JPH09157713A - Method for estimating erosion line of furnace bottom and structure of furnace bottom - Google Patents
Method for estimating erosion line of furnace bottom and structure of furnace bottomInfo
- Publication number
- JPH09157713A JPH09157713A JP31796495A JP31796495A JPH09157713A JP H09157713 A JPH09157713 A JP H09157713A JP 31796495 A JP31796495 A JP 31796495A JP 31796495 A JP31796495 A JP 31796495A JP H09157713 A JPH09157713 A JP H09157713A
- Authority
- JP
- Japan
- Prior art keywords
- brick
- wear
- furnace
- furnace bottom
- bricks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Blast Furnaces (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高炉、電気炉ある
いは、これに類する高温の金属溶融体を貯留するために
内部に耐火物が内張りされた炉内の炉底の浸食ラインの
推定方法及び炉底構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace, an electric furnace, or a method for estimating an erosion line at the bottom of a furnace having a refractory lined therein for storing a high temperature metal melt. Regarding the bottom structure.
【0002】[0002]
【従来の技術】従来、高炉の炉底の侵食ラインは、実際
に稼働している高炉の耐火物内に埋め込まれた熱電対の
温度を基に、2点間の温度と距離およびその間のレンガ
の熱伝導度から熱流束を算出し、炉内稼働面の温度をそ
の材料の損耗限界温度と仮定して、残存厚みを算出する
方法で推定されている。2. Description of the Related Art Conventionally, the erosion line at the bottom of a blast furnace is based on the temperature of a thermocouple embedded in the refractory of the blast furnace that is actually operating, and the temperature and distance between the two points and the brick between them. It is estimated by the method of calculating the heat flux from the thermal conductivity of, and assuming the temperature of the operating surface in the furnace as the wear limit temperature of the material to calculate the remaining thickness.
【0003】また、特開昭60−184606号公報に見られる
ように、炉体周囲に複数個設けられた測温値を制約条件
として、境界要素法により伝熱解析を行い、レンガ残存
厚みを算出する方法等も知られている。Further, as seen in Japanese Patent Laid-Open No. 60-184606, heat transfer analysis is carried out by the boundary element method with a plurality of temperature measurement values provided around the furnace body as constraints, and the residual brick thickness is determined. A calculation method and the like are also known.
【0004】[0004]
【発明が解決しようとする課題】これらの従来の推定方
法は、実測の温度データが必要であり、事前にレンガの
侵食がどの程度進展するかを予測することができない。However, these conventional estimation methods require actually measured temperature data, and cannot predict in advance how much brick erosion will progress.
【0005】また、炉底構造については、レンガのプロ
フィールに関し、円周方向や高さ方向に滑らかな耐火物
構造とする方法 (特開平6−240322号公報) やレンガ積
みに関し、レンガ積み方向を規定し、熱応力の緩和を行
う方法 (特開昭62−96609 号公報) 等、種々の構造が提
案されている。しかし、上記したように事前にレンガの
損耗を予測する手段が十分でなかったため、レンガ損耗
を完全に制御できるようなレンガ材質の選定や炉底構造
を決定できない。Regarding the furnace bottom structure, with respect to the brick profile, a method for providing a refractory structure that is smooth in the circumferential direction and the height direction (Japanese Patent Laid-Open No. 6-240322) and brick stacking Various structures have been proposed, such as a method for regulating and relaxing thermal stress (Japanese Patent Laid-Open No. 62-96609). However, as described above, there is not sufficient means for predicting brick wear in advance, so it is not possible to select a brick material or a furnace bottom structure that can completely control brick wear.
【0006】特に、高炉においては、従来の典型的な炉
底構造は、図4に示すように、炉内側(内張り)には粘
土質系レンガである耐火レンガ3を、炉外側つまり鉄皮
1側(外張り)にはカーボン質系レンガ2を配して、炉
底侵食の防止と長寿命化を計っている。ここで、重要な
のは、内部に内張りした耐火レンガ3が長期間残存し、
内部の高温溶融体の温度低下を防止するとともに、炉底
レンガの侵食を最小限に止めておくことである。Particularly in a blast furnace, as shown in FIG. 4, the conventional typical furnace bottom structure has a refractory brick 3 which is a clay-based brick inside the furnace (lining) and the outside of the furnace, that is, the steel shell 1. A carbonaceous brick 2 is arranged on the side (outer surface) to prevent bottom erosion and extend the service life. Here, what is important is that the refractory bricks 3 lined inside remain for a long time,
This is to prevent the temperature of the high-temperature melt inside from decreasing and to keep the erosion of the furnace bottom brick to a minimum.
