JPH09153395A - Manufacture of organic thin film el element - Google Patents

Manufacture of organic thin film el element

Info

Publication number
JPH09153395A
JPH09153395A JP7311253A JP31125395A JPH09153395A JP H09153395 A JPH09153395 A JP H09153395A JP 7311253 A JP7311253 A JP 7311253A JP 31125395 A JP31125395 A JP 31125395A JP H09153395 A JPH09153395 A JP H09153395A
Authority
JP
Japan
Prior art keywords
thin film
organic
layer
organic thin
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7311253A
Other languages
Japanese (ja)
Other versions
JP2682524B2 (en
Inventor
Taizo Tanaka
泰三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7311253A priority Critical patent/JP2682524B2/en
Publication of JPH09153395A publication Critical patent/JPH09153395A/en
Application granted granted Critical
Publication of JP2682524B2 publication Critical patent/JP2682524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To immobilize a material constitution an organic thin film EL element, eliminate a dark spot, and prolong the life of the element by providing a hardening agent made of a compound having the epoxy group on the outside of the element to be impregnated into the element. SOLUTION: An ITO film 2 is sputtered on a glass substrate 1 to form the anode of an organic thin film EL element. Equal quantities of an epoxy resin and N,N'-diphenyl N are stirred to form an organic positive hole injection transportation layer 3. An organic light emitting layer 4 is deposited on a transportation layer 3, and a cathode 5 made of Al and Li metal films is provided on the light emitting layer 4. A hardening agent 6 is made of an amine compound, it is mixed with a sealing epoxy resin into a solution, it is dripped from the cathode 5 side, and the epoxy group in the organic positive hole injection transportation layer 3 is polymerized and cross-linked to form an immobilized organic positive hole injection transportation layer 8. A homogeneous organic thin film EL element excellent in heat resistance can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有機薄膜エレクトロ
ルミネッセンス(以下、ELと記す)素子の製造方法に
関し、特にEL現象を利用した有機薄膜EL素子の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an organic thin film electroluminescence (hereinafter referred to as EL) device, and more particularly to a method for manufacturing an organic thin film EL device utilizing the EL phenomenon.

【0002】[0002]

【従来の技術】電気信号に応答して多色表示が可能なカ
ラー表示装置として、近年、高輝度の発光が得られる有
機薄膜EL素子が開発され、各種の表示装置における発
光素子として注目されている。有機薄膜EL素子は自己
発光性であるためにLCDと比較して、視認性が高いこ
と、また、他の表示装置、例えばLEDや蛍光表示管等
に使用される蛍光材料はそのほとんどが無機物を原料と
しているために多色化が困難であるのに対し、有機薄膜
EL素子は有機物質を主たる原料としているため、分子
設計が容易で、それを構成する材料も多種の材料から選
択しうる。また、無機物を主原料とした分散EL素子は
その原理上発光に高電圧を印加せねばならないのに対
し、有機薄膜ELは低電圧の印加で発光が実現できる。
また、完全固体素子であるために耐衝撃性に優れるとと
もに取り扱いが容易であるなど、優れた特性を有してお
りグラフィックディスプレイの画素やテレビ画像表示装
置の画素、あるいは面光源としての研究開発が盛んに行
われている。
2. Description of the Related Art In recent years, as a color display device capable of multicolor display in response to an electric signal, an organic thin film EL element capable of obtaining high-luminance light emission has been developed, and has been attracting attention as a light emitting element in various display devices. There is. Since the organic thin film EL element is self-luminous, it has higher visibility than an LCD, and most of the fluorescent materials used for other display devices such as LEDs and fluorescent display tubes are inorganic materials. Since it is difficult to obtain multiple colors because it is used as a raw material, since the organic thin film EL element uses an organic substance as a main raw material, the molecular design is easy, and the material constituting it can be selected from various materials. In addition, in principle, a dispersion EL element that uses an inorganic material as a main material must apply a high voltage to light emission, whereas an organic thin film EL can realize light emission when a low voltage is applied.
Also, because it is a completely solid element, it has excellent properties such as excellent impact resistance and easy handling, and it has been researched and developed as a pixel of a graphic display, a pixel of a television image display device, or a surface light source. It is being actively conducted.

【0003】図4は従来の有機薄膜EL素子の一般的な
断面構造図を示している。この図による有機薄膜EL素
子は、ガラス基板1/陽極(以下、ITOと記す)2/
有機正孔注入輸送層3/有機発光層4/陰極5/封止層
9の順に積層された構造のものである。まず、透明支持
基板としてのガラス基板1上に蒸着法またはスパッタリ
ング法等でインジウムとスズの複合酸化物であるITO
2を成膜し、陽極を形成する。つぎに、有機正孔注入輸
送層3として1,1−ビス(4−ジ−p−トリルアミノ
フェニル)シクロヘキサンまたは銅フタロシアニン、あ
るいはN,N,N′,N′−テトラ−p−トリル−1,
1′−ビフェニル−4,4′−ジアミン等の正孔輸送能
を有する低分子化合物を真空蒸着法やスパッタリング法
またはイオンプレーティング法などで0.1μm程度以
下の厚さで形成する。この上に有機発光層4として、ト
リス(8−キノリノール)アルミ錯体(以下、Alq3
と記す)等の発光能を有する蛍光体を0.1μm程度以
下の厚みで蒸着し、さらにその上に、陰極5としてM
g:Ag,Ag:Eu,Mg:Cu,Mg:In,A
l:Li等の合金を共蒸着により200nm程度蒸着す
る。そして、最後に素子全体を被膜する封止層9とし
て、シリコン系樹脂,架橋エチレン−酢酸ビニル共重合
体シート等の接着樹脂またはエポキシ樹脂等を用いてポ
ッティング,スピンコート,ディップ等の成膜法を用い
て形成する。このように作製された有機薄膜EL素子に
おいて、ITO2と陰極5間に電源10をつなぎ、10
V程度の電圧を印加すると有機発光層4からの蛍光がガ
ラス基板1を通して発せられる。
FIG. 4 shows a general cross-sectional structural view of a conventional organic thin film EL element. The organic thin film EL device according to this figure is composed of a glass substrate 1 / anode (hereinafter referred to as ITO) 2 /
The organic hole injecting and transporting layer 3, the organic light emitting layer 4, the cathode 5 and the sealing layer 9 are laminated in this order. First, ITO, which is a composite oxide of indium and tin, is formed on a glass substrate 1 as a transparent support substrate by a vapor deposition method or a sputtering method.
2 is deposited to form an anode. Next, as the organic hole injecting and transporting layer 3, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane or copper phthalocyanine, or N, N, N ′, N′-tetra-p-tolyl-1 is used. ,
A low molecular weight compound having a hole transporting ability such as 1'-biphenyl-4,4'-diamine is formed to a thickness of about 0.1 μm or less by a vacuum deposition method, a sputtering method, an ion plating method or the like. On top of this, a tris (8-quinolinol) aluminum complex (hereinafter referred to as Alq 3
And the like) having a light emitting ability are vapor-deposited in a thickness of about 0.1 μm or less, and M is formed as a cathode 5 thereon.
g: Ag, Ag: Eu, Mg: Cu, Mg: In, A
l: An alloy such as Li is vapor-deposited to a thickness of about 200 nm by co-evaporation. Finally, a film forming method such as potting, spin coating, or dipping using an adhesive resin such as a silicone resin or a cross-linked ethylene-vinyl acetate copolymer sheet or an epoxy resin as the sealing layer 9 that coats the entire element. Are formed by using. In the organic thin film EL element thus manufactured, the power source 10 is connected between the ITO 2 and the cathode 5 and
When a voltage of about V is applied, fluorescence from the organic light emitting layer 4 is emitted through the glass substrate 1.

【0004】ところで、有機薄膜EL素子を実用化する
にあたっての現状における最大の問題点は発熱によって
素子劣化が生じ、有機薄膜EL素子の駆動寿命が短命に
なることにある。このように有機薄膜EL素子が劣化し
てしまう主要因のひとつは、素子を構成する有機材料自
体の融点およびガラス転移温度が低いために、素子駆動
時の発熱に伴い有機薄膜構造が変化することにある。こ
の結果、有機薄膜層と他の有機薄膜層間及び有機薄膜層
と電極間の接合が不均一となり印加した電界が局所的に
かかることでその部位が絶縁破壊を起こし、有機薄膜E
L素子の発光に非発光点(ダークスポット)が発生し
て、有機薄膜EL素子が劣化してしまうことになる。し
たがって、このような問題を解決するためには、有機薄
膜層の薄膜構造を固定化し、有機薄膜EL素子駆動時の
発熱に対しても安定化させる必要がある。
By the way, the biggest problem in the present situation in putting the organic thin film EL element into practical use is that the element is deteriorated by heat generation and the driving life of the organic thin film EL element becomes short. One of the main causes of deterioration of the organic thin film EL element is that the organic thin film structure changes due to heat generated when the element is driven, because the melting point and glass transition temperature of the organic material itself constituting the element are low. It is in. As a result, the bonding between the organic thin film layer and other organic thin film layers and between the organic thin film layer and the electrode becomes non-uniform, and the applied electric field is locally applied to cause dielectric breakdown at that portion, and the organic thin film E
A non-light emitting point (dark spot) occurs in the light emission of the L element, and the organic thin film EL element deteriorates. Therefore, in order to solve such a problem, it is necessary to fix the thin film structure of the organic thin film layer and stabilize it against heat generated when the organic thin film EL element is driven.

【0005】具体的な施策としては、例えば有機薄膜E
L素子を構成する有機薄膜層の材料である有機低分子材
料自体の融点やガラス転移温度が高くなるように分子設
計し、耐熱性に優れるようにした方法(特開平7−53
953号公報、特開平7−90255号公報などに記載
のもの)がある。これは、前述の問題を解決する最も有
効な施策であるが、融点,ガラス転移温度ともに有機薄
膜EL素子駆動時に伴う発熱に対して薄膜構造を安定化
させるほど高くはなく実用化には不十分であるのが現状
である。
As a concrete measure, for example, an organic thin film E
A method in which the organic low molecular weight material itself, which is the material of the organic thin film layer constituting the L element, is molecularly designed to have a high melting point or glass transition temperature so as to have excellent heat resistance (JP-A-7-53).
953, JP-A-7-90255, etc.). This is the most effective measure to solve the above-mentioned problems, but both the melting point and the glass transition temperature are not high enough to stabilize the thin film structure against heat generated when the organic thin film EL element is driven, and are not sufficient for practical use. Is the current situation.

【0006】また、有機薄膜EL素子を構成する有機低
分子材料にエポキシ基を導入し、これを3次元網状に重
合・硬化させて低下させる製造方法がある(特開平7−
85973号公報など)。
Further, there is a manufacturing method in which an epoxy group is introduced into an organic low molecular weight material which constitutes an organic thin film EL element, and the epoxy group is polymerized and cured in a three-dimensional network to reduce the amount (Japanese Patent Laid-Open No. 7-
85973, etc.).

【0007】図5(a)〜(e)は図4の従来の有機薄
膜EL素子の製造方法を説明する工程順に示した断面図
である。有機薄膜EL素子の構造としてはガラス基板1
/ITO2/有機正孔注入輸送層3/有機発光層4/陰
極5/封止層9であり、安定化させる有機薄膜層は正孔
注入輸送層である。この製造方法は、まず、図5(a)
に示すように、ガラス基板1上に、蒸着またはスパッタ
リング法等でITO2の透明導電性被膜の陽極を形成
し、図5(b)に示すように、この上に正孔注入輸送3
としてエポキシ基とこれを3次元的に硬化させるための
アミノ基を具備した有機低分子材料を真空蒸着法やスパ
ッタリング法,ラングミュアブロジェット法,スクリー
ン印刷法等により形成し、次の有機発光層形成を行う前
に紫外線照射・熱等15により、エポキシ基を架橋・重
合する。さらに、図5(c)に示すように、その上に、
上述の成膜法により有機発光層4を積層し、次に、図5
(d)に示すように、Yb,Mg,Al,In等電子が
有機薄膜層に注入しやすいような、仕事関数の小さい材
料を用いて陰極5を積層した後、図5(e)に示すよう
に、封止層9を設ける。以上によって製造された有機薄
膜EL素子において、安定化を図った有機正孔注入輸送
層3はその薄膜構造が3次元網目状になっているため
に、容易に薄膜構造を変化させることはなく、耐熱性に
優れている。しかし、実際には有機正孔注入輸送層3中
のエポキシ基を重合および架橋した工程で、すでに重合
及び架橋に伴う分子運動の為に正孔注入輸送層3の薄膜
構造の均一性は失われており、この不均一な状態のまま
次の有機発光層を形成する工程へと進むため、各層間界
面に空隙や接合不十分な部位が存在することになり、有
機薄膜EL素子駆動時に前述した電界の局所的な集中が
起こり、ダークスポット発生の原因となったり、発光が
不均一となったりしてしまう。
FIGS. 5A to 5E are sectional views showing the steps of a conventional method for manufacturing an organic thin film EL element shown in FIG. The structure of the organic thin film EL element is a glass substrate 1
/ ITO2 / organic hole injecting / transporting layer 3 / organic light emitting layer 4 / cathode 5 / sealing layer 9, and the stabilizing organic thin film layer is the hole injecting / transporting layer. This manufacturing method is as shown in FIG.
As shown in FIG. 5, an anode of a transparent conductive film of ITO2 is formed on the glass substrate 1 by vapor deposition or sputtering method, and as shown in FIG.
As an organic light-emitting layer, an organic low-molecular material having an epoxy group and an amino group for three-dimensionally curing it is formed by vacuum deposition, sputtering, Langmuir-Blodgett method, screen printing, etc. Before performing, the epoxy group is cross-linked and polymerized by UV irradiation, heat, etc. Furthermore, as shown in FIG. 5 (c),
The organic light emitting layer 4 is laminated by the above-described film forming method, and then the organic light emitting layer 4 shown in FIG.
As shown in (d), Yb, Mg, Al, In, etc. are laminated on the cathode 5 using a material having a small work function such that electrons can be easily injected into the organic thin film layer, and then shown in FIG. Thus, the sealing layer 9 is provided. In the organic thin film EL element manufactured as described above, the stabilized organic hole injecting and transporting layer 3 has a three-dimensional network structure, so that the thin film structure does not easily change, Excellent heat resistance. However, in reality, in the process of polymerizing and cross-linking the epoxy group in the organic hole injecting and transporting layer 3, the thin film structure of the hole injecting and transporting layer 3 loses its uniformity due to the molecular motion accompanying the polymerization and crosslinking. However, since the process proceeds to the step of forming the next organic light-emitting layer in this non-uniform state, voids or insufficiently bonded portions are present at each interlayer interface, which is the same as that described above when driving the organic thin film EL element. The electric field is locally concentrated, which causes the generation of dark spots and non-uniform light emission.

【0008】[0008]

【発明が解決しようとする課題】以上のように、従来の
有機薄膜EL素子の製造方法では、有機正孔注入輸送層
を含む有機薄膜層で用いられる有機材料の耐熱性は以前
不十分であり、薄膜構造を容易に変化させてしまう。ま
た、エポキシ基を有する有機材料を用いた場合でも、次
の有機薄膜層ないしは陰極を形成する前に重合および架
橋を行うため、薄膜の均一性が悪劣化してしまい、次に
形成される有機薄膜層や陰極界面との接合部に空隙を形
成し、ダークスポット発生の要因となったり、均一な発
光の取り出しが困難となる等の問題がある。
As described above, in the conventional method for manufacturing an organic thin film EL device, the heat resistance of the organic material used in the organic thin film layer including the organic hole injecting and transporting layer is insufficient before. , Easily change the thin film structure. Further, even when an organic material having an epoxy group is used, polymerization and cross-linking are performed before forming the next organic thin film layer or cathode, so that the uniformity of the thin film is deteriorated and the organic film formed next is deteriorated. There are problems that voids are formed at the joint between the thin film layer and the cathode interface, which causes the generation of dark spots, and makes it difficult to take out uniform light emission.

【0009】本発明の目的は、ダークスポットの発生が
なく、均一な発光の取り出しが得られる有機薄膜EL素
子の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing an organic thin film EL element which can obtain uniform emission without generating dark spots.

【0010】[0010]

【課題を解決するための手段】本発明の製造方法は上記
の課題に鑑みてなされたものであって、支持基板上に陽
極を形成する工程と、前記陽極上に発光能を有する有機
発光層を含む少くとも1層の有機薄膜層を形成する工程
と、前記有機薄膜層上に陰極を形成する工程と、前記陽
極と前記陰極とを覆う樹脂被膜層を形成する工程とを含
む有機薄膜EL素子の製造方法において、前記少くとも
1層の有機薄膜層を形成する工程が、エポキシ基を含有
する樹脂に低分子化合物を分散させた有機樹脂分散薄膜
層を形成する工程を含み、かつ前記樹脂被膜層を形成す
る工程が被膜樹脂剤に硬化剤を混ぜ前記硬化剤が前記有
機樹脂分散薄膜層に含浸することにより前記エポキシ基
を含有する樹脂の重合および架橋を行うことを特徴とす
る有機薄膜EL素子の製造方法である。また、前記陽極
上に少なくとも発光能を有する有機発光層と正孔注入輸
送能を有する有機正孔注入輸送層とを形成する工程とを
含み、かつ少くとも1層がエポキシ基を含有する樹脂に
低分子化合物を分散させた有機樹脂分散薄膜層で硬化剤
により硬化させることを特徴とする有機薄膜EL素子の
製造方法、または、前記陽極上に少なくとも発光能を有
する有機発光層と電子注入輸送能を有する有機電子注入
輸送層とを形成する工程を含み、少なくとも発光能を有
する有機発光層と電子注入輸送能を有する有機電子注入
輸送層とを含む2層以上の有機薄膜層を形成する工程以
外は前述の方法と同じ方法で製造されることを特徴とす
る有機薄膜EL素子の製造方法、または、前記陽極上に
少なくとも発光能を有する有機発光層と正孔注入輸送能
を有する有機正孔注入輸送層と電子注入輸送能を有する
有機電子注入輸送層とを形成する工程を含み、少なくと
も1層が硬化剤により硬化させることを特徴とする有機
薄膜EL素子の製造方法、また、前記硬化剤がアミン系
材料であることを特徴とする前述の方法による有機薄膜
EL素子の製造方法に関するものである。
The manufacturing method of the present invention has been made in view of the above-mentioned problems, and comprises a step of forming an anode on a supporting substrate, and an organic light-emitting layer having a light-emitting ability on the anode. An organic thin film EL including: a step of forming at least one organic thin film layer containing: a step of forming a cathode on the organic thin film layer; and a step of forming a resin coating layer covering the anode and the cathode. In the method for manufacturing an element, the step of forming the at least one organic thin film layer includes the step of forming an organic resin-dispersed thin film layer in which a low molecular compound is dispersed in a resin containing an epoxy group, and the resin An organic thin film characterized in that the step of forming a coating layer mixes a curing agent with a coating resin agent and impregnates the organic resin-dispersed thin film layer with the curing agent to polymerize and crosslink the epoxy group-containing resin. EL element It is a method of manufacture. And a step of forming an organic light emitting layer having at least a light emitting ability and an organic hole injecting and transporting layer having a hole injecting and transporting ability on the anode, and at least one layer is a resin containing an epoxy group. A method for producing an organic thin film EL device, which comprises curing with a curing agent in an organic resin-dispersed thin film layer in which a low molecular weight compound is dispersed, or an organic light emitting layer having at least light emitting ability and an electron injecting and transporting ability on the anode. Other than the step of forming an organic electron injecting and transporting layer having the following, and forming at least two organic thin film layers including at least an organic light emitting layer having a light emitting ability and an organic electron injecting and transporting layer having an electron injecting and transporting ability. Is manufactured by the same method as described above, or a method for manufacturing an organic thin film EL device, or an organic light emitting layer having at least a light emitting function and a hole injecting and transporting function on the anode. A step of forming an organic hole injecting and transporting layer and an organic electron injecting and transporting layer having an electron injecting and transporting property, wherein at least one layer is cured by a curing agent, and The present invention relates to a method for manufacturing an organic thin film EL device by the above-mentioned method, wherein the curing agent is an amine-based material.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を用いて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0012】実施例1 図1(a)〜(f)は本発明の第1の実施の形態の有機
薄膜EL素子の製造方法を説明する工程順に示した断面
図であり、素子構造としては、ガラス基板1/ITO2
/有機正孔注入層3/発光層4/陰極5/封止層9の順
に積層したものである。
Example 1 FIGS. 1 (a) to 1 (f) are cross-sectional views showing step by step a method of manufacturing an organic thin film EL element according to the first embodiment of the present invention. Glass substrate 1 / ITO 2
/ Organic hole injection layer 3 / light emitting layer 4 / cathode 5 / sealing layer 9 are laminated in this order.

【0013】その実施例1としては、陽極形成は、図1
(a)に示したように、ガラス基板1上にITO2をス
パッタリング法により膜厚1300オングストローム
で、表面抵抗10〜30Ω/□となるように形成し、フ
ォトレジストによってパターニングする。次に、このI
TO2を成膜したガラス基板1を最初に純水中で、次
に、イソプロピルアルコールで超音波洗浄した後、さら
にUVオゾン洗浄器にて5分間洗浄し、このガラス基板
1を乾燥器中で乾燥させる。有機正孔注入輸送層3の形
成は、図1(b)に示すように、まず、エポキシ系樹脂
(エピクロンN−695(大日本インキ化学工業(株)
製)とN,N′−ジフェニル−N,N’−ビス−(α−
(ナフチル)−[1,1′−ビフェニル]−4,4′−
ジアミン(以下α−NPDという。)を等重量づつ計り
とり、両者の重量の合計に対して1:100の比率とな
るように溶媒ジクロロメタンを加え、シェーカにより溶
質が完全に溶けるまで撹拌する。次に、この溶液と前述
の基板をディップコータにセットし、ガラス基板1の引
き上げによって成膜した後、乾燥機中80℃,1時間で
溶媒を完全に飛ばして膜厚500オングストロームを形
成する。
As Example 1 of the present invention, the anode formation is as shown in FIG.
As shown in (a), ITO 2 is formed on the glass substrate 1 by a sputtering method so as to have a film thickness of 1300 Å and a surface resistance of 10 to 30 Ω / □, and is patterned by a photoresist. Then this I
The glass substrate 1 on which TO2 is deposited is first cleaned in pure water and then ultrasonically cleaned in isopropyl alcohol, and then further cleaned in a UV ozone cleaner for 5 minutes, and the glass substrate 1 is dried in a dryer. Let To form the organic hole injecting and transporting layer 3, as shown in FIG. 1B, first, an epoxy resin (Epiclon N-695 (Dainippon Ink and Chemicals, Inc.) is used.
Manufactured) and N, N′-diphenyl-N, N′-bis- (α-
(Naphthyl)-[1,1'-biphenyl] -4,4'-
Diamine (hereinafter referred to as α-NPD) is weighed in equal weight, and the solvent dichloromethane is added so as to have a ratio of 1: 100 with respect to the total weight of both, and the mixture is stirred with a shaker until the solute is completely dissolved. Next, this solution and the above-mentioned substrate are set in a dip coater, and after the glass substrate 1 is pulled up to form a film, the solvent is completely blown out in a dryer at 80 ° C. for 1 hour to form a film thickness of 500 angstrom.

【0014】次に、図1(c)に示すように、このガラ
ス基板1を市販の真空蒸着装置の基板ホルダーに固定
し、モリブデン製抵抗加熱ボートにAlq3 を200m
g入れ、真空チャンバー内を1×10-4Paまで減圧す
る。次に、Alq3 を入れた前記抵抗加熱ボートを27
0℃まで加熱し、1〜3オングストローム/sの蒸着速
度で正孔注入輸送層3上に有機発光層4を膜厚600オ
ングストローム程度蒸着する。なお、この時の基板温度
は室温である。次に、図1(d)に示すように、タング
ステン製抵抗加熱ボートにA1粒を入れ、別のタングス
テン製抵抗加熱ボートにLiを所定量入れて、真空チャ
ンバー内を1×10-4Paまで減圧する。Alを入れた
前記抵抗加熱ボートを1000℃程度に加熱して蒸着速
度約5〜10オングストローム/sで蒸着させるととも
に、Liを入れた前記抵抗加熱ボートを約0.1〜0.
5オングストローム/sの蒸着速度で蒸発させて、Al
とLiとの混合金属からなる膜厚1600オングストロ
ーム程度の陰極5を発光層上に設ける。さらに、図1
(e)に示すように、In等の比較的硬度が低い材料を
用いて、前述の成膜法により、ストレス吸収層7を形成
する。これは、後述するエポキシ基の重合および架橋す
る際に大きなストレスを有機薄膜に及ぼすのを防ぐため
に形成される。このようにして、作製した有機薄膜EL
素子をさらに、図1(f)に示すように、以下のような
方法によって有機正孔注入輸送層3中のエポキシ基の重
合および架橋によって安定化させ固定化有機正孔注入輸
送層8を形成する。まず、硬化剤としてアミン系化合物
である田中高分子技術研究所製のHARDER3000
を0.3g計りとり、続いて封止用のエポキシ樹脂A−
3001(田中高分子技術研究所製)を1g計り、上記
硬化剤に混合する。この混合溶液を十分に脱気した後、
Arガス雰囲気下で前述した有機薄膜EL素子の陰極5
側より滴下し、デシケータ中で24時間放置し、乾燥硬
化させる。この有機薄膜EL素子を定電流連続駆動によ
り発光させたところ、均一な発光が得られ、2000時
間以上この状態を維持していた。また、ダークスポット
の発生はその間全くなく、従来よりも安定であった。
Next, as shown in FIG. 1 (c), the glass substrate 1 is fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus, and Alq 3 of 200 m is placed in a molybdenum resistance heating boat.
g and reduce the pressure in the vacuum chamber to 1 × 10 −4 Pa. Next, the resistance heating boat containing Alq 3
After heating to 0 ° C., the organic light emitting layer 4 is vapor-deposited to a film thickness of about 600 Å on the hole injecting and transporting layer 3 at a vapor deposition rate of 1 to 3 Å / s. The substrate temperature at this time is room temperature. Next, as shown in FIG. 1 (d), A1 grain was placed in a tungsten resistance heating boat, and a predetermined amount of Li was placed in another tungsten resistance heating boat, and the inside of the vacuum chamber was adjusted to 1 × 10 −4 Pa. Decompress. The resistance heating boat containing Al was heated to about 1000 ° C. to deposit at a deposition rate of about 5 to 10 Å / s, and the resistance heating boat containing Li was adjusted to about 0.1 to 0.
Evaporate at a deposition rate of 5 Å / s to produce Al
A cathode 5 made of a mixed metal of Li and Li and having a film thickness of about 1600 angstrom is provided on the light emitting layer. Further, FIG.
As shown in (e), the stress absorption layer 7 is formed by a film formation method described above using a material having a relatively low hardness such as In. This is formed in order to prevent a large stress from being exerted on the organic thin film during the polymerization and crosslinking of the epoxy group described later. The organic thin film EL thus manufactured
The device is further stabilized by polymerization and crosslinking of the epoxy groups in the organic hole injecting and transporting layer 3 to form a fixed organic hole injecting and transporting layer 8, as shown in FIG. 1 (f). To do. First, HARDER 3000 manufactured by Tanaka Polymer Research Institute, which is an amine compound as a curing agent
0.3 g of epoxy resin, and then epoxy resin A- for sealing
1 g of 3001 (manufactured by Tanaka Polymer Research Institute) is measured and mixed with the above curing agent. After thoroughly degassing this mixed solution,
Cathode 5 of the organic thin film EL device described above under Ar gas atmosphere
Drop from the side and leave in a desiccator for 24 hours to dry and cure. When this organic thin film EL element was made to emit light by constant current continuous driving, uniform light emission was obtained, and this state was maintained for 2000 hours or more. In addition, no dark spots occurred during that time, and it was more stable than before.

【0015】実施例2 図2(a)〜(d)は本発明の第2の実施の形態の有機
薄膜EL素子の製造方法を説明する工程順に示したもの
であり、素子構造としてガラス基板1/ITO2/有機
発光層3/陰極5/封止層9の順に積層したものであ
る。
Example 2 FIGS. 2 (a) to 2 (d) show the order of steps for explaining a method for manufacturing an organic thin film EL element according to a second embodiment of the present invention, in which a glass substrate 1 is used as an element structure. / ITO2 / organic light emitting layer 3 / cathode 5 / sealing layer 9 are laminated in this order.

【0016】その実施例2としては、まず、図2(a)
に示すように、実施例1と同様にITO2を形成し、次
に、図2(b)に示すように、有機発光層11を形成す
る。この有機発光層11は実施例1で有機正孔注入輸送
層3を形成した場合に用いたα−NPDをAlq3 に変
えた場合以外は同様な方法で成膜し、図2(c),
(d)に示すように、その後の工程である陰極5及び封
止層9形成も実施例1と同様に行った。この有機薄膜E
L素子を定電流連続駆動により発光させたところ、均一
な発光が得られ、2000時間以上この状態を維持して
いた。また、ダークスポットの発生はその間全くなく、
従来よりも安定であった。
As the second embodiment, first, FIG.
2, ITO 2 is formed as in the first embodiment, and then the organic light emitting layer 11 is formed as shown in FIG. 2B. This organic light emitting layer 11 was formed by the same method except that the α-NPD used when forming the organic hole injecting and transporting layer 3 in Example 1 was changed to Alq 3 , and as shown in FIG.
As shown in (d), the subsequent steps of forming the cathode 5 and the sealing layer 9 were performed in the same manner as in Example 1. This organic thin film E
When the L element was made to emit light by constant current continuous driving, uniform light emission was obtained, and this state was maintained for 2000 hours or more. Also, no dark spots occurred during that time,
It was more stable than before.

【0017】実施例3 図3(a)〜(g)は本発明の第3の実施の形態の有機
薄膜EL素子の製造方法を説明する工程順に示したので
あり、素子構造としてガラス基板1/ITO2/有機正
孔注入輸送層3/有機発光層4/有機電子注入輸送層1
3/陰極5/封止層9の順に積層したものである。その
実施例3としては、まず、図3(a)に示すように、実
施例1と同様にガラス基板1上にITO2を形成し、つ
ぎに、図3(b)に示すように、有機正孔注入輸送層3
の有機材料として実施例1で用いたα−NPDを蒸着法
で500オングストロームの膜厚に成膜し、図3(c)
に示すつぎの有機発光層4形成工程は実施例1と同様に
行う。また、図3(d)に示すように、有機電子注入輸
送層13形成は、実施例1で用いたα−NPDの代わり
に有機電子注入輸送能を有する1,1,4,4−テトラ
フェニル−1,2−ブタジエン(TPB)を用いる以外
は同じ方法で形成でき、図3(e)に示すその後の工程
である陰極5及びエポキシ基の重合および架橋工程は実
施例1と同様に形成した。この有機薄膜EL素子を定電
流連続駆動により発光させたところ、均一な発光が得ら
れ、2000時間以上この状態を維持していた。また、
ダークスポットの発生はその間全くなく、従来よりも安
定であった。
Example 3 FIGS. 3 (a) to 3 (g) show the order of steps for explaining a method of manufacturing an organic thin film EL element according to a third embodiment of the present invention. ITO2 / organic hole injecting and transporting layer 3 / organic light emitting layer 4 / organic electron injecting and transporting layer 1
3 / cathode 5 / sealing layer 9 are laminated in this order. In Example 3, first, as shown in FIG. 3A, ITO 2 was formed on the glass substrate 1 as in Example 1, and then as shown in FIG. Pore injection transport layer 3
Α-NPD used in Example 1 as the organic material of Example 1 was deposited by a vapor deposition method to a film thickness of 500 angstroms, and FIG.
The next step of forming the organic light emitting layer 4 shown in is performed in the same manner as in Example 1. Further, as shown in FIG. 3D, the organic electron injecting and transporting layer 13 was formed by using 1,1,4,4-tetraphenyl having an organic electron injecting and transporting ability in place of the α-NPD used in Example 1. It can be formed by the same method except that -1,2-butadiene (TPB) is used, and the subsequent steps shown in FIG. 3E, the cathode 5 and the epoxy group polymerization and cross-linking steps, are the same as in Example 1. . When this organic thin film EL element was made to emit light by constant current continuous driving, uniform light emission was obtained, and this state was maintained for 2000 hours or more. Also,
No dark spots occurred during that time, and it was more stable than before.

【0018】これらの実施例1,2および3では、正孔
注入輸送層を固定化した有機薄膜EL素子は同時に封止
も行われており、別の封止層を設ける必要もない。ま
た、実施例1の有機薄膜EL素子構造において、エポキ
シ基の重合および架橋を施す有機樹脂分散薄膜層を実施
例2の方法によって、有機正孔注入輸送層3の代わりに
有機発光層4に適用してもよいし、実施例3の有機薄膜
EL素子構造において、エポキシ基の重合および架橋を
施す有機樹脂分散薄膜層を実施例1及び実施例2の有機
樹脂分散薄膜形成工程と同様にして、有機電子注入輸送
層13の代わりに有機正孔注入輸送層3および有機発光
層4に適用してもよい。また、その他の実施例として実
施例1,2および3で使用した陽極以外にも、不透明で
正孔注入輸送層3を通して有機発光層4へ正孔注入しや
すい仕事関数の値が大きい金,プラチナ,パラジウム,
ニッケル等の金属板、シリコン,ガリウムリン,アモル
ファス炭化シリコン等の仕事関数が4.6eV以上の半
導体基板、若しくはそれらの金属や半導体を絶縁性の支
持基板上に被膜した陽極を用いることもできる。また、
陰極5も不透明であれば、有機発光層4の少なくとも出
射方向が透明である必要がある。
In these Examples 1, 2 and 3, the organic thin film EL element having the hole injecting and transporting layer fixed is also sealed at the same time, and it is not necessary to provide another sealing layer. Further, in the organic thin film EL device structure of Example 1, the organic resin dispersed thin film layer for polymerizing and crosslinking the epoxy group is applied to the organic light emitting layer 4 instead of the organic hole injecting and transporting layer 3 by the method of Example 2. Alternatively, in the organic thin film EL device structure of Example 3, the organic resin dispersed thin film layer for polymerizing and cross-linking the epoxy group is formed in the same manner as in the organic resin dispersed thin film forming step of Examples 1 and 2. Instead of the organic electron injecting and transporting layer 13, the organic hole injecting and transporting layer 3 and the organic light emitting layer 4 may be applied. In addition to the anodes used in Examples 1, 2, and 3 as other examples, gold, platinum, which is opaque and has a large work function value for easily injecting holes into the organic light emitting layer 4 through the hole injecting and transporting layer 3, is used. ,palladium,
It is also possible to use a metal plate of nickel or the like, a semiconductor substrate of silicon, gallium phosphide, amorphous silicon carbide or the like having a work function of 4.6 eV or more, or an anode obtained by coating these metals or semiconductors on an insulating support substrate. Also,
If the cathode 5 is also opaque, at least the emission direction of the organic light emitting layer 4 needs to be transparent.

【0019】本発明の実施の形態では、硬化剤を有機薄
膜EL素子内部へ含浸させることにより、有機薄膜EL
素子を構成する有機固定材料を固定化することを特徴と
するものである。したがって、有機薄膜EL素子を構成
する有機層のうち少なくとも一層はエポキシ系樹脂をバ
インダーとした有機材料の分散膜により形成されねばな
らない。この場合、選択されうる有機固体層は実施例以
外にも、発光層,電子注入輸送層のいずれでもよいし、
また、これらから数種選択されていてもよいことにな
る。
In the embodiment of the present invention, the organic thin film EL element is formed by impregnating the inside of the organic thin film EL element with the curing agent.
It is characterized in that the organic fixing material constituting the element is fixed. Therefore, at least one of the organic layers constituting the organic thin film EL element must be formed of a dispersed film of an organic material using an epoxy resin as a binder. In this case, the organic solid layer that can be selected may be any one of the light emitting layer and the electron injecting and transporting layer other than the examples.
In addition, several kinds may be selected from these.

【0020】正孔注入輸送能を有する低分子化合物とし
ては実施例で用いたα−NPD以外にも、芳香族アミン
誘導体,ポリフィン誘導体,フタロシアニン,オキサジ
アゾール誘導体,トリアゾール,イミダゾール,ピラゾ
リン,オキサゾール,ヒドラゾン,スチルベン,ブタジ
エン,イミダゾールチオン,アシルヒドラゾン,テトラ
ヒドロイミダゾール,ベンジジン型トリフェルアミン等
が用いられる。具体的には、芳香族アミン誘導体のN,
N’−ジフェニル−N,N’−(3−メチルフェニル)
−1,1’−ビフェニル−4,4’−ジアミン(TP
D)等が用いられているがこの限りではない。また、エ
ポキシ基を有する樹脂について特に制限はないが、性状
は粉末で、かつ正孔注入輸送材料が溶解可能な溶剤に可
溶である必要がある。またエポキシ樹脂と正孔注入輸送
材料との混合重量比は実施例で述べたように1:1程度
が望ましく、その総重量と溶剤質量との比は1:80〜
100程度となることが望ましい。さらに、選択された
エポキシ樹脂をバインダーとした分散膜は実施例以外に
もスピンコート方でも形成可能であるが、複数の有機層
を固定化する場合、特にそれらが隣接した層であるなら
ば各層を同一の溶媒を用いて形成することが困難である
ので、各層形成時のエポキシ樹脂は同一の溶剤に解けな
いように各々選択される必要がある。
As the low molecular weight compound having a hole injecting and transporting ability, in addition to α-NPD used in the examples, aromatic amine derivatives, polyphine derivatives, phthalocyanines, oxadiazole derivatives, triazoles, imidazoles, pyrazolines, oxazoles, Hydrazone, stilbene, butadiene, imidazolethione, acylhydrazone, tetrahydroimidazole, benzidine type triferamine, etc. are used. Specifically, N, which is an aromatic amine derivative,
N'-diphenyl-N, N '-(3-methylphenyl)
-1,1'-biphenyl-4,4'-diamine (TP
D) and the like are used, but not limited to this. The resin having an epoxy group is not particularly limited, but it needs to be powdery and soluble in a solvent in which the hole injecting and transporting material can be dissolved. The mixing weight ratio of the epoxy resin and the hole injecting and transporting material is preferably about 1: 1 as described in the examples, and the ratio of the total weight to the solvent mass is 1:80 to.
It is desirable to be about 100. Further, a dispersion film using a selected epoxy resin as a binder can be formed by spin coating other than the examples. However, when a plurality of organic layers are fixed, each layer is particularly preferable if they are adjacent layers. Since it is difficult to form the same using the same solvent, it is necessary to select the epoxy resins for forming the respective layers so that they cannot be dissolved in the same solvent.

【0021】有機発光層4に用いられる発光材料として
は実施例以外にもナフタレン酸誘導体,オキサジアゾー
ル誘導体,フタロニアニン誘導体などがあるが本発明の
製造方法で使用できる発光材料はこの限りではなく、成
膜法に関しても、スピンコーティング法等公知の成膜技
術に対して有効である。また、有機発光層4中の発光材
料は、発光波長変換,発光効率向上のために、米国ラム
ダフィジィック社またはイーストマンコダック社のレー
ザーダイカタログに記載されているクマリン系やキナク
リドン系,ペリレン系,ピラン系等の2種類以上の蛍光
体をドーピングするか、RGBの発光能を有する多種類
の蛍光体の発光層を2層以上積層してもよく、そのうち
一方は赤外域または紫外域に蛍光を示すものであっても
よい。
As the light emitting material used for the organic light emitting layer 4, there are naphthalene acid derivative, oxadiazole derivative, phthalocyanine derivative and the like other than the examples, but the light emitting material which can be used in the production method of the present invention is not limited to this. Also regarding the film forming method, it is effective for a known film forming technique such as a spin coating method. Further, the light emitting material in the organic light emitting layer 4 is a coumarin-based, quinacridone-based, or perylene-based material described in the laser die catalog of Lambda Physic, Inc. or Eastman Kodak Co., Ltd. for conversion of emission wavelength and improvement of emission efficiency. , Two or more kinds of phosphors such as pyran series may be doped, or two or more light emitting layers of many kinds of phosphors having RGB light emitting ability may be laminated, one of which is fluorescent in the infrared region or the ultraviolet region. May be shown.

【0022】陰極5は実施例のAlとLiの混合金属以
外にもNa,Li,Mg,La,Ce,Ca,Sr,A
l,Ag,In,Sn,Zn,Zr等の仕事関数が小さ
い金属元素単体、または安定性を向上させるためにそれ
らを含む2成分,3成分の合金系を用いてもよい。ま
た、実施例のようにLiやCaを含む低仕事関数陰極を
用いた場合には、さらにその上にLiやCaを含まない
Al,In,Ag等の金属層を積層し、酸化に対する保
護層としてもよい。さらに、陰極5の形成方法は実施例
の真空蒸着法のみならず、電子ビーム蒸着法,イオンプ
レーティング法,スパッタリング法により共蒸着ではな
く、合金ターゲットを用いて成膜することもできる。つ
ぎに、有機層の固定化に関して、実施例で示したような
アミン系の硬化剤以外にもエポキシ基を重合及び架橋で
きる一般に公知であるポリアミノアミド系,酸および無
水物系等の硬化剤も適用できるが、有機薄膜EL素子内
部へ含浸させるために、樹脂分散薄膜層と硬化剤とのぬ
れ性を考慮し、毛細管現象による含浸の為には低粘度、
具体的には10cps〜100cpsである必要があ
る。
The cathode 5 is composed of Na, Li, Mg, La, Ce, Ca, Sr, A in addition to the mixed metal of Al and Li in the embodiment.
A single metal element having a small work function such as l, Ag, In, Sn, Zn, or Zr, or a binary or ternary alloy system containing them may be used to improve stability. When a low work function cathode containing Li or Ca is used as in the embodiment, a metal layer of Al, In, Ag or the like containing no Li or Ca is further stacked thereon to protect it from oxidation. May be Further, the cathode 5 may be formed not only by the vacuum vapor deposition method of the embodiment but also by electron beam vapor deposition method, ion plating method and sputtering method, not by co-evaporation but by using an alloy target. Next, regarding immobilization of the organic layer, in addition to the amine-based curing agents as shown in the examples, generally known polyaminoamide-based curing agents capable of polymerizing and crosslinking epoxy groups, acid- and anhydride-based curing agents, etc. Although applicable, in consideration of the wettability between the resin-dispersed thin film layer and the curing agent in order to impregnate the inside of the organic thin film EL element, a low viscosity for impregnation by the capillary phenomenon,
Specifically, it needs to be 10 cps to 100 cps.

【0023】さらに、実施例のように本発明の製造方法
で使用する硬化剤とともにエポキシ基を有する無溶剤型
で、液状の樹脂を混合して塗布し、そのまま有機薄膜E
L素子の封止層9を形成することも可能である。この場
合の方法で用いるエポキシ系樹脂は、実施例で用いた樹
脂以外にも、有機薄膜EL素子が熱に対して弱いという
ことを考慮し、硬化剤の混合により、室温から120℃
前後で硬化可能なもの、好ましくは室温で硬化可能、若
しくはUV照射により硬化するという条件を満たすもの
であればよい。また、封止用のエポキシ系樹脂の粘度に
ついても、硬化剤混合直後から完全に硬化するまでの時
間に溶液を有機薄膜EL素子から漏出させないために高
粘度であり、具体的には100cpsから1000cp
s前後の粘度であり、さらに好ましくは300cpsか
ら1000cpsの間であれば実施例以外の樹脂を用い
てもよい。また、硬化剤とエポキシ樹脂の混合溶液を塗
布する場合は、硬化促進剤や充填剤,カップリング剤,
イオン補促剤などの添加剤は必要に応じて用いてもよ
い。
Further, as in the embodiment, a solventless type resin having an epoxy group and a liquid resin are mixed and applied together with the curing agent used in the manufacturing method of the present invention, and the organic thin film E is directly applied.
It is also possible to form the sealing layer 9 of the L element. In consideration of the fact that the organic thin film EL device is weak against heat, the epoxy resin used in the method in this case is not limited to the resin used in the examples, and is mixed with a curing agent so that the temperature from room temperature to 120.
It may be one that can be cured before and after, preferably one that can be cured at room temperature or that can be cured by UV irradiation. Regarding the viscosity of the epoxy resin for sealing, the viscosity is high in order to prevent the solution from leaking out from the organic thin film EL element immediately after the curing agent is mixed until it is completely cured. Specifically, it is 100 cps to 1000 cps.
Resins other than those in the examples may be used as long as the viscosity is around s and more preferably between 300 cps and 1000 cps. When applying a mixed solution of a curing agent and an epoxy resin, a curing accelerator, a filler, a coupling agent,
You may use additives, such as an ion accelerating agent, as needed.

【0024】[0024]

【発明の効果】以上説明したように、本発明の製造方法
によれば、エポキシ基を重合および架橋することで耐熱
性に優れた有機薄膜層を形成できると同時に、この重合
および架橋を有機薄膜EL素子作製後に硬化剤の含浸に
より行うので、有機薄膜層の薄膜構造が均一で、かつそ
の上に形成される有機薄膜層若しくは陰極との接合部に
空隙等の接触が不十分な部位が減少し、ダークスポット
の発生・成長を防止しつつ有機薄膜EL素子の長寿命化
を図ることができる。そして、本発明の製造方法で用い
る硬化剤は封止用エポキシ樹脂と共に用いることで封止
効果も同時に得ることができ、かつ、このエポキシ樹脂
の粘度を適宜変更することで、種々の用途や使用形態の
有機薄膜EL素子について適用することができる。した
がって、本発明の製造方法によれば、従来よりもより、
実用的かつ効果的に有機薄膜EL素子の長寿命化を図る
ことができる。また、本発明の製造方法によれば、ダー
クスポットが発生し難い長寿命の有機薄膜EL素子を光
源とする発光装置であって種々の用途への適用が可能な
発光装置を提供することができる。
As described above, according to the production method of the present invention, an organic thin film layer having excellent heat resistance can be formed by polymerizing and cross-linking an epoxy group, and at the same time, this polymerization and cross-linking is performed on the organic thin film. Since it is performed by impregnating with a curing agent after the EL element is manufactured, the thin film structure of the organic thin film layer is uniform, and the area where the contact with the organic thin film layer or cathode formed on it is insufficient, such as voids, is reduced. However, it is possible to prolong the life of the organic thin film EL element while preventing the generation and growth of dark spots. Then, the curing agent used in the production method of the present invention can simultaneously obtain the sealing effect by using together with the epoxy resin for sealing, and by appropriately changing the viscosity of this epoxy resin, various applications and uses The present invention can be applied to any form of organic thin film EL device. Therefore, according to the manufacturing method of the present invention,
The life of the organic thin film EL element can be extended practically and effectively. Further, according to the manufacturing method of the present invention, it is possible to provide a light emitting device which uses a long-life organic thin film EL element as a light source, in which dark spots are hard to occur, and which can be applied to various uses. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(f)は本発明の第1の実施の形態の
有機薄膜EL素子の製造方法を説明する工程順に示した
断面図である。
FIG. 1A to FIG. 1F are cross-sectional views showing a sequence of steps for explaining a method for manufacturing an organic thin film EL element according to a first embodiment of the present invention.

【図2】(a)〜(d)は本発明の第2の実施の形態の
有機薄膜EL素子の製造方法を説明する工程順に示した
断面図である。
FIG. 2A to FIG. 2D are cross-sectional views showing a sequence of steps for explaining a method for manufacturing an organic thin film EL element according to a second embodiment of the present invention.

【図3】(a)〜(g)は本発明の第3の実施の形態の
有機薄膜EL素子の製造方法を説明する工程順に示した
断面図である。
3 (a) to 3 (g) are cross-sectional views showing, in the order of steps, a method of manufacturing the organic thin film EL element according to the third embodiment of the present invention.

【図4】従来の有機薄膜EL素子の一般的な断面構成図
である。
FIG. 4 is a general cross-sectional configuration diagram of a conventional organic thin film EL element.

【図5】(a)〜(e)は図4の従来の有機薄膜EL素
子の製造方法を説明する工程順に示した断面図である。
5A to 5E are cross-sectional views showing the order of steps for explaining the method of manufacturing the conventional organic thin film EL element of FIG.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 ITO 3 有機正孔注入輸送層 4 有機発光層 5 陰極 6 硬化剤(含エポキシ樹脂) 7 ストレス吸収層 8 固定化有機正孔注入輸送層 9 封止層 10 電源 11 有機発光層(エポキシ樹脂分散型) 12 固定化有機発光層 13 有機電子注入輸送層(エポキシ樹脂分散型) 14 固定化有機電子注入輸送層 15 紫外線照射・加熱等 1 Glass Substrate 2 ITO 3 Organic Hole Injecting and Transporting Layer 4 Organic Light Emitting Layer 5 Cathode 6 Curing Agent (Epoxy Resin) 7 Stress Absorbing Layer 8 Immobilized Organic Hole Injecting and Transporting Layer 9 Sealing Layer 10 Power Supply 11 Organic Light Emitting Layer ( Epoxy resin dispersion type) 12 Immobilized organic light emitting layer 13 Organic electron injecting and transporting layer (epoxy resin dispersion type) 14 Immobilizing organic electron injecting and transporting layer 15 Ultraviolet irradiation / heating, etc.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 支持基板上に陽極を形成する工程と、前
記陽極上に発光能を有する有機発光層を含む少くとも1
層の有機薄膜層を形成する工程と、前記有機薄膜層上に
陰極を形成する工程と、前記陽極と前記陰極とを覆う樹
脂被膜層を形成する工程とを含む有機薄膜EL素子の製
造方法において、前記少くとも1層の有機薄膜層を形成
する工程が、エポキシ基を含有する樹脂に低分子化合物
を分散させた有機樹脂分散薄膜層を形成する工程を含
み、かつ前記樹脂被膜層を形成する工程が被膜樹脂剤に
硬化剤を混ぜ前記硬化剤が前記有機樹脂分散薄膜層に含
浸することにより前記エポキシ基を含有する樹脂の重合
および架橋を行うことを特徴とする有機薄膜EL素子の
製造方法。
1. A step of forming an anode on a supporting substrate, and at least 1 including an organic light emitting layer having light emitting ability on the anode.
In a method for manufacturing an organic thin film EL element, the method comprising the steps of forming a thin organic thin film layer, forming a cathode on the organic thin film layer, and forming a resin coating layer covering the anode and the cathode. The step of forming the at least one organic thin film layer includes the step of forming an organic resin-dispersed thin film layer in which a low molecular weight compound is dispersed in a resin containing an epoxy group, and the resin coating layer is formed. A method of manufacturing an organic thin film EL element, characterized in that a step of mixing a resin with a coating resin agent and impregnating the organic resin-dispersed thin film layer with the curing agent causes polymerization and crosslinking of the resin containing an epoxy group. .
【請求項2】 前記有機薄膜層を形成する工程が、少な
くとも発光能を有する有機発光層と正孔注入輸送能を有
する有機正孔注入輸送層とを形成する工程とを含み、か
つ少くとも1層がエポキシ基を含有する樹脂に低分子化
合物を分散させた有機樹脂分散薄膜層で硬化剤により硬
化させることを特徴とする請求項1記載の有機薄膜EL
素子の製造方法。
2. The step of forming the organic thin film layer includes the step of forming at least an organic light emitting layer having a light emitting ability and an organic hole injecting and transporting layer having a hole injecting and transporting ability, and at least 1. 2. The organic thin film EL according to claim 1, wherein the layer is an organic resin-dispersed thin film layer in which a low molecular weight compound is dispersed in a resin containing an epoxy group and is cured by a curing agent.
Device manufacturing method.
【請求項3】 前記有機薄膜層を形成する工程が、少な
くとも発光能を有する有機発光層と電子注入輸送能を有
する有機電子注入輸送層とを形成する工程を含み、少な
くとも1層を硬化剤により硬化させることを特徴とする
請求項1記載の有機薄膜EL素子の製造方法。
3. The step of forming the organic thin film layer includes the step of forming at least an organic light emitting layer having a light emitting ability and an organic electron injecting and transporting layer having an electron injecting and transporting ability, and at least one layer is formed by a curing agent. The method of manufacturing an organic thin film EL element according to claim 1, wherein the method is curing.
【請求項4】 前記有機薄膜層を形成する工程が、少な
くとも発光能を有する有機発光層と正孔注入輸送能を有
する有機正孔注入輸送層と電子注入輸送能を有する有機
電子注入輸送層とを形成する工程を含み、少なくとも1
層が硬化剤により硬化させることを特徴とする請求項1
記載の有機薄膜EL素子の製造方法。
4. The step of forming the organic thin film layer includes: an organic light emitting layer having at least a light emitting ability; an organic hole injecting and transporting layer having a hole injecting and transporting ability; and an organic electron injecting and transporting layer having an electron injecting and transporting ability. Forming at least 1
The layer is cured with a curing agent.
A method for producing the organic thin film EL element described.
【請求項5】 前記硬化剤がアミン系材料であることを
特徴とする請求項1,2,3、または4記載の有機薄膜
EL素子の製造方法。
5. The method of manufacturing an organic thin film EL device according to claim 1, wherein the curing agent is an amine-based material.
JP7311253A 1995-11-29 1995-11-29 Manufacturing method of organic thin film EL element Expired - Fee Related JP2682524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7311253A JP2682524B2 (en) 1995-11-29 1995-11-29 Manufacturing method of organic thin film EL element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7311253A JP2682524B2 (en) 1995-11-29 1995-11-29 Manufacturing method of organic thin film EL element

Publications (2)

Publication Number Publication Date
JPH09153395A true JPH09153395A (en) 1997-06-10
JP2682524B2 JP2682524B2 (en) 1997-11-26

Family

ID=18014932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7311253A Expired - Fee Related JP2682524B2 (en) 1995-11-29 1995-11-29 Manufacturing method of organic thin film EL element

Country Status (1)

Country Link
JP (1) JP2682524B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133439A (en) * 1998-10-22 2000-05-12 Minolta Co Ltd Organic electroluminescent element and its manufacture
US6537688B2 (en) 2000-12-01 2003-03-25 Universal Display Corporation Adhesive sealed organic optoelectronic structures
US6576351B2 (en) 2001-02-16 2003-06-10 Universal Display Corporation Barrier region for optoelectronic devices
US6583557B2 (en) 2000-04-26 2003-06-24 Canon Kabushiki Kaisha Organic luminescent element
US6614057B2 (en) 2001-02-07 2003-09-02 Universal Display Corporation Sealed organic optoelectronic structures
US6624568B2 (en) 2001-03-28 2003-09-23 Universal Display Corporation Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices
US6664137B2 (en) 2001-03-29 2003-12-16 Universal Display Corporation Methods and structures for reducing lateral diffusion through cooperative barrier layers
JP2004139938A (en) * 2002-10-21 2004-05-13 Dainippon Printing Co Ltd Manufacturing method of organic electroluminescent element
JP2008016699A (en) * 2006-07-07 2008-01-24 Hitachi Displays Ltd Organic el display
US7659012B2 (en) 2004-02-02 2010-02-09 Samsung Mobile Display Co., Ltd. Organic electroluminescent display device
JP4491931B2 (en) * 2000-08-04 2010-06-30 凸版印刷株式会社 Manufacturing method of EL element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133439A (en) * 1998-10-22 2000-05-12 Minolta Co Ltd Organic electroluminescent element and its manufacture
US6583557B2 (en) 2000-04-26 2003-06-24 Canon Kabushiki Kaisha Organic luminescent element
JP4491931B2 (en) * 2000-08-04 2010-06-30 凸版印刷株式会社 Manufacturing method of EL element
US6537688B2 (en) 2000-12-01 2003-03-25 Universal Display Corporation Adhesive sealed organic optoelectronic structures
US6614057B2 (en) 2001-02-07 2003-09-02 Universal Display Corporation Sealed organic optoelectronic structures
US6576351B2 (en) 2001-02-16 2003-06-10 Universal Display Corporation Barrier region for optoelectronic devices
US6624568B2 (en) 2001-03-28 2003-09-23 Universal Display Corporation Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices
US6664137B2 (en) 2001-03-29 2003-12-16 Universal Display Corporation Methods and structures for reducing lateral diffusion through cooperative barrier layers
US7187119B2 (en) 2001-03-29 2007-03-06 Universal Display Corporation Methods and structures for reducing lateral diffusion through cooperative barrier layers
US7683534B2 (en) 2001-03-29 2010-03-23 Universal Display Corporation Methods and structures for reducing lateral diffusion through cooperative barrier layers
JP2004139938A (en) * 2002-10-21 2004-05-13 Dainippon Printing Co Ltd Manufacturing method of organic electroluminescent element
US7659012B2 (en) 2004-02-02 2010-02-09 Samsung Mobile Display Co., Ltd. Organic electroluminescent display device
JP2008016699A (en) * 2006-07-07 2008-01-24 Hitachi Displays Ltd Organic el display

Also Published As

Publication number Publication date
JP2682524B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
Kido et al. White light‐emitting organic electroluminescent devices using the poly (N‐vinylcarbazole) emitter layer doped with three fluorescent dyes
KR100497626B1 (en) Organic semiconductor device and organic electroluminescent device manufactured by wet process
EP0954205B1 (en) Organic electroluminescent device and method for producing it
KR100611767B1 (en) donor substrate for laser induced thermal imaging and method of fabricating electroluminescence display device using the same substrate
JP2682524B2 (en) Manufacturing method of organic thin film EL element
KR20110004374A (en) Organic electroluminescent device
JPH08236271A (en) Organic electroluminescent element and its manufacture
JPH10106748A (en) Organic electroluminescent element having exciplex
JP2001189193A (en) Light emission element and method of manufacturing the same, and display device and lighting device using the same
CN1409413A (en) Sputtering cathode with heavy alkaline metal halide in organic light-emitting device structure
JP2002216957A (en) Manufacturing method of organic led display panel by using transcription method and organic led display panel manufactured by it
US8092926B2 (en) Organic light emitting diode device and method of manufacturing the same
JPH10214683A (en) Organic electroluminescent element
JP3533790B2 (en) Organic thin film light emitting device
JP4669785B2 (en) Light emitting element and display device
JP2002170664A (en) Organic electroluminescent element
JP2005166661A (en) Donor substrate for laser transfer, and organic electroluminescence element produced by use of the substrate
JPH0997679A (en) Manufacture of electroluminescent
JPH09506646A (en) Electroluminescent device
JP3848430B2 (en) Organic electroluminescence device and method for manufacturing the same
JPH07166160A (en) Organic thin film el element
JPH08288064A (en) Manufacture of organic electroluminescent element
JP2001307871A (en) Electroluminescent element
JPH11242994A (en) Light emitting element and its manufacture
JPH05271652A (en) Organic thin-film el element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970708

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 16

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees