JPH0915601A - Method for reforming substance surface by irradiation of ultraviolet rays and ultraviolet irradiation device - Google Patents

Method for reforming substance surface by irradiation of ultraviolet rays and ultraviolet irradiation device

Info

Publication number
JPH0915601A
JPH0915601A JP16185095A JP16185095A JPH0915601A JP H0915601 A JPH0915601 A JP H0915601A JP 16185095 A JP16185095 A JP 16185095A JP 16185095 A JP16185095 A JP 16185095A JP H0915601 A JPH0915601 A JP H0915601A
Authority
JP
Japan
Prior art keywords
ultraviolet light
light
irradiation
ultraviolet
irradiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16185095A
Other languages
Japanese (ja)
Other versions
JP3588703B2 (en
Inventor
Katsufumi Omuro
克文 大室
Yoshiro Koike
善郎 小池
Takashi Tsuyuki
俊 露木
Yoji Suzuki
洋二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16185095A priority Critical patent/JP3588703B2/en
Publication of JPH0915601A publication Critical patent/JPH0915601A/en
Application granted granted Critical
Publication of JP3588703B2 publication Critical patent/JP3588703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE: To provide an ultraviolet irradiation device which is inexpensive and whose service life is long by including nearly mutually parallel light beam in plural line images which are perpendicularly projected on a plane perpendicular to a 1st direction and crossing each other. CONSTITUTION: A part of the ultraviolet rays radiated from a straight tube type high voltage mercury lamp 11 is reflected by a cold mirror 12 and irradiates an irradiation surface. The line images obtained by perpendicularly projecting the optical axis of the ultraviolet ray reflected by the cold mirror 12 on the plane perpendicular to a y-axis become nearly parallel as shown by UV1. The ultraviolet ray directly radiated downward in figure from the lamp 11 is shielded by a direct light shielding plate 13. The light radiated obliquely downward in figure from the lamp 11 and leaked from both sides of the shielding plate 13 is shielded by an aperture member 14. Thus, the ultraviolet rays which make the perpendicularly projected images on the plane perpendicular to the y-axis nearly parallel are obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、紫外光照射による物質
表面の改質技術に関し、特に、液晶表示パネルの配向膜
の直線状領域に紫外光を照射して、紫外光照射領域のプ
レチルト角を制御する方法に適した紫外光照射による物
質表面の改質技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for modifying a surface of a material by irradiating ultraviolet light, and more particularly, to irradiating a linear region of an alignment film of a liquid crystal display panel with ultraviolet light to obtain a pretilt angle of the ultraviolet light irradiation region. The present invention relates to a technique for modifying the surface of a substance by irradiating ultraviolet light, which is suitable for a method of controlling the temperature.

【0002】[0002]

【従来の技術】液晶表示パネルの視角特性を改善する技
術として、1画素内にプレチルト方向が異なる少なくと
も2つの領域を形成する技術が知られている。従来、プ
レチルト方向が異なる領域を形成するために、各領域ご
とに異なるプレチルト角を有する配向膜を形成する方法
が用いられてきた。近年、複数の配向膜を形成する方法
に代わって、紫外光の照射により配向膜の表面改質を行
い、プレチルト角を制御する方法が考えられている。
2. Description of the Related Art As a technique for improving the viewing angle characteristics of a liquid crystal display panel, a technique for forming at least two regions having different pretilt directions within one pixel is known. Conventionally, in order to form regions having different pretilt directions, a method of forming an alignment film having a different pretilt angle for each region has been used. In recent years, instead of the method of forming a plurality of alignment films, a method of controlling the pretilt angle by modifying the surface of the alignment film by irradiation with ultraviolet light has been considered.

【0003】配向膜表面に紫外光を照射すると、表面エ
ネルギが増加しプレチルト角が低下することが知られて
いる。従って、1画素内に紫外光照射領域と非照射領域
とを設けることにより、相互にプレチルト角の異なる領
域を形成することができる。
It is known that when the alignment film surface is irradiated with ultraviolet light, the surface energy increases and the pretilt angle decreases. Therefore, by providing an ultraviolet light irradiation region and a non-irradiation region within one pixel, regions having different pretilt angles can be formed.

【0004】図9は、従来の紫外光照射装置の概略図を
示す。高圧水銀ランプ100から放射された紫外線が放
物面コールドミラー101で反射し集光される。集光点
にはインテグレータ102が配置されている。インテグ
レータ102を透過した紫外光はミラー103で反射
し、コリメータ104でコリメートされる。コリメート
された紫外光は、マスク105を通して処理対象物10
6に照射される。
FIG. 9 shows a schematic view of a conventional ultraviolet light irradiation apparatus. The ultraviolet rays emitted from the high-pressure mercury lamp 100 are reflected by the parabolic cold mirror 101 and condensed. An integrator 102 is arranged at the condensing point. The ultraviolet light transmitted through the integrator 102 is reflected by the mirror 103 and collimated by the collimator 104. The collimated ultraviolet light passes through the mask 105 and the object 10 to be processed.
6 is irradiated.

【0005】マスク105には、紫外光を透過する領域
と遮光する領域とが形成されている。コリメートされた
紫外光がマスク105を通して処理対象物106に照射
されるため、処理対象物106の表面のうちマスク10
5の紫外光透過領域に対応する領域のみに紫外光が照射
される。このようにして、所望の領域にのみ紫外光を照
射して、表面を改質することができる。
The mask 105 is provided with a region that transmits ultraviolet light and a region that blocks ultraviolet light. Since the collimated ultraviolet light irradiates the processing object 106 through the mask 105, the mask 10 on the surface of the processing object 106 is masked.
Only the area corresponding to the ultraviolet light transmitting area 5 is irradiated with the ultraviolet light. In this way, the surface can be modified by irradiating only desired regions with ultraviolet light.

【0006】[0006]

【発明が解決しようとする課題】図9に示す従来の紫外
光照射装置は、平行度の高い紫外光を得るために点光源
を用いていた。点光源から放射された紫外光を、照射面
内で一様な強度分布を持つコリメート光に変換するため
に、放物面コールドミラー101、インテグレータ10
2、コリメータ104等の光学部品が必要である。波長
256nm以下の短波長紫外光を扱う光学部品は、通常
のフォトリソグラフィで使用されているi、h、g線用
の光学部品に比べて高価である。
The conventional ultraviolet light irradiation apparatus shown in FIG. 9 uses a point light source in order to obtain ultraviolet light with high parallelism. In order to convert the ultraviolet light emitted from the point light source into collimated light having a uniform intensity distribution on the irradiation surface, a parabolic cold mirror 101 and an integrator 10 are provided.
2. Optical components such as the collimator 104 are required. An optical component that handles short-wavelength ultraviolet light having a wavelength of 256 nm or less is more expensive than an optical component for i-, h-, and g-rays used in ordinary photolithography.

【0007】また、照射される紫外光の平行度が高いた
め、マスク表面にゴミが付着していると処理対象物表面
にゴミの影ができる。影になった領域は、表面改質が行
われないため、液晶表示パネルの表示特性が悪化する。
Further, since the irradiated ultraviolet light has a high degree of parallelism, when dust adheres to the mask surface, a shadow of dust is formed on the surface of the object to be treated. Since the surface modification is not performed on the shaded area, the display characteristics of the liquid crystal display panel are deteriorated.

【0008】本発明の目的は、比較的低価格の紫外光照
射装置及び照射方法を提供することである。本発明の他
の目的は、マスクに付着したゴミの影響を受けにくい紫
外光照射装置及び照射方法を提供することである。
An object of the present invention is to provide an ultraviolet light irradiation apparatus and irradiation method which are relatively inexpensive. Another object of the present invention is to provide an ultraviolet light irradiation device and an irradiation method that are not easily affected by dust attached to a mask.

【0009】[0009]

【課題を解決するための手段】本発明の一観点による
と、紫外光によって改質される表面を有する物質の該表
面の第1の方向に対して平行な方向に延在する少なくと
も1本の直線状の領域に、向きの異なる複数の光線を含
む紫外光であって、該複数の光線を前記第1の方向に対
して平行な平面に垂直投影した複数の線像が相互に交わ
り、該複数の光線を前記第1の方向に対して垂直な平面
に垂直投影した複数の線像が相互にほぼ平行である前記
紫外光を照射して、前記表面を改質する紫外線照射工程
を含む物質表面改質方法が提供される。
SUMMARY OF THE INVENTION According to one aspect of the invention, at least one substance of a material having a surface that is modified by ultraviolet light extends in a direction parallel to the first direction of the surface. In a linear region, which is ultraviolet light including a plurality of light rays with different directions, a plurality of line images obtained by vertically projecting the plurality of light rays onto a plane parallel to the first direction intersect with each other, and A substance including an ultraviolet irradiation step of modifying the surface by irradiating the ultraviolet light in which a plurality of line images obtained by vertically projecting a plurality of light rays on a plane perpendicular to the first direction are substantially parallel to each other. A surface modification method is provided.

【0010】本発明の他の観点によると、前記紫外光照
射工程の前に、さらに、遮光領域と透過領域が前記第1
の方向に対して平行なラインアンドスペースパターン状
に形成されたフォトマスクを、前記表面の上に配置する
工程を含む物質表面改質方法が提供される。
According to another aspect of the present invention, before the step of irradiating with the ultraviolet light, the light-shielding region and the transmitting region are further provided with the first region.
There is provided a method for modifying the surface of a material, which comprises the step of disposing a photomask formed in a line-and-space pattern parallel to the above direction on the surface.

【0011】本発明の他の観点によると、前記紫外光照
射工程が、前記表面の前記第1の方向に沿った一方向に
長い照射領域内の前記透過領域に対応する領域に前記紫
外光を照射する工程と、前記表面内において、前記第1
の方向に交わる第2の方向に、前記照射領域を移動させ
る工程とを含む物質表面改質方法が提供される。
According to another aspect of the present invention, in the step of irradiating the ultraviolet light, the ultraviolet light is applied to a region corresponding to the transmission region in an irradiation region which is long in one direction along the first direction of the surface. In the step of irradiating and in the surface, the first
And a step of moving the irradiation region in a second direction that intersects with the direction.

【0012】本発明の他の観点によると、紫外光によっ
て改質される表面を有する処理対象物の該表面の上に、
遮光領域と透過領域がラインアンドスペースパターン状
に形成されたフォトマスクを配置する工程と、前記ライ
ンアンドスペースパターンの各ラインの長さ方向に対し
て平行に配置された直線状の紫外線ランプを含む光源か
ら、前記フォトマスクを介して前記表面に紫外光を照射
する工程とを含む物質表面改質方法が提供される。
According to another aspect of the present invention, on the surface of the object to be treated having a surface modified by ultraviolet light,
Including a step of disposing a photomask in which light-shielding areas and transmissive areas are formed in a line-and-space pattern, and a linear ultraviolet lamp arranged in parallel to a length direction of each line of the line-and-space pattern A method of modifying the surface of a material is provided, which comprises irradiating the surface with ultraviolet light from a light source through the photomask.

【0013】本発明の他の観点によると、向きの異なる
複数の光線を含み、該複数の光線を第1の方向に平行な
平面に垂直投影した複数の線像が相互に交わり、該複数
の光線を前記第1の方向に垂直な平面に垂直投影した複
数の線像が相互にほぼ平行である紫外光を放射する光源
と、前記光源から放射された紫外光を照射すべき表面を
有する処理対象物を載置するための載置台と、前記光源
と前記処理対象物の表面との距離が変化しないように、
前記光源と前記載置台との相対位置を前記第1の方向に
交わる方向に変化させる移動手段とを有する紫外光照射
装置が提供される。
According to another aspect of the present invention, a plurality of line images which include a plurality of light rays having different directions, and which are obtained by vertically projecting the plurality of light rays onto a plane parallel to the first direction intersect with each other, A process having a light source for emitting ultraviolet light in which a plurality of line images obtained by vertically projecting light rays onto a plane perpendicular to the first direction are substantially parallel to each other, and a surface to be irradiated with the ultraviolet light emitted from the light source. A mounting table for mounting an object, so that the distance between the light source and the surface of the processing object does not change,
There is provided an ultraviolet light irradiation device having a moving unit that changes a relative position between the light source and the mounting table in a direction intersecting with the first direction.

【0014】[0014]

【作用】第1の方向に対して平行な平面に垂直投影した
複数の線像が相互に交わり、第1の方向に対して垂直な
平面に垂直投影した複数の線像が相互にほぼ平行な光線
を含む紫外光は、直線状の紫外光源から生成することが
できる。直線状の紫外光源は、点光源に比べて安価であ
りかつ寿命も長い。従って、安価でかつ長寿命の紫外光
照射装置を得ることができる。
The plurality of line images vertically projected on the plane parallel to the first direction intersect with each other, and the plurality of line images vertically projected on the plane perpendicular to the first direction are substantially parallel to each other. Ultraviolet light including light rays can be generated from a linear ultraviolet light source. A linear ultraviolet light source is cheaper and has a longer life than a point light source. Therefore, an inexpensive and long-life ultraviolet light irradiation device can be obtained.

【0015】このような直線状光源から生成される紫外
光は、処理対象物表面上に第1の方向に長い照射領域を
有する。処理対象物表面と光源とを相対的に移動して、
照射領域を第1の方向に交わる方向に移動することによ
り、処理対象物表面上の広い領域を照射することができ
る。
The ultraviolet light generated from such a linear light source has a long irradiation area in the first direction on the surface of the object to be treated. By moving the surface of the object to be processed and the light source relatively,
By moving the irradiation area in the direction intersecting the first direction, it is possible to irradiate a wide area on the surface of the processing object.

【0016】第1の方向に平行なラインアンドスペース
パターンを有するフォトマスクを介して、この紫外光を
照射すると、マスクのラインアンドスペースパターンの
紫外光透過領域に対応する領域を位置精度よく照射する
ことができる。第1の方向に平行な平面内においては、
紫外光が種々の進行方向を含むため、マスク表面にゴミ
が付着していても照射面上にその影ができにくい。従っ
て、ゴミによる未照射領域の発生を防止することができ
る。
When this ultraviolet light is irradiated through a photomask having a line and space pattern parallel to the first direction, a region corresponding to the ultraviolet light transmitting region of the line and space pattern of the mask is irradiated with high positional accuracy. be able to. In a plane parallel to the first direction,
Since ultraviolet light includes various traveling directions, even if dust is attached to the mask surface, it is difficult to form a shadow on the irradiation surface. Therefore, it is possible to prevent the generation of an unirradiated area due to dust.

【0017】[0017]

【実施例】図1は、本発明の実施例による紫外光照射装
置を概略的に示す斜視図である。実施例による紫外線照
射装置は、紫外光源10、基板載置台20、移動機構3
0を含んで構成されている。紫外光照射時には、基板載
置台20の載置面上に処理対象基板40を載置し、その
上にマスク50を配置する。
1 is a perspective view schematically showing an ultraviolet light irradiation apparatus according to an embodiment of the present invention. The ultraviolet irradiation device according to the embodiment includes an ultraviolet light source 10, a substrate mounting table 20, and a moving mechanism 3.
0 is included. At the time of irradiation with ultraviolet light, the substrate 40 to be processed is placed on the placement surface of the substrate placing table 20, and the mask 50 is placed thereon.

【0018】基板載置台20の載置面内の図中横方向に
x軸、奥行き方向にy軸を有するxy座標を考える。載
置台20の上方に紫外光源10が配置されている。紫外
光源10は、直管型の高圧水銀ランプ11、高圧水銀ラ
ンプ11の長さ方向に長く、長さ方向に垂直な断面が放
物線形状のコールドミラー12、直射光遮蔽板13、及
びアパーチャ14から構成されている。高圧水銀ランプ
11は、y軸に対して平行に配置されている。
Consider an xy coordinate having an x-axis in the horizontal direction and a y-axis in the depth direction in the mounting surface of the substrate mounting table 20. The ultraviolet light source 10 is arranged above the mounting table 20. The ultraviolet light source 10 includes a straight-tube high-pressure mercury lamp 11, a cold mirror 12 which is long in the length direction of the high-pressure mercury lamp 11 and has a parabolic cross section perpendicular to the length direction, a direct-light shielding plate 13, and an aperture 14. It is configured. The high pressure mercury lamp 11 is arranged parallel to the y-axis.

【0019】コールドミラー12は、x軸に垂直な断面
が直線状、y軸に垂直な断面が放物線形状の反射面を有
する。高圧水銀ランプ11から放射された紫外光は、コ
ールドミラー12で反射して、載置台20上の処理対象
基板40の表面に照射される。
The cold mirror 12 has a reflecting surface whose cross section perpendicular to the x axis is linear and whose cross section perpendicular to the y axis is parabolic. The ultraviolet light emitted from the high-pressure mercury lamp 11 is reflected by the cold mirror 12 and is applied to the surface of the processing target substrate 40 on the mounting table 20.

【0020】直射光遮蔽板13は、高圧水銀ランプ11
からの直射光が処理対象基板40の表面に照射されない
ように、直射光を遮光する。アパーチャ部材14は、コ
ールドミラー12で反射した紫外光の光路を妨害せず、
直射光遮蔽板13の両側から漏れた紫外光のみを遮光す
る。
The direct light shielding plate 13 is a high pressure mercury lamp 11
The direct light from is blocked so that the surface of the substrate 40 to be processed is not irradiated with the direct light. The aperture member 14 does not interfere with the optical path of the ultraviolet light reflected by the cold mirror 12,
Only the ultraviolet light leaking from both sides of the direct light shielding plate 13 is blocked.

【0021】処理対象基板40は、ガラス基板41、透
明電極42、及び配向膜43を含んで構成されている。
なお、紫外光照射により改質する表面を有するものであ
れば、他の構造のものでもよい。透明電極42は、ガラ
ス基板41の表面上に形成され、一定ピッチのストライ
プ状パターンを有する。配向膜43は、透明電極42及
びガラス基板41の表面を覆うように形成されている。
このように構成された処理対象基板40を、透明電極4
2の長さ方向がy軸に対して平行になる向きに載置す
る。
The substrate 40 to be processed is composed of a glass substrate 41, a transparent electrode 42, and an alignment film 43.
Note that other structures may be used as long as they have a surface that is modified by irradiation with ultraviolet light. The transparent electrode 42 is formed on the surface of the glass substrate 41 and has a stripe pattern with a constant pitch. The alignment film 43 is formed so as to cover the surfaces of the transparent electrode 42 and the glass substrate 41.
The substrate 40 to be processed having the above-described structure is used as the transparent electrode 4
Place 2 in a direction in which the length direction of 2 is parallel to the y-axis.

【0022】マスク50は、紫外光を透過させる石英ガ
ラス基板51及びストライプ状のクロム製マスクパター
ン52から構成されている。マスクパターン52が形成
された領域は紫外光を遮光し、その他の領域は紫外光を
透過させる。マスクパターン50の各線幅は透明電極4
2の線幅の約半分であり、ピッチは、透明電極42のス
トライプ状パターンのピッチと同一である。
The mask 50 is composed of a quartz glass substrate 51 that transmits ultraviolet light and a striped chromium mask pattern 52. The region where the mask pattern 52 is formed blocks ultraviolet light, and the other region transmits ultraviolet light. Each line width of the mask pattern 50 is the transparent electrode 4
2 is about half the line width, and the pitch is the same as the pitch of the stripe pattern of the transparent electrodes 42.

【0023】このように構成されたマスク50を、処理
対象基板40の上に所定の間隔をおいて配置する。この
とき、マスク50の1本の遮光領域とそれに隣接する1
本の透過領域からなる領域が、処理対象基板40の1本
の透明電極42に対応するように位置合わせする。
The mask 50 thus constructed is arranged on the substrate 40 to be processed at a predetermined interval. At this time, one light-shielding region of the mask 50 and one adjacent to it
The area formed of the transparent area of the book is aligned so as to correspond to the single transparent electrode 42 of the substrate 40 to be processed.

【0024】移動機構30は、載置台20をx軸方向に
往復移動することができる。載置台20が移動すると、
処理対象基板40及びマスク50が相対位置を保ったま
まx軸方向に移動する。紫外光源10により照射される
領域は、載置台20の載置面内においてy軸方向に長い
領域である。移動機構30で載置台20をx軸方向に往
復移動することにより、載置面内全面に紫外光を照射す
ることができる。また移動速度を調節することにより、
照射量を制御することが可能になる。なお、x軸に平行
な方向に限定されることなく、y軸と交わる他の方向に
移動してもよい。なお、移動機構を光源10側に設け、
光源10を載置台20に対して移動してもよい。
The moving mechanism 30 can reciprocate the mounting table 20 in the x-axis direction. When the mounting table 20 moves,
The target substrate 40 and the mask 50 move in the x-axis direction while maintaining their relative positions. The region illuminated by the ultraviolet light source 10 is a region that is long in the y-axis direction within the mounting surface of the mounting table 20. By moving the mounting table 20 back and forth in the x-axis direction by the moving mechanism 30, it is possible to irradiate the entire surface of the mounting surface with ultraviolet light. Also, by adjusting the moving speed,
It is possible to control the dose. Note that the movement is not limited to the direction parallel to the x-axis, and the movement may be made in another direction intersecting with the y-axis. In addition, the moving mechanism is provided on the light source 10 side,
The light source 10 may be moved with respect to the mounting table 20.

【0025】図2は、紫外光源10の詳細な構成を示
す。図2(A)は、図1の紫外光源10を−y方向から
見た正面図及び照射面上のx軸方向の光強度分布、図2
(B)は、+x方向から見た側面図及び照射面上のy軸
方向の光強度分布を示す。
FIG. 2 shows a detailed structure of the ultraviolet light source 10. 2A is a front view of the ultraviolet light source 10 of FIG. 1 viewed from the −y direction and a light intensity distribution in the x-axis direction on the irradiation surface, FIG.
(B) shows a side view seen from the + x direction and a light intensity distribution in the y-axis direction on the irradiation surface.

【0026】図2(A)に示すように、直管型高圧水銀
ランプ11から放射された紫外光の一部は、コールドミ
ラー12で反射して、照射面に照射される。コールドミ
ラー12で反射した紫外光の光軸を、y軸に垂直な平面
に垂直投影した線像は、図のUV1で示すようにほぼ平
行になる。
As shown in FIG. 2 (A), a part of the ultraviolet light emitted from the straight tube type high pressure mercury lamp 11 is reflected by the cold mirror 12 and applied to the irradiation surface. A line image obtained by vertically projecting the optical axis of the ultraviolet light reflected by the cold mirror 12 onto a plane perpendicular to the y-axis becomes substantially parallel as indicated by UV1 in the figure.

【0027】高圧水銀ランプ11から直接図の下方に放
射された紫外光は、直射光遮蔽板13で遮光される。高
圧水銀ランプ11から図の斜め下方に放射され、直射光
遮蔽板13の両側から漏れた光は、アパーチャ部材14
で遮光される。このようにして、y軸に垂直な平面への
垂直投影像がほぼ平行になる紫外光を得ることができ
る。
The ultraviolet light emitted directly from the high-pressure mercury lamp 11 downward in the figure is blocked by the direct light shield plate 13. Light emitted from the high-pressure mercury lamp 11 obliquely downward in the drawing and leaking from both sides of the direct light shielding plate 13 is used as the aperture member 14.
It is shaded by. In this way, ultraviolet light can be obtained in which the vertical projection image on the plane perpendicular to the y-axis becomes substantially parallel.

【0028】照射面上のx軸方向の光強度分布は、図2
(A)の下図に示すように中央が窪んだ形状になる。中
央の窪みは、直射光遮蔽板13の影に対応する。分布の
幅はコールドミラー12のx軸方向の幅に対応してい
る。
The light intensity distribution in the x-axis direction on the irradiation surface is shown in FIG.
As shown in the lower diagram of FIG. The depression in the center corresponds to the shadow of the direct light shielding plate 13. The width of the distribution corresponds to the width of the cold mirror 12 in the x-axis direction.

【0029】図2(B)に示すように、直管型高圧水銀
ランプ11から放射された紫外光は、コールドミラー1
2で反射して、照射面に照射される。照射面に達する紫
外光には、x軸に垂直な平面内において種々の進行方向
を有する光が含まれる。照射面上のy軸方向の光強度分
布は、高圧水銀ランプ11の長さに対応して広い範囲に
わたる。
As shown in FIG. 2 (B), the ultraviolet light emitted from the straight tube type high pressure mercury lamp 11 is cold mirror 1.
It is reflected by 2 and is irradiated on the irradiation surface. The ultraviolet light reaching the irradiation surface includes light having various traveling directions in a plane perpendicular to the x axis. The light intensity distribution in the y-axis direction on the irradiation surface covers a wide range corresponding to the length of the high pressure mercury lamp 11.

【0030】次に、ある平面への垂直投影像が高い平行
度を有し、これに直交する平面への垂直投影像が低い平
行度を有する紫外光を、円形の貫通孔を有するマスクを
介して照射面に照射したときの光強度分布について説明
する。理解を容易にするため照射面内にx軸及びy軸を
とり、y軸に垂直な平面への垂直投影像が高い平行度を
有し、x軸に垂直な平面への垂直投影像が低い平行度を
有するような紫外光を例にとって説明する。
Next, ultraviolet light having a high parallelism in a vertical projection image on a plane and a low parallelism in a vertical projection image on a plane orthogonal thereto is passed through a mask having a circular through hole. The light intensity distribution when the light is irradiated on the irradiation surface will be described. For easy understanding, the x-axis and the y-axis are set in the irradiation plane, the vertical projection image on the plane perpendicular to the y-axis has high parallelism, and the vertical projection image on the plane perpendicular to the x-axis is low. An example of ultraviolet light having parallelism will be described.

【0031】図3は、直径d1の円形の貫通孔を有する
マスク60を介して、照射面61を照射する場合のマス
クと照射面の概略断面図、及び照射面上の光強度分布を
示す。図3(A)はx軸方向の光強度分布、図3(B)
はy軸方向の光強度分布を示す。
FIG. 3 shows a schematic cross-sectional view of the mask and the irradiation surface when the irradiation surface 61 is irradiated through the mask 60 having a circular through hole with a diameter d1, and a light intensity distribution on the irradiation surface. FIG. 3 (A) is a light intensity distribution in the x-axis direction, FIG. 3 (B)
Indicates the light intensity distribution in the y-axis direction.

【0032】光強度分布は、図3(A)に示すようにx
軸方向に関して比較的狭い範囲に集中し、図3(B)に
示すようにy軸方向に関して比較的広い範囲に分散す
る。光強度分布の半値幅をd2、照射面61とマスク6
0との間隔をhとしたとき、紫外光の平行度θは、 θ=tan-1((d2−d1)/(2×h)) …(1) と表される。なお、θが小さい場合を、平行度が高いと
呼ぶ。
The light intensity distribution is x as shown in FIG.
It is concentrated in a relatively narrow range in the axial direction and dispersed in a relatively wide range in the y-axis direction as shown in FIG. The half value width of the light intensity distribution is d2, the irradiation surface 61 and the mask 6
When the distance from 0 is h, the parallelism θ of the ultraviolet light is expressed as θ = tan −1 ((d2-d1) / (2 × h)) (1). The case where θ is small is called high parallelism.

【0033】図3に示すように、x軸方向に関する照射
領域はマスク60に形成されたパターンに依存し、y軸
方向に関する照射領域はマスク60に形成されたパター
ンにほとんど依存しない。従って、マスク60に、y軸
に対して平行な直線状のマスクパターンのみが形成され
ている場合には、マスクパターンに対応する領域に位置
精度よく紫外光を照射することができる。
As shown in FIG. 3, the irradiation area in the x-axis direction depends on the pattern formed on the mask 60, and the irradiation area in the y-axis direction hardly depends on the pattern formed on the mask 60. Therefore, when only a linear mask pattern parallel to the y-axis is formed on the mask 60, the region corresponding to the mask pattern can be irradiated with ultraviolet light with high positional accuracy.

【0034】図3(A)では、光強度分布がシングルピ
ークを示す場合を説明したが、図2(B)に示すように
光強度分布がダブルピークを示す場合には、一方のピー
クを形成する紫外光のみを考慮する。すなわち、直射光
遮蔽板13の両側を通って照射される紫外光のうち、片
側を通る紫外光のみによる光強度分布から半値幅を求め
る。
In FIG. 3A, the case where the light intensity distribution shows a single peak has been described, but when the light intensity distribution shows a double peak as shown in FIG. 2B, one peak is formed. Consider only ultraviolet light. That is, of the ultraviolet light emitted through both sides of the direct light shielding plate 13, the half width is obtained from the light intensity distribution of only the ultraviolet light passing through one side.

【0035】図4は、コリメートされた紫外光を照射す
る場合、及び図2の紫外光照射装置を用いて照射する場
合のゴミの影響について説明する。図4(A)及び図4
(B)は、それぞれコリメートされた紫外光を照射する
場合、及び図2の紫外光照射装置を用いて照射する場合
のマスク及び処理対象基板の断面図を示す。なお、図4
(B)は、図1におけるx軸に垂直な断面を示す。ガラ
ス基板41の上に、透明電極42及び配向膜43が形成
されている。配向膜43の上方にマスク51が配置され
ている。マスク51の表面上にゴミ70が付着し、配向
膜43の表面上にゴミ71が付着している。
FIG. 4 illustrates the influence of dust when irradiating collimated ultraviolet light and when irradiating by using the ultraviolet light irradiation device of FIG. 4A and FIG.
2B is a cross-sectional view of the mask and the substrate to be processed when irradiating the collimated ultraviolet light and when irradiating by using the ultraviolet light irradiation device of FIG. FIG.
(B) shows a cross section perpendicular to the x-axis in FIG. 1. The transparent electrode 42 and the alignment film 43 are formed on the glass substrate 41. A mask 51 is arranged above the alignment film 43. The dust 70 is attached on the surface of the mask 51, and the dust 71 is attached on the surface of the alignment film 43.

【0036】図4(A)に示すように、コリメートされ
た紫外光を照射する場合には、配向膜43の表面にゴミ
70及び71の影ができる。この影の部分は改質されな
いため、配向膜43に所望の配向特性を付与することが
できない。
As shown in FIG. 4A, when the collimated ultraviolet light is irradiated, dusts 70 and 71 are shadowed on the surface of the alignment film 43. Since the shaded area is not modified, it is not possible to impart desired alignment characteristics to the alignment film 43.

【0037】図4(B)に示すように、図2の紫外光照
射装置を用いて照射する場合には、種々の方向に伝搬す
る紫外光を含んでいるため、マスク51上にゴミ70が
存在しても配向膜43の表面にはゴミ70の影ができな
い。従って、ゴミ70の大きさが配向膜43上に影をつ
くらない程度のものであれば、マスク51に付着したゴ
ミによる未改質領域の発生を防止することができる。
As shown in FIG. 4B, when the ultraviolet light irradiating device shown in FIG. 2 is used for irradiation, since the ultraviolet light propagating in various directions is included, dust 70 is left on the mask 51. Even if it exists, the shadow of the dust 70 cannot be formed on the surface of the alignment film 43. Therefore, if the size of the dust 70 is such that the shadow does not form a shadow on the alignment film 43, it is possible to prevent the generation of the unmodified region due to the dust attached to the mask 51.

【0038】配向膜43上にゴミ71が存在すると、ゴ
ミ71により未照射領域が残るが、配向膜表面に斜め方
向から回り込んで照射されるため未照射領域の大きさは
図4(A)の場合に比べて小さくなる。従って、配向膜
43の表面に付着したゴミ71の影響を軽減することが
できる。
If dust 71 is present on the alignment film 43, an unirradiated region remains due to the dust 71, but the size of the unirradiated region is shown in FIG. It is smaller than the case. Therefore, the influence of the dust 71 attached to the surface of the alignment film 43 can be reduced.

【0039】図1に示す紫外光照射装置に用いた高圧水
銀ランプは、長さ60cm、出力160W/cmのもの
である。なお、中圧水銀ランプを用いてもよい。一般
に、直管型水銀ランプは点光源に比べて安価、長寿命、
かつ高出力である。また、図9に示すようにコリメート
された紫外光の面内強度分布を一様にするためのインテ
グレータを用いる必要がないため、光学部品点数を減ら
すことができる。さらに、光源から照射面までの光路長
を短くすることができるため、大気による紫外光の吸収
が減少しエネルギ効率の向上を図ることが可能になる。
The high pressure mercury lamp used in the ultraviolet light irradiation apparatus shown in FIG. 1 has a length of 60 cm and an output of 160 W / cm. A medium pressure mercury lamp may be used. In general, straight tube mercury lamps are cheaper, have a longer life, and
And high output. Further, as shown in FIG. 9, since it is not necessary to use an integrator for making the in-plane intensity distribution of collimated ultraviolet light uniform, it is possible to reduce the number of optical components. Further, since the optical path length from the light source to the irradiation surface can be shortened, the absorption of ultraviolet light by the atmosphere is reduced and the energy efficiency can be improved.

【0040】次に、図1の紫外光照射装置を、ポリアミ
ック酸タイプの配向膜(日産化学製SE7792)の改
質に適用した例を説明する。図5は、配向膜への紫外光
照射量と配向膜に付与されるプレチルト角との関係を示
す。横軸は紫外光照射量を単位mJ/cm2 で表し、縦
軸はプレチルト角を単位「度」で表す。紫外光を照射し
ない状態では、約5.5度のプレチルト角を有する。紫
外光を照射するとプレチルト角は減少する。光量約10
00mJ/cm2 の紫外光を照射すると、プレチルト角
が約1度まで減少する。光量約2000mJ/cm2
上の紫外光を照射すると、プレチルト角は0.4度以下
になる。プレチルト角が減少するのは、紫外光照射によ
って配向膜の表面エネルギが増加するためである。
Next, an example in which the ultraviolet light irradiation apparatus of FIG. 1 is applied to the modification of a polyamic acid type alignment film (SE7792 manufactured by Nissan Kagaku) will be described. FIG. 5 shows the relationship between the irradiation amount of ultraviolet light on the alignment film and the pretilt angle applied to the alignment film. The horizontal axis represents the ultraviolet light irradiation amount in the unit of mJ / cm 2 , and the vertical axis represents the pretilt angle in the unit of "degree". It has a pretilt angle of about 5.5 degrees when it is not irradiated with ultraviolet light. Irradiation with ultraviolet light reduces the pretilt angle. About 10 light
Irradiation with 00 mJ / cm 2 of ultraviolet light reduces the pretilt angle to about 1 degree. When the ultraviolet light having a light amount of about 2000 mJ / cm 2 or more is irradiated, the pretilt angle becomes 0.4 degrees or less. The reason why the pretilt angle is decreased is that the surface energy of the alignment film is increased by the irradiation of ultraviolet light.

【0041】図6は、部分的に紫外光を照射して配向分
割を行った液晶表示パネルの断面図を示す。ガラス基板
41A、透明電極42A及び配向膜43Aからなる下側
基板と、ガラス基板41B、透明電極42B及び配向膜
43Bからなる上側基板が、配向膜面を対向するように
配置され、その間に液晶層44が形成されている。
FIG. 6 shows a cross-sectional view of a liquid crystal display panel which is partially irradiated with ultraviolet light for orientation division. A lower substrate composed of the glass substrate 41A, the transparent electrode 42A and the alignment film 43A and an upper substrate composed of the glass substrate 41B, the transparent electrode 42B and the alignment film 43B are arranged so that the alignment film surfaces face each other, and the liquid crystal layer is interposed therebetween. 44 are formed.

【0042】透明電極42A及び42Bは、それぞれ図
の紙面に垂直な方向、及び図の横方向に長いストライプ
状形状を有する。1本の透明電極42Aと42Bとの交
点が1つの画素Aを構成する。図6は、2画素分を表し
ている。各画素Aの図中左半分の領域A1においては、
配向膜43Aが紫外光照射され、図中右半分の領域A2
においては、配向膜43Bが紫外光照射されている。
The transparent electrodes 42A and 42B have stripe-like shapes that are long in the direction perpendicular to the plane of the drawing and in the lateral direction of the drawing, respectively. The intersection of one transparent electrode 42A and 42B constitutes one pixel A. FIG. 6 shows two pixels. In the area A1 on the left half of each pixel A in the figure,
The alignment film 43A is irradiated with ultraviolet light, and the right half region A2 in the figure is irradiated.
In, the alignment film 43B is irradiated with ultraviolet light.

【0043】配向膜43A側では、領域A1においてプ
レチルト角が小さくなり、領域A2においてプレチルト
角が大きくなっている。逆に、配向膜43B側では、領
域A1においてプレチルト角が大きくなり、領域A2に
おいてプレチルト角が小さくなっている。また、プレチ
ルトの向きは、配向膜43A側と43B側とで相互に打
ち消し合う向きとされている。
On the side of the alignment film 43A, the pretilt angle is small in the area A1 and is large in the area A2. On the other hand, on the alignment film 43B side, the pretilt angle is large in the region A1 and is small in the region A2. The pretilt direction is such that the orientation films 43A and 43B cancel each other.

【0044】領域A1においては、配向膜43B側のプ
レチルトが優勢であり、領域A2においては、配向膜4
3A側のプレチルトが優勢である。このため、上下の透
明電極間に電圧を印加すると、各領域A1、A2におい
てそれぞれプレチルトの優勢な向きに液晶分子が立ち上
がる。従って、1画素内に液晶分子が相互に異なる向き
に立ち上がる2領域を形成することができる。
In the area A1, the pretilt on the alignment film 43B side is predominant, and in the area A2, the alignment film 4B.
The pretilt on the 3A side is dominant. Therefore, when a voltage is applied between the upper and lower transparent electrodes, the liquid crystal molecules rise in the pretilt-predominant direction in each of the regions A1 and A2. Therefore, two regions in which liquid crystal molecules stand in mutually different directions can be formed in one pixel.

【0045】各領域における液晶の立ち上がり方向を安
定させるためには、紫外光照射領域のプレチルト角を1
度以下にすることが好ましい。プレチルト角を1度以下
にするためには、図5から紫外光照射量を1000mJ
/cm2 以上とすることが好ましいことがわかる。な
お、プロセスのばらつきを考慮すると、3000mJ/
cm2 以上とすることがより好ましい。
In order to stabilize the rising direction of the liquid crystal in each area, the pretilt angle of the ultraviolet light irradiation area is set to 1
It is preferable that the temperature is not more than the degree. In order to reduce the pretilt angle to 1 degree or less, from FIG.
It is understood that it is preferable to set it to be / cm 2 or more. In consideration of process variations, 3000 mJ /
More preferably, it is at least cm 2 .

【0046】次に、図7を参照して、本実施例で用いた
紫外光の平行度について説明する。図7は、マスク50
に形成された直線状の紫外光透過領域の幅が150μ
m、配向膜43とマスク50との間隔が100μmの場
合の、配向膜表面の紫外光照射量を示す。なお、図1に
おいて、載置台20をx軸方向に移動し、紫外光透過領
域の中央に対応する配向膜上の領域における照射量が4
000mJ/cm2 になるようにした。
Next, the parallelism of the ultraviolet light used in this embodiment will be described with reference to FIG. FIG. 7 shows the mask 50.
The width of the linear ultraviolet light transmitting region formed on the
m shows the irradiation amount of ultraviolet light on the surface of the alignment film when the distance between the alignment film 43 and the mask 50 is 100 μm. In addition, in FIG. 1, the mounting table 20 is moved in the x-axis direction, and the irradiation amount in the region on the alignment film corresponding to the center of the ultraviolet light transmitting region is 4 times.
It was set to 000 mJ / cm 2 .

【0047】紫外光を照射すると配向膜の硬度が低下す
るため、ラビング処理によって配向膜表面にキズがつ
く。上記条件で紫外光を照射し、ラビング処理を行った
ところ、キズがついた領域の線幅は約164μmであっ
た。他の実験により、紫外光を3000mJ/cm2
上照射してラビング処理すると、配向膜表面にキズがつ
くことがわかっている。このことから、3000mJ/
cm2 以上の光量が照射された領域の線幅が約164μ
mであることがわかる。
When the alignment film is irradiated with ultraviolet light, the hardness of the alignment film is lowered, and the rubbing treatment causes scratches on the surface of the alignment film. When a rubbing treatment was performed by irradiating with ultraviolet light under the above conditions, the line width of the scratched region was about 164 μm. Other experiments have revealed that the surface of the alignment film is damaged when the rubbing treatment is performed by irradiating the ultraviolet light with 3000 mJ / cm 2 or more. From this, 3000 mJ /
The line width of the area irradiated with a light amount of cm 2 or more is about 164μ
m.

【0048】このことから、2000mJ/cm2 以上
の光量が照射された領域の線幅は約178〜185μm
程度であると推定できる。これは、図3で説明した式
(1)に示す平行度θが8〜10度に相当する。すなわ
ち、実施例で用いた紫外光は、 (d2−d1)/(2×h)≦0.14〜0.18 …(2) の条件を満足すると考えられる。
From this, the line width of the region irradiated with the light amount of 2000 mJ / cm 2 or more is about 178 to 185 μm.
It can be estimated to be the degree. This corresponds to a parallelism θ of 8 to 10 degrees shown in the equation (1) described in FIG. That is, it is considered that the ultraviolet light used in the examples satisfies the condition of (d2-d1) / (2 × h) ≦ 0.14 to 0.18 (2).

【0049】図1のx軸方向に関して照射領域の十分な
位置精度を確保するためには、照射紫外光が、 (d2−d1)/(2×h)≦0.2 …(3) の条件を満足することが好ましい。y軸に垂直な平面へ
の垂直投影像の平行度を高くするために、高圧水銀ラン
プ11の直径をできるだけ細くすることが好ましい。
In order to secure sufficient positional accuracy of the irradiation area in the x-axis direction of FIG. 1, the irradiation ultraviolet light has a condition of (d2-d1) / (2 × h) ≦ 0.2 (3). It is preferable to satisfy In order to increase the parallelism of the vertical projection image on the plane perpendicular to the y-axis, it is preferable to make the diameter of the high pressure mercury lamp 11 as small as possible.

【0050】上記実施例では、単純マトリクス型の液晶
表示パネルを作製する場合を例にとって説明したが、T
FT型液晶表パネルの作製にも適用できることは当業者
に自明であろう。また、上記実施例は、液晶表示パネル
の配向膜の改質に限らず、一般的に一方向に長い直線状
領域のみに紫外光を照射して表面の改質を行う場合に適
用できる。
In the above embodiment, the case of manufacturing a simple matrix type liquid crystal display panel has been described as an example.
It will be apparent to those skilled in the art that the method can be applied to the production of an FT type liquid crystal display panel. In addition, the above-described embodiment is not limited to modification of the alignment film of the liquid crystal display panel, but is generally applicable to the case where the surface is modified by irradiating only a linear region long in one direction with ultraviolet light.

【0051】次に、図8を参照して、本発明の他の実施
例について説明する。図8は他の実施例による紫外光照
射装置の構成例を示す。直管型高圧水銀ランプ80から
放射された紫外光は、凹面鏡81で反射し、円筒状レン
ズ82に入射する。円筒状レンズ82は、紫外光の光軸
の紙面に平行な平面への垂直投影像がほぼ平行になるよ
うに、一方向に関してコリメートする。コリメートされ
た紫外光は、遮光板83に形成されたスリット状の開口
部を通して処理対象基板84の表面に照射される。遮光
板83のスリット状の開口部は、シャッタ機構により開
閉することができる。
Next, another embodiment of the present invention will be described with reference to FIG. FIG. 8 shows a configuration example of an ultraviolet light irradiation device according to another embodiment. The ultraviolet light emitted from the straight tube high-pressure mercury lamp 80 is reflected by the concave mirror 81 and enters the cylindrical lens 82. The cylindrical lens 82 collimates in one direction so that the vertical projection image on the plane parallel to the paper surface of the optical axis of the ultraviolet light becomes substantially parallel. The collimated ultraviolet light is applied to the surface of the processing target substrate 84 through the slit-shaped opening formed in the light shielding plate 83. The slit-shaped opening of the light shielding plate 83 can be opened and closed by a shutter mechanism.

【0052】レンズ82を透過した紫外光は、紙面に平
行な平面内に関して高い平行度を有するため、処理対象
基板84表面の照射領域は遮光板83のスリットとほぼ
同程度の幅を有する。従って、遮光板83のスリットを
開閉しながら処理対象基板84を図の横方向へ移動させ
ることにより、ストライプ状の領域に紫外光を照射する
ことができる。
Since the ultraviolet light transmitted through the lens 82 has a high degree of parallelism in the plane parallel to the paper surface, the irradiation area on the surface of the substrate 84 to be processed has a width almost the same as the slit of the light shielding plate 83. Therefore, by moving the processing target substrate 84 in the lateral direction of the drawing while opening and closing the slit of the light shielding plate 83, it is possible to irradiate the stripe-shaped region with ultraviolet light.

【0053】図8に示す実施例によると、処理対象物の
上方にマスクを配置することなく、所望のストライプ状
の領域に紫外光を照射することができる。以上実施例に
沿って本発明を説明したが、本発明はこれらに制限され
るものではない。例えば、種々の変更、改良、組み合わ
せ等が可能なことは当業者に自明であろう。
According to the embodiment shown in FIG. 8, it is possible to irradiate a desired stripe-shaped region with ultraviolet light without disposing a mask above the object to be processed. Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

【0054】[0054]

【発明の効果】以上説明したように、本発明によれば、
直管型の水銀ランプを使用することができ、かつ光学部
品点数を減らすことができるため、比較的低価格の紫外
光照射装置及び照射方法を提供することができる。
As described above, according to the present invention,
Since a straight-tube type mercury lamp can be used and the number of optical components can be reduced, it is possible to provide a relatively low-cost ultraviolet light irradiation device and irradiation method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による紫外光照射装置の概略を
示す斜視図である。
FIG. 1 is a perspective view showing an outline of an ultraviolet light irradiation apparatus according to an embodiment of the present invention.

【図2】図1の紫外光照射装置の紫外光源の正面図、側
面図、及び照射面上の光強度分布を示すグラフである。
FIG. 2 is a front view, a side view, and a graph showing a light intensity distribution on an irradiation surface of an ultraviolet light source of the ultraviolet light irradiation device of FIG.

【図3】平行度の概念を説明するための、マスクと照射
面の断面図、及び光強度分布を示すグラフである。
FIG. 3 is a cross-sectional view of a mask and an irradiation surface, and a graph showing a light intensity distribution, for explaining the concept of parallelism.

【図4】マスク及び配向膜上に付着したゴミの影響を説
明するための、マスク及び処理対象基板の断面図であ
る。
FIG. 4 is a cross-sectional view of a mask and a substrate to be processed for explaining the influence of dust attached on the mask and the alignment film.

【図5】配向膜に紫外光を照射する場合の、紫外光照射
量とプレチルト角との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the ultraviolet light irradiation amount and the pretilt angle when the alignment film is irradiated with ultraviolet light.

【図6】配向分割を行った液晶表示パネルの断面図であ
る。
FIG. 6 is a cross-sectional view of a liquid crystal display panel in which alignment division is performed.

【図7】実施例で用いた紫外光の平行度を説明するため
の、マスクと配向膜の断面図、及び紫外光照射量を示す
グラフである。
FIG. 7 is a cross-sectional view of a mask and an alignment film, and a graph showing an irradiation amount of ultraviolet light, for explaining the parallelism of ultraviolet light used in an example.

【図8】本発明の他の実施例による紫外光照射装置の概
略を示す斜視図である。
FIG. 8 is a perspective view showing an outline of an ultraviolet light irradiation apparatus according to another embodiment of the present invention.

【図9】従来例による紫外光照射装置の概略を示す斜視
図である。
FIG. 9 is a perspective view showing an outline of an ultraviolet light irradiation device according to a conventional example.

【符号の説明】[Explanation of symbols]

10 紫外光源 11、80 直管型高圧水銀ランプ 12 放物面コールドミラー 13 直射光遮蔽板 14 アパーチャ部材 20 基板載置台 30 移動機構 40 処理対象基板 41 ガラス基板 42 透明電極 43 配向膜 50 マスク 51 ガラス基板 52 マスクパターン 60 マスク 61 照射面 70、71 ゴミ 81 凹面鏡 82 レンズ 83 遮光板 84 処理対象基板 10 Ultraviolet Light Source 11, 80 Straight Tube High Pressure Mercury Lamp 12 Parabolic Cold Mirror 13 Direct Light Shielding Plate 14 Aperture Member 20 Substrate Placement Table 30 Moving Mechanism 40 Processing Target Substrate 41 Glass Substrate 42 Transparent Electrode 43 Alignment Film 50 Mask 51 Glass Substrate 52 Mask pattern 60 Mask 61 Irradiated surface 70, 71 Dust 81 Concave mirror 82 Lens 83 Light-shielding plate 84 Processing target substrate

フロントページの続き (72)発明者 露木 俊 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 鈴木 洋二 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内Front page continued (72) Inventor Shun Tsuki 1015 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa, within Fujitsu Limited

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 紫外光によって改質される表面を有する
物質の該表面の第1の方向に対して平行な方向に延在す
る少なくとも1本の直線状の領域に、向きの異なる複数
の光線を含む紫外光であって、該複数の光線を前記第1
の方向に対して平行な平面に垂直投影した複数の線像が
相互に交わり、該複数の光線を前記第1の方向に対して
垂直な平面に垂直投影した複数の線像が相互にほぼ平行
である前記紫外光を照射して、前記表面を改質する紫外
線照射工程を含む物質表面改質方法。
1. A plurality of light rays having different directions in at least one linear region extending in a direction parallel to a first direction of the surface of a substance having a surface modified by ultraviolet light. Ultraviolet light including the plurality of light rays,
A plurality of line images vertically projected on a plane parallel to the direction of, intersect with each other, and a plurality of line images vertically projected on the plane perpendicular to the first direction are substantially parallel to each other. A method for modifying a surface of a substance, which comprises the step of irradiating the surface with the ultraviolet light to modify the surface.
【請求項2】 前記紫外光の平行度が、照射面の上に間
隔hだけ離して、直径d1の円形の透過領域を有する遮
光板を配置し、該遮光板を介して前記照射面に前記紫外
光を照射する条件の下で、前記照射面上の光強度分布
の、前記第1の方向に対して垂直な方向に関する半値幅
をd2としたとき、 (d2−d1)/(2×h)≦0.2 を満足する請求項1に記載の物質表面改質方法。
2. A light shielding plate having circular transmissive areas having a diameter d1 is arranged on the irradiation surface such that the parallelism of the ultraviolet light is separated by a distance h, and the irradiation surface is covered with the light shielding plate through the light shielding plate. When the half value width of the light intensity distribution on the irradiation surface in the direction perpendicular to the first direction is d2 under the condition of irradiating with ultraviolet light, (d2-d1) / (2 × h ) ≦ 0.2, The method for modifying the surface of a substance according to claim 1.
【請求項3】 前記紫外光照射工程の前に、さらに、遮
光領域と透過領域が前記第1の方向に対して平行なライ
ンアンドスペースパターン状に形成されたフォトマスク
を、前記表面の上に配置する工程を含む請求項1または
2に記載の物質表面改質方法。
3. A photomask having a light-shielding region and a light-transmitting region formed in a line-and-space pattern parallel to the first direction before the step of irradiating with ultraviolet light is further provided on the surface. The method for modifying a surface of a substance according to claim 1 or 2, further comprising a step of arranging.
【請求項4】 前記紫外光照射工程が、 前記表面の前記第1の方向に沿った一方向に長い照射領
域内の前記透過領域に対応する領域に前記紫外光を照射
する工程と、 前記表面内において、前記第1の方向に交わる第2の方
向に、前記照射領域を移動させる工程とを含む請求項1
または2に記載の物質表面改質方法。
4. The step of irradiating the ultraviolet light, the step of irradiating the area corresponding to the transmissive area in an irradiation area long in one direction along the first direction of the surface with the ultraviolet light, Inside, the step of moving the irradiation region in a second direction intersecting with the first direction.
Alternatively, the substance surface modification method according to item 2.
【請求項5】 紫外光によって改質される表面を有する
処理対象物の該表面の上に、遮光領域と透過領域がライ
ンアンドスペースパターン状に形成されたフォトマスク
を配置する工程と、 前記ラインアンドスペースパターンの各ラインの長さ方
向に対して平行に配置された直線状の紫外線ランプを含
む光源から、前記フォトマスクを介して前記表面に紫外
光を照射する工程とを含む物質表面改質方法。
5. A step of disposing a photomask in which a light-shielding region and a transmissive region are formed in a line-and-space pattern on the surface of an object to be processed having a surface modified by ultraviolet light, and the line. Irradiating the surface with ultraviolet light from the light source including a linear ultraviolet lamp arranged parallel to the length direction of each line of the and-space pattern through the photomask. Method.
【請求項6】 向きの異なる複数の光線を含み、該複数
の光線を第1の方向に平行な平面に垂直投影した複数の
線像が相互に交わり、該複数の光線を前記第1の方向に
垂直な平面に垂直投影した複数の線像が相互にほぼ平行
である紫外光を放射する光源と、 前記光源から放射された紫外光を照射すべき表面を有す
る処理対象物を載置するための載置台と、 前記光源と前記処理対象物の表面との距離が変化しない
ように、前記光源と前記載置台との相対位置を前記第1
の方向に交わる方向に変化させる移動手段とを有する紫
外光照射装置。
6. A plurality of line images, which include a plurality of light rays having different directions, and which are obtained by vertically projecting the plurality of light rays onto a plane parallel to a first direction intersect with each other, and the plurality of light rays are directed in the first direction. For placing a light source that emits ultraviolet light, in which a plurality of line images vertically projected on a plane perpendicular to, and a surface to be irradiated with the ultraviolet light emitted from the light source, are placed. The mounting table, the relative position between the light source and the mounting table is set to the first position so that the distance between the light source and the surface of the processing target does not change.
An ultraviolet light irradiating device having a moving means for changing the direction to intersect with the direction.
JP16185095A 1995-06-28 1995-06-28 Method for modifying material surface by ultraviolet light irradiation and ultraviolet light irradiation device Expired - Fee Related JP3588703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16185095A JP3588703B2 (en) 1995-06-28 1995-06-28 Method for modifying material surface by ultraviolet light irradiation and ultraviolet light irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16185095A JP3588703B2 (en) 1995-06-28 1995-06-28 Method for modifying material surface by ultraviolet light irradiation and ultraviolet light irradiation device

Publications (2)

Publication Number Publication Date
JPH0915601A true JPH0915601A (en) 1997-01-17
JP3588703B2 JP3588703B2 (en) 2004-11-17

Family

ID=15743138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16185095A Expired - Fee Related JP3588703B2 (en) 1995-06-28 1995-06-28 Method for modifying material surface by ultraviolet light irradiation and ultraviolet light irradiation device

Country Status (1)

Country Link
JP (1) JP3588703B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116674A (en) * 2006-11-02 2008-05-22 Au Optronics Corp Equipment and method for manufacturing liquid crystal panel
CN104765199A (en) * 2015-05-04 2015-07-08 合肥京东方光电科技有限公司 Alignment device and alignment method
JP2016001220A (en) * 2014-06-11 2016-01-07 ウシオ電機株式会社 Polarized light irradiating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116674A (en) * 2006-11-02 2008-05-22 Au Optronics Corp Equipment and method for manufacturing liquid crystal panel
JP2016001220A (en) * 2014-06-11 2016-01-07 ウシオ電機株式会社 Polarized light irradiating apparatus
CN104765199A (en) * 2015-05-04 2015-07-08 合肥京东方光电科技有限公司 Alignment device and alignment method

Also Published As

Publication number Publication date
JP3588703B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
JPH0562877A (en) Optical system for lsi manufacturing contraction projection aligner by light
JP2008164729A (en) Light irradiator, light irradiation apparatus, and exposure method
KR20130023087A (en) Polarizing element unit, light irradiation apparatus using same and transmittance setting method of polarizing element unit
CN103299243B (en) Proximity printing device and proximity printing method
KR20120036741A (en) Light irradiation apparatus
TW201115279A (en) Laser exposure apparatus
TW201300960A (en) Light irradiation device and light irradiation method
EP1020739A2 (en) Irradiation device for producing polarized light to optically align a liquid crystal cell element
JPH05304076A (en) Projection and light exposure device
JP3588703B2 (en) Method for modifying material surface by ultraviolet light irradiation and ultraviolet light irradiation device
JP4029111B2 (en) Method for manufacturing mother gray scale mask and method for manufacturing mother gray scale mask with lens
JP2002237442A (en) Light-irradiating apparatus having illuminance- distribution uniforming filter
US6532047B1 (en) Irradiation device for polarized light for optical alignment of a liquid crystal cell element
JP3811923B2 (en) Illumination optics
JP4135557B2 (en) Polarized light irradiation device for photo-alignment
JP3371510B2 (en) Illumination device and exposure device
JPH11260705A (en) Exposure apparatus
JP4205808B2 (en) Exposure equipment
JP3371512B2 (en) Illumination device and exposure device
JP3255036B2 (en) Conveyor type exposure equipment
KR20120032426A (en) Light irradiation apparatus and light irradiation method
JP2009145452A (en) Light irradiating device
KR20010111836A (en) Exposure device for manufacturing of multi-neck type CRT and exposure method using the same
JP2007304621A (en) Method of manufacturing gray scale mask, method of manufacturing mother gray scale mask, method of manufacturing mother gray scale mask with lens and mother gray scale mask
JPH10294273A (en) Exposure device/method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040310

A131 Notification of reasons for refusal

Effective date: 20040518

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040714

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040803

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040804

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090827

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100827

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120827

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130827

LAPS Cancellation because of no payment of annual fees