JP2007256300A - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
JP2007256300A
JP2007256300A JP2006076529A JP2006076529A JP2007256300A JP 2007256300 A JP2007256300 A JP 2007256300A JP 2006076529 A JP2006076529 A JP 2006076529A JP 2006076529 A JP2006076529 A JP 2006076529A JP 2007256300 A JP2007256300 A JP 2007256300A
Authority
JP
Japan
Prior art keywords
slit
axis
liquid crystal
transparent electrode
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006076529A
Other languages
Japanese (ja)
Other versions
JP4846402B2 (en
Inventor
Takashi Sugiyama
貴 杉山
Nobuhisa Iwamoto
宜久 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2006076529A priority Critical patent/JP4846402B2/en
Priority to CN2007100874509A priority patent/CN101042506B/en
Priority to CN2010101947354A priority patent/CN101840115B/en
Publication of JP2007256300A publication Critical patent/JP2007256300A/en
Application granted granted Critical
Publication of JP4846402B2 publication Critical patent/JP4846402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Abstract

<P>PROBLEM TO BE SOLVED: To equalize viewing angle characteristics in all upward and downward, and right and left directions, in a liquid crystal display device which has slits formed in a pair of transparent electrodes for alignment division. <P>SOLUTION: The slits 61 and 71 in the transparent electrodes comprise: first slit portions 61a and 71a which are longitudinal in a direction inclined to an X axis, and second slit portions 61b and 71b which are longitudinal in a direction inclined to the X axis in the opposite direction from the first slit portions. The first slit portion 61a of one transparent electrode and the first slit portion 71a of the other transparent electrode are arranged alternately along the Y axis, and the second slit portion 61b of the one transparent electrode and the second slit portion 71b of the other transparent electrode are arranged alternately along the Y axis. Cross slits may be arranged on the one transparent electrode and the other transparent electrode while shifted by a half pitch along the X axis and Y axis. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、視角特性を改善した液晶表示素子に関する。   The present invention relates to a liquid crystal display element with improved viewing angle characteristics.

従来、この種の液晶表示素子として特許文献1に記載のものが知られている。この液晶表示素子は、図10に示す如く、対向配置される背面側と前面側の一対の基板1,2と、両基板1,2上に設けられ、液晶層3を挟んで重なり合って表示領域を形成する背面側と前面側の一対の透明電極4,5とを備える。そして、両透明電極4,5の表示領域に合致する部分に、夫々、配向分割のための後述するスリット6,7が複数形成されている。   Conventionally, as this type of liquid crystal display element, the one described in Patent Document 1 is known. As shown in FIG. 10, this liquid crystal display element is provided on a pair of substrates 1 and 2 on the back side and the front side that are arranged opposite to each other, and on both substrates 1 and 2 and overlaps with the liquid crystal layer 3 interposed therebetween. And a pair of transparent electrodes 4 and 5 on the front side. A plurality of slits 6 and 7 (described later) for dividing the alignment are formed at portions corresponding to the display areas of the transparent electrodes 4 and 5, respectively.

この液晶表示素子の製造に際しては、各基板1,2上に各透明電極4,5を覆うようにして垂直配向膜を塗布焼成し、次いで、各基板1,2にメインシール材を塗布し、更に、所定の直径のギャップコントロール材を散布した後、両基板1,2を重ね合わせてメインシール材を硬化させる。次に、両基板1,2間の空セルに液晶を注入して液晶層3を形成する。液晶層3の液晶分子8は垂直配向膜の作用で垂直配向される。その後、背面側基板1の外側に背面側偏光板9を貼り合わせると共に、前面側基板2の外側に視角補償板10と前面側偏光板11とを重ねて貼り合わせる。ここで、図11に示す如く、背面側偏光板9の透過軸9aと前面側偏光板11の透過軸11aとは直交しており、そのためノーマルブラックの液晶表示素子となる。   In the production of this liquid crystal display element, a vertical alignment film is applied and fired on each of the substrates 1 and 2 so as to cover the transparent electrodes 4 and 5, and then a main sealant is applied to each of the substrates 1 and 2, Further, after spraying a gap control material having a predetermined diameter, the substrates 1 and 2 are overlapped to cure the main seal material. Next, a liquid crystal layer 3 is formed by injecting liquid crystal into an empty cell between the substrates 1 and 2. The liquid crystal molecules 8 of the liquid crystal layer 3 are vertically aligned by the action of the vertical alignment film. Thereafter, the back-side polarizing plate 9 is bonded to the outside of the back-side substrate 1, and the viewing angle compensation plate 10 and the front-side polarizing plate 11 are stacked and bonded to the outside of the front-side substrate 2. Here, as shown in FIG. 11, the transmission axis 9a of the back-side polarizing plate 9 and the transmission axis 11a of the front-side polarizing plate 11 are orthogonal to each other, so that a normal black liquid crystal display element is obtained.

両透明電極4,5に形成するスリット6,7は、図12に示す如く、長方形であって、スリット長手方向に間隔を存して並び、且つ、背面側透明電極4のスリット6と前面側透明電極5のスリット7とがスリット短手方向に交互に配置される。尚、スリット長手方向は、液晶表示素子を通常の状態で見るときの視野の左右方向(図11、図12のX軸方向)に合致し、また、背面側と前面側の両偏光板9,11の透過軸9a,11aはスリット長手方向に対し±45°の角度で斜交する。   The slits 6 and 7 formed in both the transparent electrodes 4 and 5 are rectangular as shown in FIG. 12 and are arranged at intervals in the slit longitudinal direction, and the slits 6 and the front side of the back side transparent electrode 4 are arranged. The slits 7 of the transparent electrode 5 are alternately arranged in the slit short direction. The longitudinal direction of the slit coincides with the horizontal direction of the visual field when the liquid crystal display element is viewed in a normal state (X-axis direction in FIGS. 11 and 12). The eleven transmission axes 9a and 11a cross at an angle of ± 45 ° with respect to the slit longitudinal direction.

このものにおいては、電圧印加時に、背面側と前面側の両透明電極4,5間に、図13に点線で示す如く、各スリット6,7を境にして傾き方向が逆になる斜め電界が発生する。そして、図14に示す如く、液晶分子8は各スリット6,7を境にして逆方向に倒れ込むことになり、所謂2ドメイン配向構造が実現されて視角特性が改善される。   In this case, when a voltage is applied, an oblique electric field whose tilt direction is reversed between the transparent electrodes 4 and 5 on the back surface side and the front surface side with respect to the slits 6 and 7 as shown by dotted lines in FIG. appear. Then, as shown in FIG. 14, the liquid crystal molecules 8 are tilted in the opposite direction with respect to the slits 6 and 7, so that a so-called two-domain alignment structure is realized and the viewing angle characteristics are improved.

上記従来例において、垂直配向膜を日産化学工業製SE−1211、液晶層3の厚さを4μm、液晶をメルク社製の複屈折率0.1の液晶、視角補償板10を住友化学工業製VAC−180フィルムとし、また、スリット6とスリット7の長手方向長さ(スリット長)Lを100μm、スリット6とスリット7のその長手方向に直交する幅(スリット幅)Wを20μm、スリット長手方向に隣接するスリット6,6間及びスリット7,7間の間隔Aを共に20μm、スリット短手方向に隣接するスリット6,7間の間隔Bを40μmとした液晶表示素子を製作し、この液晶表示素子を1/4デューティー駆動で表示させたときの視角特性(等コントラスト曲線)を測定して、図15に示す結果を得た。図15から明らかなように、上記従来例のものでは、視野の上下方向(方位角90°と270°とを結ぶ方向)と左右方向(方位角0°と180°とを結ぶ方向)とに関して、夫々対称な視角特性を得ることができる。然し、上下方向と左右方向では視角特性が異なってしまい、上下方向の視角特性が左右方向の視角特性より狭くなってしまう。
特開2004−252298号公報
In the above conventional example, the vertical alignment film is SE-1211 manufactured by Nissan Chemical Industries, the thickness of the liquid crystal layer 3 is 4 μm, the liquid crystal is a liquid crystal having a birefringence of 0.1 manufactured by Merck, and the viewing angle compensation plate 10 is manufactured by Sumitomo Chemical. It is a VAC-180 film, and the longitudinal length (slit length) L of the slits 6 and 7 is 100 μm, and the width (slit width) W perpendicular to the longitudinal direction of the slits 6 and 7 is 20 μm, the slit longitudinal direction. A liquid crystal display element is manufactured in which the distance A between the slits 6 and 6 adjacent to each other and the distance A between the slits 7 and 7 are both 20 μm, and the distance B between the slits 6 and 7 adjacent in the lateral direction of the slit is 40 μm. The viewing angle characteristic (isocontrast curve) when the element was displayed by 1/4 duty driving was measured, and the result shown in FIG. 15 was obtained. As is apparent from FIG. 15, in the above-described conventional example, the vertical direction of the visual field (the direction connecting the azimuth angles 90 ° and 270 °) and the left-right direction (the direction connecting the azimuth angles 0 ° and 180 °). , Symmetric viewing angle characteristics can be obtained. However, the viewing angle characteristics are different between the up-down direction and the left-right direction, and the viewing angle characteristics in the up-down direction are narrower than the viewing angle characteristics in the left-right direction.
JP 2004-252298 A

本発明は、以上の点に鑑み、上下左右全ての方向で視角特性が等しい優良な液晶表示素子を提供することをその課題としている。   In view of the above points, an object of the present invention is to provide an excellent liquid crystal display element in which viewing angle characteristics are equal in all directions, up, down, left, and right.

本発明は、対向配置される一対の基板と、両基板上に設けられ、液晶層を挟んで互いに重なり合って表示領域を形成する一対の透明電極とを備え、両透明電極の表示領域に合致する部分に、夫々、配向分割のためのスリットが複数形成された液晶表示素子において、上記課題を解決するために、以下の事項を採用したことを特徴とする。   The present invention includes a pair of substrates disposed opposite to each other, and a pair of transparent electrodes provided on both substrates and overlapping each other with a liquid crystal layer interposed therebetween to form a display region, and matches the display region of both transparent electrodes. In a liquid crystal display element in which a plurality of slits for alignment division are formed in each portion, the following matters are employed in order to solve the above problems.

即ち、第1発明は、表示領域に設定した所定の直交座標の一方の座標軸をX軸、他方の座標軸をY軸として、各透明電極のスリットは、X軸に対し傾斜した方向に長手の第1スリット部と、X軸に対し第1スリット部とは反対方向に傾斜した方向に長手の第2スリット部とで構成され、一方の透明電極の第1スリット部と他方の透明電極の第1スリット部とがY軸方向に交互に配置されると共に、一方の透明電極の第2スリット部と他方の透明電極の第2スリット部とがY軸方向に交互に配置されることを特徴とする。   That is, according to the first aspect of the present invention, the slit of each transparent electrode is long in the direction inclined with respect to the X axis, with one coordinate axis of predetermined orthogonal coordinates set in the display area as the X axis and the other coordinate axis as the Y axis. 1 slit part and a 2nd slit part long in the direction inclined in the opposite direction to the 1st slit part to the X-axis, the 1st slit part of one transparent electrode, and the 1st of the other transparent electrode The slit portions are alternately arranged in the Y-axis direction, and the second slit portions of one transparent electrode and the second slit portions of the other transparent electrode are alternately arranged in the Y-axis direction. .

また、第2発明は、表示領域に設定した所定の直交座標の一方の座標軸をX軸、他方の座標軸をY軸として、各透明電極の各スリットはX軸方向に長手の第1スリット部とY軸方向に長手の第2スリット部とが交差した十字状に形成され、各透明電極に十字状スリットがX軸方向とY軸方向とに間隔を存して複数配置されると共に、X軸方向に隣接する十字状スリットの中心間距離をX軸方向スリットピッチ、Y軸方向に隣接する十字状スリットの中心間距離をY軸方向スリットピッチとして、一方の透明電極の十字状スリットと他方の透明電極の十字状スリットとがX軸方向とY軸方向とに夫々X軸方向スリットピッチとY軸方向スリットピッチとの半分だけずれて配置されることを特徴とする。   In the second invention, one of the predetermined orthogonal coordinates set in the display area is set to the X axis, and the other coordinate axis is set to the Y axis. It is formed in a cross shape in which the second slit portion that is long in the Y-axis direction intersects, and a plurality of cross-shaped slits are disposed in each transparent electrode with an interval in the X-axis direction and the Y-axis direction. The distance between the centers of the cross-shaped slits adjacent in the direction is the X-axis direction slit pitch, and the distance between the centers of the cross-shaped slits adjacent in the Y-axis direction is the Y-axis direction slit pitch. The cross-shaped slit of the transparent electrode is arranged so as to be shifted by half of the X-axis direction slit pitch and the Y-axis direction slit pitch in the X-axis direction and the Y-axis direction, respectively.

上記第1発明によれば、一方の透明電極の第1スリット部と他方の透明電極の第1スリット部とのY軸方向における交互配置により2ドメイン配向構造が実現されると共に、一方の透明電極の第2スリット部と他方の透明電極の第2スリット部とのY軸方向における交互配置により、第1スリット部による2ドメイン配向とは方向が異なる2ドメイン配向構造が実現され、結局4ドメイン配向構造が実現されて、視野の上下左右全ての方向で視角特性が等しくなる。   According to the first invention, a two-domain alignment structure is realized by alternately arranging the first slit portion of one transparent electrode and the first slit portion of the other transparent electrode in the Y-axis direction, and one transparent electrode By arranging the second slit portion of the second transparent electrode and the second slit portion of the other transparent electrode in the Y-axis direction, a two-domain alignment structure having a direction different from the two-domain alignment by the first slit portion is realized. The structure is realized, and the viewing angle characteristics are equal in all directions of the field of view.

更に、第1発明において、X軸が液晶表示素子を通常の状態で見るときの視野の左右方向または上下方向に合致する座標軸であり、各透明電極の第1スリット部の長手方向と第2スリット部の長手方向のX軸に対する傾斜角が夫々+45°、−45°であれば、一対の基板に沿わせて設ける一対の偏光板の一方の透過軸と他方の透過軸とを夫々X軸とY軸、即ち、液晶表示素子を通常の状態で見るときの視野の左右方向と上下方向に平行にすることができる。これにより、液晶表示素子を通常の状態で見るときの重要な視角方位である上下及び左右方向の視角特性をより広くすることができる。   Further, in the first invention, the X axis is a coordinate axis that matches the horizontal direction or the vertical direction of the visual field when the liquid crystal display element is viewed in a normal state, and the longitudinal direction of the first slit portion of each transparent electrode and the second slit If the inclination angle with respect to the X axis in the longitudinal direction of the portion is + 45 ° and −45 °, respectively, one transmission axis and the other transmission axis of the pair of polarizing plates provided along the pair of substrates are respectively The Y axis, that is, the horizontal direction of the visual field when the liquid crystal display element is viewed in a normal state and the vertical direction can be made parallel. Thereby, the viewing angle characteristics in the vertical and horizontal directions, which are important viewing angle directions when the liquid crystal display element is viewed in a normal state, can be further widened.

また、理由は後述するが、第1発明において、各透明電極の第1と第2の各スリット部のその長手方向に直交する方向のスリット幅は10μm以上30μm以下であることが望ましく、また、一方の透明電極の第1と第2の各スリット部と、該各スリット部に対しY軸方向に隣接する他方の透明電極の第1と第2の各スリット部との間のこれら各スリット部の長手方向に直交する方向の間隔は10μm以上又はスリット幅以上で60μm以下であることが望ましい。   Although the reason will be described later, in the first invention, the slit width in the direction perpendicular to the longitudinal direction of each of the first and second slit portions of each transparent electrode is preferably 10 μm or more and 30 μm or less. The first and second slit portions of one transparent electrode, and the slit portions between the first and second slit portions of the other transparent electrode adjacent to the slit portion in the Y-axis direction. The interval in the direction perpendicular to the longitudinal direction is preferably not less than 10 μm or not less than the slit width and not more than 60 μm.

上記第2発明によれば、一方の透明電極の十字状スリットと他方の透明電極の十字状スリットとのX軸方向とY軸方向における半ピッチずれた互い違いの配置により実質的に4ドメイン配向構造が実現され、第1発明と同様に上下左右全ての方向で視角特性が等しくなる。そして、第2発明において、X軸が液晶表示素子を通常の状態で見るときの視野の左右方向または上下方向に合致する座標軸であれば、一対の基板に沿わせて設ける一対の偏光板の一方の透過軸と他方の透過軸とを夫々X軸とY軸、即ち、液晶表示素子を通常の状態で見るときの視野の左右方向と上下方向に平行にすることができる。これにより、液晶表示素子を通常の状態で見るときの重要な視角方位である上下及び左右方向の視角特性をより広くすることができる。   According to the second aspect of the invention, the four-domain alignment structure is substantially formed by the staggered arrangement in which the cross-shaped slit of one transparent electrode and the cross-shaped slit of the other transparent electrode are shifted by a half pitch in the X-axis direction and the Y-axis direction. As in the first invention, the viewing angle characteristics are equal in all directions, up, down, left, and right. In the second invention, one of the pair of polarizing plates provided along the pair of substrates, if the X axis is a coordinate axis that matches the horizontal direction or the vertical direction of the visual field when the liquid crystal display element is viewed in a normal state. And the other transmission axis can be made parallel to the X-axis and Y-axis, that is, the horizontal and vertical directions of the visual field when the liquid crystal display element is viewed in a normal state. Thereby, the viewing angle characteristics in the vertical and horizontal directions, which are important viewing angle directions when the liquid crystal display element is viewed in a normal state, can be further widened.

また、理由は後述するが、第2発明において、第1と第2の各スリット部のその長手方向に直交する方向のスリット幅は10μm以上30μm以下であることが望ましく、また、一方の透明電極の十字状スリットと他方の透明電極の十字状スリットとのX軸方向のずれ量とY軸方向のずれ量とからスリット幅を減算した値が夫々10μm以上又はスリット幅以上で60μm以下であることが望ましい。   Although the reason will be described later, in the second invention, the slit width in the direction perpendicular to the longitudinal direction of each of the first and second slit portions is preferably 10 μm or more and 30 μm or less, and one transparent electrode The value obtained by subtracting the slit width from the amount of deviation in the X-axis direction and the amount of deviation in the Y-axis direction between the cruciform slit of the other transparent electrode and the cruciform slit of the other transparent electrode is 10 μm or more, or 60 μm or less. Is desirable.

また、上記第1、第2発明の液晶表示素子は、液晶層の液晶素子を垂直配向させた垂直配向型素子であることが望ましい。液晶表示素子が液晶層の液晶分子を水平配向させた水平配向型素子である場合、ラビング等により基板に近接した液晶分子の配向方向が決まり、斜め電界に対する応答の方位異方性が生じ、上述した4ドメイン配向をうまく得られなくなる。これに対し、垂直配向型素子であれば、斜め電界に対する応答の方位異方性が生じないため、4ドメイン配向が確実に得られる。   The liquid crystal display elements of the first and second inventions are preferably vertical alignment elements in which the liquid crystal elements of the liquid crystal layer are vertically aligned. When the liquid crystal display element is a horizontal alignment type element in which the liquid crystal molecules of the liquid crystal layer are horizontally aligned, the alignment direction of the liquid crystal molecules close to the substrate is determined by rubbing or the like, and the azimuthal anisotropy of the response to the oblique electric field occurs. The four-domain orientation cannot be obtained successfully. On the other hand, in the case of a vertical alignment type element, azimuthal anisotropy in response to an oblique electric field does not occur, so that four-domain alignment can be reliably obtained.

先ず、垂直配向型の液晶表示素子に本発明を適用した第1実施形態について説明する。この液晶表示素子は、図1に示す如く、ガラス製の背面側基板1と、背面側基板1に対向するガラス製の前面側基板2とを備えており、両基板1,2間に液晶層3が設けられている。背面側基板1上にはセグメント電極となる背面側透明電極4が設けられ、前面側基板2上にはコモン電極となる前面側透明電極5が設けられている。そして、両透明電極4,5が液晶層3を挟んで重なり合い、この重なり合う部分で表示領域が形成される。また、両透明電極4,5の表示領域に合致する部分には、夫々、配向分割のためのスリット61,71が後述する如く複数形成されている。   First, a first embodiment in which the present invention is applied to a vertical alignment type liquid crystal display element will be described. As shown in FIG. 1, the liquid crystal display element includes a glass back side substrate 1 and a glass front side substrate 2 facing the back side substrate 1, and a liquid crystal layer between the substrates 1 and 2. 3 is provided. A rear transparent electrode 4 serving as a segment electrode is provided on the rear substrate 1, and a front transparent electrode 5 serving as a common electrode is provided on the front substrate 2. Then, both transparent electrodes 4 and 5 overlap with the liquid crystal layer 3 interposed therebetween, and a display region is formed at the overlapping portion. In addition, a plurality of slits 61 and 71 for dividing the orientation are formed in portions corresponding to the display areas of the transparent electrodes 4 and 5, respectively, as will be described later.

液晶表示素子の製造に際しては、各基板1,2上に各透明電極4,5を覆うようにして垂直配向膜を塗布焼成し、次いで、各基板1,2にメインシール材を塗布し、更に、所定の直径のギャップコントロール材を散布した後、両基板1,2を重ね合わせてメインシール材を硬化させる。次に、両基板1,2間の空セルに液晶を注入して液晶層3を形成する。液晶層3の液晶分子8は垂直配向膜の作用で垂直配向される。その後、背面側基板1の外側に背面側偏光板9を貼り合わせると共に、前面側基板2の外側に視角補償板10と前面側偏光板11とを重ねて貼り合わせる。ここで、図2に示す如く、背面側偏光板9の透過軸9aと前面側偏光板11の透過軸11aとは直交しており、そのためノーマルブラックの液晶表示素子となる。   In manufacturing the liquid crystal display element, a vertical alignment film is applied and baked on each of the substrates 1 and 2 so as to cover the transparent electrodes 4 and 5, and then a main sealant is applied to each of the substrates 1 and 2. After spraying a gap control material having a predetermined diameter, the substrates 1 and 2 are overlapped to cure the main seal material. Next, a liquid crystal layer 3 is formed by injecting liquid crystal into an empty cell between the substrates 1 and 2. The liquid crystal molecules 8 of the liquid crystal layer 3 are vertically aligned by the action of the vertical alignment film. Thereafter, the back-side polarizing plate 9 is bonded to the outside of the back-side substrate 1, and the viewing angle compensation plate 10 and the front-side polarizing plate 11 are stacked and bonded to the outside of the front-side substrate 2. Here, as shown in FIG. 2, the transmission axis 9a of the back-side polarizing plate 9 and the transmission axis 11a of the front-side polarizing plate 11 are orthogonal to each other, so that a normal black liquid crystal display element is obtained.

次に、図3を参照し、スリット61,71について、表示領域に設定したX軸とY軸とから成る直交座標により方向性を規定して説明する。尚、第1実施形態において、X軸は液晶表示素子を通常の状態で見たときの視野の左右方向に合致する座標軸、Y軸は視野の上下方向に合致する座標軸になっている。背面側透明電極4に形成する実線示のスリット61と前面側透明電極5に形成する点線示のスリット71は、夫々、X軸に対し傾斜した方向に長手の第1スリット部61a,71aと、X軸に対し第1スリット部61a,71aとは反対方向に傾斜した方向に長手の第2スリット部61b,71bとで構成されている。そして、背面側透明電極4の第1スリット部61aと前面側透明電極5の第1スリット部71aとがY軸方向に交互に配置されると共に、背面側透明電極4の第2スリット部61bと前面側透明電極5の第2スリット部71bとがY軸方向に交互に配置されている。   Next, with reference to FIG. 3, the slits 61 and 71 will be described with the directionality defined by the orthogonal coordinates composed of the X axis and the Y axis set in the display area. In the first embodiment, the X axis is a coordinate axis that matches the horizontal direction of the visual field when the liquid crystal display element is viewed in a normal state, and the Y axis is the coordinate axis that matches the vertical direction of the visual field. A slit 61 shown by a solid line formed on the transparent electrode 4 on the back side and a slit 71 shown by a dotted line formed on the transparent electrode 5 on the front side are first slit portions 61a and 71a long in the direction inclined with respect to the X axis, The second slit portions 61b and 71b are long in the direction inclined in the opposite direction to the first slit portions 61a and 71a with respect to the X axis. And the 1st slit part 61a of the back side transparent electrode 4 and the 1st slit part 71a of the front side transparent electrode 5 are alternately arrange | positioned in the Y-axis direction, and the 2nd slit part 61b of the back side transparent electrode 4 and The second slit portions 71b of the front transparent electrode 5 are alternately arranged in the Y-axis direction.

ここで、第1実施形態では、第1スリット部61a,71aの長手方向のX軸に対する傾斜角を+45°、第2スリット部61b,71bの長手方向のX軸に対する傾斜角を−45°に設定している。尚、これら傾斜角を±45°以外の角度に設定することも可能であるが、上下左右全ての方向の視角特性の対称性をより高めるには、傾斜角を±45°に設定することが望ましい。また、第1実施形態では、各透明電極4,5の第1スリット部61a,71aと第2スリット部61b,71bとをX軸方向に間隔を存して交互に配置しているが、ある程度の数の第1スリット部61a,71aをX軸方向に並べて配置した部分と、ある程度の数の第2スリット部61b,71bをX軸方向に並べて配置した部分とをX軸方向に交互に設けても良い。   Here, in the first embodiment, the inclination angle of the first slit portions 61a and 71a with respect to the X axis in the longitudinal direction is + 45 °, and the inclination angle of the second slit portions 61b and 71b with respect to the X axis in the longitudinal direction is −45 °. It is set. Although these inclination angles can be set to angles other than ± 45 °, in order to further improve the symmetry of the viewing angle characteristics in all directions, up, down, left, and right, the inclination angle can be set to ± 45 °. desirable. In the first embodiment, the first slits 61a and 71a and the second slits 61b and 71b of the transparent electrodes 4 and 5 are alternately arranged with an interval in the X-axis direction. The first slit portions 61a and 71a of the same number are arranged alternately in the X-axis direction, and the portions where a certain number of second slit portions 61b and 71b are arranged in the X-axis direction are alternately provided in the X-axis direction. May be.

第1実施形態によれば、電圧印加時に、図4に示す如く、各第1スリット部61a,71aを境にして傾き方向が逆になる斜め電界Ea1,Ea2が発生すると共に、各第2スリット部61b,71bを境にして傾き方向が逆になる斜め電界Eb1,Eb2が発生する。ここで、図5に示す如く、第1スリット部61a,71aにより発生する斜め電界Ea1,Ea2のベクトルの水平方向成分(基板4,5に平行な方向の成分)は第1スリット部61a,71aの長手方向に直交し、第2スリット部61b,71bにより発生する斜め電界Eb1,Eb2のベクトルの水平方向成分は第2スリット部61b,71bの長手方向に直交する。従って、第1スリット部61a,71aが配置されるX軸方向領域において、液晶分子の倒れ方向が各第1スリット部61a,71aを境にして第1スリット部61a,71aの長手方向に直交する方向の片側と反対側とに反転し、同様に第2スリット部61b、71bが配置されるX軸方向領域において、液晶分子の倒れ方向が各第2スリット部61b,71bを境にして第2スリット部61b,71bの長手方向の片側と反対側とに反転する。そして、第1スリット部61a,71aの長手方向と第2スリット部61b,71bの長手方向とは互いに異なるため、4ドメイン配向構造が実現される。   According to the first embodiment, when a voltage is applied, as shown in FIG. 4, the oblique electric fields Ea1 and Ea2 whose inclination directions are reversed with respect to the first slit portions 61a and 71a are generated, and the second slits are generated. Diagonal electric fields Eb1 and Eb2 in which the inclination directions are reversed with respect to the portions 61b and 71b are generated. Here, as shown in FIG. 5, the horizontal components of the vectors of the oblique electric fields Ea1 and Ea2 generated by the first slit portions 61a and 71a (components in the direction parallel to the substrates 4 and 5) are the first slit portions 61a and 71a. The horizontal components of the vectors of the oblique electric fields Eb1 and Eb2 generated by the second slit portions 61b and 71b are orthogonal to the longitudinal direction of the second slit portions 61b and 71b. Therefore, in the X-axis direction region where the first slit portions 61a and 71a are arranged, the tilt direction of the liquid crystal molecules is orthogonal to the longitudinal direction of the first slit portions 61a and 71a with the first slit portions 61a and 71a as boundaries. Similarly, in the X-axis direction region where the second slit portions 61b and 71b are arranged, the direction in which the liquid crystal molecules fall is second from the respective second slit portions 61b and 71b. The slit portions 61b and 71b are reversed to one side and the opposite side in the longitudinal direction. Since the longitudinal direction of the first slit portions 61a and 71a and the longitudinal direction of the second slit portions 61b and 71b are different from each other, a four-domain alignment structure is realized.

尚、背面側と前面側の各偏光板9,11の透過軸9a,11aと平行又は直交する方向に液晶分子8が倒れても透過率は変化しないため、これら透過軸9a,11aは夫々第1スリット部61a,71aの長手方向及び第2スリット部61b,71bの長手方向に斜交する方向、即ち、X軸とY軸に平行な方向になるようにしている。   Note that the transmittance does not change even if the liquid crystal molecules 8 are tilted in the direction parallel to or orthogonal to the transmission axes 9a and 11a of the polarizing plates 9 and 11 on the back side and the front side. The direction is oblique to the longitudinal direction of the first slits 61a and 71a and the longitudinal direction of the second slits 61b and 71b, that is, the direction parallel to the X axis and the Y axis.

上記第1実施形態において、垂直配向膜を日産化学工業製SE−1211、液晶層3の厚さを4μm、液晶をメルク社製の複屈折率0.1の液晶、視角補償板10を住友化学工業製VAC−180フィルムとし、また、第1スリット部61a,71aと第2スリット部61b,71bの長手方向長さ(スリット長)Lを100μm、第1スリット部61a,71aと第2スリット部61b,71bのその長手方向に直交する方向のスリット幅Wを20μm、第1スリット部61a,71aと第2スリット部61b,71bとの間のX軸方向間隔Aを20μm、背面側透明電極4の第1と第2の各スリット部61a,61bと該各スリット部61a,61bのY軸方向に隣接する前面側透明電極5の第1と第2の各スリット部71a,71bとの間のこれら各スリット部の長手方向に直交する方向の間隔(以下、背面側と前面側のスリット間隔という)Bを40μmとした液晶表示素子を製作し、この液晶表示素子を1/4デューティー駆動で表示させたときの視角特性(等コントラスト曲線)を測定して、図6に示す結果を得た。尚、図6は、液晶表示素子を通常の状態で見たときの視野の左右方向と上下方向とが夫々0°―180°方位と90°―270°方位になるように描かれている。   In the first embodiment, the vertical alignment film is SE-1211 manufactured by Nissan Chemical Industries, the thickness of the liquid crystal layer 3 is 4 μm, the liquid crystal is a liquid crystal having a birefringence of 0.1 manufactured by Merck, and the viewing angle compensation plate 10 is Sumitomo Chemical. An industrial VAC-180 film is used, and the first slit portions 61a and 71a and the second slit portions 61b and 71b have a longitudinal length (slit length) L of 100 μm, and the first slit portions 61a and 71a and the second slit portion. The slit width W in the direction perpendicular to the longitudinal direction of 61b, 71b is 20 μm, the interval A in the X-axis direction between the first slit portions 61a, 71a and the second slit portions 61b, 71b is 20 μm, and the back-side transparent electrode 4 Of the first and second slit portions 61a and 61b and the first and second slit portions 71a and 71b of the front-side transparent electrode 5 adjacent to the slit portions 61a and 61b in the Y-axis direction. A liquid crystal display element having an interval B in the direction perpendicular to the longitudinal direction of each of the slit portions (hereinafter referred to as a slit interval between the back side and the front side) B of 40 μm is manufactured, and this liquid crystal display element is driven by a 1/4 duty drive. The viewing angle characteristic (isocontrast curve) when displayed was measured, and the result shown in FIG. 6 was obtained. Note that FIG. 6 is drawn so that the horizontal and vertical directions of the visual field when the liquid crystal display element is viewed in a normal state are the 0 ° -180 ° azimuth and the 90 ° -270 ° azimuth, respectively.

図6から明らかなように、上下左右全ての方向で視角特性がほぼ同じ非常に対称性の良い表示が得られている。これは上述したように4ドメイン配向構造が実現されるためである。また、左右方向に合致するX軸に対し第1スリット部61a,71aの長手方向と第2スリット部61b,71bの長手方向とを夫々+45°、−45°傾斜させるため、偏光板9,11の透過軸9a,11aの方向を左右方向と上下方向にすることができ、その結果、通常の状態で液晶表示素子を見るときの重要な視角方位である上下及び左右方向の視角特性が図15に示す従来例のものに比し大幅に広くなっている。   As is apparent from FIG. 6, a display with very good symmetry is obtained in which the viewing angle characteristics are substantially the same in all directions. This is because a 4-domain alignment structure is realized as described above. Further, in order to incline the longitudinal direction of the first slit portions 61a and 71a and the longitudinal direction of the second slit portions 61b and 71b by + 45 ° and −45 °, respectively, with respect to the X axis that matches the left-right direction, the polarizing plates 9 and 11 The transmission axes 9a and 11a can be set to the horizontal and vertical directions. As a result, the viewing angle characteristics in the vertical and horizontal directions, which are important viewing angles when viewing the liquid crystal display element in a normal state, are shown in FIG. Compared to the conventional example shown in FIG.

次に、第1と第2の各スリット部61a,71a、61b,71bの寸法について説明する。各スリット部61a,71a、61b,71bのスリット幅Wがある程度以上広くなると、スリット部61a,71a、61b,71bの中央部の電界が極端に弱くなり、電圧印加に対して液晶分子が反応しなくなる領域が生じ、その領域で表示不良が発生する。更に、スリット部61a,71a、61b,71b以外の部分、即ち、液晶分子が電界に対して応答する領域の面積が小さくなって、所謂開口率が小さくなるために、電圧印加時の透過率が低下してしまう。かかる不具合を回避する上で、スリット幅Wは30μm以下とすることが望ましい。また、スリット幅Wが余りに狭いと、充分な斜め電界が生じなくなり、4ドメイン配向が充分に得られなくなる。スリット幅Wを色々変えて行った実験によると、スリット幅Wが5μmである場合はきれいな4ドメイン配向を得られないことが分かった。この場合、液晶表示素子を目視で観察すると、視角を傾けたときにドメイン不安定による表示のざらつき感を感じてしまう。スリット幅Wが10μmである場合は、液晶分子が倒れる方向に多少不安定さがあるが、視角を傾けたときのざらつき感は許容できる範囲であることが分かった。従って、スリット幅Wは10μm以上にすることが望ましい。尚、スリット幅Wを20μmにすると、きれいで安定した4ドメイン配向が得られ、視角を傾けたときにもざらつき感を感じない。   Next, the dimensions of the first and second slit portions 61a, 71a, 61b, 71b will be described. When the slit width W of each of the slit portions 61a, 71a, 61b, 71b is increased to a certain extent, the electric field at the central portion of the slit portions 61a, 71a, 61b, 71b becomes extremely weak, and the liquid crystal molecules react to voltage application. An area that disappears occurs, and a display defect occurs in that area. Furthermore, the area other than the slit portions 61a, 71a, 61b, 71b, that is, the area of the liquid crystal molecules responding to the electric field is reduced, and so-called aperture ratio is reduced. It will decline. In order to avoid such a problem, it is desirable that the slit width W be 30 μm or less. On the other hand, if the slit width W is too narrow, a sufficient oblique electric field is not generated, and a four-domain alignment cannot be obtained sufficiently. According to experiments conducted with various slit widths W, it was found that when the slit width W is 5 μm, a clean 4-domain alignment cannot be obtained. In this case, when the liquid crystal display element is visually observed, a rough feeling of display due to domain instability is felt when the viewing angle is tilted. It was found that when the slit width W is 10 μm, the liquid crystal molecules are somewhat unstable in the direction in which the liquid crystal molecules are tilted, but the rough feeling when the viewing angle is tilted is within an acceptable range. Therefore, the slit width W is desirably 10 μm or more. When the slit width W is 20 μm, a clean and stable four-domain orientation is obtained, and no rough feeling is felt even when the viewing angle is tilted.

背面側と前面側のスリット間隔Bは、充分な表示領域を確保するためには大きい方が良いが、4ドメイン配向の安定性を確保するためと4ドメインの模様が目視で識別されるのを防止するためにはなるべく狭い方が良い。背面側と前面側のスリット間隔Bを色々変えて実験を行ったところ、この間隔Bが70μmである場合には4ドメイン配向の安定性が得られず、60μm以下にすることが4ドメイン配向の安定性という面から好ましいことが分かった。また、60μm以下であれば4ドメインの模様が識別されることもなかった。また、背面側と前面側のスリット間隔Bを小さくすることによる開口率の極端な低下を回避する上で、この間隔Bは10μm以上またはスリット幅W以上にすることが望ましい。   The slit interval B between the back side and the front side is preferably large in order to secure a sufficient display area. However, in order to ensure the stability of the 4-domain orientation, the 4-domain pattern is visually identified. In order to prevent, it is better to be as narrow as possible. Experiments were conducted with various slit intervals B between the back side and the front side. When this interval B was 70 μm, the stability of the 4-domain alignment was not obtained. It turned out to be preferable in terms of stability. Moreover, if it was 60 micrometers or less, the pattern of 4 domains was not identified. Further, in order to avoid an extreme decrease in the aperture ratio due to the reduction of the slit interval B between the back side and the front side, it is desirable that the interval B be 10 μm or more or the slit width W or more.

また、第1スリット部61a,71aと第2スリット部61b,71bのスリット長Lが長過ぎると4ドメインの模様が識別されてしまう。スリット長Lを色々変えて実験を行った結果、スリット長Lは20μmから200μm程度までが好適であることが分かった。更に、第1スリット部61a,71aと第2スリット部61b,71bとの間のX軸方向間隔Aは10μmから50μm程度までが好適であることも分かった。   In addition, if the slit length L of the first slit portions 61a and 71a and the second slit portions 61b and 71b is too long, a 4-domain pattern is identified. As a result of conducting experiments with various slit lengths L, it was found that the slit length L is preferably about 20 μm to 200 μm. Furthermore, it has also been found that the X-axis direction interval A between the first slit portions 61a and 71a and the second slit portions 61b and 71b is preferably about 10 μm to 50 μm.

次に、第2実施形態の液晶表示素子について説明する。この液晶表示素子は上記第1実施形態と同様に垂直配向型の液晶表示素子であり、その断面構造及び偏光板9,11の透過軸9a,11aの方向は図1、図2と同一である。また、図7に示す如く、背面側透明電極4に形成するスリット61と前面側透明電極5に形成するスリット71とは、第1実施形態と同様に、夫々、X軸に対し+45°傾斜した方向に長手の第1スリット部61a,71aと、X軸に対し−45°傾斜した方向に長手の第2スリット部61b,71bとで構成され、背面側透明電極4の第1スリット部61aと前面側透明電極5の第1スリット部71aとがY軸方向に交互に配置されると共に、背面側透明電極4の第2スリット部61bと前面側透明電極5の第2スリット部71bとがY軸方向に交互に配置されている。   Next, the liquid crystal display element of 2nd Embodiment is demonstrated. This liquid crystal display element is a vertical alignment type liquid crystal display element as in the first embodiment, and its cross-sectional structure and the directions of the transmission axes 9a and 11a of the polarizing plates 9 and 11 are the same as those in FIGS. . Further, as shown in FIG. 7, the slit 61 formed in the back side transparent electrode 4 and the slit 71 formed in the front side transparent electrode 5 are each inclined by + 45 ° with respect to the X axis, as in the first embodiment. The first slit portions 61a and 71a that are long in the direction and the second slit portions 61b and 71b that are long in the direction inclined by −45 ° with respect to the X axis, and the first slit portion 61a of the back-side transparent electrode 4 and The first slits 71a of the front transparent electrode 5 are alternately arranged in the Y-axis direction, and the second slits 61b of the rear transparent electrode 4 and the second slits 71b of the front transparent electrode 5 are Y Alternatingly arranged in the axial direction.

第2実施形態の第1実施形態との相違点は、背面側と前面側の各透明電極4,5の第1スリット部61a,71aと第2スリット部61b,71bとを間隔を空けずにX軸方向に交互に連続して形成した点である。このものでも、第1実施形態と同様に4ドメインの配向構造が実現される。   The difference of the second embodiment from the first embodiment is that the first slit portions 61a and 71a and the second slit portions 61b and 71b of the transparent electrodes 4 and 5 on the back side and the front side are not spaced from each other. This is a point formed alternately and continuously in the X-axis direction. Even in this case, a 4-domain alignment structure is realized as in the first embodiment.

第2実施形態において、垂直配向膜を日産化学工業製SE−1211、液晶層3の厚さを4μm、液晶をメルク社製の複屈折率0.1の液晶、視角補償板10を住友化学工業製VAC−180フィルムとし、また、第1スリット部61a,71aと第2スリット部61b,71bのスリット長Lを100μm、第1スリット部61a,71aと第2スリット部61b,71bのスリット幅Wを20μm、背面側と前面側のスリット間隔Bを40μmとした液晶表示素子を製作し、この液晶表示素子を1/4デューティー駆動で表示させたときの視角特性を測定した。その結果は図6とほぼ同じであり、上下左右全ての方向で視角特性がほぼ同じ非常に対称性の良い表示が得られた。また、第1実施形態と同様に偏光板9,11の透過軸9a,11aの方向を左右方向と上下方向にすることができ、その結果、通常の状態で液晶表示素子を見るときの重要な視角方位である上下及び左右方向の視角特性が図11に示す従来例のものに比し広くなる。   In the second embodiment, the vertical alignment film is SE-1211 manufactured by Nissan Chemical Industries, the thickness of the liquid crystal layer 3 is 4 μm, the liquid crystal is a liquid crystal having a birefringence of 0.1 manufactured by Merck, and the viewing angle compensation plate 10 is Sumitomo Chemical. The VAC-180 film is manufactured, the slit length L of the first slit portions 61a and 71a and the second slit portions 61b and 71b is 100 μm, and the slit width W of the first slit portions 61a and 71a and the second slit portions 61b and 71b. A liquid crystal display element having a slit distance B of 40 μm between the back side and the front side was manufactured, and the viewing angle characteristics when this liquid crystal display element was displayed by ¼ duty drive were measured. The result is almost the same as in FIG. 6, and a display with very good symmetry is obtained with the same viewing angle characteristics in all directions. Further, similarly to the first embodiment, the directions of the transmission axes 9a and 11a of the polarizing plates 9 and 11 can be set to the horizontal direction and the vertical direction. The viewing angle characteristics in the vertical and horizontal directions that are the viewing angle azimuth are wider than those of the conventional example shown in FIG.

また、第2実施形態においても第1スリット部61a,71aと第2スリット部61b,71bのスリット幅W、スリット長L及び背面側と前面側のスリット間隔Bの好ましい範囲は第1実施形態と同様であり、即ち、スリット幅Wは10μm以上30μm以下が望ましく、スリット長Lは20μm以上200μm以下が望ましく、背面側と前面側のスリット間隔Bは10μm以上又はスリット幅B以上で60μm以下が望ましい。   Also in the second embodiment, preferable ranges of the slit width W, the slit length L, and the slit interval B on the back side and the front side of the first slit portions 61a and 71a and the second slit portions 61b and 71b are the same as those in the first embodiment. In other words, the slit width W is desirably 10 μm or more and 30 μm or less, the slit length L is desirably 20 μm or more and 200 μm or less, and the slit interval B between the back side and the front side is desirably 10 μm or more or the slit width B is not less than 60 μm. .

次に、第3実施形態の液晶表示素子について説明する。この液晶表示素子は上記第1実施形態と同様に垂直配向型の液晶表示素子であり、その断面構造及び偏光板9,11の透過軸9a,11aの方向は図1、図2と同一であるが、背面側と前面側の各透明電極4,5に形成するスリットの形状が第1実施形態と全く異なっている。以下、この点について詳述する。   Next, the liquid crystal display element of 3rd Embodiment is demonstrated. This liquid crystal display element is a vertical alignment type liquid crystal display element as in the first embodiment, and its cross-sectional structure and the directions of the transmission axes 9a and 11a of the polarizing plates 9 and 11 are the same as those in FIGS. However, the shape of the slit formed in each of the transparent electrodes 4 and 5 on the back side and the front side is completely different from that of the first embodiment. Hereinafter, this point will be described in detail.

第3実施形態では、図8に示す如く、背面側透明電極4に、X軸方向に長手の第1スリット部62aとY軸方向に長手の第2スリット部62bとが交差した十字状スリット62がX軸方向とY軸方向とに間隔を存して複数配置され、前面側透明電極5にも、X軸方向に長手の第1スリット部72aとY軸方向に長手の第2スリット部72bとが交差した十字状スリット72がX軸方向とY軸方向とに間隔を存して複数配置されている。そして、X軸方向に隣接する十字状スリットの中心間距離をX軸方向スリットピッチ、Y軸方向に隣接する十字状スリットの中心間距離をY軸方向スリットピッチとして、背面側透明電極4の十字状スリット62と前面側透明電極5の十字状スリット72とがX軸方向とY軸方向とに夫々X軸方向スリットピッチとY軸方向スリットピッチとの半分だけずれて配置されている。   In the third embodiment, as shown in FIG. 8, a cross-shaped slit 62 in which the first slit portion 62a long in the X-axis direction and the second slit portion 62b long in the Y-axis direction intersect the back side transparent electrode 4. Are arranged at intervals in the X-axis direction and the Y-axis direction, and the front-side transparent electrode 5 also has a first slit portion 72a that is long in the X-axis direction and a second slit portion 72b that is long in the Y-axis direction. A plurality of cross-shaped slits 72 intersecting with each other are arranged at intervals in the X-axis direction and the Y-axis direction. Then, the distance between the centers of the cross-shaped slits adjacent in the X-axis direction is the X-axis direction slit pitch, and the distance between the centers of the cross-shaped slits adjacent in the Y-axis direction is the Y-axis direction slit pitch. The slit 62 and the cruciform slit 72 of the front transparent electrode 5 are arranged so as to be shifted in the X-axis direction and the Y-axis direction by half of the X-axis direction slit pitch and the Y-axis direction slit pitch, respectively.

尚、第1スリット部62a,72aのスリット長をLx、第2スリット部62b,72bのスリット長をLy、X軸方向に隣接する背面側透明電極4の第1スリット部62a,62a間の間隔及び前面側透明電極5の第1スリット部72a,72a間の間隔をAx、Y軸方向に隣接する背面側透明電極4の第2スリット部62b,62b間の間隔及び前面側透明電極5の第2スリット部72b,72b間の間隔をAyとして、X軸方向スリットピッチはLx+Ax、Y軸方向スリットピッチはLy+Ayになり、従って、背面側透明電極4の十字状スリット62と前面側透明電極5の十字状スリット72とのX軸方向ずれ量ΔXは(Lx+Ax)/2、背面側透明電極4の十字状スリット62と前面側透明電極5の十字状スリット72とのY軸方向ずれ量ΔYは(Ly+Ay)/2になる。また、図8に示すものでは、Lx=Ly、Ax=Ayにしているが、Lx≠Ly、Ax≠Ayにしても良い。   Note that the slit length of the first slit portions 62a and 72a is Lx, the slit length of the second slit portions 62b and 72b is Ly, and the distance between the first slit portions 62a and 62a of the back-side transparent electrode 4 adjacent in the X-axis direction. And the distance between the first slit portions 72a, 72a of the front transparent electrode 5 is Ax, the distance between the second slit portions 62b, 62b of the rear transparent electrode 4 adjacent in the Y-axis direction, and the first transparent portion 5 of the front transparent electrode 5. The distance between the two slit portions 72b, 72b is Ay, the X-axis direction slit pitch is Lx + Ax, and the Y-axis direction slit pitch is Ly + Ay. Therefore, the cross-shaped slit 62 of the back side transparent electrode 4 and the front side transparent electrode 5 The X-axis direction deviation amount ΔX with respect to the cross-shaped slit 72 is (Lx + Ax) / 2, and Y between the cross-shaped slit 62 of the back surface side transparent electrode 4 and the cross shape slit 72 of the front surface side transparent electrode 5 Direction shift amount ΔY becomes (Ly + Ay) / 2. In FIG. 8, Lx = Ly and Ax = Ay are set. However, Lx ≠ Ly and Ax ≠ Ay may be set.

第3実施形態によれば、電圧印加時に、図9に示す如く、背面側透明電極4の十字状スリット62の第1スリット部62aのX軸方向一方の半部(右半部)及び第2スリット部62bのY軸方向一方の半部(下半部)と、その右斜め下方に位置する前面側透明電極5の十字状スリット72の第1スリット部72aのX軸方向他方の半部(左半部)及び第2スリット部72bのY軸方向他方の半部(上半部)とで囲われた領域に平均して左上方に45°傾いた斜め電界E1が発生する。同様に、背面側透明電極4の十字状スリット62の第1スリット部62aのX軸方向他方の半部(左半部)及び第2スリット部62bのY軸方向一方の半部(下半部)と、その左斜め下方に位置する前面側透明電極5の十字状スリット72の第1スリット部72aのX軸方向一方の半部(右半部)及び第2スリット部72bのY軸方向他方の半部(上半部)とで囲われた領域に平均して右上方に45°傾いた斜め電界E2が発生する。また、背面側透明電極4の十字状スリット62の第1スリット部62aのX軸方向他方の半部(左半部)及び第2スリット部62bのY軸方向他方の半部(上半部)と、その左斜め上方に位置する前面側透明電極5の十字状スリット72の第1スリット部72aのX軸方向一方の半部(右半部)及び第2スリット部72bのY軸方向一方の半部(下半部)とで囲われた領域に平均して右下方に45°傾いた斜め電界E3が発生する。更に、背面側透明電極4の十字状スリット62の第1スリット部62aのX軸方向一方の半部(右半部)及び第2スリット部62bのY軸方向他方の半部(上半部)と、その右斜め上方に位置する前面側透明電極5の十字状スリット72の第1スリット部72aのX軸方向他方の半部(左半部)及び第2スリット部72bのY軸方向一方の半部(下半部)とで囲われた領域に平均して左下方に45°傾いた斜め電界E4が発生する。かくして、4ドメイン配向構造が実現される。尚、各スリット部62a,62b,72a,72bの近傍において電界E1〜E4は各スリット部の長手方向に直交する方向を向いている。従って、より詳細に見れば、4ドメイン以上のマルチドメインの配向構造が実現されることになる。   According to the third embodiment, when a voltage is applied, as shown in FIG. 9, one half (right half) in the X-axis direction and the second half of the first slit 62a of the cross-shaped slit 62 of the back side transparent electrode 4 and the second One half part (lower half part) of the slit part 62b in the Y-axis direction and the other half part in the X-axis direction of the first slit part 72a of the cross-shaped slit 72 of the front transparent electrode 5 located obliquely below and to the right of the slit part 62b ( An oblique electric field E1 tilted by 45 ° on the upper left side on average is generated in a region surrounded by the other half (upper half) in the Y-axis direction of the second slit portion 72b. Similarly, the other half (left half) in the X-axis direction of the first slit 62a of the cross-shaped slit 62 of the back side transparent electrode 4 and one half (lower half) of the second slit 62b in the Y-axis direction. ) And one half (right half) of the first slit 72a of the cross-shaped slit 72 of the cross-shaped slit 72 of the front transparent electrode 5 located obliquely below the left side and the other of the second slit 72b in the Y-axis An oblique electric field E2 tilted by 45 ° on the upper right side on average is generated in a region surrounded by the half portion (upper half portion). Further, the other half (left half) in the X-axis direction of the first slit 62a of the cross-shaped slit 62 of the back side transparent electrode 4 and the other half (upper half) in the Y-axis direction of the second slit 62b. And one half (right half) of the first slit 72a of the cross-shaped slit 72 of the cross-shaped slit 72 of the front transparent electrode 5 located diagonally above and to the left of the first slit 72b and one of the second slit 72b in the Y-axis direction. On the average, an oblique electric field E3 tilted by 45 ° to the lower right is generated in a region surrounded by the half (lower half). Furthermore, one half (right half) in the X-axis direction of the first slit portion 62a of the cross-shaped slit 62 of the back side transparent electrode 4 and the other half (upper half) in the Y-axis direction of the second slit portion 62b. The other half (left half) of the first slit 72a of the cross-shaped slit 72 of the cross-shaped slit 72 of the front transparent electrode 5 located diagonally above and to the right of the second slit 72b and one of the second slits 72b in the Y-axis direction. An oblique electric field E4 tilted by 45 ° to the lower left on average is generated in a region surrounded by the half (lower half). Thus, a four-domain alignment structure is realized. In the vicinity of the slit portions 62a, 62b, 72a and 72b, the electric fields E1 to E4 are directed in a direction orthogonal to the longitudinal direction of the slit portions. Accordingly, in more detail, a multi-domain alignment structure having four or more domains is realized.

第3実施形態において、垂直配向膜を日産化学工業製SE−1211、液晶層3の厚さを4μm、液晶をメルク社製の複屈折率0.1の液晶、視角補償板10を住友化学工業製VAC−180フィルムとし、また、第1スリット部62a,72aと第2スリット部62b,72bのスリット幅Wを20μm、第1スリット部62a,72aのスリット長Lxと第2スリット部62b,72bのスリット長Lyを共に100μm、X軸方向に隣接する背面側透明電極4の第1スリット部62a,62a間の間隔及び前面側透明電極5の第1スリット部72a,72a間の間隔AxとY軸方向に隣接する背面側透明電極4の第2スリット部62b,62b間の間隔及び前面側透明電極5の第2スリット部72b,72b間の間隔Ayを共に20μm、背面側透明電極4の十字状スリット62と前面側透明電極5の十字状スリット72とのX軸方向ずれ量ΔXとY軸方向ずれ量ΔYとを共に60μmとした液晶表示素子を製作し、この液晶表示素子を1/4デューティー駆動で表示させたときの視角特性を測定した。その結果は図6とほぼ同じであり、上下左右全ての方向で視角特性がほぼ同じ非常に対称性の良い表示が得られた。また、第1実施形態と同様に偏光板9,11の透過軸9a,11aの方向を左右方向と上下方向にすることができ、その結果、通常の状態で液晶表示素子を見るときの重要な視角方位である上下及び左右方向の視角特性が図11に示す従来例のものに比し広くなる。   In the third embodiment, the vertical alignment film is SE-1211 manufactured by Nissan Chemical Industries, the thickness of the liquid crystal layer 3 is 4 μm, the liquid crystal is a liquid crystal with a birefringence of 0.1 manufactured by Merck, and the viewing angle compensation plate 10 is Sumitomo Chemical. The VAC-180 film is manufactured, the slit width W of the first slit portions 62a, 72a and the second slit portions 62b, 72b is 20 μm, the slit length Lx of the first slit portions 62a, 72a and the second slit portions 62b, 72b. The slit length Ly of both is 100 μm, the distance between the first slit parts 62a, 62a of the rear transparent electrode 4 adjacent in the X-axis direction, and the distance between the first slit parts 72a, 72a of the front transparent electrode 5 Ax and Y The distance between the second slit portions 62b, 62b of the back side transparent electrode 4 adjacent in the axial direction and the distance Ay between the second slit portions 72b, 72b of the front side transparent electrode 5 are both 20 μm. A liquid crystal display element in which the X-axis direction deviation amount ΔX and the Y-axis direction deviation amount ΔY between the cruciform slit 62 of the rear surface side transparent electrode 4 and the cruciform slit 72 of the front surface side transparent electrode 5 are both 60 μm is manufactured. The viewing angle characteristics when the liquid crystal display element was displayed with 1/4 duty driving were measured. The result is almost the same as in FIG. 6, and a display with very good symmetry is obtained with the same viewing angle characteristics in all directions. Further, similarly to the first embodiment, the directions of the transmission axes 9a and 11a of the polarizing plates 9 and 11 can be set to the horizontal direction and the vertical direction. The viewing angle characteristics in the vertical and horizontal directions that are the viewing angle azimuth are wider than those of the conventional example shown in FIG.

次に、第3実施形態における十字状スリット62,72の寸法について説明する。十字状スリット62,72の第1と第2の各スリット部62a,72a、62b,72bのスリット幅Wがある程度以上広くなると、スリット部62a,72a、62b,72bの中央部の電界が極端に弱くなり、電圧印加に対して液晶分子が反応しなくなる領域が生じ、その領域で表示不良が発生する。更に、スリット部62a,72a、62b,72b以外の部分、即ち、液晶分子が電界に対して応答する領域の面積が小さくなって、所謂開口率が小さくなるために、電圧印加時の透過率が低下してしまう。かかる不具合を回避する上で、スリット幅Wは30μm以下とすることが望ましい。また、スリット幅Wが余りに狭いと、充分な斜め電界が生じなくなり、4ドメイン配向が充分に得られなくなる。スリット幅Wを色々変えて行った実験によると、スリット幅Wが5μmである場合はきれいな4ドメイン配向を得られないことが分かった。この場合、液晶表示素子を目視で観察すると、視角を傾けたときにドメイン不安定による表示のざらつき感を感じてしまう。スリット幅Wが10μmである場合は、液晶分子が倒れる方向に多少不安定さがあるが、視角を傾けたときのざらつき感は許容できる範囲であることが分かった。従って、スリット幅Wは10μm以上にすることが望ましい。尚、スリット幅Wを20μmにすると、きれいで安定した4ドメイン配向が得られ、視角を傾けたときにもざらつき感を感じない。   Next, the dimensions of the cross-shaped slits 62 and 72 in the third embodiment will be described. When the slit width W of each of the first and second slit portions 62a, 72a, 62b, 72b of the cross-shaped slits 62, 72 is increased to a certain extent, the electric field at the center of the slit portions 62a, 72a, 62b, 72b becomes extremely large. A region where the liquid crystal molecules are weakened and the liquid crystal molecules do not react to voltage application is generated, and a display defect occurs in that region. Further, the area other than the slits 62a, 72a, 62b, 72b, that is, the area where the liquid crystal molecules respond to the electric field is reduced, and so-called aperture ratio is reduced. It will decline. In order to avoid such a problem, it is desirable that the slit width W be 30 μm or less. On the other hand, if the slit width W is too narrow, a sufficient oblique electric field is not generated, and a four-domain alignment cannot be obtained sufficiently. According to experiments conducted with various slit widths W, it was found that when the slit width W is 5 μm, a clean 4-domain alignment cannot be obtained. In this case, when the liquid crystal display element is visually observed, a rough feeling of display due to domain instability is felt when the viewing angle is tilted. It was found that when the slit width W is 10 μm, the liquid crystal molecules are somewhat unstable in the direction in which the liquid crystal molecules are tilted, but the rough feeling when the viewing angle is tilted is within an acceptable range. Therefore, the slit width W is desirably 10 μm or more. When the slit width W is 20 μm, a clean and stable four-domain orientation is obtained, and no rough feeling is felt even when the viewing angle is tilted.

また、背面側透明電極4の十字状スリット62の第2スリット部62bと前面側透明電極5の十字状スリット72の第2スリット部72bとの間のX軸方向間隔Bx(これは背面側透明電極4の十字状スリット62と前面側透明電極5の十字状スリット72とのX軸方向ずれ量ΔXからスリット幅Wを減算した値に等しい)や、背面側透明電極4の十字状スリット62の第1スリット部62aと前面側透明電極5の十字状スリット72の第1スリット部72aとの間のY軸方向間隔By(これは背面側透明電極4の十字状スリット62と前面側透明電極5の十字状スリット72とのY軸方向ずれ量ΔYからスリット幅Wを減算した値に等しい)は、充分な表示領域を確保するためには大きい方が良いが、4ドメイン配向の安定性を確保するためと4ドメインの模様が目視で識別されるのを防止するためにはなるべく狭い方が良い。この間隔Bx,Byを色々変えて実験を行ったところ、間隔Bx,Byが70μmである場合には4ドメイン配向の安定性が得られず、60μm以下にすることが4ドメイン配向の安定性という面から好ましいことが分かった。また、60μm以下であれば4ドメインの模様が識別されることもなかった。また、間隔Bx,Byを小さくすることによる開口率の極端な低下を回避する上で、間隔Bx,Byは10μm以上またはスリット幅W以上にすることが望ましい。尚、第1スリット部62a,72aのスリット長Lxと第2スリット部62b,72bのスリット長Lyは間隔Bx,Byの設定で半自動的に決まる。   Further, the X-axis direction interval Bx between the second slit portion 62b of the cruciform slit 62 of the rear surface side transparent electrode 4 and the second slit portion 72b of the cruciform slit 72 of the front surface side transparent electrode 5 (this is the rear surface side transparent electrode). Equal to a value obtained by subtracting the slit width W from the X-axis direction deviation amount ΔX between the cruciform slit 62 of the electrode 4 and the cruciform slit 72 of the front transparent electrode 5), and the cross slit 62 of the rear transparent electrode 4. Y-axis direction interval By between the first slit portion 62a and the first slit portion 72a of the cross-shaped slit 72 of the front transparent electrode 5 (this is the cross-shaped slit 62 of the rear transparent electrode 4 and the front transparent electrode 5). Is equal to the value obtained by subtracting the slit width W from the amount of deviation ΔY in the Y-axis direction with respect to the cross-shaped slit 72). To do In order to prevent the four-domain pattern from being visually identified, it is preferable that the pattern is as narrow as possible. Experiments were conducted with various changes in the spacings Bx and By. When the spacings Bx and By were 70 μm, the stability of the 4-domain alignment could not be obtained. It turned out that it was preferable from the surface. Moreover, if it was 60 micrometers or less, the pattern of 4 domains was not identified. Further, in order to avoid an extreme decrease in the aperture ratio caused by reducing the distances Bx and By, the distances Bx and By are preferably set to 10 μm or more or the slit width W or more. The slit length Lx of the first slit portions 62a and 72a and the slit length Ly of the second slit portions 62b and 72b are semi-automatically determined by setting the intervals Bx and By.

以上、本発明の実施形態について図面を参照して説明したが、本発明はこれに限らない。例えば、上記第1乃至第3実施形態では液晶表示素子を通常の状態で見たときの視野の左右方向に合致する座標軸をX軸としているが、液晶表示素子を通常の状態で見たときの視野の上下方向に合致する座標軸をX軸としても良い。この場合、第1、第2実施形態において、背面側透明電極4の第1スリット部61a及び第2スリット部61bと前面側透明電極5の第1スリット部71a及び第2スリット部71bとはY軸方向たる左右方向に交互に配置されることになる。尚、液晶表示素子を通常の状態で見たときの視野の左右方向や上下方向に対し傾いた方向にX軸を設定することも可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to this. For example, in the first to third embodiments, the X-axis is the coordinate axis that matches the horizontal direction of the visual field when the liquid crystal display element is viewed in a normal state, but when the liquid crystal display element is viewed in a normal state. The coordinate axis that matches the vertical direction of the field of view may be the X axis. In this case, in the first and second embodiments, the first slit portion 61a and the second slit portion 61b of the back surface side transparent electrode 4 and the first slit portion 71a and the second slit portion 71b of the front surface side transparent electrode 5 are Y They are alternately arranged in the left-right direction which is the axial direction. Note that the X axis can also be set in a direction inclined with respect to the horizontal direction or the vertical direction of the visual field when the liquid crystal display element is viewed in a normal state.

また、上記第1乃至第3実施形態の液晶表示素子は何れも液晶層3の液晶分子8を垂直配向させた垂直配向型の液晶表示素子であるが、液晶分子を水平配向させた水平配向型の液晶表示素子に本発明を適用することも考えられる。然し、水平配向型素子では、ラビング等により基板に近接した液晶分子の配向方向が決まり、斜め電界に対する応答の方位異方性が生じ、上述した4ドメイン配向をうまく得られなくなる可能性がある。これに対し、垂直配向型素子であれば、斜め電界に対する応答の方位異方性が生じないため、4ドメイン配向が確実に得られる。そして、垂直配向型の液晶表示素子であれば、セグメント表示タイプ、単純マトリックス駆動のドットマトリックスタイプ、セグメント表示タイプの領域と単純マトリックス駆動のドットマトリックスタイプの領域の両方を併せ持ったタイプ、アクティブマトリックスタイプといった種々のタイプの液晶表示素子に本発明を適用できる。   The liquid crystal display elements of the first to third embodiments are all vertical alignment type liquid crystal display elements in which the liquid crystal molecules 8 of the liquid crystal layer 3 are vertically aligned, but the horizontal alignment type in which the liquid crystal molecules are horizontally aligned. It is also conceivable to apply the present invention to such a liquid crystal display element. However, in the horizontal alignment type element, the alignment direction of the liquid crystal molecules close to the substrate is determined by rubbing or the like, and the azimuthal anisotropy of the response to the oblique electric field is generated, so that the above-described four-domain alignment may not be obtained well. On the other hand, in the case of a vertical alignment type element, azimuthal anisotropy in response to an oblique electric field does not occur, so that four-domain alignment can be reliably obtained. For vertical alignment type liquid crystal display elements, segment display type, simple matrix drive dot matrix type, type having both segment display type area and simple matrix drive dot matrix type area, active matrix type The present invention can be applied to various types of liquid crystal display elements.

本発明の第1乃至第3実施形態に共通する液晶表示素子の模式的断面図。FIG. 6 is a schematic cross-sectional view of a liquid crystal display element common to the first to third embodiments of the present invention. 第1乃至第3実施形態に共通する液晶表示素子の偏光板の透過軸の方向を示す説明図。Explanatory drawing which shows the direction of the transmission axis of the polarizing plate of the liquid crystal display element common to 1st thru | or 3rd embodiment. 第1実施形態の液晶表示素子のスリットの配列を示す説明図。Explanatory drawing which shows the arrangement | sequence of the slit of the liquid crystal display element of 1st Embodiment. 第1実施形態の液晶表示素子における斜め電界の発生状況を示す断面図。Sectional drawing which shows the generation | occurrence | production state of the diagonal electric field in the liquid crystal display element of 1st Embodiment. 第1実施形態の液晶表示素子における斜め電界の水平方向成分を示す説明図。Explanatory drawing which shows the horizontal direction component of the diagonal electric field in the liquid crystal display element of 1st Embodiment. 第1実施形態の液晶表示素子の視角特性を示す図。The figure which shows the viewing angle characteristic of the liquid crystal display element of 1st Embodiment. 第2実施形態の液晶表示素子のスリットの配列を示す説明図。Explanatory drawing which shows the arrangement | sequence of the slit of the liquid crystal display element of 2nd Embodiment. 第3実施形態の液晶表示素子のスリットの配列を示す説明図。Explanatory drawing which shows the arrangement | sequence of the slit of the liquid crystal display element of 3rd Embodiment. 第3実施形態の液晶表示素子における斜め電界の水平方向成分を示す説明図。Explanatory drawing which shows the horizontal direction component of the diagonal electric field in the liquid crystal display element of 3rd Embodiment. 従来例の液晶表示素子の模式的断面図。FIG. 10 is a schematic cross-sectional view of a conventional liquid crystal display element. 従来例の液晶表示素子の偏光板の透過軸の方向を示す説明図。Explanatory drawing which shows the direction of the transmission axis of the polarizing plate of the liquid crystal display element of a prior art example. 従来例の液晶表示素子のスリットの配列を示す説明図。Explanatory drawing which shows the arrangement | sequence of the slit of the liquid crystal display element of a prior art example. 従来例の液晶表示素子における斜め電界の発生状況を示す断面図。Sectional drawing which shows the generation | occurrence | production state of the diagonal electric field in the liquid crystal display element of a prior art example. 斜め電界による液晶分子の挙動を示す説明図。Explanatory drawing which shows the behavior of the liquid crystal molecule by an oblique electric field. 従来例の液晶表示素子の視角特性を示す図。The figure which shows the viewing angle characteristic of the liquid crystal display element of a prior art example.

符号の説明Explanation of symbols

1,2…基板、3…液晶層、4,5…透明電極、61,71…スリット、61a,71a…第1スリット部、61b,71b…第2スリット部、62,72…十字状スリット、62a,72a…第1スリット部,62b,72b…第2スリット部、8…液晶分子、9,11…偏光板、9a,11a…透過軸。   DESCRIPTION OF SYMBOLS 1, 2 ... Substrate, 3 ... Liquid crystal layer, 4, 5 ... Transparent electrode, 61, 71 ... Slit, 61a, 71a ... 1st slit part, 61b, 71b ... 2nd slit part, 62, 72 ... Cross-shaped slit, 62a, 72a ... 1st slit part, 62b, 72b ... 2nd slit part, 8 ... Liquid crystal molecule, 9, 11 ... Polarizing plate, 9a, 11a ... Transmission axis.

Claims (11)

対向配置される一対の基板と、両基板上に設けられ、液晶層を挟んで互いに重なり合って表示領域を形成する一対の透明電極とを備え、両透明電極の表示領域に合致する部分に、夫々、配向分割のためのスリットが複数形成された液晶表示素子において、
表示領域に設定した所定の直交座標の一方の座標軸をX軸、他方の座標軸をY軸として、各透明電極のスリットは、X軸に対し傾斜した方向に長手の第1スリット部と、X軸に対し第1スリット部とは反対方向に傾斜した方向に長手の第2スリット部とで構成され、
一方の透明電極の第1スリット部と他方の透明電極の第1スリット部とがY軸方向に交互に配置されると共に、一方の透明電極の第2スリット部と他方の透明電極の第2スリット部とがY軸方向に交互に配置されることを特徴とする液晶表示素子。
A pair of substrates disposed opposite to each other and a pair of transparent electrodes that are provided on both substrates and overlap each other with a liquid crystal layer interposed therebetween to form a display region. In a liquid crystal display element in which a plurality of slits for alignment division are formed,
With one coordinate axis of a predetermined orthogonal coordinate set in the display area as the X axis and the other coordinate axis as the Y axis, the slit of each transparent electrode has a first slit portion that is long in a direction inclined with respect to the X axis, and the X axis. On the other hand, it is composed of a second slit portion that is long in a direction inclined in the opposite direction to the first slit portion,
The first slit portion of one transparent electrode and the first slit portion of the other transparent electrode are alternately arranged in the Y-axis direction, and the second slit portion of one transparent electrode and the second slit of the other transparent electrode The liquid crystal display element is characterized in that the portions are alternately arranged in the Y-axis direction.
前記X軸は液晶表示素子を通常の状態で見るときの視野の左右方向または上下方向に合致する座標軸であり、前記各透明電極の前記第1スリット部の長手方向と前記第2スリット部の長手方向のX軸に対する傾斜角は夫々+45°、−45°であり、前記両基板に沿わせて設ける一対の偏光板の一方の透過軸と他方の透過軸が夫々X軸とY軸に平行であることを特徴とする請求項1記載の液晶表示素子。   The X axis is a coordinate axis that matches the horizontal direction or the vertical direction of the visual field when the liquid crystal display element is viewed in a normal state, and the longitudinal direction of the first slit portion and the longitudinal direction of the second slit portion of each transparent electrode The inclination angles of the direction with respect to the X axis are + 45 ° and −45 °, respectively, and one transmission axis and the other transmission axis of the pair of polarizing plates provided along the two substrates are parallel to the X axis and the Y axis, respectively. The liquid crystal display element according to claim 1, wherein the liquid crystal display element is provided. 前記各透明電極の前記第1と第2の各スリット部のその長手方向に直交する方向のスリット幅は10μm以上30μm以下であることを特徴とする請求項1又は2記載の液晶表示素子。   3. The liquid crystal display element according to claim 1, wherein a slit width of each of the transparent electrodes in a direction perpendicular to the longitudinal direction of each of the first and second slit portions is 10 μm or more and 30 μm or less. 前記一方の透明電極の前記第1と第2の各スリット部と、該各スリット部に対しY軸方向に隣接する前記他方の透明電極の前記第1と第2の各スリット部との間のこれら各スリット部の長手方向に直交する方向の間隔は10μm以上60μm以下であることを特徴とする請求項1〜3の何れか1項記載の液晶表示素子。   Between the first and second slit portions of the one transparent electrode, and between the first and second slit portions of the other transparent electrode adjacent to the respective slit portions in the Y-axis direction. The liquid crystal display element according to any one of claims 1 to 3, wherein an interval in a direction perpendicular to a longitudinal direction of each of the slit portions is 10 µm or more and 60 µm or less. 前記一方の透明電極の前記第1と第2の各スリット部と、該各スリット部に対しY軸方向に隣接する前記他方の透明電極の前記第1と第2の各スリット部との間のこれら各スリット部の長手方向に直交する方向の間隔は各スリット部の長手方向に直交する方向のスリット幅以上60μm以下であることを特徴とする請求項1〜3の何れか1項記載の液晶表示素子。   Between the first and second slit portions of the one transparent electrode, and between the first and second slit portions of the other transparent electrode adjacent to the respective slit portions in the Y-axis direction. The liquid crystal according to any one of claims 1 to 3, wherein an interval in a direction orthogonal to the longitudinal direction of each slit portion is not less than a slit width in a direction orthogonal to the longitudinal direction of each slit portion and not more than 60 µm. Display element. 対向配置される一対の基板と、両基板上に設けられ、液晶層を挟んで互いに重なり合って表示領域を形成する一対の透明電極とを備え、両透明電極の表示領域に合致する部分に、夫々、配向分割のためのスリットが複数形成された液晶表示素子において、
表示領域に設定した所定の直交座標の一方の座標軸をX軸、他方の座標軸をY軸として、各透明電極の各スリットはX軸方向に長手の第1スリット部とY軸方向に長手の第2スリット部とが交差した十字状に形成され、
各透明電極に十字状スリットがX軸方向とY軸方向とに間隔を存して複数配置されると共に、
X軸方向に隣接する十字状スリットの中心間距離をX軸方向スリットピッチ、Y軸方向に隣接する十字状スリットの中心間距離をY軸方向スリットピッチとして、一方の透明電極の十字状スリットと他方の透明電極の十字状スリットとがX軸方向とY軸方向とに夫々X軸方向スリットピッチとY軸方向スリットピッチとの半分だけずれて配置されることを特徴とする液晶表示素子。
A pair of substrates disposed opposite to each other and a pair of transparent electrodes that are provided on both substrates and overlap each other with a liquid crystal layer interposed therebetween to form a display region. In a liquid crystal display element in which a plurality of slits for alignment division are formed,
With one coordinate axis of predetermined orthogonal coordinates set in the display area as the X axis and the other coordinate axis as the Y axis, each slit of each transparent electrode has a first slit portion that is long in the X-axis direction and a first slit portion that is long in the Y-axis direction. It is formed in a cross shape intersecting with two slit parts,
A plurality of cross-shaped slits are arranged in each transparent electrode with an interval in the X-axis direction and the Y-axis direction,
The distance between the centers of the cross-shaped slits adjacent in the X-axis direction is defined as the X-axis direction slit pitch, and the distance between the centers of the cross-shaped slits adjacent in the Y-axis direction is defined as the Y-axis direction slit pitch. A liquid crystal display element, wherein the cross-shaped slit of the other transparent electrode is arranged so as to be shifted by half of the X-axis direction slit pitch and the Y-axis direction slit pitch in the X-axis direction and the Y-axis direction, respectively.
前記X軸は液晶表示素子を通常の状態で見るときの視野の左右方向または上下方向に合致する座標軸であり、前記両基板に沿わせて設ける一対の偏光板の一方の透過軸と他方の透過軸が夫々X軸とY軸に平行であることを特徴とする請求項6記載の液晶表示素子。   The X axis is a coordinate axis that matches the horizontal or vertical direction of the field of view when the liquid crystal display element is viewed in a normal state, and one transmission axis and the other transmission of a pair of polarizing plates provided along the two substrates. 7. The liquid crystal display element according to claim 6, wherein the axes are parallel to the X axis and the Y axis, respectively. 前記第1と第2の各スリット部のその長手方向に直交する方向のスリット幅は10μm以上30μm以下であることを特徴とする請求項6又は7記載の液晶表示素子。   The liquid crystal display element according to claim 6 or 7, wherein a slit width in a direction orthogonal to the longitudinal direction of each of the first and second slit portions is 10 µm or more and 30 µm or less. 前記一方の透明電極の前記十字状スリットと前記他方の透明電極の前記十字状スリットとのX軸方向のずれ量とY軸方向のずれ量とから前記第1と第2の各スリット部のその長手方向に直交する方向のスリット幅を減算した値が夫々10μm以上60μm以下であることを特徴とする請求項6〜8の何れか1項記載の液晶表示素子。   From the amount of deviation in the X-axis direction and the amount of deviation in the Y-axis direction between the cruciform slit of the one transparent electrode and the cruciform slit of the other transparent electrode, the first and second slit portions 9. The liquid crystal display element according to claim 6, wherein the values obtained by subtracting the slit width in the direction orthogonal to the longitudinal direction are 10 μm or more and 60 μm or less, respectively. 前記一方の透明電極の前記十字状スリットと前記他方の透明電極の前記十字状スリットとのX軸方向のずれ量とY軸方向のずれ量とから前記第1と第2の各スリット部のその長手方向に直交する方向のスリット幅を減算した値が夫々このスリット幅以上60μm以下であることを特徴とする請求項6〜8の何れか1項記載の液晶表示素子。   From the amount of deviation in the X-axis direction and the amount of deviation in the Y-axis direction between the cruciform slit of the one transparent electrode and the cruciform slit of the other transparent electrode, the first and second slit portions 9. The liquid crystal display element according to claim 6, wherein a value obtained by subtracting a slit width in a direction perpendicular to the longitudinal direction is not less than the slit width and not more than 60 [mu] m. 前記液晶層の液晶分子を垂直配向させた垂直配向型素子であることを特徴とする請求項1〜10の何れか1項記載の液晶表示素子。   The liquid crystal display element according to claim 1, wherein the liquid crystal display element is a vertical alignment element in which liquid crystal molecules of the liquid crystal layer are vertically aligned.
JP2006076529A 2006-03-20 2006-03-20 Liquid crystal display element Active JP4846402B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006076529A JP4846402B2 (en) 2006-03-20 2006-03-20 Liquid crystal display element
CN2007100874509A CN101042506B (en) 2006-03-20 2007-03-16 Liquid crystal element
CN2010101947354A CN101840115B (en) 2006-03-20 2007-03-16 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006076529A JP4846402B2 (en) 2006-03-20 2006-03-20 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2007256300A true JP2007256300A (en) 2007-10-04
JP4846402B2 JP4846402B2 (en) 2011-12-28

Family

ID=38630653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006076529A Active JP4846402B2 (en) 2006-03-20 2006-03-20 Liquid crystal display element

Country Status (2)

Country Link
JP (1) JP4846402B2 (en)
CN (2) CN101042506B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187826A (en) * 2006-01-12 2007-07-26 Stanley Electric Co Ltd Liquid crystal display element
JP2008129050A (en) * 2006-11-16 2008-06-05 Stanley Electric Co Ltd Liquid crystal display element
WO2010097879A1 (en) * 2009-02-24 2010-09-02 シャープ株式会社 Liquid crystal display device
WO2011024569A1 (en) * 2009-08-31 2011-03-03 日本精機株式会社 Liquid crystal display element
JP2011197112A (en) * 2010-03-17 2011-10-06 Stanley Electric Co Ltd Liquid crystal display device
JP2011197498A (en) * 2010-03-23 2011-10-06 Stanley Electric Co Ltd Liquid crystal display device
JP2011257470A (en) * 2010-06-07 2011-12-22 Stanley Electric Co Ltd Liquid crystal display device
JP2012068591A (en) * 2010-09-27 2012-04-05 Stanley Electric Co Ltd Liquid crystal display device
JP2013092673A (en) * 2011-10-26 2013-05-16 Kyocera Display Corp Liquid crystal display element
JP2013104958A (en) * 2011-11-11 2013-05-30 Stanley Electric Co Ltd Liquid crystal display device
JP2013156394A (en) * 2012-01-30 2013-08-15 Kyocera Display Corp Liquid crystal display
JP2013156393A (en) * 2012-01-30 2013-08-15 Kyocera Display Corp Liquid crystal display
JP2014066827A (en) * 2012-09-25 2014-04-17 Stanley Electric Co Ltd Liquid crystal display device
JP2014071205A (en) * 2012-09-28 2014-04-21 Kyocera Display Corp Liquid crystal display element
JP2014145940A (en) * 2013-01-29 2014-08-14 Kyocera Display Corp Liquid crystal display element
JP2015114463A (en) * 2013-12-11 2015-06-22 スタンレー電気株式会社 Liquid crystal display
CN104932156A (en) * 2014-03-17 2015-09-23 斯坦雷电气株式会社 Liquid crystal display apparatus
JP2015172649A (en) * 2014-03-11 2015-10-01 スタンレー電気株式会社 liquid crystal display device
EP3067743A1 (en) 2015-03-11 2016-09-14 Stanley Electric Co., Ltd. Liquid crystal display apparatus
CN104062818B (en) * 2014-06-27 2017-10-24 上海天马微电子有限公司 A kind of Liquid crystal disply device and its preparation method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5706147B2 (en) * 2010-12-13 2015-04-22 京セラディスプレイ株式会社 Liquid crystal display
JP6010410B2 (en) 2012-09-24 2016-10-19 スタンレー電気株式会社 Liquid crystal display
CN102998857B (en) * 2012-11-20 2015-07-15 京东方科技集团股份有限公司 Slit electrode, array substrate and display device
JP6339779B2 (en) 2013-08-22 2018-06-06 スタンレー電気株式会社 Liquid crystal display
US9679920B2 (en) * 2014-06-20 2017-06-13 Samsung Display Co., Ltd. Liquid crystal display
CN114879417A (en) * 2022-06-14 2022-08-09 宇龙计算机通信科技(深圳)有限公司 Display device and equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136941A (en) * 1994-11-11 1996-05-31 Toshiba Corp Liquid crystal display element
JP2004252298A (en) * 2003-02-21 2004-09-09 Stanley Electric Co Ltd Liquid crystal display element
JP2004348130A (en) * 2003-05-19 2004-12-09 Samsung Electronics Co Ltd Thin film transistor display plate and liquid crystal display device including the same
JP2005018079A (en) * 2003-06-26 2005-01-20 Samsung Electronics Co Ltd Thin film transistor display board and liquid crystal display device including the same
JP2005043696A (en) * 2003-07-23 2005-02-17 Stanley Electric Co Ltd Liquid crystal display element
JP2005062546A (en) * 2003-08-14 2005-03-10 Dainippon Printing Co Ltd Liquid crystal display and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701074B1 (en) * 2003-06-12 2007-03-29 비오이 하이디스 테크놀로지 주식회사 Liquid crystal display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136941A (en) * 1994-11-11 1996-05-31 Toshiba Corp Liquid crystal display element
JP2004252298A (en) * 2003-02-21 2004-09-09 Stanley Electric Co Ltd Liquid crystal display element
JP2004348130A (en) * 2003-05-19 2004-12-09 Samsung Electronics Co Ltd Thin film transistor display plate and liquid crystal display device including the same
JP2005018079A (en) * 2003-06-26 2005-01-20 Samsung Electronics Co Ltd Thin film transistor display board and liquid crystal display device including the same
JP2005043696A (en) * 2003-07-23 2005-02-17 Stanley Electric Co Ltd Liquid crystal display element
JP2005062546A (en) * 2003-08-14 2005-03-10 Dainippon Printing Co Ltd Liquid crystal display and method for manufacturing the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187826A (en) * 2006-01-12 2007-07-26 Stanley Electric Co Ltd Liquid crystal display element
JP2008129050A (en) * 2006-11-16 2008-06-05 Stanley Electric Co Ltd Liquid crystal display element
WO2010097879A1 (en) * 2009-02-24 2010-09-02 シャープ株式会社 Liquid crystal display device
US20120001840A1 (en) * 2009-02-24 2012-01-05 Hiroyuki Ohgami Liquid crystal display device
CN102549488A (en) * 2009-08-31 2012-07-04 日本精机株式会社 Liquid crystal display element
WO2011024569A1 (en) * 2009-08-31 2011-03-03 日本精機株式会社 Liquid crystal display element
JP2011053278A (en) * 2009-08-31 2011-03-17 Nippon Seiki Co Ltd Liquid crystal display element
EP2474858A4 (en) * 2009-08-31 2013-01-23 Nippon Seiki Co Ltd Liquid crystal display element
EP2474858A1 (en) * 2009-08-31 2012-07-11 Nippon Seiki Co., Ltd. Liquid crystal display element
JP2011197112A (en) * 2010-03-17 2011-10-06 Stanley Electric Co Ltd Liquid crystal display device
JP2011197498A (en) * 2010-03-23 2011-10-06 Stanley Electric Co Ltd Liquid crystal display device
JP2011257470A (en) * 2010-06-07 2011-12-22 Stanley Electric Co Ltd Liquid crystal display device
JP2012068591A (en) * 2010-09-27 2012-04-05 Stanley Electric Co Ltd Liquid crystal display device
JP2013092673A (en) * 2011-10-26 2013-05-16 Kyocera Display Corp Liquid crystal display element
JP2013104958A (en) * 2011-11-11 2013-05-30 Stanley Electric Co Ltd Liquid crystal display device
JP2013156393A (en) * 2012-01-30 2013-08-15 Kyocera Display Corp Liquid crystal display
JP2013156394A (en) * 2012-01-30 2013-08-15 Kyocera Display Corp Liquid crystal display
JP2014066827A (en) * 2012-09-25 2014-04-17 Stanley Electric Co Ltd Liquid crystal display device
JP2014071205A (en) * 2012-09-28 2014-04-21 Kyocera Display Corp Liquid crystal display element
JP2014145940A (en) * 2013-01-29 2014-08-14 Kyocera Display Corp Liquid crystal display element
JP2015114463A (en) * 2013-12-11 2015-06-22 スタンレー電気株式会社 Liquid crystal display
JP2015172649A (en) * 2014-03-11 2015-10-01 スタンレー電気株式会社 liquid crystal display device
CN104932156A (en) * 2014-03-17 2015-09-23 斯坦雷电气株式会社 Liquid crystal display apparatus
JP2015176014A (en) * 2014-03-17 2015-10-05 スタンレー電気株式会社 liquid crystal display device
CN104932156B (en) * 2014-03-17 2019-08-27 斯坦雷电气株式会社 Liquid crystal display device
CN104062818B (en) * 2014-06-27 2017-10-24 上海天马微电子有限公司 A kind of Liquid crystal disply device and its preparation method
EP3067743A1 (en) 2015-03-11 2016-09-14 Stanley Electric Co., Ltd. Liquid crystal display apparatus
US9658500B2 (en) 2015-03-11 2017-05-23 Stanley Electric Co., Ltd. Liquid crystal display apparatus

Also Published As

Publication number Publication date
CN101840115A (en) 2010-09-22
CN101042506B (en) 2012-05-09
JP4846402B2 (en) 2011-12-28
CN101042506A (en) 2007-09-26
CN101840115B (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4846402B2 (en) Liquid crystal display element
JP4107978B2 (en) Liquid crystal display element
JP5685410B2 (en) Liquid crystal display element
US20070195251A1 (en) Systems for displaying images involving alignment liquid crystal displays
JP5096857B2 (en) Liquid crystal display element
JP4902345B2 (en) Liquid crystal display element
JP2005043696A (en) Liquid crystal display element
US9772529B2 (en) Liquid crystal display
JP5038858B2 (en) Liquid crystal display element
JP2013148624A (en) Liquid crystal display device
JP4847134B2 (en) Liquid crystal display element
JP4801479B2 (en) Liquid crystal display element
JP5511626B2 (en) Liquid crystal display
JP6042677B2 (en) Liquid crystal display
JP4846401B2 (en) Liquid crystal display element
JP5511640B2 (en) Liquid crystal display
JP2010002674A (en) Liquid crystal display panel
JP2011154101A (en) Liquid crystal display panel and liquid crystal display device
EP2921903B1 (en) Liquid crystal display apparatus
US9733521B2 (en) Liquid crystal display apparatus
CN111142294B (en) Pixel electrode structure and array substrate
JP6419291B2 (en) Liquid crystal display
JP6073623B2 (en) Liquid crystal display element
JP2014145940A (en) Liquid crystal display element
JP6440951B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4846402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250