偏光板
をもちいないため、明るく、広い視認性を示し、自動車
機器や、投影型表示器などに応用されている。しかしな
がら、外部から印加した電圧は有機高分子3と液晶4と
に分圧され、液晶には印加電圧の一部しか印加されず、
実用的には動作電圧が高まり問題であった。また、充分
な光の散乱を得るには、液晶厚を充分厚くする必要があ
り、応答速度も極めて遅いといった問題点をもっている
ため表示量(画素数)の多い表示素子への応用は困難と
されていた。さらに、その印加電圧−透過率特性にヒス
テリシスがあり、マルチプレクス駆動することが困難な
ど実用的に問題があった。これと同様の動作原理で動作
する網目状有機高分子中に液晶を保持した高分子分散形
LCDにおいても、同様の問題があった。
Further, as shown in FIG. 8, an NCA in which a liquid crystal 4 is spherically held in an organic polymer 3 sandwiched between upper and lower substrates 1 and 2.
The P-type LCD is a liquid crystal display element in a scattering mode, has no polarizing plate, and thus is bright and has wide visibility, and is applied to automobile equipment, projection display devices, and the like. However, the voltage applied from the outside is divided into the organic polymer 3 and the liquid crystal 4, and only part of the applied voltage is applied to the liquid crystal,
In practice, the operating voltage was high, which was a problem. Further, in order to obtain sufficient light scattering, it is necessary to make the liquid crystal thickness sufficiently thick, and there is a problem that the response speed is extremely slow, so that it is difficult to apply it to a display element with a large display amount (number of pixels). Was there. Further, the applied voltage-transmittance characteristic has a hysteresis, and there is a practical problem that it is difficult to perform multiplex driving. The polymer-dispersed LCD in which liquid crystal is held in a network organic polymer that operates according to the same operation principle has the same problem.

【0008】[0008]

【発明が解決しようとする課題】上述したように、現
在、液晶表示素子は透過率が低く、視角依存性を持つ
か、高い駆動電圧を要し、応答速度も遅いといった問題
点をもっていた。
As described above, at present, liquid crystal display devices have the problems of low transmittance, viewing angle dependence, high driving voltage, and slow response speed.

【0009】こうした背景のもとで、発明者等は先願の
特願平5−184273号において、対向して複数の画
素を形成する電極をそれぞれ有する2枚の基板間にネマ
ティック液晶からなる液晶層を狭持し、前記両基板の電
極が画素ごとに、最も広い幅が50μm以下である微細
な領域を単位とした導電体部と非導電体部(無導電体
部)とからなり、両基板間で一方の電極の導電体部と他
方の電極の非導電体部との少なくとも一部が対向して配
置されてなることを特徴とした液晶表示素子を提案し
た。
Against this background, the inventors of the present invention, in Japanese Patent Application No. 5-184273, filed a liquid crystal composed of a nematic liquid crystal between two substrates each having electrodes forming a plurality of pixels facing each other. The electrodes of the both substrates sandwiching a layer are composed of a conductive portion and a non-conductive portion (non-conductive portion) in units of a fine region having a widest width of 50 μm or less for each pixel. We have proposed a liquid crystal display element characterized in that at least a part of a conductor portion of one electrode and a non-conductor portion of the other electrode are arranged to face each other between substrates.

【0010】この液晶表示素子は各画素の電極形状およ
び配置の特有性から基板平面方向の電界成分をもたせ、
すなわち液晶層内に斜め電界を生じるようにしており、
このため各画素内において斜め電界の方向が2以上とな
り、その電界の境界部に積極的に分子配列の乱れを形成
して光散乱状態を得て高いコントラスト比を達成するも
のであり、前述した諸々の問題点を解決し得るものであ
る。
This liquid crystal display element has an electric field component in the plane direction of the substrate due to the peculiarity of the electrode shape and arrangement of each pixel,
That is, an oblique electric field is generated in the liquid crystal layer,
For this reason, the direction of the oblique electric field becomes 2 or more in each pixel, and disorder of the molecular arrangement is positively formed at the boundary of the electric field to obtain a light scattering state to achieve a high contrast ratio. It can solve various problems.

【0011】すなわち、この液晶表示素子によれば、電
極への電圧印加制御により素子を透過する光を透過と散
乱のいずれかに制御することができる。
That is, according to this liquid crystal display element, the light transmitted through the element can be controlled to be either transmitted or scattered by controlling the voltage application to the electrodes.

【0012】しかしながら、発明者等は、この液晶表示
素子は光散乱方向と直交した方位に振動する入射光に対
しては殆ど散乱を示さないことを見出した。このため光
散乱強度をより高めるには入射する光に工夫を要する。
However, the inventors have found that this liquid crystal display element shows almost no scattering of incident light vibrating in the direction orthogonal to the light scattering direction. Therefore, in order to further increase the light scattering intensity, it is necessary to devise the incident light.

【0013】そこで本発明では、この問題を解決する液
晶表示素子を得るもので、より優れた表示性能を得る新
規な液晶表示素子を得ることを目的としている。
Therefore, the present invention is to obtain a liquid crystal display element which solves this problem, and an object of the present invention is to obtain a novel liquid crystal display element having more excellent display performance.

【0014】[0014]

【課題を解決するための手段】本発明は、相対向する領
域を一画素として複数の画素を形成するための第1の電
極(上電極)を有する第1の基板および第2の電極(下
電極)を有する第2の基板とこれら基板間に挟持された
ネマティック液晶の液晶層とからな液晶表示素子におい
て、前記第1の電極が一画素内に導電体部と非導電体部
とを有し、前記第2の電極が一画素内に導電体部と非導
電体部とを有し、前記第1の電極の導電体部が前記第2
の電極の非導電体部の少なくとも一部に面するように対
向しており、前記第2の電極の導電体部が第1の電極の
非導電体部少なくともの一部に面するように対向してお
り、前記第1の電極上に所定の方向に液晶分子配向処理
された第1の配向膜を有し、前記第2の電極上に所定の
方向に液晶分子配向処理された第2の配向膜を有し、
前記電極に電圧が印加されない状態において、前記液晶
層の液晶分子が前記第1および第2の配向膜の配向処理
に応じたチルト方向を有する配列をしており、前記第1
の電極および第2の電極が市松模様のパターンに形成さ
れてなる液晶表示素子を得るものである。
According to the present invention, a first substrate and a second electrode (lower electrode) having a first electrode (upper electrode) for forming a plurality of pixels with regions facing each other as one pixel are provided. In a liquid crystal display element comprising a second substrate having an electrode) and a liquid crystal layer of nematic liquid crystal sandwiched between these substrates, the first electrode has a conductor portion and a non-conductor portion in one pixel. However, the second electrode has a conductor portion and a non-conductor portion in one pixel, and the conductor portion of the first electrode is the second portion.
Of the second electrode so as to face at least a part of the non-conductive portion of the second electrode, and the conductive portion of the second electrode so as to face at least a part of the non-conductive portion of the first electrode. And a first alignment film having liquid crystal molecule alignment processing in a predetermined direction on the first electrode, and a second liquid crystal molecule alignment processing in a predetermined direction on the second electrode. Has an alignment film,
When no voltage is applied to the electrodes, the liquid crystal molecules of the liquid crystal layer are arranged so as to have a tilt direction according to the alignment treatment of the first and second alignment films.
And a second electrode are formed in a checkered pattern to obtain a liquid crystal display element.

【0015】さらに、相対向する領域を一画素として複
数の画素を形成するための第1の電極を有する第1の基
板および第2の電極を有する第2の基板とこれら基板間
に挟持されたネマティック液晶の液晶層とからなる液晶
表示素子において、前記第1の電極が一画素内に導電体
部と非導電体部とを有し、前記第2の電極が一画素内に
導電体部と非導電体部とを有し、前記第1の電極の導電
体部が前記第2の電極の非導電体部の少なくとも一部に
面するように対向しており、前記第2の電極の導電体部
が第1の電極の非導電体部少なくともの一部に面するよ
うに対向しており、前記両電極は電圧が印加された状態
において、前記一画素領域内で前記液晶層の液晶分子が
少なくとも4方向にチルトするように少なくとも4方向
の斜め電界を発生する電極であることを特徴とする液晶
表示素子を得るものである。
Further, it is sandwiched between a first substrate having a first electrode and a second substrate having a second electrode for forming a plurality of pixels with the areas facing each other as one pixel, and these substrates. In a liquid crystal display element including a liquid crystal layer of nematic liquid crystal, the first electrode has a conductor part and a non-conductor part in one pixel, and the second electrode has a conductor part in one pixel. A non-conductor portion, and the conductor portion of the first electrode opposes so as to face at least a part of the non-conductor portion of the second electrode. The body portion is opposed to face at least a part of the non-conductor portion of the first electrode, and the electrodes are liquid crystal molecules of the liquid crystal layer in the one pixel region in a state where a voltage is applied. Generates an oblique electric field in at least 4 directions so that it tilts in at least 4 directions It is intended to obtain a liquid crystal display device which is a that electrode.

【0016】さらに、液晶層が配置される第1の基板と
第2の基板の間に前記液晶層の層厚よりも基板法線方向
の長さが小さい微粒子を前記液晶層中に混入させるか、
基板法線方向の高さが前記液晶層の層厚よりも低い突起
を前記基板の少なくとも一方に設けてなる液晶表示素子
を得るものである。
Further, between the first substrate on which the liquid crystal layer is arranged and the second substrate, fine particles having a length in the substrate normal direction smaller than the layer thickness of the liquid crystal layer are mixed in the liquid crystal layer. ,
It is intended to obtain a liquid crystal display element in which a protrusion having a height in the normal direction to the substrate that is lower than the layer thickness of the liquid crystal layer is provided on at least one of the substrates.

【0017】[0017]

【作用】本発明は、電圧印加時に基板の法線方向に対し
て斜めの電界を複数方位に発生し、生じる液晶分子配列
の乱れを利用して光散乱現象を起こして表示する液晶表
示であり、斜め電界を少なくとも4方向に形成する電極
パターンを有している。
The present invention is a liquid crystal display in which an electric field oblique to the normal direction of a substrate is generated in a plurality of directions when a voltage is applied, and the resulting disorder of the liquid crystal molecule alignment causes a light scattering phenomenon to be displayed. , Has an electrode pattern that forms an oblique electric field in at least four directions.

【0018】図1は本発明の代表的構成を示し、上基板
(第1の基板)11の一表面に、図1(b)に示す市松
模様パターンの透明な上電極(第1の電極)13が形成
され、一方、下基板(第2の基板)12の対向する一表
面に、図1(c)に示す市松模様パターンの透明な下電
極(第2の電極)14が形成される。
FIG. 1 shows a typical configuration of the present invention, in which one surface of an upper substrate (first substrate) 11 has a checkered pattern transparent upper electrode (first electrode) shown in FIG. 1 (b). On the other hand, a transparent lower electrode (second electrode) 14 having a checkered pattern shown in FIG. 1C is formed on one surface of the lower substrate (second substrate) 12 facing each other.

【0019】上電極13は図1(b)のように、透明導
電体部13aがほぼ正方形の導電体部単位13a1 をそ
の各コーナ部分で導電的に接続し一体化した構造であ
り、導電体部間に非導電体部13bを囲むパターンにな
っている。
As shown in FIG. 1 (b), the upper electrode 13 has a structure in which the transparent conductor portion 13a is formed by electrically connecting the conductor portion units 13a1 each having a substantially square shape to each other at their corner portions so as to be integrated. It has a pattern that surrounds the non-conductor part 13b between the parts.

【0020】一方、下電極14も図1(c)に示すよう
に、透明導電体部14aと非導電体部14bの市松模様
のパターンに形成され、図では電極の一画素領域を示し
ている。上電極パターンと下電極パターンは対称的であ
り、両電極13、14を対面させたときに、上電極13
の導電体部13aが下電極14の非導電体部14bの少
なくとも一部に面するように対向しており、下電極14
の導電体部14aが上電極13の非導電体部13bの少
なくとも一部に面するように対向している。
On the other hand, the lower electrode 14 is also formed in a checkered pattern of transparent conductor portions 14a and non-conductor portions 14b as shown in FIG. 1C, and one pixel area of the electrode is shown in the figure. . The upper electrode pattern and the lower electrode pattern are symmetrical, and when the two electrodes 13 and 14 are faced to each other, the upper electrode 13
Of the lower electrode 14 faces the at least part of the non-conductive portion 14b of the lower electrode 14.
The conductor portion 14a of the above is opposed to face at least a part of the non-conductor portion 13b of the upper electrode 13.

【0021】この構成において、これら電極間に電源3
0によって電圧を印加すると、基板法線方向の電界の
他、基板面に平行な電界成分をもつ電界である斜め電界
が液晶層内に形成される。
In this structure, a power source 3 is provided between these electrodes.
When a voltage is applied by 0, an oblique electric field, which is an electric field having an electric field component parallel to the substrate surface, is formed in the liquid crystal layer in addition to the electric field in the normal direction to the substrate.

【0022】図2で本発明の電圧印加と液晶分子配列状
態の関係を説明する。図2(a)は電圧無印加時におけ
る液晶分子配列Mを示しており、上下基板11、12間
の液晶分子は均一な非ねじれのスプレイ配列となってい
る。
The relationship between the voltage application and the liquid crystal molecule alignment state of the present invention will be described with reference to FIG. FIG. 2A shows a liquid crystal molecule array M when no voltage is applied, and the liquid crystal molecules between the upper and lower substrates 11 and 12 have a uniform non-twisted splay array.

【0023】この液晶分子配列状態において、上下電極
13、14に電圧を印加すると、図2(b)に示すよう
に、斜め電界eが形成されて液晶分子Mは電界にそって
斜め方向に配列する。電界eは図2(c)に示すよう
に、例えば上電極13の導電体部13aから下電極14
の導電体部14aに向かうから、導電体部と非導電体部
とをずらして対面させた上下電極の市松模様の場合、各
導電体部単位ごとに少なくとも4方向の斜め電界eが形
成される。
When a voltage is applied to the upper and lower electrodes 13 and 14 in this liquid crystal molecule alignment state, an oblique electric field e is formed and the liquid crystal molecules M are obliquely arranged along the electric field as shown in FIG. 2 (b). To do. As shown in FIG. 2C, the electric field e is, for example, from the conductor portion 13 a of the upper electrode 13 to the lower electrode 14
In the case of the checkered pattern of the upper and lower electrodes in which the conductor portion and the non-conductor portion are displaced and face each other, the oblique electric field e in at least four directions is formed for each conductor portion unit. .

【0024】すなわち、図2(c)のように、上下電極
の導電体部13a、14aと非導電体部13b、14b
の対面配置によって、傾き方向が相互に異なる4方向の
斜め電界eが生じ、図2(b)に示すように、これら電
界に沿って再配列する液晶分子Mは電界の境界領域DL
で分子配列が乱れる。このためこの領域を通過する光は
散乱状態になる。図1のように、一画素内で微小な市松
模様を形成して多くの分子配列の乱れが生じるようにす
ることで、画素ごとに光透過と光散乱を制御することが
できる。
That is, as shown in FIG. 2C, the conductor portions 13a and 14a and the non-conductor portions 13b and 14b of the upper and lower electrodes are formed.
Due to the face-to-face arrangement, diagonal electric fields e in four directions having different tilt directions are generated, and as shown in FIG. 2B, the liquid crystal molecules M rearranged along these electric fields are in the boundary region DL of the electric field.
The molecular arrangement is disturbed by. Therefore, the light passing through this area is in a scattered state. As shown in FIG. 1, a minute checkered pattern is formed in one pixel so that a large number of disordered molecular arrangements are generated, whereby light transmission and light scattering can be controlled for each pixel.

【0025】図2(a)で説明したように、電圧無印加
状態では、配向膜の配向処理にしたがって液晶分子が一
様に配向する。本発明では、図1(a)のように上電極
13上に所定の方向に液晶分子配向処理された上配向膜
15を有し、下電極14上に所定の方向に液晶分子配向
処理された下配向膜16を有する。矢印F、Rは各配向
膜15、16の液晶配向方向を示し、液晶層の液晶分子
を非捩じれ状態に保持する。
As described with reference to FIG. 2A, the liquid crystal molecules are uniformly aligned according to the alignment treatment of the alignment film when no voltage is applied. In the present invention, as shown in FIG. 1A, the upper electrode 13 has an upper alignment film 15 which is subjected to liquid crystal molecule alignment treatment in a predetermined direction, and the lower electrode 14 is subjected to liquid crystal molecule alignment treatment in a predetermined direction. It has a lower alignment film 16. Arrows F and R indicate the liquid crystal alignment directions of the alignment films 15 and 16, and hold the liquid crystal molecules of the liquid crystal layer in a non-twisted state.

【0026】本発明では、電圧無印加状態の液晶分子配
列はスプレイ配列またはベンド配列であることが望まし
い。
In the present invention, it is desirable that the liquid crystal molecule alignment in the state where no voltage is applied is a splay alignment or a bend alignment.

【0027】すなわち、図2(a)の分子配列構造は、
いわゆるスプレイ配列であり、かつ上下基板11、12
表面における液晶分子Mのプレチルト角が上下でほぼ等
しいことを特徴としている。こうした、分子配列では電
界の印加の仕方によってはその分子のチルト方向が、2
方向となる。これは電圧を印加しない状態での液晶分子
配列が液晶層17の上半分と下半分で対称な形をしてい
ることによっている。つまり、液晶分子のチルト方向が
2以上の自由度を持っていることによる。よって、電極
13、14に電圧を印加した際にのみ図2(b)に示す
ように斜め電界eが発生し、分子Mのチルト方向の境界
部(図中DL)にディスクリネーションラインを発生さ
せることができ、入射光を散乱させる機能を得ることが
できる。
That is, the molecular arrangement structure of FIG.
A so-called splay arrangement and upper and lower substrates 11, 12
It is characterized in that the pretilt angles of the liquid crystal molecules M on the surface are substantially equal in the vertical direction. In such a molecular arrangement, the tilt direction of the molecule may be 2 depending on how the electric field is applied.
Direction. This is because the liquid crystal molecule alignment in the state where no voltage is applied is symmetrical between the upper half and the lower half of the liquid crystal layer 17. That is, the tilt direction of liquid crystal molecules has two or more degrees of freedom. Therefore, an oblique electric field e is generated as shown in FIG. 2B only when a voltage is applied to the electrodes 13 and 14, and a disclination line is generated at a boundary portion (DL in the drawing) of the molecule M in the tilt direction. It is possible to obtain the function of scattering incident light.

【0028】このように液晶分子のチルト方向が2以上
の自由度を持たせるには図2(a)のスプレイ分子配列
構造の他、例えば、前記したベンド配列すなわち液晶組
成物として負の誘電異方性を持つネマティック液晶組成
物を用い、液晶分子配列を上下基板におけるプレチルト
角が90°である完全な垂直配列としても同様の効果を
得ることができる。この場合、液晶分子のチルトダウン
方向の自由度が2以上となる。
In order to allow the liquid crystal molecules to have two or more degrees of freedom in the tilt direction, in addition to the splay molecule arrangement structure shown in FIG. 2A, for example, the bend arrangement described above, that is, the liquid crystal composition has a negative dielectric anisotropy. The same effect can be obtained by using a nematic liquid crystal composition having a directionality and by arranging liquid crystal molecules in a completely vertical arrangement in which the pretilt angles of the upper and lower substrates are 90 °. In this case, the degree of freedom in the tilt-down direction of the liquid crystal molecules is 2 or more.

【0029】いずれにせよ、このように液晶分子が電圧
を印加していない状態で実効的に一様な分子配列であ
り、液晶分子のチルトアップ方向、もしくはチルトダウ
ン方向の自由度が2以上である液晶分子配列に対し、斜
め電界が微細な領域毎に相反する2方向以上に印加され
るように考慮した電極であればよい。
In any case, the liquid crystal molecules have an effectively uniform molecular arrangement in the state where no voltage is applied, and the degree of freedom in the tilt-up direction or the tilt-down direction of the liquid crystal molecules is 2 or more. It is sufficient that the electrodes are such that an oblique electric field is applied to two or more directions that are contradictory to each other in a fine liquid crystal array for a certain liquid crystal molecule arrangement.

【0030】スプレイ配列を図3(a)に示す。図は上
基板11の配向膜15のラビング処理方向Fと下基板1
2の配向膜16のラビング処理方向Rを同方向とした場
合で、正の誘電異方性をもつネマティック液晶のねじれ
がない状態を示しており、両基板の液晶分子Mのプレチ
ルト角α0 が交差するために、液晶分子配列が一方に広
がった構造になる。なお、ラビング処理方向F、Rを交
差するように両基板を配置させた場合は、液晶分子は交
差角に応じてねじれ配列となる。
The spray array is shown in FIG. The figure shows the rubbing direction F of the alignment film 15 on the upper substrate 11 and the lower substrate 1.
When the rubbing direction R of the second alignment film 16 is the same direction, the nematic liquid crystal having a positive dielectric anisotropy is not twisted, and the pretilt angle α 0 of the liquid crystal molecules M of both substrates intersect. Therefore, the structure is such that the liquid crystal molecular arrangement is spread to one side. When the two substrates are arranged so as to intersect the rubbing directions F and R, the liquid crystal molecules are twisted according to the crossing angle.

【0031】また、ベンド配列を図3(b)に示す。上
下基板11、12の配向膜15、16に垂直配向膜を用
い、これら膜をラビング処理し、その方向F、Rを一致
されるように基板を組み合わせると、負の誘電異方性の
ネマティック液晶の液晶分子Mは図のように配向膜付近
で処理方向F、Rに僅かに傾いた液晶配列部分と液晶層
中央部の垂直方向配列部分の組み合わせになる。
The bend sequence is shown in FIG. 3 (b). Vertical alignment films are used as the alignment films 15 and 16 of the upper and lower substrates 11 and 12, and these films are rubbed, and when the substrates are combined so that their directions F and R are aligned, a nematic liquid crystal having negative dielectric anisotropy is obtained. The liquid crystal molecules M are a combination of a liquid crystal alignment portion slightly tilted in the processing directions F and R near the alignment film and a vertical alignment portion in the central portion of the liquid crystal layer as shown in the figure.

【0032】スプレイ配列、ベンド配列ともに、基板間
に基板面方向に成分をもつ斜め電界を印加すると、液晶
分子が電界方向に沿って再配列しやすく、近接する領域
で方向の異なる斜め電界が発生すると、境界部に液晶分
子の乱れが生じて、透過する光を散乱する。
In both the spray arrangement and the bend arrangement, when an oblique electric field having a component in the substrate surface direction is applied between the substrates, liquid crystal molecules are easily rearranged along the electric field direction, and oblique electric fields with different directions are generated in the adjacent regions. Then, the liquid crystal molecules are disturbed at the boundary portion, and the transmitted light is scattered.

【0033】この液晶表示セルの表示原理について、さ
らに詳細に説明する。図4はこの液晶表示素子の光学的
な説明図である。また、図5は液晶表示セルに電圧を印
加した状態における液晶分子配列の詳細な模式図であ
る。この液晶表示セルは、前述したように電圧を印加し
ない状態では、例えばほぼ水平配列からなる分子配列を
形成しており、光学的には図4(a)に示すように一軸
性の光学媒体となる。すなわち、図中の回転楕円体Lは
液晶の隣接領域の屈折率の異方性を示す屈折率楕円を表
しており、基板平面方向に平行な最大屈折率ne を軸と
してその垂直方向が最小屈折率no である場合を示して
いる。この状態で液晶層に入射する光lは直進(透過)
する。
The display principle of this liquid crystal display cell will be described in more detail. FIG. 4 is an optical explanatory view of this liquid crystal display element. Further, FIG. 5 is a detailed schematic view of the liquid crystal molecule alignment in the state where a voltage is applied to the liquid crystal display cell. As described above, this liquid crystal display cell forms a molecular arrangement that is, for example, a substantially horizontal arrangement in the state where no voltage is applied, and is optically equivalent to a uniaxial optical medium as shown in FIG. Become. That is, the spheroid L in the figure represents a refractive index ellipse indicating the anisotropy of the refractive index of the adjacent region of the liquid crystal, and the maximum refractive index ne parallel to the plane direction of the substrate is the axis and the vertical direction is the minimum refractive index. The case where the rate is no is shown. In this state, the light 1 incident on the liquid crystal layer goes straight (transmits).
To do.

【0034】これに電圧を印加すると分子配列MAは図
5に示すように、スプレイ配列のほぼ水平な配列の領域
aから、垂直にチルトした領域bに連続的に分子配列M
Aが変化した領域を形成し、かつ斜め電界が、方向が交
互になるよう印加されているため分子配列MAもそのチ
ルト方向が交互に平面的に対向する形状をとっている。
When a voltage is applied to this, as shown in FIG. 5, the molecular array M A is continuously arranged from a region a, which is a substantially horizontal array of the splay array, to a vertically tilted region b.
Since a region in which A is changed and oblique electric fields are applied so that the directions alternate, the molecular array MA also has a shape in which the tilt directions thereof are alternately opposed to each other in a plane.

【0035】これにセルに垂直な方向の光を入射した場
合を考える。液晶分子、液晶層には屈折率、誘電率に異
方性があるので、液晶層内で生じる光学現象は光の振動
方向によって異なる。電圧無印加時の液晶分子配列方位
の振動方向の光を入射させた場合、屈折率や屈折率楕円
Lは断面的にみて、図4(b1)、(c1)に示すよう
になる。マクロ的に見れば、図4(b1)のごとく、液
晶の最大屈折率ne (液晶分子がセル平面方向に配列し
ている領域)と最小屈折率no (液晶分子がセル法線方
向に配列している領域)が交互に配列した構成となって
いる。
Consider a case in which light in a direction perpendicular to the cell is incident on this. Since the liquid crystal molecules and the liquid crystal layer have anisotropy in the refractive index and the dielectric constant, the optical phenomenon occurring in the liquid crystal layer varies depending on the vibration direction of light. When light in the vibration direction of the liquid crystal molecule alignment direction when no voltage is applied is incident, the refractive index and the refractive index ellipse L are as shown in FIGS. 4 (b1) and 4 (c1) in a sectional view. Macroscopically, as shown in FIG. 4 (b1), the maximum refractive index ne of the liquid crystal (a region where the liquid crystal molecules are aligned in the cell plane direction) and the minimum refractive index no (the liquid crystal molecules are aligned in the cell normal direction). Area) is alternately arranged.

【0036】このため、回折格子現象(光の回り込み)
が生じて、セルに垂直な方向に入射した光lは、その進
行方向がl0 、le に曲がる。つまりは光の散乱現象を
得る。また、ミクロ的に見れば、図4(c1)のごと
く、液晶分子(およそ図示した分子形状のごとく屈折率
楕円特性を示す)はセル平面方向での配列からセル法線
方向での配列に連続的に変化した構成をなしている。よ
って、屈折レンズが形成され、セルに垂直な法線方向z
に入射した光lは、セル法線方向からずれていき(法線
方向での旋光)、その進行方向が曲がる。つまりは前記
回折格子現象とは別の作用にて、さらなる光の散乱現象
を得る。このようにして、本発明に係わる液晶表示セル
は光の散乱現象を得ることができるが、前記電圧無印加
時の液晶分子配列方位の振動方向と直交した方位の光を
入射させた場合には、僅かな散乱効果しか得られない。
For this reason, the diffraction grating phenomenon (light wraparound)
Then, the light 1 which is incident on the cell in a direction perpendicular to the cell has its traveling direction bent to l0 and le. That is, a light scattering phenomenon is obtained. From a microscopic point of view, as shown in FIG. 4 (c1), the liquid crystal molecules (which exhibit a refractive index elliptic characteristic like the molecular shape shown in the figure) are continuous from the array in the cell plane direction to the array in the cell normal direction. The composition has changed. Therefore, a refraction lens is formed, and the normal direction z perpendicular to the cell is
The light 1 incident on is shifted from the cell normal direction (rotation in the normal direction), and its traveling direction is bent. That is, a further light scattering phenomenon is obtained by an action different from the diffraction grating phenomenon. In this way, the liquid crystal display cell according to the present invention can obtain a light scattering phenomenon. However, when light in a direction orthogonal to the vibration direction of the liquid crystal molecule alignment direction when no voltage is applied is incident, However, only a slight scattering effect can be obtained.

【0037】図4(b2)(マクロ的に見た屈折率分
布)、(c2)(ミクロ的に見た屈折率分布)に、この
電圧無印加時の液晶分子配列方位の振動方向と直交した
方位の光を入射させた場合の屈折率や屈折率楕円を、図
4(b1)、(c1)と同様に示す。図から明らかなよ
うにこの方位に対する屈折率は面内に等方n0 である。
よって、前記2つの光散乱現象は生じない。
In FIG. 4 (b2) (refractive index distribution viewed macroscopically) and (c2) (refractive index distribution viewed microscopically), the direction of vibration of the liquid crystal molecule alignment direction when no voltage is applied is orthogonal to the vibration direction. The refractive index and the refractive index ellipse when the light of the azimuth is incident are shown in the same manner as in FIGS. 4B1 and 4C1. As is clear from the figure, the refractive index for this orientation is isotropic in the plane n0.
Therefore, the two light scattering phenomena do not occur.

【0038】以上から、本発明の液晶表示素子の代表的
構成は、図1に示すように、入射する光のどの振動方位
に対しても、光散乱を生じる電極構成にしたものであ
る。
From the above, a typical structure of the liquid crystal display device of the present invention is, as shown in FIG. 1, an electrode structure which causes light scattering in any vibration direction of incident light.

【0039】すなわち、図1に示すように、電極を市松
模様に形成することによって、少なくとも4方向の斜め
電界を形成し、光の振動方向を問わず光散乱を発生させ
る。すなわち、非偏光入射光をそのまま、効率よく散乱
させることができる。
That is, as shown in FIG. 1, by forming the electrodes in a checkered pattern, an oblique electric field in at least four directions is formed, and light scattering is generated regardless of the vibration direction of light. That is, the non-polarized incident light can be efficiently scattered as it is.

【0040】[0040]

【実施例】以下本発明の実施例を詳細に説明する。Embodiments of the present invention will be described below in detail.

【0041】(実施例1)図1(a)に示すように、液
晶表示セル10は、上基板11として非画素部全域にク
ロムからなるブラックマトリクスを形成し、各画素に図
1(b)に示すような、市松パターンの導電体部13a
と非導電体部13bからなるITOの共通電極13を形
成したガラス基板を用い、下基板12として、図1
(c)に示すように、導電体部14aと非導電体部14
bを市松パターンとした、TFTからなるスイッチング
素子14c付きガラス基板を用いた。図1(b)は上電
極13のパターンの一画素分を示し、導電体部13aの
単位の縦横幅は10μm、、非導電体部13bの縦横幅
も同じく10μmである。すなわち、一画素領域内に複
数の対の市松模様が存在する。
(Example 1) As shown in FIG. 1A, in a liquid crystal display cell 10, a black matrix made of chromium is formed as an upper substrate 11 over the entire non-pixel portion, and each pixel has a black matrix shown in FIG. Checkered pattern conductor portion 13a as shown in FIG.
1 is used as the lower substrate 12 using a glass substrate on which the ITO common electrode 13 including the non-conductor portion 13b is formed.
As shown in (c), the conductor portion 14 a and the non-conductor portion 14
A glass substrate with a switching element 14c made of TFT was used in which b was a checkerboard pattern. FIG. 1B shows one pixel of the pattern of the upper electrode 13. The vertical and horizontal width of the conductor portion 13a is 10 μm, and the vertical and horizontal width of the non-conductor portion 13b is also 10 μm. That is, there are a plurality of pairs of checkered patterns in one pixel area.

【0042】図1(c)は下電極14の一画素のパター
ンを示しており、導電体部14aの単位の縦横幅は10
μmである。上下基板を対向させた状態で、上電極の導
電体部13aと下電極の非導電体部14bが対面し、下
電極の導電体部14aと上電極の非導電体部13bが対
面する。
FIG. 1C shows a pattern of one pixel of the lower electrode 14, and the vertical and horizontal width of the unit of the conductor portion 14a is 10.
μm. With the upper and lower substrates facing each other, the conductor portion 13a of the upper electrode and the non-conductor portion 14b of the lower electrode face each other, and the conductor portion 14a of the lower electrode and the non-conductor portion 13b of the upper electrode face each other.

【0043】こうした基板を用いて、上下配向膜15、
16(商品名AL−3046、日本合成ゴム製)(プレ
チルト角測定値3゜)を形成し、図に示す同一方向F1
、R1 にラビング処理を施したのち、下基板12側に
基板間隙剤18として液晶層17の層厚が7.5μmと
なるよう微粒子(商品名ミクロパ−ルSP、積水ファイ
ンケミカル製)(粒径7.5μm)を分散密度100個
/mm2 となるよう乾式散布法にて散布して、上下基板
を封止しセルとした。セルの基板間に誘電異方性が正の
液晶(商品名ZLI−3926、メルクジャパン製)
(Δn=0.2030)を充填して形成されるねじれのないネ
マティック液晶層17を挟持して本実施例の素子を得
た。ここで、液晶層厚を厚くし、液晶組成物のΔnを大
きくしたのは、光散乱状態における光散乱性を高めるた
めである。
Using such a substrate, the upper and lower alignment films 15,
16 (trade name AL-3046, made by Japan Synthetic Rubber) (pretilt angle measurement value 3 °) is formed, and the same direction F1 shown in the figure is formed.
, R1 are rubbed, and then fine particles (trade name: Micropal SP, manufactured by Sekisui Fine Chemical Co., Ltd.) (particle size: 7) are formed on the lower substrate 12 side so that the liquid crystal layer 17 as the substrate interstitial agent 18 has a thickness of 7.5 μm. 0.5 μm) was sprayed by a dry spraying method so that the dispersion density was 100 particles / mm 2, and the upper and lower substrates were sealed to form a cell. Liquid crystal with positive dielectric anisotropy between cell substrates (product name ZLI-3926, manufactured by Merck Japan)
An element of this example was obtained by sandwiching a nematic liquid crystal layer 17 having no twist formed by filling (Δn = 0.2030). Here, the reason why the liquid crystal layer thickness is increased and Δn of the liquid crystal composition is increased is to enhance the light scattering property in the light scattering state.

【0044】このようにして得られた液晶表示素子に電
圧を印加して電気光学特性(透過率−印加電圧曲線)を
測定した。透過率−印加電圧曲線を求めるために、液晶
表示装置にHe-Ne レーザー光を入射させ、透過率を測定
した。光のスポット径は2mmで、透過したレーザー光は
液晶表示装置から距離20cmのところにあるフォトダイ
オードにより検出した。
A voltage was applied to the liquid crystal display device thus obtained, and the electro-optical characteristics (transmittance-applied voltage curve) were measured. In order to obtain the transmittance-applied voltage curve, He-Ne laser light was made incident on the liquid crystal display device, and the transmittance was measured. The spot diameter of the light was 2 mm, and the transmitted laser light was detected by a photodiode located at a distance of 20 cm from the liquid crystal display device.

【0045】図7に0Vから徐々に印加電圧を3.3V
まで増加、3.3Vから徐々に0Vまで減少させていっ
たときの透過率−印加電圧曲線Tを示す。電圧を印加し
ていない状態(0V印加)では透過率約85%であっ
た。また、印加電圧3.3Vでは最小透過率0.4%
と、良好な散乱状態が得られ、コントラスト比は20
0:1であった。また、図から明らかなように電気光学
特性にヒステリシスは全くなかった。また、印加電圧
3.1Vおよび0Vで応答速度を測定したところ立上が
り6msec、立ち下がり18msecと極めて速い値
を得た。
In FIG. 7, the applied voltage is gradually changed from 0V to 3.3V.
Shows the transmittance-applied voltage curve T when increasing from 3.3V to gradually decreasing from 3.3V to 0V. When no voltage was applied (0 V applied), the transmittance was about 85%. In addition, when the applied voltage is 3.3V, the minimum transmittance is 0.4%.
And a good scattering state was obtained, and the contrast ratio was 20.
0: 1. Further, as is clear from the figure, there was no hysteresis in the electro-optical characteristics. Further, when the response speed was measured at an applied voltage of 3.1 V and 0 V, an extremely fast value of 6 msec in rising and 18 msec in falling was obtained.

【0046】(実施例2)実施例1と同じ基板を用い、
配向膜を同様に印刷した後、市松電極パターンに対して
斜め方向の45°交差でラビング処理した。その他は実
施例1と同じである。本実施例の諸特性を入射光を非偏
光光として測定したところ、電圧無印加時の透過光強度
は85%と高く、実施例1とほぼ同等のコントラスト比
が得られた。
(Example 2) Using the same substrate as in Example 1,
After the alignment film was printed in the same manner, a rubbing treatment was performed at 45 ° crossing in an oblique direction with respect to the checkered electrode pattern. Others are the same as those in the first embodiment. When various characteristics of this example were measured with incident light as non-polarized light, the intensity of transmitted light when no voltage was applied was as high as 85%, and a contrast ratio almost equal to that of example 1 was obtained.

【0047】以上、本発明を実施例により説明したが、
市松パターンの電極形状は本発明の範囲で種々の変形が
可能であり、例えば電極パターンを図6(a)、(b)
に示す市松模様にすることができる。
The present invention has been described above with reference to the embodiments.
The electrode shape of the checkered pattern can be variously modified within the scope of the present invention. For example, the electrode pattern can be formed as shown in FIGS.
The checkered pattern shown in can be used.

【0048】図6(a)に示すものは、上下電極13、
14ともに同一のメッシュ状市松パターンとし、矩形形
状の非導電体部13b(14b)の長手方向130(1
40)を交互に直交させて配置するものであり、上下電
極を対面する配置で、上電極13の非導電体部13bの
長手方向130とと下電極14の非導電体部14bの長
手方向140が直交するように配置する。この構成にお
いて、4方向の斜め電界を発生することができる。
FIG. 6 (a) shows the upper and lower electrodes 13,
14 have the same mesh checkered pattern, and the rectangular non-conductor portion 13b (14b) has a longitudinal direction 130 (1).
40) are alternately arranged orthogonally to each other, and the upper and lower electrodes are opposed to each other, and the longitudinal direction 130 of the non-conductor portion 13b of the upper electrode 13 and the longitudinal direction 140 of the non-conductor portion 14b of the lower electrode 14 are arranged. Are arranged so that they are orthogonal to each other. With this configuration, diagonal electric fields in four directions can be generated.

【0049】図6(b)は円形とした非導電体部の大き
さを上電極13と下電極14とで異ならせたもので、上
電極13の円形非導電体部13bの径と下電極14の円
形非導電体部14bの径を変えている。この構成によれ
ば、斜め電界を全方位に形成することができて、光散乱
の方向性をほぼ完全に解消することができる。
In FIG. 6B, the size of the circular non-conducting portion is different between the upper electrode 13 and the lower electrode 14. The diameter of the circular non-conducting portion 13b of the upper electrode 13 and the lower electrode are different from each other. The diameter of 14 circular non-conductor parts 14b is changed. With this configuration, the oblique electric field can be formed in all directions, and the directionality of light scattering can be almost completely eliminated.

【0050】[0050]

【発明の効果】本発明によれば、散乱性が高く、駆動電
圧の低い、明るくコントラスト比の高い階調性に優れた
液晶表示装置が得られる。
According to the present invention, a liquid crystal display device having a high scattering property, a low driving voltage, a bright brightness, a high contrast ratio and an excellent gradation property can be obtained.

【0051】これら本発明による液晶表示装置は、TF
T駆動による大表示容量のディスプレーに適し、また、
優れた散乱特性が得られることから投影型ディスプレー
への応用に適している。
The liquid crystal display device according to the present invention has a TF
Suitable for large display capacity display by T drive,
It is suitable for projection display applications because it has excellent scattering characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すもので、(a)は断面
図、(b)は(a)の上電極の一部平面図、(c)は
(a)の下電極の一部平面図。
1 shows an embodiment of the present invention, in which (a) is a sectional view, (b) is a partial plan view of the upper electrode of (a), and (c) is one of the lower electrodes of (a). FIG.

【図2】本発明の作用を説明するもので、(a)は電圧
無印加時の液晶分子配列を示す一部断面図、(b)は電
圧印加時の液晶分子配列を示す一部断面図、(c)は電
圧印加時の電界を説明する斜視図。
2A and 2B are views for explaining the operation of the present invention, in which FIG. 2A is a partial cross-sectional view showing a liquid crystal molecule alignment when no voltage is applied, and FIG. 2B is a partial cross-sectional view showing a liquid crystal molecule alignment when a voltage is applied. , (C) is a perspective view illustrating an electric field when a voltage is applied.

【図3】(a)は本発明に用いるスプレイ配列を説明す
る略図、(b)は本発明に用いるベンド配列を説明する
略図、
3A is a schematic diagram illustrating a spray array used in the present invention, FIG. 3B is a schematic diagram illustrating a bend array used in the present invention, FIG.

【図4】本発明の作用を説明するもので、(a)は液晶
層中の液晶分子の屈折率楕円を示す図、(b1)、(b
2)はマクロ的に見た液晶層の屈折率の概要を説明する
図、(c1)、(c2)はミクロ的に見た液晶層の光に
対する屈折の様子を説明する図。
FIG. 4 is a view for explaining the operation of the present invention, in which (a) is a diagram showing a refractive index ellipse of liquid crystal molecules in a liquid crystal layer, (b1), (b).
2) is a diagram for explaining the outline of the refractive index of the liquid crystal layer as seen in a macro view, and (c1) and (c2) are diagrams for explaining the manner of refraction of the liquid crystal layer as seen from a microscopic view.

【図5】本発明を説明する電極構成と液晶分子配列の一
例を示す図。
FIG. 5 is a diagram showing an example of an electrode configuration and a liquid crystal molecule alignment for explaining the present invention.

【図6】(a)、(b)は本発明の電極の変形例を示す
平面図。
6A and 6B are plan views showing modified examples of the electrode of the present invention.

【図7】本発明の実施例の透過率−印加電圧曲線図。FIG. 7 is a transmissivity-applied voltage curve diagram of the example of the present invention.

【図8】従来技術のカプセル型高分子分散型液晶表示素
子を示す断面図。
FIG. 8 is a cross-sectional view showing a conventional capsule-type polymer-dispersed liquid crystal display device.

【符号の説明】[Explanation of symbols]

10…液晶表示セル 11…上基板 12…下基板 13…上電極 14…下電極 15、16…配向膜 17…液晶層 DESCRIPTION OF SYMBOLS 10 ... Liquid crystal display cell 11 ... Upper substrate 12 ... Lower substrate 13 ... Upper electrode 14 ... Lower electrode 15, 16 ... Alignment film 17 ... Liquid crystal layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 正仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 羽藤 仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masahito Ishikawa, No. 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Stock company, Toshiba Yokohama Works (72) Inventor, Hitoshi Hato, No. 8, Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa Company Toshiba Yokohama Office

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 相対向する領域を一画素として複数の画
素を形成するための第1の電極を有する第1の基板およ
び第2の電極を有する第2の基板とこれら基板間に挟持
されたネマティック液晶の液晶層とからなる液晶表示素
子において、 前記第1の電極が一画素内に導電体部と非導電体部を有
し、前記第2の電極が一画素内に導電体部と非導電体部
を有し、前記第1の電極の導電体部が前記第2の電極の
非導電体部の少なくとも一部に面するように対向してお
り、前記第2の電極の導電体部が第1の電極の非導電体
部の少なくともの一部に面するように対向しており、 前記第1の電極上に所定の方向に液晶分子配向処理され
た第1の配向膜を有し、前記第2の電極上に所定の方向
に液晶分子配向処理された第2の配向膜を有し、 前記
電極に電圧が印加されない状態において、前記液晶層の
液晶分子が前記第1および第2の配向膜の配向処理に応
じたチルト方向を有する配列をしており、前記第1の電
極および第2の電極が市松模様のパターンに形成されて
なる液晶表示素子。
1. A first substrate having a first electrode and a second substrate having a second electrode for forming a plurality of pixels with mutually facing regions as one pixel, and the substrate is sandwiched between these substrates. In a liquid crystal display element including a liquid crystal layer of nematic liquid crystal, the first electrode has a conductor portion and a non-conductor portion in one pixel, and the second electrode has a conductor portion and a non-conductor portion in one pixel. A conductor part of the first electrode, the conductor part of the first electrode facing the at least part of the non-conductor part of the second electrode, and the conductor part of the second electrode. Have a first alignment film that is subjected to liquid crystal molecule alignment treatment in a predetermined direction on the first electrode so as to face at least a part of the non-conductive portion of the first electrode. A second alignment film, which has been subjected to liquid crystal molecule alignment treatment in a predetermined direction, is provided on the second electrode. In the state where no pressure is applied, the liquid crystal molecules of the liquid crystal layer are arranged so as to have a tilt direction according to the alignment treatment of the first and second alignment films, and the first electrode and the second electrode are A liquid crystal display device formed in a checkered pattern.
【請求項2】 相対向する領域を一画素として複数の画
素を形成するための第1の電極を有する第1の基板およ
び第2の電極を有する第2の基板とこれら基板間に挟持
されたネマティック液晶の液晶層とからなる液晶表示素
子において、 前記第1の電極が一画素内に導電体部と非導電体部とを
有し、前記第2の電極が一画素内に導電体部と非導電体
部とを有し、前記第1の電極の導電体部が前記第2の電
極の非導電体部の少なくとも一部に面するように対向し
ており、前記第2の電極の導電体部が第1の電極の非導
電体部少なくともの一部に面するように対向しており、 前記両電極は電圧が印加された状態において、前記一画
素領域内で前記液晶層の液晶分子が少なくとも4方向に
チルトするように少なくとも4方向の斜め電界を発生す
る電極であることを特徴とする液晶表示素子。
2. A first substrate having a first electrode and a second substrate having a second electrode for forming a plurality of pixels with mutually facing regions as one pixel and sandwiched between these substrates. In a liquid crystal display element including a liquid crystal layer of nematic liquid crystal, the first electrode has a conductor part and a non-conductor part in one pixel, and the second electrode has a conductor part in one pixel. A non-conductor portion, and the conductor portion of the first electrode opposes so as to face at least a part of the non-conductor portion of the second electrode. The body part faces so as to face at least a part of the non-conductor part of the first electrode, and the both electrodes are liquid crystal molecules of the liquid crystal layer in the one pixel region in a state where a voltage is applied. To generate an oblique electric field in at least four directions so that the tilts in at least four directions. The liquid crystal display element characterized by at.
【請求項3】 液晶層が配置される第1の基板と第2の
基板の間に前記液晶層の層厚よりも基板法線方向の長さ
が小さい微粒子を前記液晶層中に混入させるか、基板法
線方向の高さが前記液晶層の層厚よりも低い突起を前記
基板の少なくとも一方に設けてなる請求項1または請求
項2に記載の液晶表示素子。
3. Between the first substrate and the second substrate on which the liquid crystal layer is arranged, is the fine particle having a length in the substrate normal direction smaller than the layer thickness of the liquid crystal layer mixed into the liquid crystal layer? The liquid crystal display element according to claim 1 or 2, wherein a projection having a height in a direction normal to the substrate is lower than a layer thickness of the liquid crystal layer is provided on at least one of the substrates.
JP27740694A 1994-11-11 1994-11-11 Liquid crystal display element Pending JPH08136941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27740694A JPH08136941A (en) 1994-11-11 1994-11-11 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27740694A JPH08136941A (en) 1994-11-11 1994-11-11 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH08136941A true JPH08136941A (en) 1996-05-31

Family

ID=17583107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27740694A Pending JPH08136941A (en) 1994-11-11 1994-11-11 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH08136941A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002169163A (en) * 2000-09-22 2002-06-14 Dainippon Printing Co Ltd Multi-domain vertical alignment mode liquid crystal display and color filter used for the same
KR100315923B1 (en) * 1998-12-04 2002-12-26 삼성전자 주식회사 LCD Display
JP2004029164A (en) * 2002-06-21 2004-01-29 Japan Science & Technology Corp Liquid crystal display element
WO2004111714A1 (en) * 2003-06-11 2004-12-23 Sharp Kabushiki Kaisha Liquid crystal display
JP2007133409A (en) * 2005-11-11 2007-05-31 Boe Hydis Technology Co Ltd Liquid crystal display device on vertical alignment mode
JP2007256300A (en) * 2006-03-20 2007-10-04 Stanley Electric Co Ltd Liquid crystal display device
USRE43123E1 (en) 1997-06-12 2012-01-24 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43123E1 (en) 1997-06-12 2012-01-24 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
KR100315923B1 (en) * 1998-12-04 2002-12-26 삼성전자 주식회사 LCD Display
JP2002169163A (en) * 2000-09-22 2002-06-14 Dainippon Printing Co Ltd Multi-domain vertical alignment mode liquid crystal display and color filter used for the same
JP2004029164A (en) * 2002-06-21 2004-01-29 Japan Science & Technology Corp Liquid crystal display element
WO2004111714A1 (en) * 2003-06-11 2004-12-23 Sharp Kabushiki Kaisha Liquid crystal display
KR100767945B1 (en) * 2003-06-11 2007-10-18 샤프 가부시키가이샤 Liquid crystal display
CN100437299C (en) * 2003-06-11 2008-11-26 夏普株式会社 Liquid crystal dislay
US7505102B2 (en) 2003-06-11 2009-03-17 Sharp Kabushiki Kaisha Liquid crystal display
JP2007133409A (en) * 2005-11-11 2007-05-31 Boe Hydis Technology Co Ltd Liquid crystal display device on vertical alignment mode
JP2007256300A (en) * 2006-03-20 2007-10-04 Stanley Electric Co Ltd Liquid crystal display device

Similar Documents

Publication Publication Date Title
JP3529460B2 (en) Liquid crystal display
KR0148502B1 (en) Lcd device
JP4813842B2 (en) Liquid crystal display
JP3529434B2 (en) Liquid crystal display device
JPH09160042A (en) Liquid crystal display element
US20060250561A1 (en) Liquid crystal display device
JP2006098784A (en) Viewing angle controlling device and display apparatus
EP1131671A1 (en) Vertically aligned helix-deformed liquid crystal display
JP3432293B2 (en) Liquid crystal display device
JPH0829812A (en) Liquid crystal display device
JPH08136941A (en) Liquid crystal display element
JPH04322223A (en) Liquid crystal display element
JPH07199205A (en) Liquid crystal display element
JPH0792458A (en) Liquid crystal display element
JPH0876077A (en) Electric field control diffraction grating and liquid crystal element
JPH0756148A (en) Liquid crystal display element
JPH07333611A (en) Liquid crystal display device
JP3231910B2 (en) Liquid crystal display device
JPH06110068A (en) Liquid crystal display device
JPH0895006A (en) Liquid crystal display element
JP3130686B2 (en) Liquid crystal display device
JPH06281938A (en) Liquid crystal display element
JPH0534675A (en) Liquid crystal display element
JP3635546B2 (en) LCD panel
JPH0792459A (en) Liquid crystal display element