【0007】本発明は、炉底レンガの平衡損耗ラインを
精度良く推定する方法および炉底レンガの浸食を可及的
少に抑えることができる炉底構造を提供することを課題
とする。An object of the present invention is to provide a method for accurately estimating the equilibrium wear line of a hearth brick and a hearth structure capable of suppressing the erosion of the hearth brick as much as possible.
【0008】[0008]
【課題を解決するための手段】本発明者等は、種々の実
験を重ね、炉底部における溶銑の流動とレンガも含めた
領域の伝熱現象およびレンガの損耗条件が明らかであれ
ば、これらを記述する数式モデルを構成して、それらを
連立して時間進展して解けば、炉底レンガの損耗ライン
の時間推移を正確に推定できることを知見して本発明を
完成した。Means for Solving the Problems The inventors of the present invention have conducted various experiments, and if the flow of molten pig iron at the bottom of the furnace and the heat transfer phenomenon in the region including bricks and the conditions of brick wear are clear, The present invention has been completed by finding that it is possible to accurately estimate the time transition of the wear line of the hearth bottom bricks by constructing the mathematical models to be described and solving them by advancing them in parallel and solving them.
【0009】本発明に係る炉底の浸食ラインの推定方法
は、レンガで内張りされた炉内に溶融した金属溶融体の
物質収支式、運動量収支式および、レンガを含めた全領
域のエネルギー収支式にもとづいて、炉底部におけるレ
ンガの温度分布と金属溶融体の流動と温度分布とを算出
し、その算出された温度分布を基準にレンガの損耗を判
定しつつレンガの損耗進展を算出する数学モデルにより
レンガ損耗が停止するまで計算を行い、炉底レンガの損
耗経緯と平衡損耗ラインとを推定することを特徴とす
る。The method for estimating the erosion line of the bottom of the furnace according to the present invention is the mass balance equation, momentum balance equation, and energy balance equation for the entire area including the brick of the molten metal melted in the brick lined furnace. Based on this, the temperature distribution of the bricks in the furnace bottom and the flow and temperature distribution of the metal melt are calculated, and a mathematical model for calculating the wear progress of the bricks while determining the wear of the bricks based on the calculated temperature distribution. The calculation is performed until the brick wear is stopped by, and the history of wear of the furnace bottom brick and the equilibrium wear line are estimated.
【0010】本発明に係る炉底構造は、カーボン質系レ
ンガを外張り材とし、粘土質系レンガを内張り材として
なる炉底構造において、全てをカーボン質系レンガで構
成したと仮定し、炉内に溶融した金属溶融体の物質収支
式、運動量収支式および、レンガを含めた全領域のエネ
ルギー収支式にもとづいて、炉底部におけるレンガの温
度分布と金属溶融体の流動と温度分布とを算出し、その
算出された温度分布を基準にレンガの損耗を判定しつつ
レンガの損耗進展を算出する数学モデルによりレンガ損
耗が停止するまで計算を行って推定された炉底レンガの
平衡損耗ラインにおける残存レンガ厚み以下の厚みに設
定された外張りとなるカーボン質系レンガと、カーボン
質系レンガの内側に内張りされた粘土質系レンガとを備
えたことを特徴とする。In the hearth bottom structure according to the present invention, it is assumed that carbonaceous bricks are used as an outer lining material and clayey bricks are used as an inner lining material, and that all are composed of carbonaceous bricks. Calculate the temperature distribution of bricks at the bottom of the furnace and the flow and temperature distribution of the metal melt based on the mass balance equation, momentum balance equation, and energy balance equation for the entire area of the molten metal in the furnace The remaining in the equilibrium wear line of the hearth brick estimated by performing calculations until the brick wear stops by a mathematical model that calculates the wear progress of the brick while determining the brick wear based on the calculated temperature distribution Characterized by having a carbonaceous brick that is an outer lining set to a thickness equal to or less than the brick thickness, and a clayey brick lined inside the carbonaceous brick That.
【0011】[0011]
【発明の実施の形態】以下、本発明の一実施形態による
炉底の浸食ラインの推定方法および炉底構造を図面に基
づいて説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method of estimating an erosion line of a furnace bottom and a structure of the furnace bottom according to an embodiment of the present invention will be described with reference to the drawings.
【0012】まず、一実施形態の作用を以下に述べる。
高炉の炉底部をその構造体であるレンガ、その内容物で
ある溶銑およびコークス充填層とからなるとし、溶銑の
物質収支式(1) 、運動量収支(2) 、およびレンガを含め
た全領域のエネルギー収支式(3) は以下の通りである。First, the operation of one embodiment will be described below.
The bottom of the blast furnace is made up of the structure of bricks, its contents of hot metal and coke packed bed, and the hot metal mass balance equation (1), momentum balance (2), and the entire area including bricks Energy balance equation (3) is as follows.
【0013】[0013]
【数1】 (Equation 1)
【0014】 U:速度ベクトル、 ρ:密度、 p:圧力、 μ:粘度、 β:体積膨張係数、 g:重力加速度、 Cp :比熱、 T:温度、 To :基準温度、 λ:熱伝導度、 ε:空隙率、 φ:粒子形状係数、 dp :粒子径 上式の(1) 〜(3) を連立して解けば、溶銑の流動と全領
域のおける温度の時間推移を求めることができる。そし
て求めた温度に基づいてレンガの損耗を判定しながら時
間進展すれば、炉底レンガの損耗進展を記述することが
可能となる。その手順を図1に示す。図1では、まずス
テップS1で炉底レンガの初期構造を与える。これによ
り格子の生成を行う。[0014] U: velocity vector, [rho: density, p: pressure, mu: Viscosity, beta: volume expansion coefficient, g: gravitational acceleration, Cp: specific heat, T: temperature, T o: the reference temperature, lambda: thermal conductivity , Ε: porosity, φ: particle shape factor, d p : particle size If the above equations (1) to (3) are solved simultaneously, the hot metal flow and the temperature change over time can be obtained. it can. Then, if the time is progressed while judging the wear of the brick based on the obtained temperature, it is possible to describe the wear progress of the furnace bottom brick. The procedure is shown in FIG. In FIG. 1, first, in step S1, an initial structure of a bottom brick is provided. This creates a grid.
【0015】ステップS2では、3つの変数U,p,T
(速度ベクトル,圧力,温度)の初期条件を設定する。
ステップS3では、溶銑の流入条件を設定する。ステッ
プS4では時間tをΔtだけ進展させる。In step S2, three variables U, p, T
Set the initial conditions of (velocity vector, pressure, temperature).
In step S3, the inflow condition of the hot metal is set. In step S4, the time t is advanced by Δt.
【0016】ステップS5では、上記(1),(2)式
によりt=t+Δtにおける速度ベクトルUおよび圧力
pを求める。ステップS6では、上記(3)式よりt=
t+Δtにおける温度Tを求める。ステップS7では、
温度Tに基づいてレンガの損耗を判定する。In step S5, the velocity vector U and the pressure p at t = t + Δt are obtained by the above equations (1) and (2). In step S6, t =
Find the temperature T at t + Δt. In step S7,
The brick wear is determined based on the temperature T.
【0017】ここで、レンガの損耗判定は、カーボン質
系レンガの場合、溶銑への溶解損耗があるため、溶銑の
凝固温度である1150℃を基準にして行い、粘土質系レン
ガの場合は、その溶融温度を限界温度に設定する。これ
以上の温度に到達したレンガは、溶銑と置き換えること
によりレンガを順次、取り除く。Here, in the case of carbonaceous bricks, the abrasion loss of the bricks is determined based on 1150 ° C., which is the solidification temperature of the molten pig iron, because there is dissolution loss to the molten pig iron. The melting temperature is set to the limit temperature. Brick that has reached a temperature above this is replaced with hot metal to remove the bricks one after another.
【0018】たとえば、このステップ7では計算により
算出されたレンガ内にある格子点温度が、上記の限界温
度を越えたとき、その計算を行った格子点上の物性 [密
度、熱伝導度、粘度 (但しレンガでは粘度は必要ない)]
を溶銑のそれと入れ替えることにより、レンガの損耗判
定と溶銑との置き換えを行う。For example, in this step 7, when the temperature of the lattice point in the brick calculated by the calculation exceeds the above-mentioned limit temperature, the physical properties on the calculated lattice point [density, thermal conductivity, viscosity (However, brick does not need viscosity)]
By replacing the with that of the hot metal, the brick wear is determined and the hot metal is replaced.
【0019】ステップS8では、レンガの損耗が終了し
たか否かを判定し、終了と判定するまでステップS4に
戻り計算を進展させる。そして、ステップS8で最終的
には、レンガが損耗しなくなった時点で、平衡侵食に達
したと判断する。その結果、ステップS9でレンガの平
衡侵食ラインが求められる。In step S8, it is judged whether or not the wear of the bricks has ended, and the process returns to step S4 to proceed with the calculation until it is judged that the wear has ended. Then, in step S8, it is finally determined that the equilibrium erosion has been reached when the brick is no longer worn. As a result, the equilibrium erosion line of the brick is obtained in step S9.
【0020】そして、このとき、すべてのレンガがカー
ボン質系レンガで構成されていたと仮定して、平衡損耗
ラインを求めると、それ以上のレンガ損耗が進展するこ
とがないため、図4において、少なくともその平衡損耗
ラインかそれ以下の厚みをカーボン質系レンガ2の初期
レンガ厚みとして鉄皮1の内側に外張りし、その内側に
粘土質系レンガである耐火レンガ3を内張りにすれば、
カーボン質系レンガ2より耐火性のある耐火レンガ3は
残存することになり、炉底の侵食を少なくすることがで
き、耐火レンガ3を残存させることが可能となる。ここ
に、カーボン質系レンガおよび粘土質系レンガの代表的
な組成と物性値とを以下に示す。At this time, if all the bricks are made of carbonaceous bricks and the equilibrium wear line is obtained, no further brick wear progresses. Therefore, in FIG. If the thickness of the equilibrium wear line or less is used as the initial brick thickness of the carbonaceous brick 2 and is lined on the inside of the steel shell 1, and the refractory brick 3 which is a clay type brick is lined on the inside,
The refractory bricks 3 having higher fire resistance than the carbonaceous bricks 2 remain, the erosion of the furnace bottom can be reduced, and the refractory bricks 3 can be left. Typical compositions and physical properties of carbonaceous bricks and clayey bricks are shown below.
【0021】[0021]
【表1】 [Table 1]
【0022】[0022]
【実施例】本法による炉底レンガの平衡損耗ラインの推
定結果と実際に稼働していた高炉の停止後の解体調査よ
り得られた実測結果との比較を図3に示す。また、この
ときの炉体寸法を図2に、その操業条件を表2に示す。EXAMPLE FIG. 3 shows a comparison between the estimation result of the equilibrium wear line of the bottom brick by this method and the actual measurement result obtained from the dismantling investigation after the shutdown of the blast furnace which was actually operating. Further, the dimensions of the furnace body at this time are shown in FIG. 2, and the operating conditions are shown in Table 2.
【0023】図3に示すように、(a)に示す本発明方
法による推定は、(b)に示す実測結果をうまく再現
し、その有用性は明らかである。つまり、本発明方法に
より推定された平衡損耗ラインにより浸食ラインを精度
良く推定できるとともに、推定された平衡消耗ライン厚
みと同じかそれ以下の厚みにカーボン質系レンガの厚み
を設定することで炉内浸食を最小限に止めることができ
る。As shown in FIG. 3, the estimation by the method of the present invention shown in (a) successfully reproduces the actual measurement result shown in (b), and its usefulness is clear. That is, the erosion line can be accurately estimated by the equilibrium wear line estimated by the method of the present invention, and the thickness of the carbonaceous bricks is set to the same as or less than the estimated equilibrium wear line thickness in the furnace. Erosion can be minimized.
【0024】[0024]
【表2】 [Table 2]
【0025】なお、上記炉体寸法は、図2に示すよう
に、下記の通りであった。 a:レンガ内径(炉中心からレンガ内面までの距離) b:炉頂部内径(出銑孔位置での炉中心からレンガ外面
までの距離) c:炉底部内径(炉底位置での炉中心からレンガ外面ま
での距離) h0:炉頂からレンカ゛ までの距離(出銑孔から底部レンカ゛ 外
面までの距離) h1:炉高さ(出銑孔から底部レンガ内面までの距離)The dimensions of the furnace body were as follows, as shown in FIG. a: Inner diameter of brick (distance from center of furnace to inner surface of brick) b: Inner diameter of furnace top (distance from center of furnace to outer surface of brick at tap hole position) c: Inner diameter of furnace bottom (furnace center to furnace at position of bottom of brick) Distance to outer surface) h 0 : Distance from furnace top to lenght (distance from taphole to bottom lenght outer surface) h 1 : Height of furnace (distance from taphole to bottom brick inner surface)
【0026】[0026]
【発明の効果】このように、本発明によれば、炉底レン
ガの平衡損耗ラインが、前もって予測することができ、
炉底レンガを適切に設計することができる。その結果、
炉底レンガの侵食を極力少なくすることができ、耐火レ
ンガを残存させることが可能ととなる。As described above, according to the present invention, the equilibrium wear line of the bottom brick can be predicted in advance,
The bottom brick can be designed appropriately. as a result,
Erosion of furnace bottom bricks can be minimized, and refractory bricks can remain.
【図1】炉底レンガの侵食推移を算出する手順を示すフ
ローチャートである。FIG. 1 is a flowchart showing a procedure for calculating an erosion transition of a hearth brick.
【図2】炉体寸法を説明する模式図である。FIG. 2 is a schematic diagram illustrating dimensions of a furnace body.
【図3】本法による炉底レンガの平衡損耗ライン推定結
果と実高炉の稼働停止後のレンガ損耗ライン実測結果と
の比較を示す図である。FIG. 3 is a diagram showing a comparison between the equilibrium wear line estimation result of the bottom brick by this method and the brick wear line measurement result after the operation of the actual blast furnace is stopped.
【図4】典型的な高炉炉底部の構造を示す図である。FIG. 4 is a diagram showing a structure of a typical bottom of a blast furnace.
1:鉄皮、2:カーボン質系レンガ、3:耐火レンガ 1: Iron skin, 2: Carbon-based brick, 3: Fireproof brick
Claims (2)
属溶融体の物質収支式、運動量収支式および、レンガを
含めた全領域のエネルギー収支式にもとづいて、炉底部
におけるレンガの温度分布と金属溶融体の流動と温度分
布とを算出し、その算出された温度分布を基準にレンガ
の損耗を判定しつつレンガの損耗進展を算出する数学モ
デルによりレンガ損耗が停止するまで計算を行い、炉底
レンガの損耗経緯と平衡損耗ラインとを推定する炉底の
浸食ラインの推定方法。1. The temperature distribution of bricks at the bottom of the furnace is based on the mass balance equation, momentum balance equation, and energy balance equation for the entire area including bricks of the molten metal melted in the brick-lined furnace. Calculate the flow and temperature distribution of the metal melt, calculate until the brick wear is stopped by a mathematical model that calculates the wear progress of the brick while determining the wear of the brick based on the calculated temperature distribution, the furnace, A method for estimating the erosion line of the furnace bottom for estimating the wear history of the bottom brick and the equilibrium wear line.
土質系レンガを内張り材としてなる炉底構造において、 全てをカーボン質系レンガで構成したと仮定し、炉内に
溶融した金属溶融体の物質収支式、運動量収支式およ
び、レンガを含めた全領域のエネルギー収支式にもとづ
いて、炉底部におけるレンガの温度分布と金属溶融体の
流動と温度分布とを算出し、その算出された温度分布を
基準にレンガの損耗を判定しつつレンガの損耗進展を算
出する数学モデルによりレンガ損耗が停止するまで計算
を行って推定された炉底レンガの平衡損耗ラインにおけ
る残存レンガ厚み以下の厚みに設定された外張りとなる
カーボン質系レンガと、 該カーボン質系レンガの内側に内張りされた粘土質系レ
ンガと、を備えたことを特徴とする炉底構造。2. In a furnace bottom structure in which a carbonaceous brick is used as an outer lining material and a clayey brick is used as an inner lining material, it is assumed that all are made of carbonaceous bricks, and a metal melt melted in the furnace. Based on the mass balance equation, the momentum balance equation, and the energy balance equation for the entire area including bricks, the temperature distribution of the bricks in the furnace bottom and the flow and temperature distribution of the metal melt are calculated, and the calculated temperature Set the thickness equal to or less than the remaining brick thickness in the equilibrium wear line of the hearth brick estimated by performing calculations until the brick wear stops by calculating the brick wear progress while determining the brick wear based on the distribution A furnace bottom structure comprising: a carbonaceous brick that serves as an external lining, and a clayey brick that is lined inside the carbonaceous brick.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31796495A JP3385831B2 (en) | 1995-12-06 | 1995-12-06 | Estimation method of hearth erosion line and hearth structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31796495A JP3385831B2 (en) | 1995-12-06 | 1995-12-06 | Estimation method of hearth erosion line and hearth structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09157713A true JPH09157713A (en) | 1997-06-17 |
JP3385831B2 JP3385831B2 (en) | 2003-03-10 |
Family
ID=18093968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31796495A Expired - Lifetime JP3385831B2 (en) | 1995-12-06 | 1995-12-06 | Estimation method of hearth erosion line and hearth structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3385831B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016505714A (en) * | 2012-12-13 | 2016-02-25 | エスジーエル・カーボン・エスイー | Side wall bricks for electrolytic dredging walls to reduce aluminum |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6493096B2 (en) * | 2014-09-17 | 2019-04-03 | 新日鐵住金株式会社 | Blast furnace bottom structure |
-
1995
- 1995-12-06 JP JP31796495A patent/JP3385831B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016505714A (en) * | 2012-12-13 | 2016-02-25 | エスジーエル・カーボン・エスイー | Side wall bricks for electrolytic dredging walls to reduce aluminum |
Also Published As
Publication number | Publication date |
---|---|
JP3385831B2 (en) | 2003-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2902805T3 (en) | System and operating procedure of a discontinuous melting furnace | |
WO2011089621A2 (en) | A soft sensor based on-line decision system for metallurgical processes | |
JP6669024B2 (en) | Method of estimating hot metal flow velocity in blast furnace and operating method of blast furnace | |
JP3385831B2 (en) | Estimation method of hearth erosion line and hearth structure | |
JP4119620B2 (en) | In-furnace situation estimation method for blast furnace | |
JP5381892B2 (en) | Estimation method of bottom erosion line and bottom structure | |
WO2014030118A2 (en) | A method and a system for determination of refractory wear profile in a blast furnace | |
JPH11335721A (en) | Method for controlling temperature of molten metal in secondary refining and apparatus therefor | |
JP6373783B2 (en) | Management method of molten steel pan | |
JP2669279B2 (en) | Blast furnace operation method | |
JP5963655B2 (en) | Three-phase AC electrode type circular electric furnace and its cooling method | |
JP5854200B2 (en) | Blast furnace operation method | |
Agrawal et al. | Effect of hearth liquid level on the productivity of blast furnace | |
JP4081248B2 (en) | Control method of the lower part of the blast furnace | |
Neri et al. | Energy demand in secondary steel making process: numerical analysis to assess the influence of the ladle working lining properties | |
JP2013127352A (en) | Cooling method for three-phase ac electrode type circular electric furnace and the three-phase ac electrode type circular electric furnace | |
JPH07278627A (en) | Cooling piping for bottom of blast furnace and method for cooling bottom of blast furnace | |
JPH0230707A (en) | Method for operating blast furnace | |
JP6493096B2 (en) | Blast furnace bottom structure | |
JPS6137327B2 (en) | ||
JP3378984B2 (en) | Melting completion detection method in plasma melting furnace | |
Ossia et al. | Optimization of Blast Furnace Throughput Based on Hearth Refractory Lining and Shell Thickness | |
Zietsman et al. | Ilmenite smelter freeze lining monitoring by thermocouple measurements: model results | |
JPH0586411A (en) | Method for assuming eroded line in furnace bottom of blast furnace | |
Petegnief et al. | Temperature control of liquid steel for billet and bloom casting: the French experience |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021203 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080110 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090110 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100110 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110110 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120110 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130110 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130110 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130110 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140110 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |