JPH09142990A - Method for lowering oxygen concentration in silicone single crystal and apparatus therefor - Google Patents

Method for lowering oxygen concentration in silicone single crystal and apparatus therefor

Info

Publication number
JPH09142990A
JPH09142990A JP30802695A JP30802695A JPH09142990A JP H09142990 A JPH09142990 A JP H09142990A JP 30802695 A JP30802695 A JP 30802695A JP 30802695 A JP30802695 A JP 30802695A JP H09142990 A JPH09142990 A JP H09142990A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
silicon
peripheral surface
silicon melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30802695A
Other languages
Japanese (ja)
Inventor
Yoji Suzuki
洋二 鈴木
Tsunehisa Machida
倫久 町田
Naoki Ono
直樹 小野
Hiroshige Abe
啓成 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP30802695A priority Critical patent/JPH09142990A/en
Publication of JPH09142990A publication Critical patent/JPH09142990A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to lower the concn. of the oxygen included in a silicon single crystal to an extremely low level by controlling the convection of the silicon melt in a quartz crucible. SOLUTION: A cylindrical block member 26 is inserted between the outer peripheral surface of the silicon single crystal 25 and the inner peripheral surface of the quartz crucible 13. The bottom end of the block member extends near to the surface of the silicon melt 12, thereby segmenting the inside of a chamber 11 to the silicon single crystal side and the inner peripheral surface side of the crucible. A flow regulating member 27 connected to the bottom end of the block member covers the silicon melt surface. A suction port 27a formed near the silicon single crystal of the rear surface of the flow regulating member communicates with a passage 30 formed from the inside of the flow regulating member to the inside of the block member. The inert gas supplied to the inner peripheral surface side of the crucible by a gas feeding and discharging means 34 flows between the flow regulating member and the silicon melt surface from the outer peripheral edge toward the inner peripheral edge of the flow regulating member. The gas is further discharged outside the chamber through the suction port and the passage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン単結晶引
上げ法により製造されるシリコン単結晶中の酸素濃度を
低減する方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for reducing the oxygen concentration in a silicon single crystal manufactured by a silicon single crystal pulling method.

【0002】[0002]

【従来の技術】従来、この種の装置として、図6及び図
7に示すように、チャンバ1内にシリコン融液2が貯留
された石英るつぼ3が収容され、シリコン単結晶5の外
周面と石英るつぼ3の内周面との間にシリコン単結晶5
を囲むようにヒートキャップ6が挿入され、更にヒート
キャップ6の上端から外方に略水平方向に環状リム7が
張り出された、溶融物から高純度半導体棒を引き上げる
装置が開示されている(特公昭57−40119)。こ
の装置では、ヒートキャップ6は下方に向うに従って直
径が小さくなる筒状に形成され、その下端はシリコン融
液2表面近傍まで延び、上端は保温筒9の上端と略同一
高さとなるまで延びる。また上記ヒートキャップ6及び
環状リム7をチャンバ1内に挿入して環状リム7の下面
を保温筒9の上面に当接させると、ヒートキャップ6及
び環状リム7によりチャンバ1内がシリコン単結晶側と
るつぼ内周面側とに区画される。更にチャンバ1に接続
されたガス給排手段(図示せず)によりチャンバ1内に
不活性ガスを供給すると、この不活性ガスは図6の実線
矢印で示すようにシリコン単結晶5外周面を流下し、ヒ
ートキャップ6下端及びシリコン融液2表面間の隙間を
通って石英るつぼ3外に排出されるようになっている。
このように構成された装置では、シリコン融液2中の酸
素がSiOガス等となって蒸発し、チャンバ1内に付着
した後に落下するが、このときヒートキャップ6の存在
により不活性ガスがヒートキャップ6下端及びシリコン
融液2表面間の隙間をシリコン単結晶5外周面側から石
英るつぼ3内周面側に向って勢い良く流れるため、上記
落下物をシリコン単結晶5から遠ざける。この結果、上
記落下物がシリコン単結晶5に取り込まれてシリコン単
結晶5に格子欠陥である転位が発生するのを防止できる
ようになっている。またヒートキャップ6は熱を効率よ
く遮蔽するため、シリコン単結晶5の生産性を向上でき
る。
2. Description of the Related Art Conventionally, as this type of apparatus, as shown in FIGS. 6 and 7, a quartz crucible 3 in which a silicon melt 2 is stored is housed in a chamber 1 and an outer peripheral surface of a silicon single crystal 5 is formed. Silicon single crystal 5 between the inner surface of the quartz crucible 3 and
A device for pulling a high-purity semiconductor rod from a melt is disclosed in which a heat cap 6 is inserted to surround the heat cap 6 and an annular rim 7 is projected outward from the upper end of the heat cap 6 in a substantially horizontal direction ( Japanese Patent Publication No. 57-40119). In this apparatus, the heat cap 6 is formed in a tubular shape whose diameter decreases as it goes downward, its lower end extends to the vicinity of the surface of the silicon melt 2, and its upper end extends to substantially the same height as the upper end of the heat retaining tube 9. When the heat cap 6 and the annular rim 7 are inserted into the chamber 1 and the lower surface of the annular rim 7 is brought into contact with the upper surface of the heat insulating cylinder 9, the inside of the chamber 1 is closed by the heat cap 6 and the annular rim 7 on the silicon single crystal side. It is divided into the inner surface of the crucible. Further, when an inert gas is supplied into the chamber 1 by a gas supply / exhaust means (not shown) connected to the chamber 1, this inert gas flows down the outer peripheral surface of the silicon single crystal 5 as shown by the solid arrow in FIG. Then, the heat is discharged to the outside of the quartz crucible 3 through the gap between the lower end of the heat cap 6 and the surface of the silicon melt 2.
In the apparatus configured as described above, oxygen in the silicon melt 2 becomes SiO gas or the like to evaporate and drop after adhering in the chamber 1, but at this time, the presence of the heat cap 6 heats the inert gas. Since the gap between the lower end of the cap 6 and the surface of the silicon melt 2 flows vigorously from the outer peripheral surface side of the silicon single crystal 5 toward the inner peripheral surface side of the quartz crucible 3, the above-mentioned fallen object is kept away from the silicon single crystal 5. As a result, it is possible to prevent the falling matter from being taken into the silicon single crystal 5 and generating dislocations which are lattice defects in the silicon single crystal 5. Further, since the heat cap 6 efficiently shields heat, the productivity of the silicon single crystal 5 can be improved.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の溶
融物から高純度の半導体棒を引き上げる装置では、不活
性ガスがヒートキャップ下端及びシリコン融液表面間を
通過することにより、シリコン融液に図6の破線矢印で
示すような対流を発生させると同時に、シリコン融液表
面を通過せずに石英るつぼ底面近傍からシリコン単結晶
の成長下面近傍に達する一点鎖線矢印で示すような対流
を発生させる。この結果、シリコン融液中の酸素がSi
Oガス等となって蒸発した表面付近の酸素濃度の低いシ
リコン融液はシリコン単結晶から遠ざかり、石英るつぼ
の成分であるSiO2がシリコン融液に溶け込んだ酸素
濃度の高いシリコン融液が石英るつぼの底からシリコン
単結晶の成長下面近傍に達してシリコン単結晶に取り込
まれるため、シリコン単結晶中の酸素濃度が高くなる問
題点があった。本発明の目的は、石英るつぼ内のシリコ
ン融液の対流を制御することにより、シリコン単結晶中
に含まれる酸素濃度を極めて低く抑えることができる、
シリコン単結晶中の酸素濃度の低減方法及びその装置を
提供することにある。
However, in the above-mentioned conventional apparatus for pulling a high-purity semiconductor rod from a melt, an inert gas passes between the lower end of the heat cap and the surface of the silicon melt to form a silicon melt. At the same time as generating the convection as shown by the broken line arrow in FIG. 6, the convection as shown by the alternate long and short dash line arrow from the vicinity of the bottom surface of the quartz crucible to the vicinity of the growth lower surface of the silicon single crystal without passing through the surface of the silicon melt is generated. . As a result, the oxygen in the silicon melt is changed to Si.
The silicon melt with a low oxygen concentration near the surface that has evaporated as O gas, etc. moves away from the silicon single crystal, and SiO 2 which is a component of the quartz crucible is dissolved in the silicon melt. There is a problem that the oxygen concentration in the silicon single crystal becomes high because it reaches the vicinity of the growth lower surface of the silicon single crystal from the bottom of the silicon and is taken into the silicon single crystal. The object of the present invention is to control the convection of the silicon melt in the quartz crucible, whereby the oxygen concentration contained in the silicon single crystal can be suppressed to an extremely low level.
It is an object of the present invention to provide a method and an apparatus for reducing the oxygen concentration in a silicon single crystal.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、シリコン単結晶25をチャンバ11
内の石英るつぼ13に貯留されたシリコン融液12から
引上げるときにチャンバ11内に供給された不活性ガス
をシリコン融液12の表面に導き、シリコン融液12の
表面で石英るつぼ13の内周面側からシリコン単結晶2
5の外周面側に不活性ガスを流してシリコン融液12の
対流方向を制御するシリコン単結晶中の酸素濃度の低減
方法である。この低減方法では、上記対流に乗ったシリ
コン融液12が石英るつぼ13の内周面側からシリコン
単結晶25の外周面側に向う過程で、シリコン融液12
中の酸素がSiOガス等となってシリコン融液12表面
から蒸発するので、シリコン単結晶25の成長下面近傍
に達したシリコン融液12中の酸素濃度は極めて低くな
る。この結果、この低酸素濃度のシリコン融液12がシ
リコン単結晶25となって成長するので、シリコン単結
晶25中に含まれる酸素濃度は極めて低くなる。
The invention according to claim 1 is
As shown in FIG.
When the silicon melt 12 stored in the quartz crucible 13 therein is pulled up, the inert gas supplied into the chamber 11 is guided to the surface of the silicon melt 12 so that the surface of the silicon melt 12 causes the inside of the quartz crucible 13 to be removed. Silicon single crystal from the peripheral side 2
5 is a method of reducing the oxygen concentration in the silicon single crystal by controlling the convection direction of the silicon melt 12 by causing an inert gas to flow to the outer peripheral surface side of 5. In this reduction method, the silicon melt 12 that has been subjected to the convection flows from the inner peripheral surface side of the quartz crucible 13 toward the outer peripheral surface side of the silicon single crystal 25 in the process.
Since the oxygen in the silicon becomes SiO gas or the like and evaporates from the surface of the silicon melt 12, the oxygen concentration in the silicon melt 12 reaching the vicinity of the growth lower surface of the silicon single crystal 25 becomes extremely low. As a result, the silicon melt 12 having a low oxygen concentration grows as the silicon single crystal 25, so that the oxygen concentration contained in the silicon single crystal 25 becomes extremely low.

【0005】請求項2に係る発明は、図1及び図4に示
すように、チャンバ11内の石英るつぼ13に貯留され
たシリコン融液12から引上げられるシリコン単結晶2
5の外周面と石英るつぼの内周面との間にシリコン単結
晶を囲むように挿入され下端がシリコン融液表面13近
傍まで延びかつチャンバ11内をシリコン単結晶側とる
つぼ内周面側とに区画する円筒状の区画部材26と、区
画部材26の下端に接続されシリコン融液12表面を所
定の間隔をあけて覆いかつ下面のうちシリコン単結晶2
5近傍に吸入口27aが形成された整流部材27と、整
流部材27内部から区画部材26内部にかけて形成され
吸入口27aに連通する通路30と、るつぼ内周面側に
不活性ガスを供給しこの不活性ガスを整流部材27及び
シリコン融液12表面間を整流部材27の外周縁から内
周縁に向って流し更に吸入口27a及び通路30を介し
てチャンバ11外に排出するガス給排手段34とを備え
たシリコン単結晶中の酸素濃度の低減装置である。この
低減装置では、シリコン単結晶25を引上げるときに、
ガス給排手段34にて不活性ガスを整流部材27下面及
びシリコン融液12表面間を整流部材27の外周縁から
内周縁に向って流すことにより、シリコン融液12表面
で石英るつぼ13内周面からシリコン単結晶25の成長
下面近傍に向う対流をシリコン融液12に発生させる。
この対流によりシリコン融液12がこの融液12表面で
石英るつぼ13内周面からシリコン単結晶25の成長下
面近傍に向う過程で、融液12中の酸素がSiOガス等
となって融液12表面から蒸発するので、シリコン単結
晶25の成長下面近傍に達したシリコン融液12中の酸
素濃度は極めて低くなる。この結果、この低酸素濃度の
シリコン融液12がシリコン単結晶25となって成長す
るので、シリコン単結晶25中に含まれる酸素濃度は極
めて低くなる。請求項3に係る発明は、請求項2に係る
発明であって、区画部材及び整流部材がカーボン、石
英、モリブデン、タングステン、ニオブ又はタンタルに
より形成されたことを特徴とする。
The invention according to claim 2 is, as shown in FIGS. 1 and 4, a silicon single crystal 2 pulled up from a silicon melt 12 stored in a quartz crucible 13 in a chamber 11.
5 is inserted so as to surround the silicon single crystal between the outer peripheral surface of the quartz crucible 5 and the inner peripheral surface of the quartz crucible, and the lower end extends to the vicinity of the silicon melt surface 13 and the inner peripheral surface of the crucible is located inside the chamber 11 on the silicon single crystal side. And a cylindrical partition member 26 that is partitioned into, and covers the surface of the silicon melt 12 that is connected to the lower end of the partition member 26 at a predetermined interval and that the silicon single crystal
5, a flow regulating member 27 having a suction port 27a formed therein, a passage 30 formed from the inside of the flow regulating member 27 to the inside of the partition member 26 and communicating with the suction port 27a, and an inert gas is supplied to the inner peripheral surface of the crucible. A gas supply / exhaust means 34 for causing an inert gas to flow between the surfaces of the rectifying member 27 and the silicon melt 12 from the outer peripheral edge of the rectifying member 27 toward the inner peripheral edge thereof and further to the outside of the chamber 11 via the suction port 27a and the passage 30. And a device for reducing the oxygen concentration in a silicon single crystal. In this reduction device, when pulling up the silicon single crystal 25,
By flowing the inert gas between the lower surface of the flow regulating member 27 and the surface of the silicon melt 12 by the gas supply / discharge means 34 from the outer peripheral edge of the flow regulating member 27 toward the inner peripheral edge, the inner periphery of the quartz crucible 13 is formed on the surface of the silicon melt 12. A convection current is generated in the silicon melt 12 from the surface toward the growth lower surface of the silicon single crystal 25.
Oxygen in the melt 12 becomes SiO gas or the like in the process in which the silicon melt 12 moves from the inner peripheral surface of the quartz crucible 13 on the surface of the melt 12 to the vicinity of the growth lower surface of the silicon single crystal 25 by this convection. Since it evaporates from the surface, the oxygen concentration in the silicon melt 12 that has reached the vicinity of the growth lower surface of the silicon single crystal 25 becomes extremely low. As a result, the silicon melt 12 having a low oxygen concentration grows as the silicon single crystal 25, so that the oxygen concentration contained in the silicon single crystal 25 becomes extremely low. The invention according to claim 3 is the invention according to claim 2, characterized in that the partition member and the rectifying member are formed of carbon, quartz, molybdenum, tungsten, niobium, or tantalum.

【0006】[0006]

【発明の実施の形態】次に本発明の第1の実施の形態を
図面に基づいて詳しく説明する。図1〜図4に示すよう
に、単結晶引上げ装置10のチャンバ11内には、シリ
コン融液12を貯留する石英るつぼ13が設けられ、こ
の石英るつぼ13の外面は黒鉛サセプタ14により被覆
される。石英るつぼ13の下面は上記黒鉛サセプタ14
を介して支軸16の上端に固定され、この支軸16の下
部はるつぼ駆動手段17に接続される(図4)。るつぼ
駆動手段17は図示しないが石英るつぼ13を回転させ
る第1回転用モータと、石英るつぼ13を昇降させる昇
降用モータとを有し、これらのモータにより石英るつぼ
13が所定の方向に回転し得るとともに、上下方向に移
動可能となっている。石英るつぼ13の外方にはこの石
英るつぼ13から所定の間隔をあけてヒータ18が設け
られ、このヒータ18とチャンバ11との間には保温筒
19が設けられる。ヒータ18により石英るつぼ13に
投入された高純度のシリコン多結晶が溶融してシリコン
融液12になる。
Next, a first embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIGS. 1 to 4, a quartz crucible 13 for storing a silicon melt 12 is provided in a chamber 11 of a single crystal pulling apparatus 10, and an outer surface of the quartz crucible 13 is covered with a graphite susceptor 14. . The lower surface of the quartz crucible 13 is the graphite susceptor 14
It is fixed to the upper end of the support shaft 16 via the, and the lower part of the support shaft 16 is connected to the crucible drive means 17 (FIG. 4). The crucible driving means 17 has a first rotation motor (not shown) for rotating the quartz crucible 13 and a lifting motor for raising and lowering the quartz crucible 13, and these motors can rotate the quartz crucible 13 in a predetermined direction. At the same time, it can be moved up and down. A heater 18 is provided outside the quartz crucible 13 at a predetermined interval from the quartz crucible 13, and a heat insulating cylinder 19 is provided between the heater 18 and the chamber 11. The high-purity silicon polycrystal charged into the quartz crucible 13 by the heater 18 is melted to form the silicon melt 12.

【0007】またチャンバ11の上面にはチャンバ11
より小径の円筒状のケーシング21が設けられる(図
4)。このケーシング21には引上げ手段22が設けら
れる。引上げ手段22はケーシング21の上端部に水平
状態で旋回可能に設けられた引上げヘッド(図示せず)
と、このヘッドを回転させる第2回転用モータ(図示せ
ず)と、ヘッドから石英るつぼ13の回転中心に向って
垂下されたワイヤケーブル23と、上記ヘッド内に設け
られワイヤケーブル23を巻取り又は繰出す引上げ用モ
ータ(図示せず)とを有する。ワイヤケーブル23の下
端にはシリコン融液12に浸してシリコン単結晶25を
引上げるための種結晶24が取付けられる。
On the upper surface of the chamber 11, the chamber 11
A cylindrical casing 21 having a smaller diameter is provided (FIG. 4). The casing 21 is provided with a pulling means 22. The pulling means 22 is a pulling head (not shown) provided at the upper end of the casing 21 so as to be pivotable in a horizontal state.
A second rotation motor (not shown) for rotating the head, a wire cable 23 suspended from the head toward the center of rotation of the quartz crucible 13, and a wire cable 23 provided in the head and wound up Or, it has a pulling motor (not shown) for feeding. At the lower end of the wire cable 23 is attached a seed crystal 24 for dipping in the silicon melt 12 to pull up the silicon single crystal 25.

【0008】シリコン単結晶25の外周面と石英るつぼ
13の内周面との間にはシリコン単結晶25を囲むよう
に区画部材26が挿入され、この区画部材26の下端に
はシリコン融液12表面を覆う整流部材27が接続され
る(図1及び図4)。区画部材26は円筒状の筒状部2
6aと、この筒状部26aの上端から外方に略水平方向
に張り出す円板状のフランジ部26bとを有する(図1
〜図4)。筒状部26aの下端はシリコン融液12表面
近傍まで延び、上端は保温筒19の上端と略同一高さと
なるまで延びる。またフランジ部26bの外径はチャン
バ11の内径より僅かに小さく形成される。上記区画部
材26をチャンバ11内に挿入すると、フランジ部26
bの下面が保温筒19の上面に当接し、区画部材26に
よりチャンバ11内がシリコン単結晶側とるつぼ内周面
側とに区画されるようになっている(図1及び図4)。
A partition member 26 is inserted between the outer peripheral surface of the silicon single crystal 25 and the inner peripheral surface of the quartz crucible 13 so as to surround the silicon single crystal 25, and the silicon melt 12 is placed at the lower end of the partition member 26. A rectifying member 27 that covers the surface is connected (FIGS. 1 and 4). The partition member 26 is a cylindrical tubular portion 2
6a, and a disc-shaped flange portion 26b protruding outward from the upper end of the tubular portion 26a in a substantially horizontal direction (see FIG. 1).
~ FIG. 4). The lower end of the cylindrical portion 26a extends to the vicinity of the surface of the silicon melt 12, and the upper end extends to substantially the same height as the upper end of the heat retaining cylinder 19. The outer diameter of the flange portion 26b is formed slightly smaller than the inner diameter of the chamber 11. When the partition member 26 is inserted into the chamber 11, the flange portion 26
The lower surface of b contacts the upper surface of the heat insulation cylinder 19, and the partition member 26 partitions the chamber 11 into the silicon single crystal side and the crucible inner peripheral surface side (FIGS. 1 and 4).

【0009】整流部材27はシリコン融液12表面から
所定の間隔をあけて上方にかつシリコン融液12表面と
略平行に設けられる。また整流部材27の下面のうちシ
リコン単結晶25近傍の下面にはリング状の吸入口27
aが形成され(図1及び図3)、整流部材27内部から
区画部材26内部にかけて上記吸入口27aに連通する
通路30が形成される(図1及び図4)。上記通路30
は吸入口27aに連通し整流部材27内部を中空にする
ことにより形成された第1通路31と、第1通路31に
連通し筒状部26a内部を中空にすることにより形成さ
れた第2通路32と、第2通路32に連通しフランジ部
26b内部を中空にすることにより形成された第3通路
33とを有する。ここで筒状部26b内部とは筒状部2
6を構成する周壁の外周面と内周面との間をいう。区画
部材26及び整流部材27はカーボン、石英、モリブデ
ン、タングステン、ニオブ又はタンタルにより形成され
ることが好ましい。なお、吸入口はリング状の孔ではな
く、シリコン単結晶を中心とする同一円周上に所定の間
隔をあけて形成された多数の小孔でもよい。
The rectifying member 27 is provided above the surface of the silicon melt 12 at a predetermined distance and substantially parallel to the surface of the silicon melt 12. A ring-shaped suction port 27 is provided on the lower surface of the rectifying member 27 near the silicon single crystal 25.
a is formed (FIGS. 1 and 3), and a passage 30 communicating from the inside of the flow regulating member 27 to the inside of the partition member 26 with the suction port 27a is formed (FIGS. 1 and 4). Above passage 30
Is a first passage 31 formed by hollowing the inside of the flow regulating member 27 communicating with the suction port 27a, and a second passage formed by communicating the first passage 31 with a hollow inside of the tubular portion 26a. 32, and a third passage 33 that is formed by hollowing the inside of the flange portion 26b that communicates with the second passage 32. Here, the inside of the tubular portion 26b means the tubular portion 2
It refers to a portion between the outer peripheral surface and the inner peripheral surface of the peripheral wall forming part 6. The partition member 26 and the rectifying member 27 are preferably made of carbon, quartz, molybdenum, tungsten, niobium, or tantalum. The suction port may not be a ring-shaped hole, but may be a large number of small holes formed at a predetermined interval on the same circumference centered on the silicon single crystal.

【0010】チャンバ11にはこのチャンバ11内にア
ルゴンガスや窒素ガス等の不活性ガスを供給しかつこの
不活性ガスをチャンバ11から排出するガス給排手段3
4が接続される(図1〜図4)。ガス給排手段34は一
端が不活性ガスを貯留するタンク(図示せず)に接続さ
れ他端がチャンバ11及びフランジ部26bを貫通して
るつぼ内周面側に突出するメイン供給パイプ36と、一
端が第3通路33に連通するようにフランジ部26bに
接続され他端が真空ポンプの吸入口(図示せず)に接続
されたメイン排出パイプ37とを有する。メイン供給パ
イプ36は2本(図1〜図3)又は3本以上設けること
が好ましく、これらのパイプ36の他端はフランジ部2
6bのうちシリコン単結晶25を中心とする同一円周上
に等間隔に貫通される。メイン排出パイプ37も2本
(図1及び図2)又は3本以上設けることが好ましく、
これらのパイプ37はフランジ部26bのうちシリコン
単結晶25を中心とする同一円周上に等間隔に接続され
る。またメイン供給パイプ36及びメイン排出パイプ3
7には不活性ガスの流量をそれぞれ調整するメイン流量
調整弁38,39が設けられる。
Gas supply / exhaust means 3 for supplying an inert gas such as argon gas or nitrogen gas into the chamber 11 and discharging the inert gas from the chamber 11.
4 are connected (FIGS. 1 to 4). The gas supply / discharge means 34 has a main supply pipe 36 having one end connected to a tank (not shown) for storing an inert gas and the other end penetrating the chamber 11 and the flange portion 26b and protruding toward the inner peripheral surface of the crucible, The main discharge pipe 37 has one end connected to the flange portion 26b so as to communicate with the third passage 33 and the other end connected to the suction port (not shown) of the vacuum pump. It is preferable to provide two main supply pipes 36 (FIGS. 1 to 3) or three or more, and the other end of these pipes 36 is the flange portion 2
6b are penetrated at equal intervals on the same circumference centered on the silicon single crystal 25. It is preferable to provide two main discharge pipes 37 (FIGS. 1 and 2) or three or more,
These pipes 37 are connected to the flange portion 26b at equal intervals on the same circumference centered on the silicon single crystal 25. In addition, the main supply pipe 36 and the main discharge pipe 3
The main flow rate adjusting valves 38 and 39 for adjusting the flow rates of the inert gas are provided at 7.

【0011】41はチャンバ11内のシリコン単結晶側
の不活性ガスの圧力を調整しかつシリコン単結晶25の
外周面に沿って不活性ガスの上昇流が発生するのを防止
するためにるつぼ内周面側に不活性ガスを供給する補助
供給パイプであり、42はチャンバ11内のるつぼ内周
面側の不活性ガスの圧力を調整しかつメイン供給パイプ
41からるつぼ内周面側に供給された不活性ガスのうち
余剰の不活性ガスをチャンバ11外に排出する補助排出
パイプであり、43及び44は補助供給パイプ41及び
補助排出パイプ42にそれぞれ設けられた不活性ガス流
量調整用の補助流量調整弁である(図4)。なお、メイ
ン供給パイプから石英るつぼの内周面側に供給される不
活性ガスの流量は0〜100リットル/分、更に好まし
くは10〜50リットル/分であり、補助供給パイプか
らシリコン単結晶の外周面側に供給される不活性ガスの
流量は5〜100リットル/分、更に好ましくは5〜1
0リットル/分であり、整流部材の下面に設けられた吸
入口のシリコン単結晶の外周面からの距離は10〜15
0mm、更に好ましくは10〜50mmである。
Reference numeral 41 designates the inside of the crucible for adjusting the pressure of the inert gas on the silicon single crystal side in the chamber 11 and preventing the upward flow of the inert gas from occurring along the outer peripheral surface of the silicon single crystal 25. Reference numeral 42 is an auxiliary supply pipe for supplying an inert gas to the peripheral surface side, and 42 is for adjusting the pressure of the inert gas on the inner peripheral surface side of the crucible in the chamber 11 and is supplied from the main supply pipe 41 to the inner peripheral surface side of the crucible. The auxiliary discharge pipes 43 and 44 are provided in the auxiliary supply pipe 41 and the auxiliary discharge pipe 42 for adjusting the flow rate of the inert gas, respectively. It is a flow control valve (Fig. 4). The flow rate of the inert gas supplied from the main supply pipe to the inner peripheral surface side of the quartz crucible is 0 to 100 liters / minute, more preferably 10 to 50 liters / minute. The flow rate of the inert gas supplied to the outer peripheral surface side is 5 to 100 liters / minute, and more preferably 5 to 1
0 liter / min, and the distance from the outer peripheral surface of the silicon single crystal of the inlet provided on the lower surface of the rectifying member is 10 to 15
It is 0 mm, more preferably 10 to 50 mm.

【0012】引上げ用モータの出力軸(図示せず)には
ロータリエンコーダ(図示せず)が接続され、るつぼ駆
動手段17には石英るつぼ13内のシリコン融液12の
重量を検出する重量センサ(図示せず)と、支軸16の
昇降位置を検出するリニヤエンコーダ(図示せず)とが
設けられる。ロータリエンコーダ、重量センサ及びリニ
ヤエンコーダの各検出出力はコントローラ(図示せず)
の制御入力に接続され、コントローラの制御出力は引上
げ手段22の引上げ用モータ、るつぼ駆動手段17の昇
降用モータにそれぞれ接続される。またコントローラに
はメモリ(図示せず)が設けられ、このメモリにはロー
タリエンコーダの検出出力に対するワイヤケーブル23
の巻取り長さ、即ちシリコン単結晶25の引上げ長さが
マップとして記憶され、重量センサの検出出力に対する
石英るつぼ13内のシリコン融液12の液面レベルがマ
ップとして記憶される。コントローラは重量センサの検
出出力に基づいて石英るつぼ13内のシリコン融液12
の液面が常に一定のレベルに保つように、るつぼ駆動手
段17の昇降用モータを制御する。
A rotary encoder (not shown) is connected to the output shaft (not shown) of the pulling motor, and a weight sensor for detecting the weight of the silicon melt 12 in the quartz crucible 13 is connected to the crucible driving means 17 ( (Not shown) and a linear encoder (not shown) for detecting the vertical position of the support shaft 16 are provided. Each detection output of the rotary encoder, weight sensor, and linear encoder is a controller (not shown)
The control output of the controller is connected to the pulling motor of the pulling means 22 and the lifting motor of the crucible driving means 17, respectively. A memory (not shown) is provided in the controller, and the wire cable 23 for the detection output of the rotary encoder is provided in this memory.
The winding length, that is, the pulling length of the silicon single crystal 25 is stored as a map, and the liquid level of the silicon melt 12 in the quartz crucible 13 with respect to the detection output of the weight sensor is stored as a map. The controller uses the silicon melt 12 in the quartz crucible 13 based on the detection output of the weight sensor.
The raising / lowering motor of the crucible driving means 17 is controlled so that the liquid surface of the crucible is always kept at a constant level.

【0013】このように構成されたシリコン単結晶中の
酸素濃度の低減装置の動作を説明する。シリコン単結晶
25を引上げるときに、メイン流量調整弁38,39及
び補助流量調整弁43,44を調整することにより、チ
ャンバ11内のシリコン単結晶側及びるつぼ内周面側の
不活性ガスの流量をそれぞれ調整する。メイン供給パイ
プ36からるつぼ内周面側に供給された不活性ガスは図
1の実線矢印で示すように石英るつぼ13内周面及び区
画部材26の筒状部26a外周面間を流下し、整流部材
27下面及びシリコン融液12表面間を整流部材27の
外周縁から内周縁に向って流れ、更に吸入口27aから
整流部材27内部に流入し第1〜第3通路31〜33を
通ってメイン排出パイプ37からチャンバ11外に排出
される。また補助供給パイプ41からシリコン単結晶2
5側に供給された不活性ガスは一点鎖線矢印で示すよう
にシリコン単結晶25外周面を流下して吸入口27aか
ら整流部材27内部に流入する。
The operation of the device for reducing the oxygen concentration in the silicon single crystal thus configured will be described. By adjusting the main flow rate adjusting valves 38, 39 and the auxiliary flow rate adjusting valves 43, 44 when pulling up the silicon single crystal 25, the inert gas on the silicon single crystal side in the chamber 11 and on the inner peripheral surface side of the crucible is adjusted. Adjust each flow rate. The inert gas supplied from the main supply pipe 36 to the inner peripheral surface side of the crucible flows down between the inner peripheral surface of the quartz crucible 13 and the outer peripheral surface of the cylindrical portion 26a of the partition member 26 as indicated by the solid line arrow in FIG. Between the lower surface of the member 27 and the surface of the silicon melt 12 flows from the outer peripheral edge of the rectifying member 27 toward the inner peripheral edge, and further flows into the inside of the rectifying member 27 through the suction port 27a and passes through the first to third passages 31 to 33 to the main. It is discharged from the discharge pipe 37 to the outside of the chamber 11. Also, from the auxiliary supply pipe 41 to the silicon single crystal 2
The inert gas supplied to the No. 5 side flows down the outer peripheral surface of the silicon single crystal 25 as shown by the one-dot chain line arrow, and flows into the rectifying member 27 from the suction port 27a.

【0014】不活性ガスが整流部材27下面及びシリコ
ン融液12表面間を整流部材27の外周縁から内周縁に
向って流れるとき、この不活性ガス流はシリコン融液1
2表面に接するので、シリコン融液12に図1及び図4
の破線矢印、二点鎖線矢印及び一点鎖線矢印で示すよう
な対流を発生させる。シリコン融液12が一点鎖線矢印
で示すように石英るつぼ13の内底面から内周面に沿っ
て流れると、石英るつぼ13の成分であるSiO2がシ
リコン融液12に溶け込む。この融液12に溶け込んだ
酸素は融液12が破線矢印で示すように融液12表面で
シリコン単結晶25の成長下面近傍に向う過程で、Si
Oガス等となって融液12表面から蒸発し、この蒸発し
たSiOガス等は不活性ガス流によりチャンバ11外に
排出されるので、シリコン単結晶25の成長下面近傍に
達したシリコン融液12中の酸素濃度は極めて低くな
る。この結果、この低酸素濃度のシリコン融液12がシ
リコン単結晶25となって成長するので、シリコン単結
晶25中に含まれる酸素濃度は極めて低くなる。
When the inert gas flows between the lower surface of the rectifying member 27 and the surface of the silicon melt 12 from the outer peripheral edge of the rectifying member 27 toward the inner peripheral edge, this inert gas flow is generated by the silicon melt 1.
Since it is in contact with the surface 2 of the silicon melt 12,
The convection is generated as indicated by the broken arrow, the two-dot chain line arrow and the one-dot chain line arrow. When the silicon melt 12 flows from the inner bottom surface of the quartz crucible 13 along the inner peripheral surface as shown by the one-dot chain line arrow, SiO 2 which is a component of the quartz crucible 13 melts into the silicon melt 12. Oxygen dissolved in the melt 12 is converted into Si in the process in which the melt 12 moves to the vicinity of the growth lower surface of the silicon single crystal 25 on the surface of the melt 12 as indicated by a dashed arrow.
Since it becomes O gas or the like and evaporates from the surface of the melt 12, and the evaporated SiO gas or the like is discharged to the outside of the chamber 11 by the inert gas flow, the silicon melt 12 that has reached near the growth lower surface of the silicon single crystal 25. The oxygen concentration in it becomes extremely low. As a result, the silicon melt 12 having a low oxygen concentration grows as the silicon single crystal 25, so that the oxygen concentration contained in the silicon single crystal 25 becomes extremely low.

【0015】図5は本発明の第2の実施の形態を示す。
図5において図4と同一符号は同一部品を示す。この装
置では、区画部材66の筒状部66aが上方に延びてそ
の上端がケーシング61の下部に遊挿され、フランジ部
66bが筒状部66aの上端から外方に略水平に張り出
して設けられる。ケーシング61の下部内周面にはリン
グ状の受け具61aが突設され、この受け具61aの上
面にフランジ部66bの下面が当接することにより、区
画部材66がチャンバ11内をシリコン単結晶側とるつ
ぼ内周面側とに区画するようになっている。ガス給排手
段34のメイン供給パイプ36の他端はチャンバ11を
貫通してるつぼ内周面側に突出し、メイン排出パイプ3
7の一端は整流部材27内部から区画部材66内部にか
けて形成された通路70のうち区画部材66の筒状部6
6a内部に形成された第2通路72に連通するように筒
状部66aに接続される。上記以外は第1の実施の形態
と同一に構成される。このように構成されたシリコン単
結晶中の酸素濃度の低減装置の動作は、上記第1の実施
の形態の低減装置の動作と略同様であるため、繰返しの
説明を省略する。
FIG. 5 shows a second embodiment of the present invention.
5, the same reference numerals as those in FIG. 4 indicate the same parts. In this device, the tubular portion 66a of the partition member 66 extends upward, the upper end of which is loosely inserted into the lower portion of the casing 61, and the flange portion 66b is provided so as to project substantially horizontally outward from the upper end of the tubular portion 66a. . A ring-shaped receiver 61a is projectingly provided on the lower inner peripheral surface of the casing 61, and the lower surface of the flange portion 66b abuts on the upper surface of the receiver 61a, so that the partition member 66 moves the inside of the chamber 11 toward the silicon single crystal side. It is designed to be divided into the inner surface of the crucible. The other end of the main supply pipe 36 of the gas supply / discharge means 34 penetrates through the chamber 11 and projects toward the inner peripheral surface of the crucible, and the main discharge pipe 3
One end of 7 is a tubular portion 6 of the partition member 66 in the passage 70 formed from the inside of the flow regulating member 27 to the inside of the partition member 66.
It is connected to the tubular portion 66a so as to communicate with the second passage 72 formed inside 6a. The configuration other than the above is the same as that of the first embodiment. The operation of the oxygen concentration reducing apparatus in the silicon single crystal configured as described above is substantially the same as the operation of the reducing apparatus of the first embodiment, and therefore the repetitive description will be omitted.

【0016】[0016]

【実施例】次に本発明の実施例を図面に基づいて比較例
とともに詳しく説明する。 <実施例1>図1〜図4に示すように、シリコン単結晶
25の外周面と石英るつぼ13の内周面との間に区画部
材26を挿入し、この区画部材26によりチャンバ11
内をシリコン単結晶側とるつぼ内周面側とに区画し、更
に区画部材26の下端にシリコン融液12表面を覆う整
流部材27を接続した。またチャンバ11内にアルゴン
ガスを供給しかつ排出するガス給排手段34は、石英る
つぼ13の内周面側及びシリコン単結晶25の外周面側
にアルゴンガスをそれぞれ供給するメイン供給パイプ3
6及び補助供給パイプ41と、チャンバ11内のアルゴ
ンガスを排出するメイン排出パイプ37及び補助排出パ
イプ42とを有した。上記各パイプ36,37,41,
43にはメイン流量調整弁38,39及び補助流量調整
弁43,44を設けた。上記ガス給排手段34を制御す
ることにより、石英るつぼ13の内周面側に供給された
不活性ガスは整流部材27及びシリコン融液12表面間
を整流部材27の外周縁から内周縁に向って流れ、整流
部材27下面の吸入口27aから整流部材27内部及び
区画部材26内部の通路30を介してチャンバ11外に
排出されるように構成した。また石英るつぼ13の内径
は406mmであり、この石英るつぼ13に貯留された
シリコン融液12の重量は35kgであった。更に区画
部材26の筒状部26aの内径及び整流部材27の内径
はそれぞれ380mm及び170mmであり、整流部材
27下面に形成された吸入口27aのシリコン単結晶2
5外周面からの距離は20mmであり、整流部材27及
びシリコン融液12表面間の距離は20mmであった。
EXAMPLES Examples of the present invention will now be described in detail with reference to comparative examples with reference to the drawings. <Embodiment 1> As shown in FIGS. 1 to 4, a partition member 26 is inserted between the outer peripheral surface of the silicon single crystal 25 and the inner peripheral surface of the quartz crucible 13, and the chamber 11 is inserted by the partition member 26.
The inside was divided into the silicon single crystal side and the crucible inner peripheral surface side, and a rectifying member 27 covering the surface of the silicon melt 12 was connected to the lower end of the dividing member 26. The gas supply / exhaust means 34 for supplying and discharging the argon gas into the chamber 11 is the main supply pipe 3 for supplying the argon gas to the inner peripheral surface side of the quartz crucible 13 and the outer peripheral surface side of the silicon single crystal 25, respectively.
6 and the auxiliary supply pipe 41, and the main discharge pipe 37 and the auxiliary discharge pipe 42 for discharging the argon gas in the chamber 11. The pipes 36, 37, 41,
The main flow rate adjusting valves 38, 39 and the auxiliary flow rate adjusting valves 43, 44 are provided at 43. By controlling the gas supply / discharge means 34, the inert gas supplied to the inner peripheral surface side of the quartz crucible 13 moves from the outer peripheral edge of the rectifying member 27 toward the inner peripheral edge between the surfaces of the rectifying member 27 and the silicon melt 12. It is configured to be discharged to the outside of the chamber 11 from the suction port 27a on the lower surface of the rectifying member 27 through the passage 30 inside the rectifying member 27 and the partitioning member 26. The inner diameter of the quartz crucible 13 was 406 mm, and the weight of the silicon melt 12 stored in the quartz crucible 13 was 35 kg. Further, the inner diameter of the tubular portion 26a of the partition member 26 and the inner diameter of the rectifying member 27 are 380 mm and 170 mm, respectively, and the silicon single crystal 2 of the suction port 27a formed on the lower surface of the rectifying member 27 is used.
5 was 20 mm from the outer peripheral surface, and the distance between the flow regulating member 27 and the surface of the silicon melt 12 was 20 mm.

【0017】<比較例1>図示しないが上記実施例1の
区画部材、整流部材、メイン供給パイプ及びメイン排出
パイプを用いないことを除いて、上記実施例1と同一に
構成した。ガス給排手段の補助供給パイプ及び補助排出
パイプの各流量調整弁を制御することにより、チャンバ
内に供給されたアルゴンガスが石英るつぼのシリコン融
液上をシリコン単結晶外周面から石英るつぼ内周面に向
って流れるように構成した。 <比較例2>図6及び図7に示すように、シリコン単結
晶5の外周面と石英るつぼ3の内周面との間にシリコン
単結晶5を囲むようにヒートキャップ6を挿入し、この
ヒートキャップ6の上端から環状リム7を外方に略水平
方向に張り出した。ヒートキャップ6は下方に向うに従
って直径が小さくなる筒状に形成され、その下端はシリ
コン融液2表面近傍まで延び、上端は保温筒9の上端と
略同一高さとなるまで延びる。上記ヒートキャップ6及
び環状リム7をチャンバ1内に挿入すると、環状リム7
の下面が保温筒9の上面に当接し、ヒートキャップ6及
び環状リム7によりチャンバ1内がシリコン単結晶側と
るつぼ内周面側とに区画された。またガス給排手段とし
ては、図示しないが上記実施例1のメイン供給パイプ及
びメイン排出パイプを用いずに、補助供給パイプ及び補
助排出パイプのみを用いた。上記ガス給排手段を制御す
ることにより、不活性ガスが図6の実線矢印で示すよう
にシリコン単結晶5外周面を流下し、ヒートキャップ6
下端及びシリコン融液2表面間の隙間を通って石英るつ
ぼ3外に排出されるように構成した。上記以外は実施例
1と同一に構成した。 <比較試験と評価>実施例1、比較例1及び比較例2の
装置にて、チャンバ内のアルゴンガスの流量及び圧力を
変えて、直径及び長さがそれぞれ152mm及び600
mmのシリコン単結晶をそれぞれ育成し、これらのシリ
コン単結晶の肩から250mmの位置でのシリコン単結
晶中に含まれる酸素濃度を測定した。その結果を表1に
示す。
<Comparative Example 1> Although not shown, the same construction as that of the above-mentioned Example 1 was carried out except that the partition member, the rectifying member, the main supply pipe and the main discharge pipe of the above-mentioned Example 1 were not used. By controlling the flow rate adjusting valves of the auxiliary supply pipe and the auxiliary discharge pipe of the gas supply / discharge means, the argon gas supplied into the chamber moves above the silicon melt of the quartz crucible from the outer peripheral surface of the silicon single crystal to the inner periphery of the quartz crucible. It was designed to flow toward the surface. Comparative Example 2 As shown in FIGS. 6 and 7, a heat cap 6 was inserted between the outer peripheral surface of the silicon single crystal 5 and the inner peripheral surface of the quartz crucible 3 so as to surround the silicon single crystal 5. An annular rim 7 is projected outward from the upper end of the heat cap 6 in a substantially horizontal direction. The heat cap 6 is formed in a tubular shape whose diameter decreases as it goes downward, its lower end extends to the vicinity of the surface of the silicon melt 2, and its upper end extends to substantially the same height as the upper end of the heat retaining tube 9. When the heat cap 6 and the annular rim 7 are inserted into the chamber 1, the annular rim 7
The lower surface of the chamber abuts on the upper surface of the heat insulating cylinder 9, and the inside of the chamber 1 is partitioned by the heat cap 6 and the annular rim 7 into the silicon single crystal side and the crucible inner peripheral surface side. Although not shown, as the gas supply / discharge means, only the auxiliary supply pipe and the auxiliary discharge pipe were used without using the main supply pipe and the main discharge pipe of the first embodiment. By controlling the gas supply / discharge means, the inert gas flows down the outer peripheral surface of the silicon single crystal 5 as indicated by the solid arrow in FIG.
It was configured to be discharged to the outside of the quartz crucible 3 through the gap between the lower end and the surface of the silicon melt 2. Except for the above, the configuration was the same as in Example 1. <Comparative Test and Evaluation> In the apparatus of Example 1, Comparative Example 1 and Comparative Example 2, the diameter and length of the chamber were changed to 152 mm and 600, respectively, by changing the flow rate and pressure of the argon gas in the chamber.
mm silicon single crystals were grown, and the oxygen concentration contained in the silicon single crystals at a position 250 mm from the shoulders of these silicon single crystals was measured. Table 1 shows the results.

【0018】[0018]

【表1】 [Table 1]

【0019】表1から明らかなように、実施例1の装置
により育成されたシリコン単結晶中の酸素濃度が比較例
1及び2の装置により育成されたシリコン単結晶中の酸
素濃度より低くなることが判った。
As is clear from Table 1, the oxygen concentration in the silicon single crystal grown by the apparatus of Example 1 is lower than the oxygen concentration in the silicon single crystal grown by the apparatuses of Comparative Examples 1 and 2. I understood.

【0020】[0020]

【発明の効果】以上述べたように、本発明によれば、シ
リコン単結晶を石英るつぼ内のシリコン融液から引上げ
るときにチャンバ内に供給された不活性ガスをシリコン
融液の表面に導き、シリコン融液の表面で石英るつぼの
内周面側からシリコン単結晶の外周面側に不活性ガスを
流してシリコン融液の対流方向を制御したため、シリコ
ン融液中の酸素がSiOガス等となってシリコン融液表
面から蒸発し、低酸素濃度のシリコン融液が上記対流に
乗って石英るつぼの内周面側からシリコン単結晶の外周
面側に向う。この結果、低酸素濃度のシリコン融液がシ
リコン単結晶となって成長するので、シリコン単結晶中
に含まれる酸素濃度は極めて低くなる。
As described above, according to the present invention, when the silicon single crystal is pulled up from the silicon melt in the quartz crucible, the inert gas supplied into the chamber is guided to the surface of the silicon melt. Since the inert gas is caused to flow from the inner peripheral surface side of the quartz crucible to the outer peripheral surface side of the silicon single crystal on the surface of the silicon melt to control the convection direction of the silicon melt, oxygen in the silicon melt is changed to SiO gas or the like. Then, it evaporates from the surface of the silicon melt, and the silicon melt having a low oxygen concentration rides on the convection and goes from the inner peripheral surface side of the quartz crucible toward the outer peripheral surface side of the silicon single crystal. As a result, the silicon melt having a low oxygen concentration grows as a silicon single crystal, and the oxygen concentration contained in the silicon single crystal becomes extremely low.

【0021】またシリコン単結晶の外周面と石英るつぼ
の内周面との間に円筒状の区画部材を挿入し、この区画
部材によりチャンバ内をシリコン単結晶側とるつぼ内周
面側とに区画し、区画部材の下端にシリコン融液表面を
覆う整流部材を接続し、ガス給排手段によりるつぼ内周
面側に供給された不活性ガスを整流部材及びシリコン融
液表面間を整流部材の外周縁から内周縁に向って流し整
流部材下面の吸入口から整流部材内部及び区画部材内部
の通路を介してチャンバ外に排出するように構成すれ
ば、上記のように不活性ガスを流すことにより、シリコ
ン融液に石英るつぼ内周面からシリコン単結晶の成長下
面近傍に向う対流が発生する。この結果、上記対流によ
りシリコン融液がこの融液表面で石英るつぼ内周面から
シリコン単結晶の成長下面近傍に向う過程で、融液中の
酸素がSiOガス等となって蒸発し、この低酸素濃度の
シリコン融液がシリコン単結晶となって成長するので、
シリコン単結晶中に含まれる酸素濃度は極めて低くな
る。
Further, a cylindrical partition member is inserted between the outer peripheral surface of the silicon single crystal and the inner peripheral surface of the quartz crucible, and the partition member partitions the chamber into the silicon single crystal side and the inner peripheral surface side of the crucible. Then, a rectifying member that covers the surface of the silicon melt is connected to the lower end of the partitioning member, and the inert gas supplied to the inner peripheral surface of the crucible by the gas supply / discharge means is provided between the rectifying member and the surface of the silicon melt outside the rectifying member. If it is configured to flow from the peripheral edge toward the inner peripheral edge and to be discharged to the outside of the chamber from the inlet of the lower surface of the rectifying member through the passage inside the rectifying member and inside the partitioning member, by flowing the inert gas as described above, Convection is generated in the silicon melt from the inner peripheral surface of the quartz crucible toward the growth lower surface of the silicon single crystal. As a result, due to the above convection, the silicon melt melts from the inner surface of the quartz crucible toward the vicinity of the growth lower surface of the silicon single crystal on the surface of this melt, and oxygen in the melt evaporates into SiO gas or the like. Since the silicon melt of oxygen concentration grows as a silicon single crystal,
The oxygen concentration contained in the silicon single crystal is extremely low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明第1実施形態のシリコン単結晶中の酸素
濃度の低減装置を示す図4のA部拡大断面図。
FIG. 1 is an enlarged cross-sectional view of a portion A of FIG. 4 showing a device for reducing oxygen concentration in a silicon single crystal according to a first embodiment of the present invention.

【図2】斜め上方から見たその低減装置の区画部材及び
整流部材の斜視図。
FIG. 2 is a perspective view of a partitioning member and a rectifying member of the reducing device when viewed obliquely from above.

【図3】斜め下方から見たその区画部材及び整流部材の
斜視図。
FIG. 3 is a perspective view of a partition member and a rectifying member as seen obliquely from below.

【図4】その低減装置の断面構成図。FIG. 4 is a cross-sectional configuration diagram of the reduction device.

【図5】本発明の第2実施形態を示す図4に対応する断
面構成図。
FIG. 5 is a sectional configuration diagram corresponding to FIG. 4 showing a second embodiment of the present invention.

【図6】従来例を示す図1に対応する断面図。FIG. 6 is a cross-sectional view showing a conventional example and corresponding to FIG.

【図7】その整流筒の斜視図。FIG. 7 is a perspective view of the straightening cylinder.

【符号の説明】[Explanation of symbols]

11 チャンバ 12 シリコン融液 13 石英るつぼ 25 シリコン単結晶 26,66 区画部材 27 整流部材 27a 吸入口 30,70 通路 34 ガス給排手段 11 chamber 12 silicon melt 13 quartz crucible 25 silicon single crystal 26,66 partitioning member 27 rectifying member 27a inlet port 30,70 passage 34 gas supply / discharge means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 直樹 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 (72)発明者 安部 啓成 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoki Ono 1-297 Kitabukuro-cho, Omiya-shi, Saitama Mitsubishi Materials Corporation Research Institute (72) Keisei Abe 1-297 Kitabukuro-cho, Omiya-shi, Saitama Mitsubishi Materials Research Institute, Inc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリコン単結晶(25)をチャンバ(11)内の
石英るつぼ(13)に貯留されたシリコン融液(12)から引上
げるときに前記チャンバ(11)内に供給された不活性ガス
を前記シリコン融液(12)の表面に導き、前記シリコン融
液(12)の表面で前記石英るつぼ(13)の内周面側から前記
シリコン単結晶(25)の外周面側に前記不活性ガスを流し
て前記シリコン融液(12)の対流方向を制御するシリコン
単結晶中の酸素濃度の低減方法。
1. An inert gas supplied into the chamber (11) when pulling a silicon single crystal (25) from a silicon melt (12) stored in a quartz crucible (13) in the chamber (11). The gas is introduced to the surface of the silicon melt (12), and the surface of the silicon melt (12) moves from the inner peripheral surface side of the quartz crucible (13) to the outer peripheral surface side of the silicon single crystal (25). A method for reducing the oxygen concentration in a silicon single crystal, which comprises flowing an active gas to control the convection direction of the silicon melt (12).
【請求項2】 チャンバ(11)内の石英るつぼ(13)に貯留
されたシリコン融液(12)から引上げられるシリコン単結
晶(25)の外周面と前記石英るつぼ(13)の内周面との間に
前記シリコン単結晶(25)を囲むように挿入され下端が前
記シリコン融液(12)表面近傍まで延びかつ前記チャンバ
(11)内をシリコン単結晶側とるつぼ内周面側とに区画す
る円筒状の区画部材(26,66)と、 前記区画部材(26,66)の下端に接続され前記シリコン融
液(12)表面を所定の間隔をあけて覆いかつ下面のうち前
記シリコン単結晶(25)近傍に吸入口(27a)が形成された
整流部材(27)と、 前記整流部材(27)内部から前記区画部材(26,66)内部に
かけて形成され前記吸入口(27a)に連通する通路(30,70)
と、 前記るつぼ内周面側に不活性ガスを供給しこの不活性ガ
スを前記整流部材(27)及び前記シリコン融液(12)表面間
を前記整流部材(27)の外周縁から内周縁に向って流し更
に前記吸入口(27a)及び前記通路(30,70)を介して前記チ
ャンバ(11)外に排出するガス給排手段(34)とを備えたシ
リコン単結晶中の酸素濃度の低減装置。
2. An outer peripheral surface of a silicon single crystal (25) pulled from a silicon melt (12) stored in a quartz crucible (13) in a chamber (11) and an inner peripheral surface of the quartz crucible (13). Is inserted so as to surround the silicon single crystal (25), and the lower end extends to the vicinity of the surface of the silicon melt (12) and the chamber.
(11) a cylindrical partition member (26, 66) that partitions the inside into a crucible inner peripheral surface side that takes the silicon single crystal side, and the silicon melt (12) connected to the lower end of the partition member (26, 66) ) A rectifying member (27) which covers the surface at a predetermined interval and has an inlet port (27a) formed in the lower surface in the vicinity of the silicon single crystal (25), and the partition member from the inside of the rectifying member (27). (26,66) Passageways (30,70) formed inside to communicate with the suction port (27a)
And supplying an inert gas to the inner peripheral surface side of the crucible, the inert gas from the outer peripheral edge of the rectifying member (27) to the inner peripheral edge between the rectifying member (27) and the silicon melt (12) surface. Reduction of oxygen concentration in a silicon single crystal provided with a gas supply / exhaust means (34) which flows toward the outside and is exhausted to the outside of the chamber (11) through the suction port (27a) and the passages (30, 70) apparatus.
【請求項3】 区画部材及び整流部材がカーボン、石
英、モリブデン、タングステン、ニオブ又はタンタルに
より形成された請求項2記載のシリコン単結晶中の酸素
濃度の低減装置。
3. An apparatus for reducing oxygen concentration in a silicon single crystal according to claim 2, wherein the partition member and the rectifying member are formed of carbon, quartz, molybdenum, tungsten, niobium or tantalum.
JP30802695A 1995-11-28 1995-11-28 Method for lowering oxygen concentration in silicone single crystal and apparatus therefor Withdrawn JPH09142990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30802695A JPH09142990A (en) 1995-11-28 1995-11-28 Method for lowering oxygen concentration in silicone single crystal and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30802695A JPH09142990A (en) 1995-11-28 1995-11-28 Method for lowering oxygen concentration in silicone single crystal and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH09142990A true JPH09142990A (en) 1997-06-03

Family

ID=17976003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30802695A Withdrawn JPH09142990A (en) 1995-11-28 1995-11-28 Method for lowering oxygen concentration in silicone single crystal and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH09142990A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083305A (en) * 2002-08-23 2004-03-18 Sumitomo Mitsubishi Silicon Corp Puller for silicon single crystal and method for pullnig up the same
CN100344801C (en) * 2002-12-23 2007-10-24 希特隆股份有限公司 Method for producing silicon slice and monocrystalline silicon
JP2010202436A (en) * 2009-03-02 2010-09-16 Sumco Corp Single crystal pulling apparatus
WO2017017893A1 (en) * 2015-07-29 2017-02-02 信越半導体株式会社 Silicon single crystal growing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083305A (en) * 2002-08-23 2004-03-18 Sumitomo Mitsubishi Silicon Corp Puller for silicon single crystal and method for pullnig up the same
CN100344801C (en) * 2002-12-23 2007-10-24 希特隆股份有限公司 Method for producing silicon slice and monocrystalline silicon
JP2010202436A (en) * 2009-03-02 2010-09-16 Sumco Corp Single crystal pulling apparatus
WO2017017893A1 (en) * 2015-07-29 2017-02-02 信越半導体株式会社 Silicon single crystal growing device
JP2017030991A (en) * 2015-07-29 2017-02-09 信越半導体株式会社 Growth unit for silicon single crystal

Similar Documents

Publication Publication Date Title
US5904768A (en) Process for controlling the oxygen content in silicon wafers heavily doped with antimony or arsenic
JPH0859386A (en) Semiconductor single crystal growing device
US7282095B2 (en) Silicon single crystal pulling method
JP5413354B2 (en) Silicon single crystal pulling apparatus and silicon single crystal manufacturing method
EP1722014A1 (en) Method for manufacturing nitrogen-doped silicon single crystal
US20100126410A1 (en) Apparatus and method for pulling silicon single crystal
JPH09142990A (en) Method for lowering oxygen concentration in silicone single crystal and apparatus therefor
JP3587229B2 (en) Silicon single crystal pulling device
EP0425837B1 (en) Method of adjusting concentration of oxygen in silicon single crystal and apparatus for use in the method
US5269875A (en) Method of adjusting concentration of oxygen in silicon single crystal and apparatus for use in the method
JP2002321997A (en) Apparatuses for making silicon single crystal and method for making silicon single crystal using the same
JPH0688864B2 (en) Rectifier for single crystal pulling equipment
KR100462137B1 (en) Single crystal pulling apparatus
JPH09208385A (en) Growth of silicone single crystal and device therefor
JPH1072277A (en) Silicon single crystal growing method and device therefor
JP4310980B2 (en) Pulling method of silicon single crystal
JP2001010890A (en) Single crystal pulling device
KR100558156B1 (en) Silicon single crystal growing method
JP2006169016A (en) Method for producing silicon single crystal
JPH09110578A (en) Control of oxygen concentration in silicon single crystal
JP4360069B2 (en) Method for growing silicon single crystal
JP4207498B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP3709493B2 (en) Silicon single crystal pulling device
JP3557872B2 (en) Silicon single crystal growth equipment
JP2000335992A (en) Method and apparatus for measuring gas in silicon single crystal growth unit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204