JPH09159671A - Method and equipment for measuring components derived from microorganism - Google Patents

Method and equipment for measuring components derived from microorganism

Info

Publication number
JPH09159671A
JPH09159671A JP23463996A JP23463996A JPH09159671A JP H09159671 A JPH09159671 A JP H09159671A JP 23463996 A JP23463996 A JP 23463996A JP 23463996 A JP23463996 A JP 23463996A JP H09159671 A JPH09159671 A JP H09159671A
Authority
JP
Japan
Prior art keywords
sample
light
time
transmitted light
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23463996A
Other languages
Japanese (ja)
Other versions
JP3666621B2 (en
Inventor
Haruki Oishi
晴樹 大石
Hiromi Shiraishi
浩巳 白石
Tooru Koshindou
透 小新堂
Shiyougo Wada
正悟 和田
Ryuzo Tsujino
隆三 辻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP23463996A priority Critical patent/JP3666621B2/en
Publication of JPH09159671A publication Critical patent/JPH09159671A/en
Application granted granted Critical
Publication of JP3666621B2 publication Critical patent/JP3666621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure microorganisms with high reliability over a wide range through easy measuring operation by providing means for holding cuvets containing a sample liquid to be inspected, a light emitting diode for irradiating the sample cuvet with a light beam, and means for detecting the quantity of transmitted light. SOLUTION: The inventive equipment comprises sample cuvets 1 for containing a sample liquid to be inspected, a diode light source 2, emitting light of blue and/or violet, and a photoelectric detector 3 for detecting the quantity of light emitted from the light source 2 and transmitted through the cuvet 1. The inventive equipment further comprises an incubator 4 for sustaining the cuvet 1 at a constant temperature in stationary state, and a multiplexer 5 for transmitting a signal while switching the quantity of transmitted light. A computer 8 is interlocked with the detection of cuvet 1 being set in a sample holding means to start measuring of time of one unoperating cuvet and a timer 10 measures the reaction time thus controlling the processing of data indicative of variation in the quantity of transmitted light and general operation of equipment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、微生物由来成分
の測定装置及び測定方法に係り、詳記すれば、グラム陰
性菌、グラム陽性菌及び真菌等の広範囲の微生物汚染
を、高い信頼性と容易な測定操作で測定可能な微生物由
来成分の測定装置及び測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for measuring a microorganism-derived component, and more specifically, to a wide range of microbial contamination such as Gram-negative bacteria, Gram-positive bacteria and fungi with high reliability and ease. The present invention relates to an apparatus and a method for measuring a microbial-derived component that can be measured by various measurement operations.

【0002】[0002]

【従来の技術】医薬品の製造・品質管理、医療用具の製
造・品質管理、食品の製造・品質管理、透析液の品質管
理、微生物感染症の診断、半導体製造工程での洗浄水の
不純物汚染管理等の微生物汚染が問題となる分野では、
従来から微生物汚染量を測定し、その混入を防ぐことが
行われている。ここで、微生物汚染量というのは、より
具体的には、試料中の生菌数、或は例えばエンドトキシ
ン、ペプチドグリカン、(1→3)β−D−グルカン
(以下、β−グルカンという)等の微生物由来成分量の
ことである。尚、微生物汚染量の測定を、微生物由来成
分量に基づいて行えば、生菌数の量を見積ることができ
るだけではなく、死菌を含めた総合的な微生物汚染量を
知ることができる。
2. Description of the Related Art Manufacturing and quality control of pharmaceuticals, manufacturing and quality control of medical equipment, manufacturing and quality control of food, quality control of dialysate, diagnosis of microbial infections, impurity control of washing water in semiconductor manufacturing process In areas where microbial contamination such as
Conventionally, the amount of microbial contamination has been measured to prevent its contamination. Here, the microbial contamination amount is more specifically the number of viable bacteria in a sample, or endotoxin, peptidoglycan, (1 → 3) β-D-glucan (hereinafter, referred to as β-glucan), etc. It is the amount of components derived from microorganisms. If the amount of microbial contamination is measured based on the amount of components derived from microorganisms, not only the amount of viable bacteria can be estimated, but also the total amount of microbial contamination including dead bacteria can be known.

【0003】最近では実験動物の飼育や菌体培養が不要
で操作が簡便である等の理由から、このような微生物由
来成分量の測定法としては、下記の方法が主流となりつ
つある。 カブトガニ血球成分を試薬として用いる所謂リムルス
テスト(比濁時間分析法)によるグラム陰性菌由来のエ
ンドトキシンの測定 リムルステスト(合成基質法)によるグラム陰性菌由
来のエンドトキシンの測定 エンドトキシンを不活化又は除去した試料を使用する
リムルステスト(比濁時間分析法)による真菌由来のβ
−グルカンの測定 カブトガニ血球成分から取り出されたβ−グルカンと
反応する成分と、合成基質を含む試薬(合成基質法)に
よる真菌由来のβ−グルカンの測定 カイコ体液成分を含む試薬であるSLP試薬(活性化
時間分析法)によるグラム陽性菌若しくはグラム陰性菌
由来のペプチドグリカンまたは真菌由来のβ−グルカン
の測定
Recently, the following method is becoming mainstream as a method for measuring the amount of components derived from microorganisms, because it is easy to operate because breeding of experimental animals and cell culture are unnecessary. Measurement of endotoxin derived from Gram-negative bacteria by the so-called Limulus test (nephelometric analysis) using Limulus test (blood cell component of horseshoe crab). Measurement of endotoxin derived from Gram-negative bacteria by Limulus test (synthetic substrate method). Β derived from fungus by Rimurus test (turbidimetric analysis)
-Measurement of glucan Component that reacts with β-glucan extracted from horseshoe crab hemocyte components and measurement of fungal β-glucan by a reagent containing a synthetic substrate (synthetic substrate method) SLP reagent (a reagent containing a silkworm body fluid component) Of peptidoglycan derived from Gram-positive bacteria or Gram-negative bacteria or β-glucan derived from fungi by activation time analysis method)

【0004】尚、上記比濁時間分析法、活性化時間分析
法及び合成基質法は、それぞれ以下の方法のことであ
る。 比濁時間分析法または活性化時間分析法:試料と反応試
薬との混合物(被検試料液)に光を照射し、試料と反応
試薬とを混合後所定時間経過後から、被検試料液につい
ての光学的変化〔初期透過光量Ioと所定時間(t)経
過後の透過光量(It)との比。R=It/Io、透過
光量比Rの対数値、透過率の変化、吸光度の変化等〕が
所定の量だけ生ずるのに要する時間(透過光量が一定の
割合変化するまでの時間)を測定し、当該時間を利用し
て目的の測定を行う方法。 合成基質法:被検試料液中で活性化される酵素の作用に
より色素を遊離する性質を有する合成基質を使用し、遊
離された色素量から目的の測定を行う方法。
The turbidimetric time analysis method, the activation time analysis method, and the synthetic substrate method are the following methods, respectively. Turbidity time analysis method or activation time analysis method: The mixture of the sample and the reaction reagent (test sample solution) is irradiated with light, and after the predetermined time has elapsed after mixing the sample and the reaction reagent, the test sample solution Optical change [ratio between initial transmitted light amount Io and transmitted light amount (It) after a predetermined time (t) has elapsed. R = It / Io, logarithmic value of transmitted light amount ratio R, change in transmittance, change in absorbance, etc.] is measured to measure a time (time until the transmitted light amount changes at a certain ratio). , A method of performing the target measurement using the time. Synthetic substrate method: A method in which a synthetic substrate having the property of releasing a dye by the action of an enzyme activated in a test sample solution is used and the target measurement is performed from the amount of the released dye.

【0005】上記リムルステストに於ける比濁時間分析
法と合成基質法による測定は、試料となる対象物質の反
応への影響に応じて使い分けられている。従来のリムル
ステスト等では、検出困難であったグラム陽性菌由来の
ペプチドグリカンが、上記のSLP試薬が開発された
ことによって、検出可能となったので、実験動物や培養
操作が不要な上記微生物汚染の測定法は、一段とその重
要性を増している。
The measurement by the turbidimetric time analysis method and the synthetic substrate method in the Limulus test is properly used according to the influence of the target substance as a sample on the reaction. Peptidoglycan derived from Gram-positive bacteria, which was difficult to detect in the conventional Limulus test, etc., can be detected by the development of the above SLP reagent. The law is becoming more and more important.

【0006】[0006]

【発明が解決しようとする課題】従来の比濁時間分析装
置は、操作が容易であり、これを用いて上記、、
の測定を行えば、複数の試料について、再現性、定量性
に優れた測定を高い信頼性のもとで実施できる利点はあ
ったが、上記や等の合成基質法に基づく測定には使
用できなかった。
The conventional turbidimetric time analyzer is easy to operate, and by using this,
However, it has the advantage that it can perform highly reproducible and quantitative measurements with high reliability for multiple samples, but it cannot be used for measurements based on the synthetic substrate method such as the above. There wasn't.

【0007】また、従来のマイクロプレ−トリ−ダ−
は、上記、、等を実施することは可能であった
が、例えば反応開始時点と測定開始時点とを連動でき
ず、被検試料液毎の反応経過時間を厳密に測定できない
ことと、試料容器並びに反応容器である96穴マイクロ
プレ−トの微生物汚染を完全に除去することが困難であ
るほか、マイクロプレ−トの周辺部と中央部に於ける被
検試料液の温度を均一に制御することが困難であること
等の理由から、得られた測定値は信頼性に欠けるという
問題点を有していた。
In addition, the conventional microplate reader
It was possible to perform the above, etc., but, for example, the reaction start time and the measurement start time could not be linked, and the reaction elapsed time for each test sample solution could not be strictly measured, and the sample container In addition, it is difficult to completely remove microbial contamination of the 96-well microplate, which is a reaction vessel, and to uniformly control the temperature of the test sample solution in the peripheral portion and the central portion of the microplate. Therefore, the obtained measured value has a problem that it is not reliable.

【0008】また、上記の問題点に加えて、マイクロプ
レ−トリ−ダ−では、マイクロプレ−トを静止させたま
まで測定を行うことができないため、上記、等のリ
ムルステストを使用し生ずるゲル化反応を利用して行う
分析法をマイクロプレ−トリ−ダ−を使用して実施した
場合、測定精度が悪化するという問題点もあった。更
に、従来のマイクロプレ−トリ−ダ−は、光源として、
タングステンランプを使用するため、光配分系が必要で
且つマイクロプレ−トを移動させる機構が必要となるた
め、装置が複雑で高価となるという問題点も有してい
た。
In addition to the above-mentioned problems, in the microplate reader, since it is not possible to carry out the measurement while the microplate is stationary, gelation caused by using the Limulus test as described above is caused. When the analysis method using the reaction is carried out using a microplate reader, there is also a problem that the measurement accuracy deteriorates. Furthermore, the conventional microplate reader is used as a light source.
Since the tungsten lamp is used, a light distribution system is required and a mechanism for moving the microplate is also required, so that the device is complicated and expensive.

【0009】この請求項1及び11に記載の発明は、そ
れぞれ微生物由来成分の測定装置及び測定方法であっ
て、比濁時間分析法と合成基質法の両方に適用でき、そ
の結果、グラム陰性菌、グラム陽性菌及び真菌等の広範
囲の微生物汚染を高い信頼性と容易な測定操作で測定で
きる微生物由来成分の測定装置及び測定方法を提供する
ことを目的とする。また、請求項5に記載の発明は、上
記目的に加えて、試料キュベットのキュベット保持手段
への設置時点を自動的に検出できる測定装置を提供する
ことを目的とする。また、請求項6及び7に記載の発明
は、上記請求項1記載の目的に加えて、測定回路の安定
性を向上させ、測定精度を向上させた測定装置を提供す
ることを目的とする。
The inventions according to claims 1 and 11 are an apparatus and a method for measuring a microorganism-derived component, respectively, which can be applied to both the turbidimetric time analysis method and the synthetic substrate method. An object of the present invention is to provide a measuring device and a measuring method for a microorganism-derived component capable of measuring a wide range of microbial contamination such as Gram-positive bacteria and fungi with high reliability and easy measurement operation. Further, in addition to the above object, an object of the present invention is to provide a measuring device capable of automatically detecting the time when the sample cuvette is installed in the cuvette holding means. In addition to the object of claim 1, the inventions of claims 6 and 7 aim to provide a measuring device in which the stability of the measurement circuit is improved and the measurement accuracy is improved.

【0010】[0010]

【課題を解決するための手段】上記目的に沿う本発明の
請求項1記載の測定装置は、試料と反応試薬とを混合
し、混合後の反応開始による透過光量の変化を測定して
微生物由来成分を測定する装置に於いて、前記試料と反
応試薬との混合物(被検試料液)を収容する試料キュベ
ットを保持する手段と、該試料キュベットに光線を照射
する青色及び/または紫色の光を発する発光ダイオ−ド
と、照射した光線の透過光量を検知する手段と、測定開
始から被検試料の透過光量が所定の割合変化する迄の時
間を検出する手段と、を具備することを特徴とする。
The measuring apparatus according to claim 1 of the present invention which meets the above object, comprises mixing a sample and a reaction reagent, and measuring the change in the amount of transmitted light due to the start of the reaction after the mixing, thereby deriving from a microorganism. In an apparatus for measuring components, a means for holding a sample cuvette containing a mixture of the sample and a reaction reagent (test sample solution), and blue and / or purple light for irradiating the sample cuvette with light rays are provided. A light emitting diode for emitting light, means for detecting the amount of transmitted light of the irradiated light, and means for detecting the time from the start of measurement until the amount of transmitted light of the test sample changes by a predetermined ratio. To do.

【0011】また、本発明の請求項11記載の測定方法
は、試料と反応試薬の混合物(被検試料液)の調製後所定
時間経過後からの透過光量が所定の割合変化するまでの
時間に基づいて微生物由来成分を測定する方法に於い
て、前記被検試料液を試料キュベットに収容して静置状
態に保持し、該被検試料キュベットに発光ダイオ−ドか
ら青色及び/または紫色の光線を照射し、照射した光線
の透過光量を検知し、前記所定時間経過後から被検試料
液の透過光量が所定の割合変化する迄の時間を検出し、
該時間に基づいて目的物を測定することを特徴とする。
Further, the measuring method according to the eleventh aspect of the present invention is such that the amount of transmitted light changes from a predetermined time after preparation of a mixture of a sample and a reaction reagent (test sample solution) to a predetermined ratio change. In the method for measuring a microorganism-derived component based on the above, the test sample solution is housed in a sample cuvette and held in a stationary state, and a blue and / or purple ray is emitted from the light emitting diode to the test sample cuvette. And detecting the amount of transmitted light of the irradiated light, and detecting the time from the passage of the predetermined time until the amount of transmitted light of the test sample liquid changes by a predetermined ratio,
It is characterized in that the object is measured based on the time.

【0012】要するに本発明は、青色及び/または紫色
の光を発する発光ダイオ−ドを使用して、従来の比濁時
間分析装置(トキシノメ−タ−)を改良し、比濁時間分
析法と合成基質法の両方に適用できるようにしたことを
要旨とするものであるが、従来、比濁時間分析法と合成
基質法の両方に適用できる比濁時間分析法用の測定装置
及び測定方法は全く知られていない。本発明者等は、前
記目的を達成するため鋭意研究の結果、従来の発光ダイ
オ−ドを使用する比濁時間分析法では、発色合成基質試
薬として従来使用されてきた波長405nmにおけるp
−ニトロアニリン(pNA)の発色が検知できなかった
が、青色及び/または紫色の光を発する発光ダイオ−ド
を使用することによって、従来のマイクロプレ−トリ−
ダ−による測定と同等以上の定量測定が実施できること
を見いだし、本発明に到達したものである。
In summary, the present invention uses a light emitting diode that emits blue and / or violet light to improve the conventional turbidimetric time analyzer (toxinometer), and to analyze the turbidimetric time analysis method and synthesis. The gist is that it can be applied to both the substrate method, but conventionally, there is no measuring device and method for the turbidimetric time analysis method applicable to both the turbidimetric time analysis method and the synthetic substrate method. unknown. The inventors of the present invention have conducted extensive studies to achieve the above-mentioned object, and as a result, in the conventional turbidimetric time analysis method using a light-emitting diode, p at a wavelength of 405 nm which has been conventionally used as a color-forming synthetic substrate reagent.
-The color development of nitroaniline (pNA) could not be detected, but by using a light emitting diode that emits blue and / or violet light, conventional microplates were used.
The present invention has been achieved by discovering that quantitative measurement equivalent to or more than the measurement by a dagger can be carried out.

【0013】[0013]

【発明の実施の形態】本発明に於いては、光源として、
青色及び/または紫色の光を発する発光ダイオ−ドを使
用することを特徴とするものであるが、従来この発光ダ
イオ−ドを微生物由来成分の測定に使用することは全く
行われていないし、このような発想も全く知られていな
い。青色及び/または紫色の光を発する発光ダイオ−ド
としては、発光の最大ピ−クの半分の高さと発光スペク
トルとの交点の少なくとも一方が415〜485nmの
範囲内、特に415〜485nmの範囲内に発光ピ−ク
を有する発光ダイオ−ドが好適に使用される。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, as a light source,
It is characterized by using a light emitting diode that emits blue and / or purple light, but conventionally, this light emitting diode has not been used at all for the measurement of components derived from microorganisms. Such an idea is not known at all. As a light emitting diode for emitting blue and / or violet light, at least one of the intersections of the half height of the maximum peak of light emission and the emission spectrum is in the range of 415 to 485 nm, particularly in the range of 415 to 485 nm. A light emitting diode having a light emitting peak is preferably used.

【0014】本発明の測定開始から被検試料の透過光量
が一定の割合変化する迄の時間を検出する手段として
は、具体的には、例えば、試料キュベットの保持手段へ
の設置時点を検出する手段と、該設置時点の検出に連動
してタイマ−を計時開始する手段と、計時開始したタイ
マ−に連動して任意のタイミングで被検試料の透過光量
をサンプリングして記憶する手段とを具備した手段が挙
げられる。
As the means for detecting the time from the start of measurement of the present invention until the amount of transmitted light of the sample to be tested changes at a constant rate, specifically, for example, the time of installation of the sample cuvette in the holding means is detected. Means, means for starting timing of the timer in synchronization with detection at the time of installation, and means for sampling and storing the amount of transmitted light of the test sample at an arbitrary timing in synchronization with the timer that has started timing. There is a means of doing.

【0015】また、測定精度を考慮すると、本発明の測
定装置の試料キュベットを保持する手段は、試料キュベ
ットを静置状態に保持し得るものであるのが望ましく、
更に測定効率を考慮すると、複数個の試料キュベットを
保持し得るものであるのが望ましい。照射した光線の透
過光量を検知する手段や前記試料キュベットの保持手段
への設置時点を検出する手段は、試料キュベット毎に設
置し、タイマ−も複数個設置し且つ計時開始する手段
を、試料キュベット設置時点の検出に連動して、これら
複数のタイマ−のうち作動中でないタイマ−の1つを計
時開始させる機構とするのが良い。更に、計時開始した
タイマ−に連動して任意のタイミングで被検試料の透過
光量をサンプリングして記憶する手段や、測定開始から
透過光量が一定の割合変化する迄の時間を検出する手段
も複数個備えても良い。
In consideration of measurement accuracy, it is desirable that the means for holding the sample cuvette of the measuring apparatus of the present invention should be capable of holding the sample cuvette in a stationary state.
Further, in consideration of measurement efficiency, it is desirable that a plurality of sample cuvettes can be held. The means for detecting the amount of transmitted light of the irradiated light and the means for detecting the time when the sample cuvette is installed in the holding means are installed for each sample cuvette, a plurality of timers are installed, and a means for starting timing is provided for the sample cuvette. It is advisable to provide a mechanism for starting time measurement of one of the timers that are not operating among the plurality of timers in association with the detection at the time of installation. Further, there are a plurality of means for sampling and storing the transmitted light amount of the sample to be tested at an arbitrary timing in conjunction with the timer that has started the time measurement, and a means for detecting the time from the start of measurement until the transmitted light amount changes at a fixed rate. You may prepare for each.

【0016】次に、本発明の装置の望ましい実施例を図
面に基づいて説明する。図1は本発明に係る測定装置の
ブロック図であり、試料と反応試薬との混合物(被検試
料液)を収容する複数の被検試料キュベット1と、複数
の青色及び/又は紫色の光を発する発光ダイオ−ド光源
2と、該光源2から各々対応する複数の試料キュベット
1に光線を照射し複数の透過光量を別々に検知する光電
検出器3と、試料キュベット1を静置状態で恒温状態に
保持するインキュベ−タ4と、光電検出器3で検知され
た複数の透過光量を順次切替えて次々に送信するマルチ
プレクサ5と、送信された信号を増幅する増幅回路6
と、増幅回路6で増幅された信号をデジタル値に変換す
るA/D変換器7と、試料キュベット1が試料保持手段
に設置された時点の検出に連動して動作中でないものの
1つがコンピュ−タ8により計時開始され、反応時間の
計時を行う複数のタイマ−10と、計時開始したタイマ
−に連動し、透過光測定状態となった光学系に対応して
計時(即ち測定)状態を表示する素子9と、前記デジタ
ル化された透過光量を計時開始したタイマ−に連動して
任意のタイミングでサンプリングしメモリ11に記憶す
ると共に透過光量の変化のデ−タ処理と装置全体の動作
を制御するコンピュ−タ8とから構成された例を示す。
Next, preferred embodiments of the apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a measuring apparatus according to the present invention, in which a plurality of test sample cuvettes 1 containing a mixture of a sample and a reaction reagent (test sample solution) and a plurality of blue and / or purple lights are provided. A light emitting diode light source 2 which emits light, a photoelectric detector 3 which irradiates a plurality of corresponding sample cuvettes 1 with light rays to detect a plurality of transmitted light amounts separately, and a constant temperature of the sample cuvette 1 in a stationary state The incubator 4 which holds the state, the multiplexer 5 which sequentially switches the plurality of transmitted light amounts detected by the photoelectric detector 3 and transmits the same, and the amplifier circuit 6 which amplifies the transmitted signal.
And an A / D converter 7 for converting the signal amplified by the amplifier circuit 6 into a digital value, and one that is not operating in conjunction with the detection when the sample cuvette 1 is installed in the sample holding means. The timer 8 is started by the timer 8 and measures the reaction time, and the timer that has started the timer is interlocked with to display the time (that is, the measurement) state corresponding to the optical system in the transmitted light measurement state. Element 9 and a timer that starts timing of the digitized transmitted light amount, sampled at an arbitrary timing and stored in the memory 11, and control data processing of change in transmitted light amount and operation of the entire apparatus. An example of the computer 8 is shown.

【0017】試料キュベット1としては、ガラス製の試
験管を使用するのが良く、ガラス製の試験管を使用する
ことにより、乾熱処理によって微生物汚染を完全に除去
できる。青色及び/または紫色の光を発する発光ダイオ
−ド光源2としては、例えば日亜化学工業(株)から市
販の発光ダイオ−ドNLPB500,510,520,
或はNLPB300,310,320、豊田合成(株)
から市販のE1L51、E1L53、E1L55等の発
光素子を使用することができる。
A glass test tube is preferably used as the sample cuvette 1, and by using a glass test tube, microbial contamination can be completely removed by dry heat treatment. Examples of the light emitting diode light source 2 that emits blue and / or violet light include, for example, the light emitting diode NLPB500, 510, 520, commercially available from Nichia Corporation.
Or NLPB300, 310, 320, Toyoda Gosei Co., Ltd.
Commercially available light emitting devices such as E1L51, E1L53, and E1L55 can be used.

【0018】上記実施例で使用した発光ダイオ−ド光源
2は、上記NLPB520であり、青色及び紫色の光を
発し、450nmに発光ピ−クを有し、発光ピ−クの半
分の高さと発光スペクトルとの交点が415nmと48
5nmのダイオ−ドである。上記実施例に於いては、光
源2を複数設けているが、これは必ずしもこのようでな
くとも良く、単一光源から光フアイバ−で各被検試料キ
ュベット1に照射光を導いても良い。光電検出器3とし
ては、透過光量に対応する電気信号が発生するフオトダ
イオ−ド、光電セル等の受光素子を使用することができ
る。光電検出器も光源と同様に、単一の光電検出器に光
フアイバ−で各被検試料キュベット1の透過光を導いて
も良い。
The light emitting diode light source 2 used in the above embodiment is the above NLPB520, which emits blue and violet light and has a light emitting peak at 450 nm, and has a height half that of the light emitting peak. The intersection with the spectrum is 415 nm and 48
It is a 5 nm diode. In the above-mentioned embodiment, a plurality of light sources 2 are provided, but this is not necessarily the case, and the irradiation light may be guided to each test sample cuvette 1 from a single light source by an optical fiber. As the photoelectric detector 3, it is possible to use a light receiving element such as a photo diode or a photoelectric cell that generates an electric signal corresponding to the amount of transmitted light. Similarly to the light source, the photoelectric detector may guide the transmitted light of each test sample cuvette 1 to a single photoelectric detector by an optical fiber.

【0019】試料キュベット1を静置状態で恒温状態に
保持するインキュベ−タ4としては、キュベット1を保
持する手段をアルミブロックで構成し、それに公知の温
度制御回路及び素子を結合することによって形成すると
良い。このように形成することによって、振動のない均
一な温度分布を持つインキュベ−タ4とすることができ
る。本インキュベ−タ4で光源2と光電検出器3とを併
せて恒温状態に保持すれば、測定回路の安定性は更に向
上する。本装置では、測定中、試料キュベット1を静置
状態に保つことができる。これは、リムルステストを利
用した比濁時間分析法を精度良く行うための必須の条件
である。
The incubator 4 for holding the sample cuvette 1 in a constant temperature in a stationary state is formed by forming the means for holding the cuvette 1 by an aluminum block and connecting a known temperature control circuit and elements to it. Good to do. By forming in this way, the incubator 4 having a uniform temperature distribution without vibration can be obtained. If the light source 2 and the photoelectric detector 3 are held together in a constant temperature state in the present incubator 4, the stability of the measuring circuit is further improved. In this device, the sample cuvette 1 can be kept in a stationary state during the measurement. This is an essential condition for carrying out the turbidimetric time analysis method using the Limulus test with high accuracy.

【0020】試料キュベット1のキュベット保持手段へ
の設置時点の検出は、キュベット保持手段に各キュベッ
トを検出するマイクロスイッチや、光センサを設置する
ことで実現できるが、光源2と光電検出器3とを使用し
て、試料キュベット設置に伴う急激な透過光量の変化を
検出することにより行うのが良い。このようにすること
によって、余分な検出部品を使用せずに、設置時点を自
動的に検出することもでき、独立した試料キュベット毎
の反応経過時間が厳密に管理でき、しかも操作は、試料
キュベットを保持ホルダ−に挿入するだけでよいので、
極めて容易となる。
The detection of the time when the sample cuvette 1 is installed in the cuvette holding means can be realized by installing a microswitch or an optical sensor for detecting each cuvette in the cuvette holding means. Is preferably used to detect a rapid change in the amount of transmitted light accompanying the installation of the sample cuvette. By doing this, it is possible to automatically detect the installation time without using extra detection parts, strictly control the reaction elapsed time for each independent sample cuvette, and operate the sample cuvette. Is simply inserted into the holding holder,
It will be extremely easy.

【0021】試料キュベット設置の検出毎に順次計時を
開始する複数タイマ−10は、公知の順序回路とカウン
タ−で構成できるが、1つの基本タイマ−とコンピュ−
タ8とメモリ11によるプログラム動作で置き換えるこ
ともできる。現在どの光学系が測定状態になっているか
を表示する素子9には、LEDが使用でき、その表示状
態から次にどの光学系が測定状態に入るかを知ることが
できる。
The plurality of timers 10 for starting timed counting each time a sample cuvette is set can be composed of a known sequential circuit and counter, but one basic timer and a computer.
It can be replaced by a program operation by the data 8 and the memory 11. An LED can be used for the element 9 that indicates which optical system is currently in the measuring state, and it is possible to know from the display state which optical system is to enter the measuring state next.

【0022】コンピュ−タ8は、キュベット設置時点を
検出し、タイマ−10のうちのどれを起動するかを判断
し制御すると共に、計時動作中のタイマ−10のカウン
トを観測しながら任意のタイミングで被検試料の透過光
量をサンプリングし、メモリ11にデ−タとして記憶す
る。また、所定時間後、タイマ−の停止をも制御する。
このように試料キュベット1の設置時点の検出に連動し
て厳密な反応時間の管理がなされているため、測定開始
から被検試料の透過光量が一定の割合だけ変化するまで
の時間をコンピュ−タ8とメモリ11によるプログラム
操作で容易に検出することができる。尚、「透過光量が
一定の割合だけ変化」したことを確認する方法として
は、例えば、透過光量比Rの変化、透過光量比Rの対数
値の変化、透過率の変化、吸光度の変化等に基づいて確
認する方法等が挙げられる。更に、メモリ11に記憶さ
れたデ−タを使用して、反応のエンドポイント法による
測定或はレ−ト法による動的な反応測定を厳密に行うこ
ともできる。
The computer 8 detects the time when the cuvette is installed, determines and controls which of the timers 10 is started, and controls the timing while observing the count of the timer 10 during the time counting operation. The transmitted light amount of the test sample is sampled and stored in the memory 11 as data. It also controls the stop of the timer after a predetermined time.
Since the reaction time is strictly controlled in association with the detection at the time of setting the sample cuvette 1 in this way, the time from the start of measurement to the change in the transmitted light amount of the test sample by a certain ratio is calculated by the computer. 8 and the memory 11 can be easily detected by a program operation. In addition, as a method of confirming that "the amount of transmitted light has changed by a certain ratio", for example, changes in the ratio R of transmitted light, changes in the logarithmic value of the ratio R of transmitted light, changes in transmittance, changes in absorbance, etc. There is a method of checking based on the above. Further, by using the data stored in the memory 11, it is possible to strictly measure the reaction by the end point method or the dynamic reaction by the rate method.

【0023】上記構成を有する本発明の測定装置の機能
を十分発揮せしめるため、上記実施例に於いては、デー
タの表示装置12(LED、CRTデイスプレイ、液晶
デイスプレイ等)、デ−タの表示制御スイッチ13、デ
−タの印字プリンタ−14、外部コンピュ−タとの通信
装置15を設けている。表示装置12にCRTデイスプ
レイや液晶デイスプレイを用いる場合には、測定状態表
示素子9をこれらデイスプレイで置き替えることもでき
る。また、フロッピ−デイスクドライブ等の補助記憶装
置17を設置することもできる。
In order to fully exhibit the function of the measuring apparatus of the present invention having the above-mentioned structure, in the above embodiment, the data display device 12 (LED, CRT display, liquid crystal display, etc.) and data display control are provided. A switch 13, a print printer 14 for data, and a communication device 15 for communicating with an external computer are provided. When a CRT display or a liquid crystal display is used for the display device 12, the measurement state display element 9 can be replaced with these displays. Also, an auxiliary storage device 17 such as a floppy disk drive can be installed.

【0024】図2は、具体的に構成された本発明の測定
装置の斜視図を示すもので、12は、測定した試料のデ
−タを表示する表示装置、13は複数の表示デ−タを切
り替える制御スイッチ、16は被検試料キュベットを保
持する温度制御装置付きの試料キュベットホルダ−、9
は現在どの光学系が測定状態となっているかを表示する
素子である。ここでは1例として8本の被検試料キュベ
ットの同時保持を行う例を示した。試料と反応試薬を混
合した試料キュベットのホルダ−16への設置が検出さ
れると、これに連動し、動作中でないタイマ−の1つが
起動される。このタイマ−の起動に連動して対応する表
示素子9が点灯し、測定終了まで点灯しつづけるので、
その表示素子が消灯する迄放置すれば、測定とデータ処
理が自動的に終了するようになっているので、測定操作
は極めて容易である。尚、図2中、14はデ−タ印字プ
リンタ−を、17は補助記憶装置を示す。
FIG. 2 is a perspective view of a concretely constructed measuring apparatus of the present invention. 12 is a display device for displaying measured sample data, and 13 is a plurality of display data. , A control switch 16 for switching the sample cuvette holder with a temperature controller for holding the sample cuvette to be tested, 9
Is an element that indicates which optical system is currently in the measurement state. Here, as an example, an example is shown in which eight test sample cuvettes are simultaneously held. When the installation of the sample cuvette, which is a mixture of the sample and the reaction reagent, in the holder 16 is detected, one of the timers that are not operating is activated in conjunction with this. The corresponding display element 9 lights up in synchronization with the activation of this timer, and continues to light up until the end of measurement.
If the display element is left unlit, the measurement and data processing are automatically completed, so the measurement operation is extremely easy. In FIG. 2, 14 is a data printing printer and 17 is an auxiliary storage device.

【0025】本発明の方法により微生物由来成分の濃度
を測定するには、反応試薬と被検液とを混合した後、反
応試薬による生成物の量がある一定値となるまでの時間
を、透過光量が一定の割合変化するまでの時間として検
出し、これを使用して常法(例えば、この時間と微生物
由来成分量との関係を表す検量線を利用する方法等)に
より定量する。また、本発明に於ける、透過光量が一定
の割合変化するまでの時間とは、具体的には、例えば透
過光量比R、Rの対数値、透過率、吸光度等の光学的測
定値の変化量が、所定値に到達するまでの時間である。
該所定値としては、目的の測定を実施し得る値であれば
良く特に限定されないが、例えば光学的測定値として透
過光量比Rを利用するものであれば、該所定値は、通常
−3〜−25%、好ましくは−5〜−20%の範囲から
適宜設定される。また、透過率、吸光度、Rの対数値等
を光学的測定値として利用して本発明の測定を行う場合
も、該所定値はRの場合に準じて適宜設定すれば良い。
In order to measure the concentration of the microorganism-derived component by the method of the present invention, after the reaction reagent and the test solution are mixed, the time until the amount of the product of the reaction reagent reaches a certain value is permeated. It is detected as the time until the amount of light changes by a certain ratio, and using this, it is quantified by a conventional method (for example, a method using a calibration curve showing the relationship between this time and the amount of microorganism-derived components). Further, in the present invention, the time until the amount of transmitted light changes by a certain ratio is specifically, for example, the change of optical measurement values such as the ratio R of transmitted light, the logarithmic value of R, the transmittance and the absorbance. It is the time until the amount reaches a predetermined value.
The predetermined value is not particularly limited as long as it is a value at which the desired measurement can be carried out. For example, if the transmitted light amount ratio R is used as an optical measurement value, the predetermined value is usually -3 to It is appropriately set within the range of -25%, preferably -5 to -20%. Also, when the measurement of the present invention is carried out by utilizing the transmittance, the absorbance, the logarithmic value of R and the like as the optical measurement value, the predetermined value may be appropriately set according to the case of R.

【0026】反応試薬としては、微生物由来成分と特異
的に反応する公知の反応試薬を使用すれば良い。例え
ば、グラム陰性菌の測定には、エンドトキシンと反応す
る公知の反応試薬、ペプチドグリカンと反応する公知の
反応試薬等が使用され、グラム陽性菌には、ペプチドグ
リカンと反応する公知の反応試薬が使用され、真菌には
β−グルカンと反応する公知の反応試薬が使用される。
これら反応試薬に含まれる主成分は、カブトガニ血球や
カイコ等の昆虫の体液中に含まれている。
As the reaction reagent, a known reaction reagent that specifically reacts with a microorganism-derived component may be used. For example, for the measurement of Gram-negative bacteria, known reaction reagents that react with endotoxin, known reaction reagents that react with peptidoglycan, etc. are used, and for Gram-positive bacteria, known reaction reagents that react with peptidoglycan are used, Known reaction reagents that react with β-glucan are used for fungi.
The main components contained in these reaction reagents are contained in the body fluid of insects such as horseshoe crab blood cells and silkworms.

【0027】カブトガニ血球成分には、エンドトキシン
と反応する成分とβ−グルカンと反応する成分が含まれ
ているので、目的に応じてこれをそのまま使用したり、
エンドトキシンのみ若しくはβ−グルカンのみと反応す
る成分だけを利用する。カイコ体液成分(SLP)に
は、β−グルカンと反応する成分とペプチドグリカンと
反応する成分が含まれているので、同様に目的に応じて
このまま若しくは適宜成分を分離して使用する。比濁時
間分析法に於いては、上記反応試薬を使用するが、合成
基質法に於いては、上記反応試薬に更に発色合成基質を
添加した試薬を使用する。これら反応試薬は、公知の方
法に基づいて自製したものでも、市販品を適宜使用して
調製したものであっても良い。
Since the horseshoe crab hemocyte component contains a component that reacts with endotoxin and a component that reacts with β-glucan, it can be used as it is or depending on the purpose.
Only components that react only with endotoxin or β-glucan are used. Since the silkworm body fluid component (SLP) contains a component that reacts with β-glucan and a component that reacts with peptidoglycan, the silkworm body fluid component is used as it is or after being appropriately separated according to the purpose. In the turbidimetric time analysis method, the above-mentioned reaction reagent is used, but in the synthetic substrate method, a reagent in which a color-developing synthetic substrate is further added to the above-mentioned reaction reagent is used. These reaction reagents may be self-made based on known methods or may be prepared by appropriately using commercially available products.

【0028】次に、上記本発明の装置を使用して微生物
由来成分濃度を測定する例を示す。 実施例 1:比濁時間分析法 エンドトキシン測定用ガラス試験管に、エンドトキシン
水溶液(0〜100EU/ミリリットル)100マイク
ロリットルとLAL(カブトガニ血球成分)溶液(リム
ルスES−II、和光純薬工業(株)製)100マイクロ
リットルを加えて撹拌混合し、本発明の装置を使用して
透過光量の変化を測定した。図3に、〔It(時間tに
於ける試料液からの透過光量)/Io(反応の進行によ
り減少を開始する以前の試料液からの透過光量)〕×1
00(%)が95.0%となるまでに要する時間(ゲル
化時間)とエンドトキシン濃度との検量関係を示す。図
3より明らかなように、非常に広い範囲で良好な検量関
係が得られた。
Next, an example of measuring the concentration of a microorganism-derived component using the apparatus of the present invention will be described. Example 1: Turbidity time analysis method In a glass test tube for measuring endotoxin, 100 microliters of an endotoxin aqueous solution (0 to 100 EU / milliliter) and a LAL (hemoglobin blood cell component) solution (Limulus ES-II, Wako Pure Chemical Industries, Ltd.) 100 μl) was added and mixed with stirring, and the change in the amount of transmitted light was measured using the apparatus of the present invention. In FIG. 3, [It (amount of transmitted light from the sample solution at time t) / Io (amount of transmitted light from the sample solution before the decrease started due to the progress of the reaction)] × 1
The calibration relationship between the time (gelation time) required for 00 (%) to reach 95.0% and the endotoxin concentration is shown. As is clear from FIG. 3, a good calibration relationship was obtained in a very wide range.

【0029】エンドトキシン測定用ガラス試験管に、エ
ンドトキシン水溶液(0.05EU/ミリリットル)1
00マイクロリットルとLAL(カブトガニ血球成分)
溶液(リムルスES−Jテストワコ−、和光純薬工業
(株)製)100マイクロリットルを加えて撹拌混合
し、本発明の装置を使用して再現性を測定した。表1
に、エンドトキシン濃度0.05EU/ミリリットルの
場合での〔It/Io〕×100(%)が95.0%と
なるまでに要する時間(ゲル化時間)の再現性を示す。
尚、比較のため、光源として従来の赤色LEDを使用し
た場合も同様に測定し、結果を表1に併記した。
Into a glass test tube for measuring endotoxin, an endotoxin aqueous solution (0.05 EU / ml) 1
00 microliters and LAL (Liquid blood clot component)
100 microliters of the solution (Limulus ES-J Test Wako, manufactured by Wako Pure Chemical Industries, Ltd.) was added and mixed with stirring, and the reproducibility was measured using the apparatus of the present invention. Table 1
2 shows the reproducibility of the time (gelation time) required until [It / Io] × 100 (%) becomes 95.0% when the endotoxin concentration is 0.05 EU / ml.
For comparison, when a conventional red LED was used as a light source, the same measurement was performed, and the results are also shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】表1より明らかなように、本発明の装置で
得られる再現性は、従来の装置と同程度であり、また、
本発明の装置では従来の装置よりもゲル化時間が短くな
り、検出に要する時間を短縮することができる利点が得
られる。
As is clear from Table 1, the reproducibility obtained by the device of the present invention is comparable to that of the conventional device, and
The apparatus of the present invention has the advantage that the gelation time is shorter than that of the conventional apparatus, and the time required for detection can be shortened.

【0032】実施例 2:合成基質法 エンドトキシン測定用ガラス試験管に、エンドトキシン
水溶液(0〜100EU/ミリリットル)100マイク
ロリットルと合成基質法試液(トキシカラ−TMシステム
LS−200、生化学工業(株)製)100マイクロリ
ットルを加えて撹拌混合し、本発明の装置を使用して透
過光量の変化を測定した。図4に、〔It/Io〕×1
00(%)が95.0%となるまでに要する時間(活性
化時間)とエンドトキシン濃度との検量関係を示す。図
4より明らかなように、非常に広い範囲で良好な検量関
係が得られた。
Example 2: Synthetic Substrate Method In a glass test tube for measuring endotoxin, 100 microliters of an endotoxin aqueous solution (0 to 100 EU / milliliter) and a synthetic substrate method reagent solution (Toxicara TM System LS-200, Seikagaku Corporation). 100 μl) was added and mixed with stirring, and the change in the amount of transmitted light was measured using the apparatus of the present invention. In FIG. 4, [It / Io] × 1
The calibration relationship between the time (activation time) required for 00 (%) to reach 95.0% and the endotoxin concentration is shown. As is clear from FIG. 4, a good calibration relationship was obtained in a very wide range.

【0033】実施例 3:β−グルカン測定(合成基質
法) エンドトキシン測定用ガラス試験管に、カ−ドラン(β
−グルカン)水溶液(0〜1000pg/ミリリット
ル)100マイクロリットルとビ−ジ−スタ−Aキット
発色試液(マルハ(株)製)100マイクロリットルを
加えて撹拌混合し、本発明の装置を使用して透過光量の
変化を測定した。図5に、〔It/Io〕×100
(%)が90.0%となるまでに要する時間(活性化時
間)とカ−ドラン濃度との検量関係を示す。図5より明
らかなように、非常に広い範囲で良好な検量関係が得ら
れた。
Example 3 β-Glucan Measurement (Synthetic Substrate Method) A cardan (β
-Glucan) 100 microliters of an aqueous solution (0 to 1000 pg / milliliter) and 100 microliters of Bj-Star-A kit color reagent (manufactured by Maruha Co., Ltd.) were added and mixed with stirring, using the apparatus of the present invention. The change in the amount of transmitted light was measured. In FIG. 5, [It / Io] × 100
The calibration relationship between the time required for (%) to reach 90.0% (activation time) and the cardran concentration is shown. As is clear from FIG. 5, a good calibration relationship was obtained in a very wide range.

【0034】実施例 4:SLP試薬測定 エンドトキシン測定用ガラス試験管に、カ−ドラン水溶
液(0〜1000pg/ミリリットル)100マイクロ
リットルとSLP試液(和光純薬工業(株)製)100
マイクロリットルを加えて撹拌混合し、本発明の装置を
使用して透過光量の変化を測定した。図6に、〔It/
Io〕×100(%)が95.0%となるまでに要する
時間(活性化時間)とカ−ドラン濃度との検量関係を示
す。図6より明らかなように、非常に広い範囲で良好な
検量関係が得られた。
Example 4: Measurement of SLP reagent In a glass test tube for measuring endotoxin, 100 microliters of a cardan aqueous solution (0 to 1000 pg / ml) and 100 SLP reagent (manufactured by Wako Pure Chemical Industries, Ltd.) were used.
Microliter was added and mixed with stirring, and the change in the amount of transmitted light was measured using the apparatus of the present invention. In FIG. 6, [It /
The relationship between the time required for Io] × 100 (%) to reach 95.0% (activation time) and the cardran concentration is shown. As is clear from FIG. 6, a good calibration relationship was obtained in a very wide range.

【0035】[0035]

【発明の効果】従来、微生物汚染の有無を判別するため
に、微生物由来成分を測定するには、マイクロプレ−ト
リ−ダ−を使用し、不十分な反応時間管理と不均一な反
応温度制御のもとに、器材汚染の危険性など信頼性の低
い状態で実施せざるを得なかった測定が、本発明の請求
項1及び11に記載の発明によれば、比濁時間分析装置
を改良し、従来の比濁時間分析装置では測定し得なかっ
た合成基質法の測定もできるので、グラム陰性細菌、真
菌、グラム陽性細菌等の微生物汚染の有無を判別するた
めの測定を容易な操作で、信頼性高くしかも効率的に実
施できるというこの種従来の微生物由来成分測定装置及
び方法には全く見られない画期的な効果を奏する。
EFFECTS OF THE INVENTION Conventionally, in order to determine the presence or absence of microbial contamination, a microplate reader has been used to measure the components derived from microorganisms, with insufficient reaction time management and uneven reaction temperature control. However, according to the invention described in claims 1 and 11 of the present invention, the turbidimetric time analyzer is improved. However, the synthetic substrate method, which could not be measured by the conventional turbidimetric time analyzer, can also be measured, so the measurement for determining the presence or absence of microbial contamination of Gram-negative bacteria, fungi, Gram-positive bacteria, etc. can be performed easily. In addition, it has an epoch-making effect that can be performed with high reliability and efficiency, which is not found at all in the conventional apparatus and method for measuring a microorganism-derived component of this kind.

【0036】また、請求項5に記載の発明は、上記請求
項1記載の効果に加えて、余分な検出部品を使用せず
に、試料キュベットの設置時点を自動的に検出でき、独
立した試料キュベット毎の反応時間が厳密に管理でき、
しかも操作は容易となる利点が得られる。また、請求項
6及び7に記載の発明は、上記請求項1記載の効果に加
えて、測定回路の安定性が向上し、測定精度が著しく向
上する。
In addition to the effect of claim 1, the invention according to claim 5 can automatically detect the installation time of the sample cuvette without using an extra detection component, and can provide an independent sample. The reaction time for each cuvette can be strictly controlled,
Moreover, there is an advantage that the operation is easy. In addition to the effects of the first aspect, the inventions of the sixth and seventh aspects improve the stability of the measurement circuit and significantly improve the measurement accuracy.

【0037】[0037]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の測定装置のブロック図である。FIG. 1 is a block diagram of a measuring apparatus of the present invention.

【図2】本発明の測定装置の斜視図である。FIG. 2 is a perspective view of the measuring device of the present invention.

【図3】比濁時間分析法によるゲル化時間とエンドトキ
シン濃度との検量関係図である。
FIG. 3 is a calibration relationship diagram between gelling time and endotoxin concentration by turbidimetric time analysis.

【図4】合成基質法による活性化時間とエンドトキシン
濃度との検量関係図である。
FIG. 4 is a calibration relationship diagram of activation time and endotoxin concentration by the synthetic substrate method.

【図5】β−グルカン測定の活性化時間とカ−ドラン
(β−グルカン)濃度との検量関係図である。
FIG. 5 is a calibration relationship diagram between activation time for β-glucan measurement and cardran (β-glucan) concentration.

【図6】SLP試薬を使用した活性化時間とカ−ドラン
濃度との検量関係図である。
FIG. 6 is a calibration relationship diagram between activation time and cardan concentration using an SLP reagent.

【符号の説明】[Explanation of symbols]

1 試料キュベット 2 青色及び/又は紫色の光を発す
る発光ダイオ−ド 3 光電検出器 4 インキュベ−タ 5 マルチプレクサ 7 A/D変換器 8 コンピュ−タ 9 測定状態表示素子 10 タイマ− 11 メモリ 16 試料キュベットホルダ−
1 sample cuvette 2 light emitting diode emitting blue and / or purple light 3 photoelectric detector 4 incubator 5 multiplexer 7 A / D converter 8 computer 9 measurement status display element 10 timer 11 memory 16 sample cuvette Holder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻野 隆三 大阪府大阪市平野区喜連東1−2−28 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryuzo Tsujino 1-2-28 Kitsurenhigashi, Hirano-ku, Osaka City, Osaka Prefecture

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】試料と反応試薬とを混合し、混合後の反応
開始による透過光量の変化を測定して微生物由来成分を
測定する装置に於いて、 前記試料と反応試薬との混合物(被検試料液)を収容す
る試料キュベットを保持する手段と、該試料キュベット
に光線を照射する青色及び/または紫色の光を発する発
光ダイオ−ドと、照射した光線の透過光量を検知する手
段と、測定開始から被検試料の透過光量が所定の割合変
化する迄の時間を検出する手段と、を具備することを特
徴とする微生物由来成分の測定装置。
1. An apparatus for measuring a microorganism-derived component by mixing a sample and a reaction reagent and measuring a change in transmitted light amount due to the start of reaction after mixing, wherein a mixture of the sample and the reaction reagent (test sample) is used. (Sample liquid) means for holding a sample cuvette, a light emitting diode for emitting blue and / or violet light for irradiating the sample cuvette with a light beam, means for detecting the amount of transmitted light of the irradiated light beam, and measurement A device for measuring a microorganism-derived component, comprising: means for detecting a time from the start until the amount of transmitted light of a test sample changes by a predetermined ratio.
【請求項2】前記測定開始から被検試料の透過光量が所
定の割合変化する迄の時間を検出する手段が、前記試料
キュベットの前記保持手段への設置時点を検出する手段
と、該設置時点の検出に連動してタイマ−を計時開始す
る手段と、該計時開始したタイマ−に連動して任意のタ
イミングで被検試料の透過光量をサンプリングして記憶
する手段とを具備する請求項1に記載の測定装置。
2. The means for detecting the time from the start of the measurement until the amount of transmitted light of the sample to be tested changes by a predetermined ratio, the means for detecting the time when the sample cuvette is installed in the holding means, and the time when the installation is performed. 2. The method according to claim 1, further comprising: a means for starting the timekeeping of the timer in association with the detection of the time, and a means for interlocking with the timer that has started the timekeeping to sample and store the amount of transmitted light of the test sample at an arbitrary timing. The measuring device described.
【請求項3】前記試料キュベットを保持する手段が、複
数個の試料キュベットを静置状態に保持し得るものであ
る請求項1に記載の測定装置。
3. The measuring device according to claim 1, wherein the means for holding the sample cuvette is capable of holding a plurality of sample cuvettes in a stationary state.
【請求項4】前記青色及び/または紫色の光を発する発
光ダイオ−ドが、発光ピ−クの半分の高さと発光スペク
トルとの交点の少なくとも一方は、波長415nm〜4
85nmの範囲内である請求項1に記載の測定装置。
4. The emission diode for emitting blue and / or violet light has a wavelength of 415 nm to 4 at least at one of the intersections of the half height of the emission peak and the emission spectrum.
The measuring device according to claim 1, which is in a range of 85 nm.
【請求項5】前記設置時点の検出手段が、前記発光ダイ
オ−ドと前記透過光量検知手段とを使用し、前記試料キ
ュベット設置に伴う透過光量の急激な変化を検出する請
求項2に記載の測定装置。
5. The method according to claim 2, wherein the detecting means at the time of setting uses the light emitting diode and the transmitted light amount detecting means to detect a rapid change in the transmitted light amount due to the setting of the sample cuvette. measuring device.
【請求項6】前記試料キュベットを恒温に保持する手段
を具備する請求項1に記載の測定装置。
6. The measuring device according to claim 1, further comprising means for holding the sample cuvette at a constant temperature.
【請求項7】前記発光ダイオ−ド及び/または前記透過
光量検知手段の温度を恒温に保持する手段を具備する請
求項1または6に記載の測定装置。
7. The measuring device according to claim 1, further comprising means for holding the temperature of the light emitting diode and / or the transmitted light amount detecting means at a constant temperature.
【請求項8】前記反応試薬が、カブトガニ血球成分を含
んでなるものである請求項1に記載の測定装置。
8. The measuring device according to claim 1, wherein the reaction reagent contains a horseshoe crab blood cell component.
【請求項9】前記反応試薬が、カイコ体液成分を含んで
なるものである請求項1に記載の測定装置。
9. The measuring device according to claim 1, wherein the reaction reagent contains a silkworm body fluid component.
【請求項10】前記反応試薬が、カブトガニ血球成分又
はカイコ体液成分と、発色合成基質である請求項1に記
載の測定装置。
10. The measuring device according to claim 1, wherein the reaction reagents are a horseshoe crab blood cell component or a silkworm body fluid component and a chromogenic synthetic substrate.
【請求項11】試料と反応試薬の混合物(被検試料液)の
調製後所定時間経過後からの透過光量が所定の割合変化
するまでの時間に基づいて微生物由来成分を測定する方
法に於いて、前記被検試料液を試料キュベットに収容し
て静置状態に保持し、該被検試料キュベットに発光ダイ
オ−ドから青色及び/または紫色の光線を照射し、照射
した光線の透過光量を検知し、前記所定時間経過後から
被検試料液の透過光量が所定の割合変化する迄の時間を
検出し、該時間に基づいて目的物を測定することを特徴
とする微生物由来成分の測定方法。
11. A method for measuring a microorganism-derived component based on the time until the amount of transmitted light changes by a predetermined ratio after a predetermined time has passed after the preparation of a mixture of a sample and a reaction reagent (test sample solution). , The test sample solution is stored in a sample cuvette and held in a stationary state, the test sample cuvette is irradiated with blue and / or purple light rays from a light emitting diode, and the amount of transmitted light of the irradiated light rays is detected. Then, a method for measuring a microorganism-derived component, which comprises detecting a time from the passage of the predetermined time until the amount of transmitted light of the test sample liquid changes by a predetermined ratio, and measuring the target substance based on the time.
【請求項12】前記透過光量の変化が、前記被検試料液
に於いて起こるゲル化反応、メラニン生成反応または色
素遊離反応に対応して生じる請求項11に記載の測定方
法。
12. The measuring method according to claim 11, wherein the change in the amount of transmitted light occurs in response to a gelling reaction, a melanin producing reaction or a dye releasing reaction occurring in the test sample solution.
JP23463996A 1995-10-05 1996-08-19 Microbe-derived component measuring apparatus and measuring method Expired - Fee Related JP3666621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23463996A JP3666621B2 (en) 1995-10-05 1996-08-19 Microbe-derived component measuring apparatus and measuring method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28243295 1995-10-05
JP7-282432 1995-10-05
JP23463996A JP3666621B2 (en) 1995-10-05 1996-08-19 Microbe-derived component measuring apparatus and measuring method

Publications (2)

Publication Number Publication Date
JPH09159671A true JPH09159671A (en) 1997-06-20
JP3666621B2 JP3666621B2 (en) 2005-06-29

Family

ID=26531676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23463996A Expired - Fee Related JP3666621B2 (en) 1995-10-05 1996-08-19 Microbe-derived component measuring apparatus and measuring method

Country Status (1)

Country Link
JP (1) JP3666621B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001716A1 (en) 2004-06-23 2006-01-05 Sharpin Rosemary Katherine Cam Improvements in and relating to micro-organism test apparatus and methods of using the same
JP2007501020A (en) * 2003-03-17 2007-01-25 チャールズ リバー ラボラトリーズ, インコーポレイテッド Methods and compositions for detection of microbial contaminants
WO2008038329A1 (en) * 2006-09-25 2008-04-03 Kowa Kabushiki Kaisha Apparatus for gelation measurement and sample cell
JP2008256530A (en) * 2007-04-05 2008-10-23 Shimadzu Corp Fluorescence detector and liquid chromatography equipped with same
JP2008275638A (en) * 2008-06-23 2008-11-13 Daicen Membrane Systems Ltd Simple instrument for measuring concentration of endotoxin
WO2008139544A1 (en) * 2007-05-01 2008-11-20 Kowa Company, Ltd. Apparatus for measuring gelation and sample cell
WO2010013702A1 (en) * 2008-07-30 2010-02-04 興和株式会社 Method for measurement of physiologically active substance derived from organism and measurement apparatus
WO2010147166A1 (en) * 2009-06-19 2010-12-23 興和株式会社 Optical reaction measurement device and optical reaction measurement method
AU2011204782B2 (en) * 2004-06-23 2011-09-08 Zyzeba Testing Limited Container for testing for micro-organisms
JP2012132878A (en) * 2010-12-24 2012-07-12 Sekisui Chem Co Ltd Vessel, system and method for detecting microorganism contaminant
JP5201214B2 (en) * 2008-12-02 2013-06-05 株式会社島津製作所 Spectrophotometer
CN103361266A (en) * 2013-07-12 2013-10-23 昆山爱达斯工业设计有限公司 Rapid multi-parameter microorganism detector
WO2014208207A1 (en) * 2013-06-26 2014-12-31 栗田工業株式会社 Device for measuring concentration of dissolved component
JP2018021918A (en) * 2017-08-23 2018-02-08 栗田工業株式会社 Concentration measurement apparatus for dissolved component
JPWO2021100367A1 (en) * 2019-11-19 2021-05-27

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939291B2 (en) 2003-03-17 2011-05-10 Charles River Laboratories, Inc. Methods for the detection of microbial contaminants
JP2007501020A (en) * 2003-03-17 2007-01-25 チャールズ リバー ラボラトリーズ, インコーポレイテッド Methods and compositions for detection of microbial contaminants
US10119969B2 (en) 2003-03-17 2018-11-06 Charles River Laboratories, Inc. Compositions for the detection of microbial contaminants
AU2011204782B2 (en) * 2004-06-23 2011-09-08 Zyzeba Testing Limited Container for testing for micro-organisms
US9260740B2 (en) 2004-06-23 2016-02-16 Zyzeba Testing Limited Micro-organism test apparatus and methods of using the same
EP1883706A4 (en) * 2004-06-23 2009-09-09 Sharpin Rosemary Katherine Cam Improvements in and relating to micro-organism test apparatus and methods of using the same
US8642323B2 (en) 2004-06-23 2014-02-04 Zyzeba Testing Limited Container for testing for micro-organisms
EP2647723A3 (en) * 2004-06-23 2014-01-15 Zyzeba Testing Limited Improvements in and relating to micro-organism test apparatus and methods of using the same
EP1883706A1 (en) * 2004-06-23 2008-02-06 Rosemary Katherine Cameron Sharpin Improvements in and relating to micro-organism test apparatus and methods of using the same
AU2005257683B2 (en) * 2004-06-23 2011-08-04 Zyzeba Testing Limited Improvements in and relating to micro-organism test apparatus and methods of using the same
WO2006001716A1 (en) 2004-06-23 2006-01-05 Sharpin Rosemary Katherine Cam Improvements in and relating to micro-organism test apparatus and methods of using the same
WO2008038329A1 (en) * 2006-09-25 2008-04-03 Kowa Kabushiki Kaisha Apparatus for gelation measurement and sample cell
JP2008256530A (en) * 2007-04-05 2008-10-23 Shimadzu Corp Fluorescence detector and liquid chromatography equipped with same
WO2008139544A1 (en) * 2007-05-01 2008-11-20 Kowa Company, Ltd. Apparatus for measuring gelation and sample cell
JP2008275638A (en) * 2008-06-23 2008-11-13 Daicen Membrane Systems Ltd Simple instrument for measuring concentration of endotoxin
WO2010013702A1 (en) * 2008-07-30 2010-02-04 興和株式会社 Method for measurement of physiologically active substance derived from organism and measurement apparatus
JP2010032436A (en) * 2008-07-30 2010-02-12 Kowa Co Method and instrument for measuring physiologically active substance originating from organism
US8697351B2 (en) 2008-07-30 2014-04-15 Kowa Company, Ltd. Method for measurement of physiologically active substance derived from organism and measurement apparatus
JP5201214B2 (en) * 2008-12-02 2013-06-05 株式会社島津製作所 Spectrophotometer
US8742351B2 (en) 2008-12-02 2014-06-03 Shimadzu Corporation Spectrophotometer
WO2010147166A1 (en) * 2009-06-19 2010-12-23 興和株式会社 Optical reaction measurement device and optical reaction measurement method
JP2011002379A (en) * 2009-06-19 2011-01-06 Kowa Co Optical reaction measuring instrument and optical reaction measuring method
JP2012132878A (en) * 2010-12-24 2012-07-12 Sekisui Chem Co Ltd Vessel, system and method for detecting microorganism contaminant
WO2014208207A1 (en) * 2013-06-26 2014-12-31 栗田工業株式会社 Device for measuring concentration of dissolved component
JP2015010836A (en) * 2013-06-26 2015-01-19 栗田工業株式会社 Concentration measurement apparatus for dissolved component
CN103361266A (en) * 2013-07-12 2013-10-23 昆山爱达斯工业设计有限公司 Rapid multi-parameter microorganism detector
JP2018021918A (en) * 2017-08-23 2018-02-08 栗田工業株式会社 Concentration measurement apparatus for dissolved component
JPWO2021100367A1 (en) * 2019-11-19 2021-05-27
WO2021100367A1 (en) 2019-11-19 2021-05-27 富士フイルム株式会社 Inspection device

Also Published As

Publication number Publication date
JP3666621B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
US10261016B2 (en) Specimen analyzing method and specimen analyzing apparatus
US5266486A (en) Method and apparatus for detecting biological activities in a specimen
JPH09159671A (en) Method and equipment for measuring components derived from microorganism
US11693019B2 (en) Automated liquid-phase immunoassay apparatus
US7854891B2 (en) Method of specimen analysis and specimen analyzer
US7842509B2 (en) Blood analyzer and blood analyzing method
US7727769B2 (en) Measurement result correction method, urine analysis system, and urine analyzer
US20040265175A1 (en) Apparatus and method for process monitoring
US11860095B2 (en) Method and sensor for detecting presence or absence of a contaminant
JP2012529048A (en) Ensuring sample validity using turbidity light scattering techniques
JP2012529048A5 (en)
EP0448923A1 (en) Method and apparatus for detecting biological activities in a specimen
JPS6222066A (en) Latex agglutination reaction measuring instrument
US20200068683A1 (en) Method to correct signal light intensities measured by a detector of a detection unit in a laboratory instrument
JP7206570B2 (en) Analysis equipment
JP2002228658A (en) Analyzer
JP2001512827A (en) Detector
JP4838086B2 (en) Chemiluminescence measuring device
JP2735901B2 (en) Method for measuring the number of living cells, dead cells, and particles other than microorganism cells of microorganisms
JP3995888B2 (en) Microbial weighing method and microorganism weighing device
CN115280155A (en) Sample analysis device and method
JPS63175749A (en) Transmitting light photometric instrument
Lähdesmäki et al. Two-parameter monitoring in a lab-on-valve manifold, applied to intracellular H 2 O 2 measurements
CN219861387U (en) Nucleic acid quantitative detection instrument based on color change of hydroxynaphthol blue indicator
CN107356568A (en) A kind of detection method by principle of fluorescent quenching quick detection saccharification hemoglobin content

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees