JPH0756148A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH0756148A
JPH0756148A JP20546993A JP20546993A JPH0756148A JP H0756148 A JPH0756148 A JP H0756148A JP 20546993 A JP20546993 A JP 20546993A JP 20546993 A JP20546993 A JP 20546993A JP H0756148 A JPH0756148 A JP H0756148A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrates
angle
twist
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20546993A
Other languages
Japanese (ja)
Inventor
Makiko Satou
摩希子 佐藤
Yuzo Hisatake
雄三 久武
Masahito Ishikawa
正仁 石川
Hitoshi Hado
仁 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20546993A priority Critical patent/JPH0756148A/en
Publication of JPH0756148A publication Critical patent/JPH0756148A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a liquid crystal display element having a high scattering characteristic, low driving voltage, excellent gradation characteristic and wide visual field angle characteristic with high productivity. CONSTITUTION:A nematic liquid crystal layer 20 having positive dielectric anisotropy is clamped between two sheets of substrates 11 and 12 provided with electrodes 13, 14. The twist angle 4 of the liquid crystal is + or -theta+180 deg. or + or -theta-180 deg. when psi is + or -theta in the state of not a voltage to the liquid crystal layer when the intersection angle of the liquid crystal molecule arrangement directions on two sheets of the substrates is theta(0 deg.<=theta<=90 deg.) and the cell twist angle determined to cause uniform twist arrangement on the surfaces of two sheets of the substrates is psi. The twist angle omega of the liquid crystal when psi is + or -(theta-180 deg.) is + or -theta. A conductor part 13a (14a) and non-conductor part 13b (14b) are formed in fine region unit of <=30mum on the electrode of each one picture element. The conductor part 13a (14a) of the one electrode and the non-conductor part 13b (14b) of the other electrode are arranged to face each other between both substrates. Both substrates have low-pretilt angle oriented films 15, 16 of <=2.5 deg. and the pretilt angle difference of both substrates is <=0.3 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示素子に係わ
り、特にディスクリネーションの光散乱を利用した液晶
表示素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device utilizing the light scattering of disclination.

【0002】[0002]

【従来の技術】一般に液晶表示素子(以下LCDと略
称)を光制御の観点から分類すると、明暗の変化を液晶
分子の偏光効果と偏光子の組み合わせにより生じさせる
ものと、液晶の相転移を利用し、光の散乱と透過により
生じさせるもの、および染料を添加し、染料の可視光吸
収量を制御し、色の濃淡変化により生じさせるもの等に
分けられる。
2. Description of the Related Art Generally, when a liquid crystal display device (hereinafter abbreviated as LCD) is classified from the viewpoint of light control, a device that causes a change in brightness and darkness due to a combination of a polarization effect of liquid crystal molecules and a polarizer and a phase transition of liquid crystal are used. However, it is classified into those generated by scattering and transmission of light, those added by adding a dye to control the visible light absorption amount of the dye, and those caused by a change in color shade.

【0003】前者の偏光効果と偏光子を組み合わせたL
CDは、例えば90°ねじれた分子配列をもつツイステ
ッドネマティック(TN)型液晶であり、原理的に薄い
液晶層厚、低電圧で偏光制御できることから、早い応答
速度、低消費電力にて、高いコントラスト比を示し、時
計や電卓、単純マトリクス駆動や、スイッチング素子を
各画素ごとに具備したアクティブマトリクス駆動で、ま
た、カラーフィルターと組み合わせて、フルカラーの表
示の液晶TVなどに応用されている。
L, which is a combination of the former polarization effect and a polarizer
CD is, for example, a twisted nematic (TN) type liquid crystal having a 90 ° twisted molecular arrangement. In principle, a thin liquid crystal layer and polarization control can be performed at a low voltage, so that a high response speed, low power consumption, and high contrast are achieved. The ratio is used for a clock, a calculator, a simple matrix drive, an active matrix drive provided with a switching element for each pixel, and in combination with a color filter, it is applied to a full color display liquid crystal TV or the like.

【0004】しかし、これら偏光効果と偏光子を組み合
わせたLCDは、原理上偏光板を用いることから素子の
透過率が著しく低く、また分子配列の方位性により見る
角度・方位によって表示色やコントラスト比が大きく変
化するといった視角依存性をもち冷陰極線管(CRT)
の表示性能を完全に越えるまでにはいたらない。
However, an LCD combining these polarization effects and a polarizer has a remarkably low transmissivity of the element since it uses a polarizing plate in principle, and the display color and the contrast ratio depend on the viewing angle / direction depending on the orientation of the molecular arrangement. Cold-cathode ray tube (CRT) that has a viewing angle dependency such as a large change in
The display performance of is completely exceeded.

【0005】一方、後者の液晶の相転移を利用したも
の、及び染料の可視光吸収量を制御したLCDは、例え
ば、ヘリカル構造の分子配列をもつコレステリック相か
らホメオトロピック分子配列のネマティック相への相転
移を電場印加で生じさせるPC型液晶及びこれに染料を
添加してなるホワイト・テイラー型GH液晶であり、偏
光子を用いず、原理的に偏光効果を用いないことから、
明るく、広い視認角を示し、自動車機器や、投影型表示
器などに応用されている。
On the other hand, the latter one utilizing the phase transition of liquid crystal and the LCD in which the visible light absorption amount of the dye is controlled, for example, from a cholesteric phase having a molecular structure of helical structure to a nematic phase of homeotropic molecular alignment. A PC-type liquid crystal which causes a phase transition by applying an electric field and a white Taylor type GH liquid crystal obtained by adding a dye to the PC-type liquid crystal, which does not use a polarizer and theoretically does not use a polarization effect.
It is bright and has a wide viewing angle, and is used in automobile equipment and projection displays.

【0006】しかし、充分な光の散乱を得るには、液晶
相厚を充分厚くしたり、散乱を生じさせるヘリカル強度
を強めたりする必要があり、高い駆動電圧を要し、応答
速度も極めて遅いといった問題点をもっているため表示
量(画素数)の多い表示素子への応用は困難とされてい
た。また、印加電圧の増加に伴い、透過率が急激に変化
するために階調性をもたらすことも困難とされていた。
さらに、その印加電圧−透過率特性にヒステリシスがあ
り、マルチプレクス駆動することが困難など実用的に問
題があった。
However, in order to obtain sufficient light scattering, it is necessary to make the liquid crystal phase thick enough or to increase the helical strength that causes the scattering, which requires a high driving voltage and an extremely slow response speed. Therefore, it has been difficult to apply it to a display element having a large display amount (number of pixels). In addition, it has been considered difficult to provide gradation because the transmittance changes abruptly as the applied voltage increases.
Further, the applied voltage-transmittance characteristic has a hysteresis, and there is a practical problem that it is difficult to perform multiplex driving.

【0007】さらに説明すると、偏光効果と偏光子を用
いた場合、原理上透過率が低くなり、視角依存性を生じ
させる。すなわち、少なくとも1枚の偏光板を用いるた
め、透過光量は少なくとも50%以下となり、また、製
造上及び配向の安定化のためプレティルト角を有し、そ
れが視角特性に影響する。特に原理上、透過率が低く、
この方式を用いた場合、避けられない問題である。
To further explain, when the polarization effect and the polarizer are used, the transmittance is lowered in principle, and the viewing angle dependency is caused. That is, since at least one polarizing plate is used, the amount of transmitted light is at least 50% or less, and a pretilt angle is provided for manufacturing and stabilization of orientation, which affects the viewing angle characteristics. Especially in principle, the transmittance is low,
Using this method is an unavoidable problem.

【0008】また、液晶の相転移を利用した場合、これ
ら低い透過率、視角依存といった問題は生じないが、充
分に光を散乱させるためには、上記のように液晶層厚を
充分に厚くし、ヘリカル強度を強くしたりする必要があ
る。これは光の散乱を種々の液晶分子配列に因っている
からである。つまり、充分に光を散乱させるためには、
例えば、ヘリカル構造の分子配列をもつコレステリック
相の場合、入射光方向に対し、あらゆる方位にヘリカル
軸をもつ必要性が生じる。このように、多数の方位のヘ
リカル軸をもたせるためには、液晶相厚を厚くしなくて
はならない。また、有機電解質などの導電性物質を溶解
したNn液晶を用い、低周波で高電圧を印加することに
より散乱性を得る手段(一般にDS効果という)が提案
されているが、これも充分な散乱性を得るためには、前
記問題点を伴わねばなし得ない。無論、相転移を熱光学
効果による場合も同様である。
When the phase transition of the liquid crystal is used, these problems such as low transmittance and viewing angle dependence do not occur, but in order to sufficiently scatter light, the liquid crystal layer thickness should be sufficiently thick as described above. , It is necessary to increase the helical strength. This is because the scattering of light is due to various liquid crystal molecule arrangements. In other words, in order to scatter light sufficiently,
For example, in the case of a cholesteric phase having a helical molecular arrangement, it becomes necessary to have a helical axis in every direction with respect to the incident light direction. As described above, in order to have the helical axes in many directions, the liquid crystal phase thickness must be increased. In addition, a means (generally called the DS effect) for obtaining a scattering property by applying a high voltage at a low frequency using Nn liquid crystal in which a conductive substance such as an organic electrolyte is dissolved has been proposed. In order to obtain the property, it is necessary to have the above problems. Of course, the same applies when the phase transition is caused by the thermo-optic effect.

【0009】また、これら各種の相転移を利用した方式
では、光散乱状態と光透過状態とで液晶の分子配列が著
しく異なり、このため、前記2種の状態の相互変化を電
界制御でなし遂げる場合、その電気光学特性にヒステリ
シスが生じてしまう。このヒステリシスが生じる原因に
は諸説があり明確にされていないが、分子配列が著しく
異なると発生し、また、電界を印加していない状態で光
散乱状態(液晶の分子配列が微細なドメインの集合体と
なっている状態)を形成している場合に発生しやすいこ
とがわかっている。
Further, in the methods utilizing these various phase transitions, the molecular alignment of the liquid crystal is remarkably different between the light scattering state and the light transmitting state. Therefore, the mutual change between the above two states can be achieved by electric field control. In that case, hysteresis will occur in the electro-optical characteristics. The cause of this hysteresis has not been clarified due to various theories, but it occurs when the molecular arrangement is significantly different, and it also occurs in the light-scattering state (the molecular arrangement of liquid crystals is a collection of fine domains) when no electric field is applied. It is known that this is more likely to occur when the body is in a state).

【0010】また、図14(a)に示すように基板1、
2間で挾持されたポリマー3内に多数のカプセルを形成
して、この中に液晶4を封入したカプセル状構造、およ
び図14(b)に示すように繊維状ポリマー5の間に液
晶6を分散させた繊維状ポリマー構造を用いて散乱性を
高める高分子分散型LCDが提案されているが、高い散
乱性、充分に低い駆動電圧と応答速度など必要な特性を
得るには至っていない。これは、そのポリマーの形状に
製法上、及び原理から、ポリマーと液晶層との混合比に
制約があり、やはり、要求される駆動特性を満足しよう
とすると、充分な散乱性を得られないためである。
Further, as shown in FIG. 14 (a), the substrate 1,
A large number of capsules are formed in a polymer 3 held between two, and a liquid crystal 4 is encapsulated in the capsule 3, and a liquid crystal 6 is sandwiched between fibrous polymers 5 as shown in FIG. 14 (b). A polymer-dispersed LCD that uses a dispersed fibrous polymer structure to enhance the scattering property has been proposed, but the required properties such as high scattering property, sufficiently low driving voltage and response speed have not yet been obtained. This is because, due to the manufacturing method and the principle of the shape of the polymer, there is a restriction on the mixing ratio of the polymer and the liquid crystal layer, and again, when trying to satisfy the required driving characteristics, sufficient scattering cannot be obtained. Is.

【0011】また、これらの方式においても光散乱状態
と光透過状態とで液晶の分子配列が著しく異なるため、
前述したように電気光学特性にヒステリシスが生じてし
まう。これに対し散乱状態における液晶分子配列をある
程度制御(例えばカプセル内面における液晶分子配列を
制御するためにポリマーに疎水性の物質を混合する等)
し、前記ヒステリシスを軽減させることも可能である
が、このことは同時に光散乱を弱めることとなり、実用
的でない。
Also in these systems, since the molecular alignment of the liquid crystal is significantly different between the light scattering state and the light transmitting state,
As described above, hysteresis occurs in electro-optical characteristics. On the other hand, the liquid crystal molecular alignment in the scattering state is controlled to some extent (for example, a polymer is mixed with a hydrophobic substance to control the liquid crystal molecular alignment on the inner surface of the capsule).
However, it is possible to reduce the hysteresis, but this also weakens the light scattering and is not practical.

【0012】カプセル状の高分子分散型のNCAP形L
CDは散乱モードの液晶表示素子であり、偏光板をもち
いないため、明るく、広い視認角を示し、自動車機器
や、投影型表示器などに応用されている。しかしなが
ら、外部から印加した電圧は有機高分子と液晶とに分圧
され、液晶には印加電圧の一部しか印加されず、実用的
には動作電圧が高まり問題であった。また、充分な光の
散乱を得るには、液晶厚を充分厚くする必要があり、応
答速度も極めて遅いといった問題点をもっているため表
示量(画素数)の多い表示素子への応用は困難とされて
いた。さらに、その印加電圧−透過率特性にヒステリシ
スがあり、マルチプレクス駆動することが困難など実用
的に問題があった。これと同様の動作原理で動作する繊
維状ポリマーの網目状有機高分子中に液晶を保持した高
分子分散形LCDにおいても、同様の問題があった。
Capsule-like polymer dispersion type NCAP type L
The CD is a scattering mode liquid crystal display element, and since it does not have a polarizing plate, it is bright and has a wide viewing angle, and is applied to automobile equipment, projection type displays and the like. However, the voltage applied from the outside is divided between the organic polymer and the liquid crystal, and only a part of the applied voltage is applied to the liquid crystal, which causes a problem that the operating voltage is practically increased. Further, in order to obtain sufficient light scattering, it is necessary to make the liquid crystal thickness sufficiently thick, and there is a problem that the response speed is extremely slow, so that it is difficult to apply it to a display element with a large display amount (number of pixels). Was there. Further, the applied voltage-transmittance characteristic has a hysteresis, and there is a practical problem that it is difficult to perform multiplex driving. The polymer-dispersed LCD in which liquid crystal is held in a network organic polymer of fibrous polymer, which operates on the same operation principle, has the same problem.

【0013】また、光を散乱させる手法として、2枚の
電極付基板の表面において種々の方向に液晶分子を配列
させるよう微細な領域毎に配向処理を行い、これらを内
面として対向させた間隙に液晶を挟持させることも考え
られるが、これも前記ヒステリシスの問題を解決する手
段とはならないし、また、こうした構成を実現する手段
は見出だされておらず、現実的な手法とはなっていな
い。こうした構成が実現できない理由は微細な領域毎に
配向処理方向(例えばラビング方向)を異ならせること
が困難であるからである。
Further, as a method of scattering light, an alignment treatment is performed for each fine region so that liquid crystal molecules are arranged in various directions on the surfaces of two electrode-attached substrates, and these are treated as inner surfaces to form a gap facing each other. It may be possible to sandwich the liquid crystal, but this is not a means for solving the above-mentioned problem of hysteresis, and a means for realizing such a structure has not been found, which is a realistic method. Absent. The reason why such a configuration cannot be realized is that it is difficult to make the orientation processing direction (for example, the rubbing direction) different for each fine region.

【0014】[0014]

【発明が解決しようとする課題】前述したように、従来
の液晶表示素子は透過率が低く、視角依存性をもつか、
高い駆動電圧を要し、応答速度も遅いといった問題点を
もっていた。
As described above, the conventional liquid crystal display device has a low transmittance and a viewing angle dependency.
There was a problem that a high drive voltage was required and the response speed was slow.

【0015】したがって、光を散乱させる手段として、
光散乱状態を得るために液晶以外の媒体を必要とせず、
なおかつ、光透過状態とで液晶の分子配列が著しく異な
らず、良好な光散乱状態を得るような構成であり、なお
かつ、製法上制約がない構成であれば前述した問題点は
発生しない。
Therefore, as means for scattering light,
Does not require any medium other than liquid crystal to obtain the light scattering state,
Moreover, the above-mentioned problems do not occur as long as the molecular arrangement of the liquid crystal is not significantly different from that in the light-transmitting state and a good light-scattering state is obtained, and there is no restriction in the manufacturing method.

【0016】本発明はこの条件を満足する新規な構成を
提供するものである。
The present invention provides a novel structure satisfying this condition.

【0017】[0017]

【課題を解決するための手段】本発明は課題を解決する
手段として、対向して複数の画素を形成する電極をそれ
ぞれ有する2枚の基板間に誘電異方性が正のネマティッ
ク液晶からなる液晶層を挟持し、前記基板表面上で液晶
分子長軸を一方向に配列させるチルト配向を誘起する手
段を有しており、2枚の基板上での液晶分子配列方向の
交差角がθ(0°≦θ≦90°)であり、2枚の基板表
面上でのチルト配向によるプレチルト角によって液晶を
ユニフォームツイスト配列させるように決まるセルツイ
スト角がψである液晶表示素子において、液晶層に電圧
を印加しない状態で、ψが±θ(便宜的にツイスト方向
が左まわりの時+、右回りの時−とする。)のとき、液
晶のツイスト角ωが±θ+180°または、±θ−18
0°であり、ψが±(θ−180°)のとき、液晶ツイ
スト角ωが±θであり(以上複号同順)、前記両基板の
電極が画素ごとに、最も狭い幅が30μm以下である微
細な領域を単位とした導電体部と非導電体部の2種から
なり、両基板間で一方の電極の導電体部と他方の電極の
非導電体部が対向して配置され、かつ前記両基板におけ
るプレチルト角が2.5°以下であり、両基板における
プレチルト角の差が0.3°以下でなることを特徴とす
る液晶表示素子を得るものである。
Means for Solving the Problem As a means for solving the problem, the present invention is a liquid crystal composed of a nematic liquid crystal having a positive dielectric anisotropy between two substrates each having electrodes forming a plurality of pixels facing each other. It has a means for inducing a tilt alignment that sandwiches the layers and causes the major axes of the liquid crystal molecules to be aligned in one direction on the surface of the substrate, and the crossing angle of the alignment directions of the liquid crystal molecules on the two substrates is θ (0 (° ≦ θ ≦ 90 °), and in the liquid crystal display element in which the cell twist angle is ψ that is determined so that the liquid crystal is uniformly twisted by the pretilt angle due to the tilt alignment on the surfaces of the two substrates, a voltage is applied to the liquid crystal layer. With no voltage applied, when ψ is ± θ (for convenience, when the twist direction is counterclockwise +, clockwise when −), the twist angle ω of the liquid crystal is ± θ + 180 ° or ± θ-18.
When the angle is 0 ° and ψ is ± (θ−180 °), the liquid crystal twist angle ω is ± θ (the same order as above), and the narrowest width of the electrodes of both substrates is 30 μm or less for each pixel. It is composed of two kinds of a conductor portion and a non-conductor portion in which a fine region is a unit, and a conductor portion of one electrode and a non-conductor portion of the other electrode are arranged to face each other between both substrates, Moreover, the liquid crystal display device is characterized in that the pretilt angle between both substrates is 2.5 ° or less, and the difference between the pretilt angles between both substrates is 0.3 ° or less.

【0018】さらに両基板の配向膜が側鎖のない主鎖型
有機化合物でなる特徴とする液晶表示素子を得るもので
ある。
Further, the present invention provides a liquid crystal display device characterized in that the alignment films on both substrates are composed of a main chain type organic compound having no side chains.

【0019】[0019]

【作用】本発明は液晶をユニフォームツイスト配列させ
ない場合に、横電界成分をもつ印加電圧の有無によって
液晶分子の向きが変化することを利用して生じるディス
クリネーションラインの光散乱効果を高めるようにした
もので、電極の微小領域内に導電体部と非導電体部を形
成し、基板間で、液晶層を挾んで相対向する一方の電極
の導電体部と他方の電極の非導電体部を対面させたもの
である。
According to the present invention, when the liquid crystal is not arranged in a uniform twist arrangement, the light scattering effect of the disclination line generated by utilizing the change in the orientation of the liquid crystal molecules depending on the presence or absence of an applied voltage having a lateral electric field component is enhanced. The conductive part and the non-conductive part are formed in a minute area of the electrode, and the conductive part of one electrode and the non-conductive part of the other electrode are sandwiched between the substrates and face each other across the liquid crystal layer. Face to face.

【0020】しかも、液晶分子の向きの変化を正確にす
るためにはプレチルト角の制御が必要であり、配向膜の
選択が重要な要素になる。
Moreover, in order to accurately change the orientation of the liquid crystal molecules, it is necessary to control the pretilt angle, and selection of the alignment film is an important factor.

【0021】本発明の作用を説明する前提として、プレ
チルト角、ユニフォームツイスト配列、非ユニフォーム
ツイスト配列について述べる。
As a premise for explaining the operation of the present invention, a pretilt angle, a uniform twist arrangement, and a non-uniform twist arrangement will be described.

【0022】ネマティック液晶の分子は細長い棒状をな
している。液晶分子が基板上のラビングした配向膜に接
すると、その棒状分子の長軸が配向膜表面の性質に依存
し、一定方向に配向する。例えば配向膜がポリイミド配
向膜の場合は、ラビングした方向に沿って液晶分子長軸
が並んで配向される。また、ポリスチレン配向膜の場合
は、膜平面方向においてラビング方向に直角な方向に液
晶分子長軸が並ぶ。
The nematic liquid crystal molecules are in the shape of elongated rods. When the liquid crystal molecules come into contact with the rubbed alignment film on the substrate, the long axis of the rod-shaped molecule is aligned in a certain direction depending on the property of the alignment film surface. For example, when the alignment film is a polyimide alignment film, the long axes of liquid crystal molecules are aligned along the rubbing direction. Further, in the case of the polystyrene alignment film, the long axes of the liquid crystal molecules are arranged in the film plane direction in a direction perpendicular to the rubbing direction.

【0023】また、別の配向処理の方法として配向膜を
基板に蒸着する方法がある。基板面に対して酸化珪素を
例えば入射角85゜で斜めから蒸着すると、蒸着源の方
向に液晶分子の長軸が向く。
As another method of alignment treatment, there is a method of depositing an alignment film on a substrate. When silicon oxide is obliquely vapor-deposited on the surface of the substrate at an incident angle of 85 °, the long axes of the liquid crystal molecules are oriented in the direction of the vapor deposition source.

【0024】しかし、実際はこれらの配向処理において
液晶分子Mは配向膜面Sに平行に配向されるのではな
く、図2(a)のように配向膜面すなわち基板面Sに対
してチルト配向によりある所定の角度α0 で起き上って
配向している。この角度α0 はポリイミド配向膜で約1
〜15゜である。この、基板面上において基板面と接す
る液晶分子の長軸LAとのなす角α0 をプレチルト角と
いう。
However, in these alignment treatments, the liquid crystal molecules M are not actually aligned parallel to the alignment film surface S, but are tilted with respect to the alignment film surface, that is, the substrate surface S as shown in FIG. It rises and is oriented at a certain angle α 0. This angle α 0 is about 1 for polyimide alignment film.
It is ~ 15 °. The angle α0 formed by the long axis LA of the liquid crystal molecules in contact with the substrate surface on the substrate surface is called a pretilt angle.

【0025】このとき、図2(a)に示される様に、液
晶分子長軸LAの基板から起き上がった端部をリーディ
ング部分L、基板側に接近する端部をトレーリング部分
Tとすると、配列された液晶分子Mを説明上、図2
(b)のように、例えば配向膜平面上にTからL方向へ
の矢印Rで表すこととする。
At this time, as shown in FIG. 2A, when the end portion of the liquid crystal molecule long axis LA raised from the substrate is the leading portion L and the end portion approaching the substrate side is the trailing portion T, the alignment is performed. In order to explain the liquid crystal molecules M that have been generated, FIG.
As in (b), for example, an arrow R from the T direction to the L direction is displayed on the plane of the alignment film.

【0026】図3の例では(a)に示すように、フロン
ト基板すなわち上基板1の分子配列をF(実線の矢印)
となるようにして、リア基板すなわち下基板2の分子配
列をR(破線の矢印)となるように配向処理をした場合
であり、各配列は基板平面上で逆方向すなわち180°
異なる方向に向いている。
In the example of FIG. 3, as shown in (a), the molecular arrangement of the front substrate, that is, the upper substrate 1 is F (solid arrow).
Thus, the rear substrate, that is, the lower substrate 2 is subjected to the orientation treatment so that the molecular arrangement becomes R (arrow of a broken line), and each arrangement is in the opposite direction, that is, 180 ° on the substrate plane.
Facing different directions.

【0027】この構成において、液晶分子がねじれを有
しないような誘電異方性が正のネマティック液晶(例え
ばカイラル剤未混入)を充填すると、液晶分子Mは図3
(b)のように、上基板1から下基板2にかけて、液晶
層3の厚さ全長にわたって、一定かつ一様な角度で配列
する。一般にこのような分子配列をユニフォーム配列と
いい、従来の液晶表示素子の基本的な構成である。
In this structure, when a nematic liquid crystal having a positive dielectric anisotropy (for example, a chiral agent is not mixed) such that the liquid crystal molecule does not have twist, the liquid crystal molecule M is formed as shown in FIG.
As shown in (b), the liquid crystal layer 3 is arranged at a constant and uniform angle from the upper substrate 1 to the lower substrate 2 over the entire thickness thereof. Generally, such a molecular arrangement is called a uniform arrangement, which is a basic configuration of a conventional liquid crystal display device.

【0028】この構成の液晶表示素子では、液晶層にし
きい値電圧以上の電圧すなわち駆動電圧が印加される
と、両基板表面近傍の液晶分子の傾く方向に準じて液晶
分子Mが図4のように基板に対してほぼ垂直な方向に一
様に配列する。
In the liquid crystal display device having this structure, when a voltage equal to or higher than the threshold voltage, that is, a driving voltage is applied to the liquid crystal layer, the liquid crystal molecules M are aligned as shown in FIG. Are uniformly arranged in a direction substantially perpendicular to the substrate.

【0029】図6は図3(a)の状態から、上基板1を
基準にして、下基板2を角θ(≦90°)ねじった状態
の場合を想定した図である。このときの分子配列がユニ
フォーム配列を維持するには、両基板間で液晶が角ψだ
け左まわり(図中矢印の回転方向)にねじれた配列をと
る必要があり、これを実現するには角ψだけねじれるよ
うに液晶材料を選定すればよい。このようにして得た分
子配列はねじれたユニフォ−ム配列と呼ぶことができ、
この場合この角ψをユニフォーム配列のツイスト角とい
う。ちなみに従来技術であるST−LCDはこのψを9
0゜〜270゜としたねじれたユニフォ−ム配列をして
いる。
FIG. 6 is a view assuming a case where the lower substrate 2 is twisted by an angle θ (≦ 90 °) with respect to the upper substrate 1 from the state of FIG. 3A. In order to maintain the uniform molecular alignment at this time, the liquid crystal must be twisted counterclockwise by the angle ψ (rotation direction of the arrow in the figure) between both substrates. The liquid crystal material may be selected so that it can be twisted by ψ. The molecular sequence thus obtained can be called a twisted uniform sequence,
In this case, this angle ψ is called the twist angle of the uniform arrangement. By the way, the conventional ST-LCD has 9
It has a twisted uniform arrangement of 0 ° to 270 °.

【0030】図5はψが180゜のST−LCDにおけ
る印加電圧に対するLCDの透過度の関係を示したもの
である。この図から、ST−LCDはある電圧、つまり
しきい値電圧Vth以上で状態を急峻に変化することとな
る。このことから、ST型のLCDはしきい電圧以下の
印加電圧下では、電圧無印加の状態に近い分子配列をな
していると考えられ、このST−LCDのように液晶の
ねじれ角が90゜以上270゜以下のLCDの分子配列
を定義するときは、このしきい値電圧以下の印加電圧状
態下(無印加時)で定義することになる。また、こうし
た透過率−印加電圧特性(図5の曲線)において、その
特性の急峻性を一般的には、透過率90%と10%とな
る印加電圧値の差を透過率90%の印加電圧の値で割っ
た値γで表す。
FIG. 5 shows the relationship between the transmittance of the LCD and the applied voltage in the ST-LCD in which φ is 180 °. From this figure, the ST-LCD rapidly changes its state at a certain voltage, that is, at the threshold voltage Vth or higher. From this, it is considered that the ST-type LCD has a molecular arrangement close to a state in which no voltage is applied under an applied voltage lower than the threshold voltage, and the twist angle of the liquid crystal is 90 ° as in this ST-LCD. When defining the molecular arrangement of the LCD above 270 ° or less, it is defined under the applied voltage state below this threshold voltage (when no voltage is applied). Further, in such a transmittance-applied voltage characteristic (curve of FIG. 5), the steepness of the characteristic is generally represented by the difference between the applied voltage values of 90% and 10%. It is represented by the value γ divided by the value of.

【0031】この構成の液晶表示素子では、前述したね
じれのないユニフォ−ム配列の場合と同様に液晶層にし
きい値電圧以上の電圧が印加されると(電圧印加時)、
両基板表面近傍の液晶分子の傾く方向に準じて液晶分子
Mが図4の配列を捩じったように基板に対してほぼ垂直
な方向に配列する。
In the liquid crystal display device having this structure, when a voltage higher than the threshold voltage is applied to the liquid crystal layer (when a voltage is applied), as in the case of the twist-free uniform alignment described above,
The liquid crystal molecules M are arranged in a direction substantially perpendicular to the substrates as if the liquid crystal molecules M are twisted in the arrangement of FIG.

【0032】図6からわかるように、ユニフォーム配列
のツイスト角ψは上基板の配向Fの液晶分子のトレーリ
ング部分TF を基準にして、下基板の配向Rの液晶分子
のリーディング部分LR までの角度を表している。
As can be seen from FIG. 6, the twist angle ψ of the uniform arrangement is an angle from the trailing portion TF of the liquid crystal molecules of the orientation F of the upper substrate to the leading portion LR of the liquid crystal molecules of the orientation R of the lower substrate. Is represented.

【0033】ψは、図6のように左回りを+θと、図7
のように右回りを−θと2通りに定義できる。一方、図
8(b)のような液晶分子の配列も可能である。このよ
うな配列は、前述した図3(b)の配列同様、ねじれを
生じさせないネマティック液晶組成物を図8(a)の構
成下に維持すれば達成できる。
Ψ is + θ in the counterclockwise direction as shown in FIG.
You can define clockwise as -θ and two ways. On the other hand, an arrangement of liquid crystal molecules as shown in FIG. 8B is also possible. Similar to the arrangement of FIG. 3 (b) described above, such an arrangement can be achieved by maintaining a nematic liquid crystal composition that does not cause twist in the structure of FIG. 8 (a).

【0034】こうした分子配列は、上下基板の分子配列
F、Rが同方向にあり、図8(b)のように、分子配列
は液晶分子のチルト角が上基板11のプレチルト角α0
から徐々に角度が減少し、液晶層厚dの中点d/2で基
板11と平行になった後、下基板12のプレチルト角α
0 に至るまで逆の角度に傾いていくようになっているも
のである。すなわち、リーディング部分LF 、LR が互
いに近接し、トレーリング部分TF 、TR が互いに離れ
て配列する。このような非ユニフォーム配列をスプレイ
配列という。
In such a molecular arrangement, the molecular arrangements F and R on the upper and lower substrates are in the same direction, and as shown in FIG. 8B, the tilt angle of the liquid crystal molecules is the pretilt angle α 0 of the upper substrate 11 as shown in FIG. 8B.
After that, the angle gradually decreases and becomes parallel to the substrate 11 at the midpoint d / 2 of the liquid crystal layer thickness d, and then the pretilt angle α of the lower substrate 12
It is designed to incline in the opposite angle until it reaches 0. That is, the leading portions LF and LR are arranged close to each other, and the trailing portions TF and TR are arranged apart from each other. Such a non-uniform array is called a spray array.

【0035】次に、このスプレイ配列に前述したユニフ
ォ−ム配列同様、ねじれを加えた構造を得ることを考え
る。図9のように、図6のユニフォーム配列と同じく上
基板11の配向Fに対して下基板12の配向Rをθだけ
交差した状態でスプレイ配列とすることを考えると、図
9に示すように、上基板11の配向Fのトレーリング部
分TF から下基板の配向Rのトレーリング部分TR との
なす角度で液晶分子がねじれていなければならないこと
となる。スプレイ配列におけるこのツイスト角をωとす
ると、図9の左回りにωをとると、ωは正であるから、
スプレイ配列ツイスト角ωLは(θ+180°)とな
り、右回りにωをとるとωは負であるから、スプレイ配
列ツイスト角ωRはその補角である(θ−180°)と
なる。
Next, it will be considered to obtain a structure in which the splay array is twisted as in the uniform array described above. As shown in FIG. 9, considering that the splay array is formed in the state where the orientation R of the upper substrate 11 intersects the orientation R of the lower substrate 12 by θ similarly to the uniform array of FIG. 6, as shown in FIG. That is, the liquid crystal molecules must be twisted at an angle between the trailing portion TF having the orientation F of the upper substrate 11 and the trailing portion TR having the orientation R of the lower substrate. If this twist angle in the splay array is ω, and ω is counterclockwise in FIG. 9, ω is positive,
The splay array twist angle ωL is (θ + 180 °), and when ω is taken clockwise, ω is negative, so the splay array twist angle ωR is its complementary angle (θ−180 °).

【0036】また、図10のような構成を考えると、右
回りにωをとると、ωは負であるから、スプレイ配列ツ
イスト角ωRは(−θ−180°)となり、左回りにω
をとると、ωは正であるから、スプレイ配列ツイスト角
ωLはその補角である(−θ+180°)となる。
Considering the configuration as shown in FIG. 10, when ω is taken clockwise, ω is negative, so the splay array twist angle ωR is (−θ−180 °), and ω is counterclockwise.
Since ω is positive, the splay array twist angle ωL is its complementary angle (−θ + 180 °).

【0037】このように図9、10の構成では、スプレ
イ配列ツイスト角ωは(±θ+180°)と(±θ−1
80°)の4通りのツイスト状態のいずれかを取ること
ができる。以上のようにスプレイ配列においても、ユニ
フォ−ム配列時のツイスト角ψの+θ、−θに対応し
て、それぞれねじれ配列が実現できる。
As described above, in the configurations of FIGS. 9 and 10, the splay array twist angle ω is (± θ + 180 °) and (± θ−1).
It can take any of the four twist states of 80 °). As described above, also in the spray arrangement, the twist arrangement can be realized corresponding to + θ and −θ of the twist angle ψ in the uniform arrangement.

【0038】図9、図10で説明した各ωはユニフォー
ムツイスト配列をさせた場合のツイスト角ψを考える
と、それぞれψ=+θ、−θとなり、角θが0≦θ≦9
0°の範囲では、ψが±θのときねじれたスプレイ配列
を実現するには、そのツイスト角ωがそれぞれ(±θ+
180°)、(±θ−180°)でなければ成立しない
ことを意味する。この場合にωの取り得る値の範囲は、
ω=|θ±180゜|=90゜〜270゜となり、この
ツイスト角は従来のST−LCDの実用解と一致する。
つまり、ねじれたスプレイ配列であって、従来のST−
LCDのツイスト角に等しいツイスト角を得ることを考
えると、ユニフォ−ム配列のツイスト角ψが±θであっ
て液晶のツイスト角ωが(±θ+180°)または(±
θ−180°)となり、この構成が本発明の液晶表示素
子の第一の特徴となる。こうした本発明の液晶表示素子
の分子配列を概念的に示すと図11のようになる。
Considering the twist angle ψ in the case where the uniform twist arrangement is used, each ω described in FIGS. 9 and 10 is ψ = + θ, −θ, and the angle θ is 0 ≦ θ ≦ 9.
In the range of 0 °, in order to realize the twisted splay arrangement when ψ is ± θ, the twist angle ω is (± θ +
180 °) and (± θ−180 °), it means that it does not hold. In this case, the range of possible values of ω is
ω = | θ ± 180 ° | = 90 ° to 270 °, and this twist angle agrees with the practical solution of the conventional ST-LCD.
In other words, it is a twisted splay array and the conventional ST-
Considering to obtain a twist angle equal to the twist angle of the LCD, the twist angle ψ of the uniform array is ± θ and the twist angle ω of the liquid crystal is (± θ + 180 °) or (±
θ−180 °), which is the first feature of the liquid crystal display element of the present invention. The molecular arrangement of the liquid crystal display device of the present invention is conceptually shown in FIG.

【0039】この液晶分子のねじれ方向、ねじれ度合い
は、液晶に混ぜるカイラル液晶剤の種類、混合量により
制御することができる。具体的な材料としては、左回り
カイラル剤にオクチル−2−オキシ−4−(4´−n−
ヘキシロキシ)−ベンゾール例えばS−811(メルク
ジャパン社製)、右回りカイラル剤に4−シアノ−4´
−(2−メチルブチル)−ビフェニール例えばCB−1
5(メルク・リミテッド社製)を挙げることができる。
The twisting direction and the twisting degree of the liquid crystal molecules can be controlled by the kind and mixing amount of the chiral liquid crystal agent mixed in the liquid crystal. As a concrete material, octyl-2-oxy-4- (4'-n-) is added to the counterclockwise chiral agent.
Hexyloxy) -benzol such as S-811 (manufactured by Merck Japan), 4-cyano-4 'as a clockwise chiral agent.
-(2-methylbutyl) -biphenyl such as CB-1
5 (manufactured by Merck Limited).

【0040】図11は上下基板11、12の表面の液晶
分子の配向方向およびプレチルト角α0 が同一でしかも
液晶分子にねじれの無い状態において、電極形状がそれ
ぞれ異なる場合の分子配列への影響を示すので、(a)
乃至(c)は電圧無印加時の状態、(d)乃至(f)は
電圧印加時の状態を表している。ここで、(a)、
(d)は上下基板の電極形状が等しく液晶層厚方向にの
み電界が印加される状態を示している。
FIG. 11 shows the influence on the molecular alignment when the electrode shapes are different when the alignment directions and pretilt angles α 0 of the liquid crystal molecules on the surfaces of the upper and lower substrates 11 and 12 are the same and the liquid crystal molecules are not twisted. So (a)
7A to 7C show states when no voltage is applied, and FIGS. 8D to 8F show states when voltage is applied. Where (a),
(D) shows a state where the upper and lower substrates have the same electrode shape and an electric field is applied only in the thickness direction of the liquid crystal layer.

【0041】液晶分子は基板と平行になる分子の位置d
0 を液晶層厚dの中点に有しており、図の(d)に示す
ように電極13、14に電源v0 から電圧を印加して
も、その位置は変わらない。図11(b)は下基板12
の電極14を図中左半分に形成し、右半分は無電極領域
とし、上基板11の他方の電極13は図中右半分に形成
し、左半分は無電極領域としたもので、相互の電極1
3、14は無電極領域に対面している。
The position of the liquid crystal molecule is parallel to the substrate.
0 is provided at the middle point of the liquid crystal layer thickness d, and even if a voltage is applied to the electrodes 13 and 14 from the power source v0 as shown in FIG. FIG. 11B shows the lower substrate 12.
Electrode 14 is formed in the left half of the figure, the right half is an electrodeless area, the other electrode 13 of the upper substrate 11 is formed in the right half of the figure, and the left half is an electrodeless area. Electrode 1
Reference numerals 3 and 14 face the electrodeless region.

【0042】電圧v0 を印加すると、電極の相互のずれ
のために、液晶層に横電界成分をもつ電界が加わり、図
示の右上がりの矢印ER 成分をもつ電気力線eが発生す
るため、同図(e)に示すように、分子Mは急峻な右上
がりの分子配列になる。
When the voltage v0 is applied, an electric field having a lateral electric field component is applied to the liquid crystal layer due to the mutual displacement of the electrodes, and an electric force line e having an upward rising arrow ER component shown in the figure is generated. As shown in FIG. 6 (e), the molecules M have a steeply rising molecular arrangement.

【0043】一方、図11(c)は下基板12の電極1
4を図中右半分に形成し、左半分は無電極領域とし、上
基板11の他方の電極13は図中左半分に形成し、右半
分は無電極領域としたもので、相互の電極13、14は
無電極領域に対面している。同図(f)のように電圧v
0 を印加すると、電極の相互のずれのために、液晶層に
横電界成分をもつ電界が加わり、図示の左上がりの矢印
EL 成分をもつ電気力線eが発生するため、液晶分子M
の向きは急峻な左上がりの配列になる。すなわち、電圧
印加時の液晶分子のは配列は横電界の形成に依存する。
On the other hand, FIG. 11C shows the electrode 1 of the lower substrate 12.
4 is formed in the right half of the drawing, the left half is an electrodeless region, the other electrode 13 of the upper substrate 11 is formed in the left half of the drawing, and the right half is an electrodeless region. , 14 face the electrodeless region. As shown in (f) of FIG.
When 0 is applied, an electric field having a lateral electric field component is applied to the liquid crystal layer due to the mutual displacement of the electrodes, and an electric force line e having an upwardly rising arrow EL component shown in the drawing is generated.
The direction of is a steeply rising array. That is, the alignment of liquid crystal molecules when a voltage is applied depends on the formation of a lateral electric field.

【0044】そこで、本実施例を示す図1(b)のよう
に、上電極13を複数のストライプ状導電体部13aを
非導電体部13bを介して等間隔に配置した電極パター
ンとし、同様に下電極14を複数のストライプ状導電体
部14aを非導電体部14bを介して等間隔に配置した
パターンとして、これら電極を相対向させたときに、一
方の電極の導電体部13aまたは14aが他方の電極の
非導電体部14bまたは13bに対向するように基板間
に間隙を形成するように重ねる。この場合、上下基板の
液晶配向方向が同一方向になるようにラビング処理して
おく。この結果、無電圧印加時は、液晶はスプレイ配列
状態を整然と保持するが、電圧印加時は導電体部が上下
電極でずれているために、電極間に横電界成分をもつ斜
め電界が発生し、図示のように交互に傾斜方向を変えた
電気力線eを形成する。液晶分子Mは電気力線にそって
起き上がり配列するから右上がり斜め電界と左上がり斜
め電界との境界で液晶配列が不連続となりディスクリネ
ーションラインDLが発生する。
Therefore, as shown in FIG. 1 (b) showing the present embodiment, the upper electrode 13 has an electrode pattern in which a plurality of stripe-shaped conductor portions 13a are arranged at equal intervals through non-conductor portions 13b, and The lower electrode 14 has a pattern in which a plurality of stripe-shaped conductor portions 14a are arranged at equal intervals through the non-conductor portion 14b, and when these electrodes are opposed to each other, the conductor portion 13a or 14a of one electrode is formed. Overlap so as to form a gap between the substrates so as to face the non-conductor portion 14b or 13b of the other electrode. In this case, rubbing treatment is performed so that the liquid crystal alignment directions of the upper and lower substrates are the same. As a result, when no voltage is applied, the liquid crystal maintains the splay alignment state in an orderly manner, but when a voltage is applied, the conductor parts are displaced between the upper and lower electrodes, so that an oblique electric field having a transverse electric field component is generated between the electrodes. , The electric force lines e whose inclination directions are alternately changed are formed as shown in the drawing. Since the liquid crystal molecules M rise and align along the lines of electric force, the liquid crystal alignment becomes discontinuous at the boundary between the obliquely upward electric field rising to the left and the oblique electric field rising left to generate a disclination line DL.

【0045】一画素内で電極の導電体部と非導電体部を
微細に多数形成すれば液晶分子の起き上がる方向が微細
に分割されるから、一画素内に多数のディスクリネーシ
ョンラインを発生することができて、この部分で光散乱
をおこさせる事ができる。光散乱領域は境界部を中心に
幅5乃至30μmであるので、微細な領域の大きさをこ
の値の範囲で一致させるように、またはそれよりも小さ
な値になるように分割すれば一画素全面において光を散
乱することができ、また電圧を印加していない状態では
液晶分子は全面連続的な配列をなすので、光等価状態を
得ることができる。したがって、本発明によれば、電圧
無印加時に光透過状態、電圧印加時に光散乱状態を得る
電界制御を行うことができる。
If a large number of conductive parts and non-conductive parts of electrodes are formed within one pixel, the rising direction of liquid crystal molecules is divided into minute parts, so that many disclination lines are generated within one pixel. It is possible to cause light scattering in this part. Since the width of the light scattering area is 5 to 30 μm around the boundary, if the size of the fine area is made to match within this value range, or if it is divided to a value smaller than this value, one pixel entire surface The light can be scattered at, and the liquid crystal molecules are continuously arrayed in the state where no voltage is applied, so that a light equivalent state can be obtained. Therefore, according to the present invention, it is possible to perform electric field control to obtain a light transmission state when no voltage is applied and a light scattering state when a voltage is applied.

【0046】ここで、本発明は印加される電界の方向に
よって、液晶分子の傾く方向を制御しているので、上下
基板のプレチルト角が等しいことが望ましく、実用的に
は差を0.5°以下望ましくは0.3°以下にすること
が望ましい。プレチルト角の大きさは配向膜の材質およ
び配向処理方法に依存する。配向処理をラビング処理に
よる場合はラビング強度の変化に応じてプレチルト角が
変わる。製造上のラビング処理のばらつきに関係なく上
下基板のプレチルト角のばらつきの差を可及的に少な
く、0.3°以下に抑えるにはプレチルト角が2.5°
以下の低プレチルト角の配向膜材料を用いると良好な結
果が得られる。
Here, in the present invention, since the tilt direction of the liquid crystal molecules is controlled by the direction of the applied electric field, it is desirable that the pretilt angles of the upper and lower substrates are equal, and the difference is 0.5 ° in practical use. It is desirable that the angle is 0.3 ° or less. The magnitude of the pretilt angle depends on the material of the alignment film and the alignment treatment method. When the alignment treatment is a rubbing treatment, the pretilt angle changes according to the change in the rubbing intensity. The pretilt angle is 2.5 ° in order to keep the difference in the pretilt angle between the upper and lower substrates as small as possible, regardless of the variation in the rubbing process in manufacturing.
Good results can be obtained by using the following alignment film materials having a low pretilt angle.

【0047】低プレチルト角配向膜材料として、側鎖の
ない主鎖型の有機物配向膜が適している。例えば、
As the low pretilt angle alignment film material, a main chain type organic alignment film having no side chains is suitable. For example,

【化1】 を挙げることができる。[Chemical 1] Can be mentioned.

【0048】図12は側鎖のない主鎖型配向膜(商品
名、AL−1051日本合成ゴム製)と側鎖型配向膜の
ラビング強度(mm)に対するプレチルト角(度)の変
化を示しており、曲線Aは主鎖型、曲線Bは側鎖型の特
性である。曲線Aから主鎖型の配向膜材料がほぼプレチ
ルト角1.5°でラビング強度の変化に対して安定であ
ることがわかる。これに対して側鎖型材料は曲線Bのよ
うに大幅に変化する。
FIG. 12 shows changes in the pretilt angle (degree) with respect to the rubbing strength (mm) of a main chain type alignment film having no side chain (trade name, manufactured by AL-1051 Japan Synthetic Rubber) and a side chain type alignment film. Curve A is the main chain type and curve B is the side chain type. It can be seen from the curve A that the main chain type alignment film material is stable with respect to a change in rubbing strength at a pretilt angle of 1.5 °. On the other hand, the side chain type material changes greatly as shown by the curve B.

【0049】液晶分子の振るまいを微視的に見ると、各
領域における分子配列変化は、分子配列の変化に等しく
応答速度はこれに準じた値をとるため、応答速度は従来
のユニフォームツイスト配列のTN−LCDやSTN−
LCD、ホモジニアス配列LCDよりもさらに速いこと
がわかっており、したがって、本発明の液晶表示素子も
極めて速い応答速度を得ることになる(先願の特願昭3
−344592号、特願昭3−344593号参照)。
From a microscopic view of the behavior of the liquid crystal molecules, the change in the molecular arrangement in each region is equal to the change in the molecular arrangement, and the response speed takes a value in accordance with this. Therefore, the response speed is the same as in the conventional uniform twist arrangement. TN-LCD and STN-
It has been found that it is even faster than LCDs and homogeneously arranged LCDs, and therefore the liquid crystal display device of the present invention can also obtain extremely fast response speed (Japanese Patent Application No. 3 of the prior application).
-344592, Japanese Patent Application No. 3-34493).

【0050】さらに本発明によれば、以下の作用効果を
もつ素子を生産性高く得ることができる。
Further, according to the present invention, it is possible to obtain an element having the following operational effects with high productivity.

【0051】僅かな液晶分子配列変化によって光透過状
態と光散乱状態の2状態を得るので電気光学特性にヒス
テリシスを生じない。
Since the light transmission state and the light scattering state are obtained by a slight change in the alignment of liquid crystal molecules, no hysteresis occurs in the electro-optical characteristics.

【0052】また、液晶のねじれ角度(0°を含む)の
違いによって、前述の領域の境界の分子配列状態の組み
合わせも異なるため、種々の組み合わせが可能となり、
電気光学特性の急峻なものや、なだらかなものなど、種
々実現可能である。ただし、ねじれ角を270°よりも
大きくすると、電圧印加状態から無印加状態に切り換え
た時、電圧印加状態の分子配列をメモリーすることがあ
る。これは結果的に電気光学特性にヒステリシスを生じ
させることとなるので好ましくない。したがって液晶の
ねじれ角は0°乃至270°とするのがよい。
Further, since the combination of the molecular alignment states at the boundaries of the above-mentioned regions is different depending on the twist angle (including 0 °) of the liquid crystal, various combinations are possible,
It is possible to realize various things such as one having steep electro-optical characteristics and one having gentle characteristics. However, if the twist angle is larger than 270 °, the molecular arrangement in the voltage applied state may be memorized when the voltage applied state is switched to the non-applied state. This is not preferable because it results in a hysteresis in the electro-optical characteristics. Therefore, the twist angle of the liquid crystal is preferably 0 ° to 270 °.

【0053】また、液晶表示素子をねじれ角0°で作製
し、直交した2枚の偏光板間に各ラビング方向(セル平
面で考えて上下基板で同一方向である)と一方の偏光板
の吸収軸が平行となるように組み合わせると、散乱光源
を用いた場合でも透過型のディスプレーとなり得る。こ
の場合、複屈折効果を利用した光学モードとなり、前述
した透過率は低下するが、光透過状態を液晶層の光散乱
状態によって実現するため視角依存性が少ないといった
効果を得る。特に階調表示をした際に表示が反転するよ
うな現象が生じないため、直視型のディスプレーとし
て、従来のTN−LCD等より優れた表示特性を得るこ
とができる。
Further, a liquid crystal display element was manufactured with a twist angle of 0 °, and each rubbing direction (which is the same direction in the upper and lower substrates in the cell plane) between two orthogonal polarizing plates and absorption of one polarizing plate. When combined so that the axes are parallel, a transmissive display can be obtained even when a scattered light source is used. In this case, an optical mode utilizing the birefringence effect is obtained, and the above-mentioned transmittance is lowered, but since the light transmission state is realized by the light scattering state of the liquid crystal layer, there is an effect that the viewing angle dependency is small. In particular, since the phenomenon of display inversion does not occur when gradation display is performed, it is possible to obtain display characteristics superior to those of the conventional TN-LCD as a direct-view display.

【0054】また、液晶層の光散乱状態を僅かな液晶分
子配列変化によって実現することができるので、印加電
圧は極めて小さい値となる。よって低電圧駆動が可能と
なるといった利点も得ることができる。
Further, since the light scattering state of the liquid crystal layer can be realized by a slight change in the alignment of the liquid crystal molecules, the applied voltage becomes a very small value. Therefore, an advantage that low voltage driving is possible can be obtained.

【0055】[0055]

【実施例】以下本発明の液晶表示素子の実施例を説明す
る。
EXAMPLES Examples of the liquid crystal display device of the present invention will be described below.

【0056】(実施例)図1は本実施例を示し、図1
(a)は上下電極のパターンを示す斜視図、図1(b)
は電極を相対向させた液晶セルの略断面図である。
(Embodiment) FIG. 1 shows this embodiment.
FIG. 1A is a perspective view showing patterns of upper and lower electrodes, FIG.
FIG. 3 is a schematic cross-sectional view of a liquid crystal cell in which electrodes are opposed to each other.

【0057】ガラスでできた上基板11の一方の面全面
にITOの透明共通電極13が形成され、その表面に主
鎖型ポリイミドである上配向膜(AL−1051、日本
合成ゴム製)15を積層している。他方のガラスででき
た下電極12の一面にITOでできた画素単位でモザイ
ク状に配置された300μm×300μmの画素電極1
4が設けられ、表面に上配向膜と同じ主鎖型ポリイミド
の下配向膜(AL−1051、日本合成ゴム製)16が
積層される。上下配向膜15、16のプレチルト角は1
°である。
A transparent common electrode 13 of ITO is formed on the entire surface of one surface of an upper substrate 11 made of glass, and an upper alignment film (AL-1051, made by Japan Synthetic Rubber) 15 which is a main chain type polyimide is formed on the surface. They are stacked. A 300 μm × 300 μm pixel electrode 1 made of ITO and arranged in a mosaic pattern on one surface of a lower electrode 12 made of the other glass.
4 is provided, and a lower alignment film (AL-1051, made by Japan Synthetic Rubber) 16 of the same main chain polyimide as the upper alignment film is laminated on the surface. The pretilt angle of the upper and lower alignment films 15 and 16 is 1
°.

【0058】上電極13は一画素pごとに幅20μmの
複数のスリットすなわち非導電部13bを有して幅20
μmの導電部13aを40μmピッチでストライプ状に
配列したパターンでなり、一画素300μm幅の中に6
本の導電部13aを形成している。
The upper electrode 13 has a plurality of slits each having a width of 20 μm, that is, a non-conductive portion 13b, for each pixel p and has a width of 20.
The conductive portions 13a of μm are arranged in a stripe pattern at a pitch of 40 μm.
The conductive portion 13a of the book is formed.

【0059】相対する下電極14も同じく20μm幅の
導電部14aと20μm幅の非導電部14bを等間隔で
配置したパターンを有し、300μm幅内に6本の導電
部14aを形成している。これら電極の導電部は上下基
板を相対させた状態で相互に20μmずらしてあり、一
方の電極の導電部13aまたは14aが他方の電極の非
導電部14bまたは13bに対面する。下電極14はT
FTスイッチング素子17を有し、ゲート線18と信号
線19に接続される。
The opposing lower electrodes 14 also have a pattern in which conductive portions 14a having a width of 20 μm and non-conductive portions 14b having a width of 20 μm are arranged at equal intervals, and six conductive portions 14a are formed within a width of 300 μm. . The conductive portions of these electrodes are offset from each other by 20 μm with the upper and lower substrates facing each other, and the conductive portion 13a or 14a of one electrode faces the non-conductive portion 14b or 13b of the other electrode. The lower electrode 14 is T
It has an FT switching element 17 and is connected to a gate line 18 and a signal line 19.

【0060】上下基板の配向方向F、Rを図示のように
電極の導電部に直交するように、かつ同一方向とし、上
下基板の間隙を10μmとしてセルを形成する。この基
板間隙に誘電異方性が正のネマティック液晶(ZLI−
3926、メルクジャパン製)を充填し、液晶層20と
する。この液晶はΔnが0.2030と大きく、液晶層
を10μmと厚く選択することと共に光散乱性を高めて
いる。
A cell is formed with the orientation directions F and R of the upper and lower substrates perpendicular to the conductive parts of the electrodes and in the same direction as shown in the figure, with the gap between the upper and lower substrates being 10 μm. Nematic liquid crystal (ZLI-
3926 (manufactured by Merck Japan) to fill the liquid crystal layer 20. This liquid crystal has a large Δn of 0.2030, so that the liquid crystal layer is selected to be as thick as 10 μm and the light scattering property is enhanced.

【0061】このようにして得られた本実施例の液晶表
示素子にTFT17を介して電源21から電圧を印加し
てディスクリネーションラインの発生度合を顕微鏡で観
察したところ、素子全面にわたり電極として設けた20
μm幅のスリット電極に応じたディスクリネーションラ
インが均一に発生した。
A voltage was applied from the power supply 21 to the liquid crystal display element of this example thus obtained through the TFT 17 and the degree of occurrence of disclination lines was observed with a microscope. 20
Disclination lines corresponding to the slit electrodes having a width of μm were uniformly generated.

【0062】すなわち電圧印加により、電極間に横電界
成分をもつ電界が発生し、一画素の微小な範囲で横電界
成分の方向が変化するから、液晶層20の液晶分子Mが
電界に応じて配列を変化する。したがって、液晶配列の
境に多数のディスクリネーションラインDLが発生して
光散乱状態を作りだす。
That is, when a voltage is applied, an electric field having a lateral electric field component is generated between the electrodes, and the direction of the lateral electric field component changes in a minute range of one pixel. Therefore, the liquid crystal molecules M of the liquid crystal layer 20 respond to the electric field. Change the array. Therefore, a large number of disclination lines DL are generated at the boundaries of the liquid crystal alignment to create a light scattering state.

【0063】素子の透過率−印加電圧曲線を求めるため
に、液晶表示素子にHe−Neレーザー光を入射させ、
透過率を測定した。光のスポット径は2mmで、透過し
たレーザー光は液晶表示素子から距離20cmのところ
にあるフォトダイオードにより検出した。図13に0V
から徐々に印加電圧を5Vまで増加、5Vから徐々に0
Vまで減少させていったときの透過率−印加電圧曲線を
示す。電圧を印加していない状態(0V印加)では透過
率約80%を示した。また、印加電圧2.8Vでは最少
透過率0.4%と良好な散乱状態が得られた。また、印
加電圧2.8V及び0Vにて、応答速度を測定したとこ
ろ立ち上がり7msec、立ち下がり25msecと極
めて速い値を得た。
In order to obtain the transmittance-applied voltage curve of the device, He-Ne laser light was made incident on the liquid crystal display device,
The transmittance was measured. The spot diameter of the light was 2 mm, and the transmitted laser light was detected by a photodiode located at a distance of 20 cm from the liquid crystal display element. 0V in Figure 13
Gradually increase the applied voltage from 5V to 5V
The transmittance-applied voltage curve when decreasing to V is shown. The transmittance was about 80% when no voltage was applied (0 V was applied). Further, when the applied voltage was 2.8 V, the minimum transmittance was 0.4%, and a good scattering state was obtained. Further, when the response speed was measured at an applied voltage of 2.8 V and 0 V, an extremely fast value of 7 msec for rising and 25 msec for falling was obtained.

【0064】(比較例)配向膜として、プレチルト角が
3°の側鎖型のポリイミド(AL−3046,日本合成
ゴム製)を用いた以外、実施例と同条件の液晶表示素子
を作製した。この素子を電圧印加により駆動したとこ
ろ、ディスクリネーションラインが発生したが、発生箇
所を顕微鏡にて観察してみると、一画素の電極に設けた
20μmピッチのスリットに応じたディスクリネーショ
ンラインの発生は、素子全面に対して約80%の領域で
あった。両基板面の多数箇所のプレチルト角を調べたと
ころ素子面で2.5°乃至4°とばらついていることが
判明した。
(Comparative Example) A liquid crystal display element was produced under the same conditions as in Example except that a side chain type polyimide (AL-3046, manufactured by Japan Synthetic Rubber) having a pretilt angle of 3 ° was used as the alignment film. When this element was driven by applying a voltage, a disclination line was generated, but when observing the location where it was observed with a microscope, the disclination line corresponding to the slit of 20 μm pitch provided in the electrode of one pixel was found. Occurrence was about 80% of the entire surface of the device. When the pretilt angles at a large number of points on both substrate surfaces were examined, it was found that the element surfaces varied from 2.5 ° to 4 °.

【0065】以上実施例により説明したが、本発明にお
いて2.5°以下の低プレチルト角を誘起する配向膜で
あれば他の材料(例えば商品名HL−1100,日立化
成製、商品名RN−256,日産化学製)を用いること
ができ、両基板のプレチルト角の差を0.3°以下の範
囲にすることが容易になる。また、単純マトリクス型、
アクティブマトリクス型さらにそのスイッチング素子と
してTFTの他MIMなどの他の素子を用いる表示素子
など種々の表示素子に適用できることはいうまでもな
い。
As described above with reference to the embodiments, other materials (for example, trade name HL-1100, manufactured by Hitachi Chemical Co., Ltd., trade name RN-) can be used as long as they are alignment films that induce a low pretilt angle of 2.5 ° or less in the present invention. 256, manufactured by Nissan Kagaku Co., Ltd. can be used, and it becomes easy to set the difference in pretilt angle between both substrates within the range of 0.3 ° or less. Also, simple matrix type,
It is needless to say that the present invention can be applied to various display elements such as an active matrix type and a display element that uses other elements such as MIM in addition to TFTs as its switching elements.

【0066】[0066]

【発明の効果】本発明によれば、印加する斜め電圧に応
じた液晶分子配列挙動が得られ、コントラスト比の高い
階調性に優れた液晶表示素子が生産性高く得られる。
According to the present invention, the liquid crystal molecule alignment behavior according to the applied oblique voltage can be obtained, and the liquid crystal display device having a high contrast ratio and excellent gradation can be obtained with high productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液晶表示素子の一実施例を説明する図
で、(a)は電極の斜視図、(b)は作用説明の断面
図。
1A and 1B are diagrams illustrating an embodiment of a liquid crystal display element of the present invention, in which FIG. 1A is a perspective view of an electrode, and FIG.

【図2】プレチルト角を説明する図で、(a)は断面略
図、(b)は平面略図。
2A and 2B are views for explaining a pretilt angle, where FIG. 2A is a schematic sectional view and FIG. 2B is a schematic plan view.

【図3】ユニフォーム配列を説明する図で、(a)は平
面略図、(b)は断面略図。
3A and 3B are diagrams illustrating a uniform arrangement, in which FIG. 3A is a schematic plan view and FIG. 3B is a schematic cross-sectional view.

【図4】電圧印加時のユニフォームツイスト配列の液晶
分子の振るまいを説明する断面略図。
FIG. 4 is a schematic cross-sectional view illustrating the behavior of liquid crystal molecules in a uniform twist alignment when a voltage is applied.

【図5】印加電圧と透過率の関係を説明する曲線図。FIG. 5 is a curve diagram illustrating the relationship between applied voltage and transmittance.

【図6】ユニフォームツイスト配列を説明する平面略
図。
FIG. 6 is a schematic plan view illustrating a uniform twist arrangement.

【図7】ユニフォームツイスト配列を説明する平面略
図。
FIG. 7 is a schematic plan view illustrating a uniform twist arrangement.

【図8】スプレイ配列を説明する図で、(a)は平面略
図、(b)は断面略図。
8A and 8B are diagrams illustrating a spray arrangement, in which FIG. 8A is a schematic plan view and FIG. 8B is a schematic cross-sectional view.

【図9】スプレイツイスト配列を説明する平面略図。FIG. 9 is a schematic plan view illustrating a splay twist arrangement.

【図10】スプレイツイスト配列を説明する平面略図。FIG. 10 is a schematic plan view illustrating a splay twist arrangement.

【図11】(a)乃至(f)はスプレイ配列の液晶分子
の印加電圧の有無による振るまいを説明する断面略図。
11A to 11F are schematic cross-sectional views illustrating the behavior of liquid crystal molecules in a splay alignment depending on the presence or absence of an applied voltage.

【図12】側鎖のない主鎖型配向膜と側鎖を有する配向
膜のラビング強度に対するプレチルト角の変化を示す曲
線図。
FIG. 12 is a curve diagram showing changes in pretilt angle with respect to rubbing strength of a main chain type alignment film having no side chains and an alignment film having side chains.

【図13】本発明の実施例の素子の透過率−印加電圧曲
線図。
FIG. 13 is a transmittance-applied voltage curve diagram of the device of the example of the invention.

【図14】従来素子を説明するもので、(a)はカプセ
ル状構造の断面略図、(b)は繊維状ポリマー構造の断
面略図。
14A and 14B are schematic cross-sectional views of a capsule-like structure and FIG. 14B is a schematic cross-sectional view of a fibrous polymer structure for explaining a conventional device.

【符号の説明】[Explanation of symbols]

11…上基板 12…下基板 13…上電極 13a…導電体部 13b…非導電体部 14…下電極 14a…導電体部 14b…非導電体部 15、16…配向膜 20…液晶層 11 ... Upper substrate 12 ... Lower substrate 13 ... Upper electrode 13a ... Conductor part 13b ... Non-conductor part 14 ... Lower electrode 14a ... Conductor part 14b ... Non-conductor part 15, 16 ... Alignment film 20 ... Liquid crystal layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽藤 仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Hato 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Incorporated company Toshiba Yokohama Office

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 対向して複数の画素を形成する電極をそ
れぞれ有する2枚の基板間に誘電異方性が正のネマティ
ック液晶からなる液晶層を挟持し、前記基板表面上で液
晶分子長軸を一方向に配列させるチルト配向を誘起する
配向膜を有しており、2枚の基板上での液晶分子配列方
向の交差角がθ(0°≦θ≦90°)であり、2枚の基
板表面上でのプレチルト角によって液晶をユニフォーム
ツイスト配列させるように決まるセルツイスト角がψで
ある液晶表示素子において、液晶層に電圧を印加しない
状態で、ψが±θ(便宜的にツイスト方向が左まわりの
時+、右回りの時−とする。)のとき、液晶のツイスト
角ωが±θ+180°または、±θ−180°であり、
ψが±(θ−180°)のとき、液晶ツイスト角ωが±
θであり(以上複号同順)、前記両基板の電極が画素ご
とに、最も狭い幅が30μm以下である微細な領域を単
位とした導電体部と非導電体部からなり、両基板間で一
方の電極の導電体部と他方の電極の非導電体部の少なく
とも一部が対向して配置され、かつ前記両基板における
プレチルト角が2.5°以下であり、両基板におけるプ
レチルト角のさが0.3°以下でなることを特徴とする
液晶表示素子。
1. A liquid crystal layer made of a nematic liquid crystal having a positive dielectric anisotropy is sandwiched between two substrates each having electrodes forming a plurality of pixels facing each other, and a long axis of a liquid crystal molecule is formed on the surface of the substrate. Has an alignment film that induces a tilt alignment for arranging the liquid crystal molecules in one direction, and the intersection angle of the liquid crystal molecule alignment directions on the two substrates is θ (0 ° ≦ θ ≦ 90 °). In a liquid crystal display element with a cell twist angle of ψ, which is determined by the pretilt angle on the substrate surface so that the liquid crystal is in uniform twist alignment, ψ is ± θ (for convenience, the twist direction is When the counterclockwise direction is +, and when the clockwise direction is −, the twist angle ω of the liquid crystal is ± θ + 180 ° or ± θ−180 °.
When ψ is ± (θ-180 °), the liquid crystal twist angle ω is ±
θ (the same order as above), the electrodes of both substrates are made up of a conductive portion and a non-conductive portion in units of a fine region having a narrowest width of 30 μm or less for each pixel. At least a part of the conductor portion of one electrode and the non-conductor portion of the other electrode are arranged to face each other, and the pretilt angle in both the substrates is 2.5 ° or less. The liquid crystal display element is characterized in that the angle is 0.3 ° or less.
【請求項2】 両基板の配向膜が側鎖のない主鎖型有機
化合物でなることを特徴とする請求項1記載の液晶表示
素子。
2. The liquid crystal display device according to claim 1, wherein the alignment films on both substrates are made of a main chain type organic compound having no side chains.
JP20546993A 1993-08-20 1993-08-20 Liquid crystal display element Pending JPH0756148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20546993A JPH0756148A (en) 1993-08-20 1993-08-20 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20546993A JPH0756148A (en) 1993-08-20 1993-08-20 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH0756148A true JPH0756148A (en) 1995-03-03

Family

ID=16507384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20546993A Pending JPH0756148A (en) 1993-08-20 1993-08-20 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH0756148A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5848568A (en) * 1996-10-28 1998-12-15 Aida Engineering Co., Ltd. Device for driving a slide in a link press
US5969781A (en) * 1997-06-30 1999-10-19 Nec Corporation Homeotropic liquid crystal display with common electrodes parallel and positioned at both sides of pixel electrodes to improve viewing angle
US6757044B2 (en) 1998-01-30 2004-06-29 Hitachi, Ltd. Liquid crystal display device with spacers controlling thickness of liquid crystal layer
JP2008197691A (en) * 2008-05-23 2008-08-28 Sharp Corp Liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5848568A (en) * 1996-10-28 1998-12-15 Aida Engineering Co., Ltd. Device for driving a slide in a link press
US5969781A (en) * 1997-06-30 1999-10-19 Nec Corporation Homeotropic liquid crystal display with common electrodes parallel and positioned at both sides of pixel electrodes to improve viewing angle
US6757044B2 (en) 1998-01-30 2004-06-29 Hitachi, Ltd. Liquid crystal display device with spacers controlling thickness of liquid crystal layer
JP2008197691A (en) * 2008-05-23 2008-08-28 Sharp Corp Liquid crystal display device

Similar Documents

Publication Publication Date Title
KR0148502B1 (en) Lcd device
US8026992B2 (en) Display device
JP3529434B2 (en) Liquid crystal display device
JPH09160042A (en) Liquid crystal display element
US20050179632A1 (en) Display element and display apparatus
JPH09160041A (en) Liquid crystal display element
WO1996010774A1 (en) Viewing angle enhancement for vertically aligned cholesteric liquid crystal displays
JPH0862586A (en) Liquid crystal display element
JPH08160442A (en) Liquid crystal display element and liquid crystal display device
JP4041610B2 (en) Liquid crystal display
EP1131671A1 (en) Vertically aligned helix-deformed liquid crystal display
JPH0829812A (en) Liquid crystal display device
EP0549350A1 (en) A liquid crystal display device
JPH0756148A (en) Liquid crystal display element
JPH07199205A (en) Liquid crystal display element
JPH08136941A (en) Liquid crystal display element
JPH06281938A (en) Liquid crystal display element
JPH1124033A (en) Liquid crystal display device
JPH0792458A (en) Liquid crystal display element
JP3309154B2 (en) Liquid crystal display
JPH0792459A (en) Liquid crystal display element
JPH09160022A (en) Liquid crystal electro-optical device
JPH0792457A (en) Liquid crystal display element
JPH05289097A (en) Liquid crystal display element
JP3511218B2 (en) Liquid crystal display panel manufacturing method