JP2006169016A - Method for producing silicon single crystal - Google Patents

Method for producing silicon single crystal Download PDF

Info

Publication number
JP2006169016A
JP2006169016A JP2004360645A JP2004360645A JP2006169016A JP 2006169016 A JP2006169016 A JP 2006169016A JP 2004360645 A JP2004360645 A JP 2004360645A JP 2004360645 A JP2004360645 A JP 2004360645A JP 2006169016 A JP2006169016 A JP 2006169016A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
crystal rod
silicon
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004360645A
Other languages
Japanese (ja)
Other versions
JP4396505B2 (en
Inventor
Yoichi Yamamoto
洋一 山本
Hideki Fujiwara
秀樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2004360645A priority Critical patent/JP4396505B2/en
Publication of JP2006169016A publication Critical patent/JP2006169016A/en
Application granted granted Critical
Publication of JP4396505B2 publication Critical patent/JP4396505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve production efficiency of a silicon electrode plate by preventing the occurrence of crystal cracks in the cutting process. <P>SOLUTION: The method for producing a silicon single crystal comprises a step for pulling up a silicon single crystal rod 25 having a given length while surrounding it with a cylindrical heat-shielding member 36 from a silicon melt 12 that is obtained by heat-melting a silicon raw material stored in a quartz crucible 13 installed in a CZ furnace 11 by means of an electric heater 18, a step for separating the silicon single crystal rod from the silicon melt by temporally lowering the crucible, and a step for heat-treating the lower part of the silicon single crystal rod for a given period of time by exposing the lower part from the bottom end of the heat-shielding member by lowering the separated silicon single crystal rod and the crucible together to a given position and by directly exposing the exposed lower part to the heat of the heater. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体製造プロセスで用いられるプラズマエッチング装置の主要部品であるシリコン電極板の作製に好適なシリコン単結晶の製造方法に関するものである。   The present invention relates to a method for producing a silicon single crystal suitable for producing a silicon electrode plate which is a main part of a plasma etching apparatus used in a semiconductor production process.

半導体装置を製造する工程の一つにシリコンウェーハをエッチングする工程があり、このシリコンウェーハをエッチングするための装置として、プラズマエッチング装置が用いられている。一般的なプラズマエッチング装置は、図6に示すように、その内部を真空に保持可能な真空容器1を備え、真空容器1の頂部には外部よりエッチングガスが供給可能なガス供給口1aが、底部には外部にガスを排出可能なガス排出口1bがそれぞれ設けられる。真空容器1内部には円盤状の電極板2が水平に設けられ、エッチングガス供給口1aから供給されるエッチングガスが電極板2を通るように設置される。電極板2には円盤状の平面に対して直角方向に複数の貫通孔5が設けられ、エッチングガス供給口1aから供給されるエッチングガスが複数の貫通孔5から均一に吹出される。また真空容器1内部には、電極板2と一定の間隔をおいて支持板3が設けられ、支持板3の上にはエッチング対象となるシリコンウェーハ4が載置される。ガス供給口1a及び支持板3には電極板2とシリコンウェーハ4の間に高周波電圧を印加する高周波電源6が接続される。このように構成されたプラズマエッチング装置では、支持板3上にシリコンウェーハ4を載置した後、エッチングガス7をガス供給口1aから供給して電極板2に設けられた貫通細孔5を通してシリコンウェーハ4に向かって流しながら高周波電源6により電極板2と支持板3の間に高周波電圧を印加する。高周波電圧の印加により電極板2とシリコンウェーハ4の間の空間でプラズマ8が発生する。このプラズマ8によるスパッタリング即ち物理反応と、シリコン−エッチングガスによる化学反応とによりシリコンウェーハ4表面がエッチングされる。   One of the processes for manufacturing a semiconductor device is a process for etching a silicon wafer, and a plasma etching apparatus is used as an apparatus for etching the silicon wafer. As shown in FIG. 6, a general plasma etching apparatus includes a vacuum container 1 capable of maintaining the inside thereof in a vacuum, and a gas supply port 1 a capable of supplying an etching gas from the outside is provided at the top of the vacuum container 1. Gas outlets 1b that can discharge gas to the outside are provided at the bottom. A disc-shaped electrode plate 2 is provided horizontally inside the vacuum vessel 1, and the etching gas supplied from the etching gas supply port 1 a is installed so as to pass through the electrode plate 2. The electrode plate 2 is provided with a plurality of through holes 5 in a direction perpendicular to the disk-shaped plane, and the etching gas supplied from the etching gas supply port 1 a is uniformly blown out from the plurality of through holes 5. A support plate 3 is provided inside the vacuum vessel 1 at a certain distance from the electrode plate 2, and a silicon wafer 4 to be etched is placed on the support plate 3. A high frequency power source 6 for applying a high frequency voltage between the electrode plate 2 and the silicon wafer 4 is connected to the gas supply port 1 a and the support plate 3. In the plasma etching apparatus configured as described above, after the silicon wafer 4 is placed on the support plate 3, the etching gas 7 is supplied from the gas supply port 1 a and the silicon is passed through the through-holes 5 provided in the electrode plate 2. A high frequency voltage is applied between the electrode plate 2 and the support plate 3 by the high frequency power source 6 while flowing toward the wafer 4. Plasma 8 is generated in the space between the electrode plate 2 and the silicon wafer 4 by the application of the high frequency voltage. The surface of the silicon wafer 4 is etched by sputtering or physical reaction by the plasma 8 and chemical reaction by the silicon-etching gas.

従来プラズマエッチング装置の電極板として、円盤状の単結晶シリコンで構成されたシリコン電極板が主として使用されていた。例えば、COPの密度が104個/cm3以下の単結晶シリコンからなることを特徴とするパーティクル発生の少ないプラズマエッチング用シリコン電極板が開示されている(例えば、特許文献1参照。)。上記特許文献1に示されるシリコン電極板を用いてシリコンウェーハをプラズマエッチングすると、パーティクル発生による不良品発生を大幅に減らすことができ、半導体装置産業の発展に大いに貢献しうるものであるとある。
特開2001−338913号公報(請求項1、段落[0024])
Conventionally, a silicon electrode plate made of disc-shaped single crystal silicon has been mainly used as an electrode plate of a plasma etching apparatus. For example, there is disclosed a silicon electrode plate for plasma etching with less particle generation, which is made of single crystal silicon having a COP density of 10 4 pieces / cm 3 or less (see, for example, Patent Document 1). When a silicon wafer is plasma-etched using the silicon electrode plate disclosed in Patent Document 1, the generation of defective products due to the generation of particles can be greatly reduced, which can greatly contribute to the development of the semiconductor device industry.
JP 2001-338913 A (Claim 1, paragraph [0024])

一方、このシリコン電極板を製造するために、φ240mm〜φ450mm程度の大口径シリコン単結晶棒を母材としていた。母材となるシリコン単結晶棒の育成では、先ずシリコン単結晶育成装置の炉内をヒータで加熱し、加熱した炉内で溶融させたシリコン融液に種結晶を浸す。次いで種結晶を引上げながら種絞り部、コーン部、肩部及び直胴部を通常のチョクラルスキー法(CZ法)もしくは磁場印加型CZ法で成長させる。次に直胴部に続くテール部を50mm〜150mmの範囲で成長させた後に、単結晶棒をシリコン融液から切り離す。次にシリコン融液から単結晶棒を切り離した後は、単結晶棒をシリコン融液の直上で結晶位置を維持しつつ、育成装置のヒータ電源を切り、炉内温度を低下させることにより単結晶棒を冷却し、後に育成装置内から冷却した単結晶棒を取出す。   On the other hand, in order to manufacture this silicon electrode plate, a large-diameter silicon single crystal rod of about φ240 mm to φ450 mm was used as a base material. In the growth of a silicon single crystal rod serving as a base material, first, a furnace of a silicon single crystal growing apparatus is heated with a heater, and a seed crystal is immersed in a silicon melt melted in the heated furnace. Next, while pulling up the seed crystal, the seed squeezed part, the cone part, the shoulder part and the straight body part are grown by a normal Czochralski method (CZ method) or a magnetic field application type CZ method. Next, after growing the tail part following the straight body part in the range of 50 mm to 150 mm, the single crystal rod is separated from the silicon melt. Next, after separating the single crystal rod from the silicon melt, the single crystal rod is maintained by maintaining the crystal position directly above the silicon melt while turning off the heater power to the growth apparatus and lowering the furnace temperature. The rod is cooled, and then the cooled single crystal rod is taken out from the growth apparatus.

続いて得られた単結晶棒の直胴部を150mm〜300mm程度の一定長さに切断してブロック化する。通常は、シリコン電極板の材料として直胴部の晶癖線が発生している領域までを使用している。更にブロック体を所定の厚さにスライスすることによりシリコン電極板を作製していた。しかしながら、得られたシリコン単結晶棒の直胴部をブロック化する際に、晶癖線を有し、かつエッチピット部を含む領域を切断加工すると、単結晶に大きな割れが発生してしまい、母材であるシリコン単結晶棒から割れのないシリコン電極板の製品化率が低い問題があった。   Subsequently, the straight body portion of the obtained single crystal rod is cut into a fixed length of about 150 mm to 300 mm to form a block. Normally, the silicon electrode plate is used up to the region where the crystal habit line of the straight body portion is generated. Furthermore, the silicon electrode plate was produced by slicing the block body to a predetermined thickness. However, when blocking the straight body portion of the obtained silicon single crystal rod, when the region having the habit line and including the etch pit portion is cut, a large crack occurs in the single crystal, There was a problem that the product rate of the silicon electrode plate without cracking from the silicon single crystal rod as the base material was low.

本発明の目的は、切断加工時の結晶割れの発生を防止し、シリコン電極板の製品化率を向上し得るシリコン単結晶の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a silicon single crystal that can prevent the occurrence of crystal cracking during cutting and improve the productization rate of a silicon electrode plate.

請求項1に係る発明は、図1に示すように、CZ炉内に設けられた石英るつぼ13内に貯留されたシリコン原料を電熱ヒータ18により加熱して融解されたシリコン融液12から所定の長さのシリコン単結晶棒25を筒状の熱遮蔽部材36により包囲しながら引上げる工程と、図2に示すように、ヒータ18により加熱している状態で所定の長さに引上げられたシリコン単結晶棒25の引上げを停止してるつぼ13を一時的に下降させることによりシリコン融液12とシリコン単結晶棒25とを切り離す工程と、図3に示すように、切り離したシリコン単結晶棒25とるつぼ13を所定の位置まで一緒に下降させてシリコン単結晶棒25の下部を熱遮蔽部材36の下端から徐々に露出させるとともに、露出するシリコン単結晶棒25の下部をヒータ18の輻射熱に直接曝すことにより所定時間熱処理する工程とを含むシリコン単結晶の製造方法である。
請求項2に係る発明は、請求項1に係る発明であって、所定時間熱処理したシリコン単結晶棒25の下部をヒータ18の電力を切断してCZ炉内で維持する工程を更に含む製造方法である。
As shown in FIG. 1, the invention according to claim 1 is a method in which a silicon raw material stored in a quartz crucible 13 provided in a CZ furnace is heated by an electric heater 18 and melted from a molten silicon melt 12. A process of pulling up the silicon single crystal rod 25 of a length while being surrounded by a cylindrical heat shield member 36, and silicon pulled up to a predetermined length while being heated by a heater 18, as shown in FIG. The step of separating the silicon melt 12 and the silicon single crystal rod 25 by stopping the pulling of the single crystal rod 25 and lowering the crucible 13 temporarily, and the separated silicon single crystal rod 25 as shown in FIG. The crucible 13 is lowered together to a predetermined position so that the lower part of the silicon single crystal rod 25 is gradually exposed from the lower end of the heat shielding member 36 and the exposed lower part of the silicon single crystal rod 25 is exposed. A method for manufacturing a silicon single crystal and a step of heat-treating a predetermined time by directly exposed to radiant heat over data 18.
The invention according to claim 2 is the manufacturing method according to claim 1, further comprising the step of maintaining the power of the heater 18 in the CZ furnace by cutting the power of the silicon single crystal rod 25 heat-treated for a predetermined time. It is.

従来は、シリコン融液から切り離したシリコン単結晶棒を冷却する場合、引上げたシリコン単結晶棒は熱遮蔽部材によって覆われ、ヒータの輻射熱を遮りながら徐々に冷却していたが、このような製造方法では、得られる単結晶棒の内部に存在する残留応力が大きいため、この残留応力に起因して切断加工時に結晶割れが発生すると考えられる。特にシリコン電極板として使用する場合には、直胴部の晶癖線が発生している領域までを使用するので、晶癖線を有し、かつエッチピット部を含む領域を切断加工しなければならないため、この影響は更に大きくなると考えられる。これに対して本発明のシリコン単結晶の製造方法では、内部に存在する残留応力が大きいシリコン単結晶棒の下部を熱遮蔽部材の下端から徐々に露出させ、露出するシリコン単結晶棒の下部をヒータの輻射熱に直接曝す熱処理工程を施す。この熱処理工程により、シリコン単結晶棒の下部の結晶内部に存在する残留応力が解放されるため、得られたシリコン単結晶棒からシリコン電極板を作製する際に切断加工による結晶割れの発生を防止することができ、シリコン電極板の製品化率を向上することができる。   Conventionally, when a silicon single crystal rod separated from a silicon melt is cooled, the pulled silicon single crystal rod is covered with a heat shielding member and gradually cooled while blocking the radiant heat of the heater. In the method, since the residual stress existing inside the obtained single crystal rod is large, it is considered that crystal cracking occurs at the time of cutting due to this residual stress. Especially when used as a silicon electrode plate, it uses up to the region where the crystal habit line of the straight body portion is generated. Therefore, the region including the crystal habit line and including the etch pit portion must be cut. This effect will be even greater. On the other hand, in the method for producing a silicon single crystal according to the present invention, the lower part of the silicon single crystal bar having a large residual stress existing therein is gradually exposed from the lower end of the heat shielding member, and the exposed lower part of the silicon single crystal bar is A heat treatment process is performed to directly expose to the radiant heat of the heater. This heat treatment process releases residual stress that exists inside the crystal below the silicon single crystal rod, thus preventing the occurrence of crystal cracking due to cutting when producing a silicon electrode plate from the obtained silicon single crystal rod. It is possible to improve the production rate of the silicon electrode plate.

請求項3に係る発明は、請求項1に係る発明であって、シリコン単結晶棒25の下部への熱処理がシリコン単結晶棒25を下降しながら行われ、ヒータ18による加熱が高温から低温に段階的又は連続的に温度を下降しながら行われる製造方法である。
請求項3に係る発明では、シリコン単結晶棒を下降しつつ、ヒータによる加熱を段階的又は連続的に温度を下降しながら行うことで、シリコン単結晶棒の下部は緩やかな温度プロファイルをとりながら徐冷されるため、シリコン単結晶棒の下部に存在する残留応力をより解放することができる。
The invention according to claim 3 is the invention according to claim 1, wherein the heat treatment to the lower part of the silicon single crystal rod 25 is performed while lowering the silicon single crystal rod 25, and the heating by the heater 18 is changed from a high temperature to a low temperature. It is a manufacturing method performed while lowering the temperature stepwise or continuously.
In the invention according to claim 3, by lowering the silicon single crystal rod and performing heating by the heater stepwise or continuously while lowering the temperature, the lower portion of the silicon single crystal rod has a gentle temperature profile. Since it is gradually cooled, the residual stress existing in the lower part of the silicon single crystal rod can be released more.

請求項4に係る発明は、請求項1に係る発明であって、シリコン単結晶棒の下部の熱処理が1000〜1400℃のヒータ温度で120〜180分間行われる製造方法である。
請求項5に係る発明は、請求項1に係る発明であって、シリコン単結晶棒の所定の長さが70〜120cmであって、シリコン単結晶棒の下部がシリコン単結晶棒の下端から0〜40cmである製造方法である。
請求項6に係る発明は、請求項1に係る発明であって、シリコン単結晶棒の直径が240〜450mmである製造方法である。
The invention according to claim 4 is the method according to claim 1, wherein the heat treatment of the lower part of the silicon single crystal rod is performed at a heater temperature of 1000 to 1400 ° C. for 120 to 180 minutes.
The invention according to claim 5 is the invention according to claim 1, wherein the predetermined length of the silicon single crystal rod is 70 to 120 cm, and the lower portion of the silicon single crystal rod is 0 from the lower end of the silicon single crystal rod. It is a manufacturing method which is ~ 40cm.
The invention according to claim 6 is the manufacturing method according to claim 1, wherein the silicon single crystal rod has a diameter of 240 to 450 mm.

本発明のシリコン単結晶の製造方法は、内部に存在する残留応力が大きいシリコン単結晶棒の下部を熱遮蔽部材の下端から徐々に露出させ、この露出する下部をヒータの輻射熱に直接曝す熱処理工程を施すことで、このシリコン単結晶棒の下部の結晶内部に存在する残留応力が解放されるため、得られたシリコン単結晶棒からシリコン電極板を作製する際に切断加工による結晶割れの発生を防止することができ、シリコン電極板の製品化率を向上することができる。   The method for producing a silicon single crystal according to the present invention is a heat treatment step in which the lower part of a silicon single crystal rod having a large residual stress is gradually exposed from the lower end of the heat shielding member, and the exposed lower part is directly exposed to the radiant heat of the heater. Since the residual stress existing inside the crystal at the bottom of this silicon single crystal rod is released, the crystal cracking due to cutting is generated when the silicon electrode plate is produced from the obtained silicon single crystal rod. This can be prevented, and the production rate of the silicon electrode plate can be improved.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
図1に本発明のシリコン単結晶の製造方法を実施するCZ炉を示す。このCZ炉10のチャンバ11内には、シリコン融液12を貯留する石英るつぼ13が設けられ、この石英るつぼ13の外周面はグラファイトサセプタ14により被覆される。石英るつぼ13の下面は上記グラファイトサセプタ14を介して支軸16の上端に固定され、この支軸16の下部はるつぼ駆動手段17に接続される。るつぼ駆動手段17は図示しないが石英るつぼ13を回転させる第1回転用モータと、石英るつぼ13を昇降させる昇降用モータとを有し、これらのモータにより石英るつぼ13が所定の方向に回転し得るとともに、上下方向に移動可能となっている。石英るつぼ13の外周面は石英るつぼ13から所定の間隔をあけて電熱ヒータ18により包囲され、この電熱ヒータ18は保温筒19により包囲される。電熱ヒータ18は石英るつぼ13に投入されたシリコン原料を加熱・融解してシリコン融液12にする。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
FIG. 1 shows a CZ furnace for carrying out the method for producing a silicon single crystal of the present invention. A quartz crucible 13 for storing the silicon melt 12 is provided in the chamber 11 of the CZ furnace 10, and the outer peripheral surface of the quartz crucible 13 is covered with a graphite susceptor 14. The lower surface of the quartz crucible 13 is fixed to the upper end of the support shaft 16 via the graphite susceptor 14, and the lower portion of the support shaft 16 is connected to the crucible driving means 17. Although not shown, the crucible driving means 17 has a first rotating motor for rotating the quartz crucible 13 and a lifting motor for moving the quartz crucible 13 up and down, and the quartz crucible 13 can be rotated in a predetermined direction by these motors. At the same time, it is movable in the vertical direction. The outer peripheral surface of the quartz crucible 13 is surrounded by an electric heater 18 at a predetermined interval from the quartz crucible 13, and the electric heater 18 is surrounded by a heat retaining cylinder 19. The electric heater 18 heats and melts the silicon raw material charged in the quartz crucible 13 to form the silicon melt 12.

またチャンバ11の上端には円筒状のケーシング21が接続される。このケーシング21には引上げ手段22が設けられる。引上げ手段22はケーシング21の上端部に水平状態で旋回可能に設けられた引上げヘッド(図示せず)と、このヘッドを回転させる第2回転用モータ(図示せず)と、ヘッドから石英るつぼ13の回転中心に向って垂下されたワイヤケーブル23と、上記ヘッド内に設けられワイヤケーブル23を巻取り又は繰出す引上げ用モータ(図示せず)とを有する。ワイヤケーブル23の下端にはシリコン融液12に浸してシリコン単結晶棒25を引上げるための種結晶24が取付けられる。
更にチャンバ11にはこのチャンバ11のシリコン単結晶棒側に不活性ガスを供給しかつ上記不活性ガスをチャンバ11のるつぼ内周面側から排出するガス給排手段28が接続される。ガス給排手段28は一端がケーシング21の周壁に接続され他端が上記不活性ガスを貯留するタンク(図示せず)に接続された供給パイプ29と、一端がチャンバ11の下壁に接続され他端が真空ポンプ(図示せず)に接続された排出パイプ30とを有する。供給パイプ29及び排出パイプ30にはこれらのパイプ29,30を流れる不活性ガスの流量を調整する第1及び第2流量調整弁31,32がそれぞれ設けられる。
A cylindrical casing 21 is connected to the upper end of the chamber 11. The casing 21 is provided with a pulling means 22. The pulling means 22 is a pulling head (not shown) provided at the upper end of the casing 21 so as to be turnable in a horizontal state, a second rotating motor (not shown) for rotating the head, and a quartz crucible 13 from the head. And a pulling motor (not shown) that is provided in the head and winds or feeds the wire cable 23. A seed crystal 24 is attached to the lower end of the wire cable 23 to immerse the silicon single crystal rod 25 in the silicon melt 12.
Further, a gas supply / discharge means 28 for supplying an inert gas to the silicon single crystal rod side of the chamber 11 and discharging the inert gas from the crucible inner peripheral surface side of the chamber 11 is connected to the chamber 11. The gas supply / discharge means 28 has one end connected to the peripheral wall of the casing 21 and the other end connected to a tank (not shown) for storing the inert gas, and one end connected to the lower wall of the chamber 11. The other end has a discharge pipe 30 connected to a vacuum pump (not shown). The supply pipe 29 and the discharge pipe 30 are respectively provided with first and second flow rate adjusting valves 31 and 32 for adjusting the flow rate of the inert gas flowing through the pipes 29 and 30.

一方、引上げ用モータの出力軸(図示せず)にはエンコーダ(図示せず)が設けられ、るつぼ駆動手段17には支軸16の昇降位置を検出するエンコーダ(図示せず)が設けられる。2つのエンコーダの各検出出力はコントローラ(図示せず)の制御入力に接続され、コントローラの制御出力は引上げ手段22の引上げ用モータ及びるつぼ駆動手段の昇降用モータにそれぞれ接続される。またコントローラにはメモリ(図示せず)が設けられ、このメモリにはエンコーダの検出出力に対するワイヤケーブル23の巻取り長さ、即ちシリコン単結晶棒25の引上げ長さが第1マップとして記憶される。また、メモリには、シリコン単結晶棒25の引上げ長さに対する石英るつぼ13内のシリコン融液12の液面レベルが第2マップとして記憶される。コントローラは、引上げ用モータにおけるエンコーダの検出出力に基づいて石英るつぼ13内のシリコン融液12の液面を常に一定のレベルに保つように、るつぼ駆動手段17の昇降用モータを制御するように構成される。   On the other hand, an encoder (not shown) is provided on the output shaft (not shown) of the pulling motor, and an encoder (not shown) for detecting the raising / lowering position of the support shaft 16 is provided on the crucible driving means 17. Each detection output of the two encoders is connected to a control input of a controller (not shown), and the control output of the controller is connected to a lifting motor of the pulling means 22 and a lifting motor of the crucible driving means. The controller is also provided with a memory (not shown), and the memory stores the winding length of the wire cable 23 with respect to the detection output of the encoder, that is, the pulling length of the silicon single crystal rod 25 as a first map. . Further, the memory stores the liquid level of the silicon melt 12 in the quartz crucible 13 with respect to the pulled length of the silicon single crystal rod 25 as a second map. The controller is configured to control the raising / lowering motor of the crucible driving means 17 so as to always keep the liquid level of the silicon melt 12 in the quartz crucible 13 at a constant level based on the detection output of the encoder in the pulling motor. Is done.

シリコン単結晶棒25の外周面と石英るつぼ13の内周面との間にはシリコン単結晶棒25の外周面を包囲する熱遮蔽部材36が設けられる。この熱遮蔽部材36は円筒状に形成され電熱ヒータ18からの輻射熱を遮る筒部37と、この筒部37の上縁に連設され外方に略水平方向に張り出すフランジ部38とを有する。上記フランジ部38を保温筒19上に載置することにより、筒部37の下縁がシリコン融液12表面から所定の距離だけ上方に位置するように熱遮蔽部材36はチャンバ11内に固定される。そしてこの筒部37の下部には筒内の方向に膨出する膨出部39が設けられる。   Between the outer peripheral surface of the silicon single crystal rod 25 and the inner peripheral surface of the quartz crucible 13, a heat shielding member 36 surrounding the outer peripheral surface of the silicon single crystal rod 25 is provided. The heat shield member 36 has a cylindrical portion 37 that is formed in a cylindrical shape and shields radiant heat from the electric heater 18, and a flange portion 38 that is connected to the upper edge of the cylindrical portion 37 and projects outward in a substantially horizontal direction. . By placing the flange portion 38 on the heat insulating cylinder 19, the heat shielding member 36 is fixed in the chamber 11 so that the lower edge of the cylinder portion 37 is positioned a predetermined distance above the surface of the silicon melt 12. The A bulging portion 39 that bulges in the direction of the tube is provided at the bottom of the tube portion 37.

このように構成されたCZ炉を用いてシリコン単結晶棒を製造する方法を説明する。
図1に示すように、石英るつぼ13にシリコン原料を投入し、電熱ヒータ18によりこのシリコン原料を加熱、融解してシリコン融液12にする。シリコン原料としては高純度のシリコン多結晶体が挙げられる。またシリコン多結晶体とともに必要に応じてドーパント不純物を石英るつぼ内に投入しても良い。続いてるつぼ駆動手段17により支軸16を介して石英るつぼ13を所定の速度で回転させる。そして回転引上げ手段の図示しない引上げ用モータによりワイヤケーブル23を繰出して種結晶24を降下させ、種結晶24の先端部をシリコン融液12に接触させる。その後種結晶24を石英るつぼ13とは逆方向に所定の回転速度で回転させながら、種結晶24を徐々に引上げることにより、種結晶24の下方に所定の長さのシリコン単結晶棒25を育成させる。
A method for manufacturing a silicon single crystal rod using the CZ furnace configured as described above will be described.
As shown in FIG. 1, a silicon raw material is put into a quartz crucible 13, and this silicon raw material is heated and melted by an electric heater 18 to form a silicon melt 12. Examples of the silicon raw material include high-purity silicon polycrystal. Further, a dopant impurity may be introduced into the quartz crucible as necessary together with the silicon polycrystal. Subsequently, the quartz crucible 13 is rotated at a predetermined speed via the support shaft 16 by the crucible driving means 17. Then, the wire cable 23 is fed out by a pulling motor (not shown) of the rotary pulling means to lower the seed crystal 24, and the tip of the seed crystal 24 is brought into contact with the silicon melt 12. Then, while rotating the seed crystal 24 at a predetermined rotational speed in a direction opposite to that of the quartz crucible 13, the seed crystal 24 is gradually pulled up, whereby a silicon single crystal rod 25 having a predetermined length is formed below the seed crystal 24. Develop.

シリコン単結晶棒25の育成では、先ず、シリコン融液に接触させた種結晶24を融解した後に引上げを開始して種絞り部25aを形成し、結晶径を徐々に増大させ、コーン部25b、肩部25cを形成し、定形の直胴部25dの引上げに移る。直胴部25dの軸方向長さは50〜100cmが好ましい。引上げ育成に従い減少する融液面の高さを考慮しながら、引上げ速度と融液温度を制御して結晶成長速度を最適化する。直胴部25dを形成した後は、結晶径を徐々に小さくし、テール部25eを形成する。テール部は50mm〜150mmの範囲で成長させる。このようにして育成した所定の長さのシリコン単結晶棒25の直径は240〜450mmが好適である。   In growing the silicon single crystal rod 25, first, after the seed crystal 24 brought into contact with the silicon melt is melted, the pulling is started to form the seed constricted portion 25a, the crystal diameter is gradually increased, and the cone portion 25b, The shoulder portion 25c is formed, and the process proceeds to pulling up the regular straight body portion 25d. The axial length of the straight body portion 25d is preferably 50 to 100 cm. The crystal growth rate is optimized by controlling the pulling rate and the melt temperature while taking into account the height of the melt surface that decreases with pulling growth. After the straight body portion 25d is formed, the crystal diameter is gradually reduced to form the tail portion 25e. The tail portion is grown in the range of 50 mm to 150 mm. The diameter of the silicon single crystal rod 25 having a predetermined length grown in this way is preferably 240 to 450 mm.

次に図2に示すように、テール部25eを形成した後は、電熱ヒータ18により加熱している状態で、回転引上げ手段の図示しない引上げ用モータの駆動を止めてシリコン単結晶棒25の引上げを停止するとともに、るつぼ駆動手段17により支軸16を介して石英るつぼ13を一時的に下降させることにより、シリコン融液12とシリコン単結晶棒25とを切り離す。切り離したシリコン単結晶棒25を構成する直胴部25dからテール部25eまでの長さは70〜120cmが製造コスト上の理由で好ましい。図4に示すように、例えば、直径400mm、直胴部25dからテール部25eまでの長さが60cmのシリコン単結晶棒25の直胴部25dは、肩部25cから約100mmまでが単結晶領域25gであり、この単結晶領域25gに続いて約400mmまでが晶癖線含有領域25h、更にテール部25eまでが晶壁線消失領域25iとなる。この晶癖線含有領域25hを切断し、この切断面をdash若しくはseccoエッチングすると、エッチピットが現れる。シリコン電極板として使用する領域は、単結晶領域25gと晶癖線含有領域25hである。   Next, as shown in FIG. 2, after the tail portion 25e is formed, the silicon single crystal rod 25 is lifted by stopping the pulling motor (not shown) of the rotary pulling means while being heated by the electric heater 18. And the quartz crucible 13 is temporarily lowered by the crucible driving means 17 via the support shaft 16 to separate the silicon melt 12 and the silicon single crystal rod 25 from each other. The length from the straight body portion 25d to the tail portion 25e constituting the separated silicon single crystal rod 25 is preferably 70 to 120 cm for reasons of manufacturing cost. As shown in FIG. 4, for example, the straight body portion 25d of the silicon single crystal rod 25 having a diameter of 400 mm and a length of 60 cm from the straight body portion 25d to the tail portion 25e is a single crystal region from the shoulder portion 25c to about 100 mm. The single crystal region 25g is followed by a crystal line containing region 25h up to about 400 mm and a crystal wall line disappearing region 25i up to the tail portion 25e. When this habit line containing region 25h is cut and the cut surface is dash or secco etched, etch pits appear. The regions used as the silicon electrode plate are the single crystal region 25g and the habit line containing region 25h.

続いて、図3に示すように、電熱ヒータ18により加熱している状態で、切り離したシリコン単結晶棒25と石英るつぼ13を所定の位置まで一緒に下降させる。シリコン単結晶棒25と石英るつぼ13の下降速度は育成するシリコン単結晶棒25の直径や、軸方向の長さによっても前後するが、1.0〜2.5mm/minの範囲が好ましく、1.5〜2.0mm/minの範囲が更に好ましい。下限値未満では熱処理不足により結晶切断段階での割れの不具合を生じ、上限値を越えると熱処理過多の為、結晶切り離し部が溶融し結晶加工段階での割れの不具合を生じる。切り離したシリコン単結晶棒25の下降は回転引上げ手段の図示しない引上げ用モータによりワイヤケーブル23を繰出すことにより行われ、石英るつぼ13の下降はるつぼ駆動手段17の図示しない昇降用モータにより支軸16を介して行われる。この下降によりシリコン単結晶棒25とシリコン融液12は一定の間隔を保ちながら、シリコン単結晶棒25の下部が熱遮蔽部材36の下端に位置する膨出部39から徐々に露出し、シリコン単結晶棒25の下部のうち、露出した箇所から電熱ヒータ18の輻射熱に直接曝される。このようにシリコン単結晶棒25の下部への熱処理はシリコン単結晶棒25を下降しながら行われる。熱遮蔽部材36の下端から露出させるシリコン単結晶棒の下部は、切り離し部25fのシリコン単結晶棒の下端から20〜50cmが残留応力が大きい領域であるため好ましく、30〜40cmが更に好ましい。下限値未満では熱処理範囲不足により残留応力を緩和出来ず結晶加工段階で割れの不具合を生じ、上限値を越えても特に問題は無いが装置構造上での制限としている。またシリコン単結晶棒25の下部の熱処理は1000〜1400℃のヒータ温度で120〜180分間行うことが好ましく、1100〜1300℃のヒータ温度で120〜180分間行うことが更に好ましい。ヒータ温度を1000〜1400℃の範囲内としたのは、下限値未満であると急激な冷却となって、単結晶棒に残留応力が存在してしまうためであり、上限値を越えると単結晶棒の表面が再び融解してしまうおそれがあるためである。また、熱処理時間を120〜180分間の範囲内としたのは、下限値未満では、十分に熱処理を施すことができず単結晶棒に残留応力が存在してしまうためであり、上限値を越えてもその効果は変わらないが、製造コストが高くなってしまう。   Subsequently, as shown in FIG. 3, the separated silicon single crystal rod 25 and the quartz crucible 13 are lowered together to a predetermined position while being heated by the electric heater 18. The descending speed of the silicon single crystal rod 25 and the quartz crucible 13 depends on the diameter of the silicon single crystal rod 25 to be grown and the length in the axial direction, but is preferably in the range of 1.0 to 2.5 mm / min. The range of 0.5 to 2.0 mm / min is more preferable. If it is less than the lower limit, a defect of cracking at the crystal cutting stage occurs due to insufficient heat treatment, and if it exceeds the upper limit value, the crystal separation part melts due to excessive heat treatment, causing a defect of cracking at the crystal processing stage. The separated silicon single crystal rod 25 is lowered by feeding the wire cable 23 by a pulling motor (not shown) of the rotary pulling means, and the quartz crucible 13 is lowered by a lifting motor (not shown) of the crucible driving means 17. 16 is performed. By this downward movement, the lower part of the silicon single crystal rod 25 is gradually exposed from the bulging portion 39 located at the lower end of the heat shielding member 36 while maintaining a certain distance between the silicon single crystal rod 25 and the silicon melt 12. The exposed portion of the lower portion of the crystal rod 25 is directly exposed to the radiant heat of the electric heater 18. Thus, the heat treatment for the lower portion of the silicon single crystal rod 25 is performed while the silicon single crystal rod 25 is lowered. The lower part of the silicon single crystal rod exposed from the lower end of the heat shielding member 36 is preferably 20 to 50 cm from the lower end of the silicon single crystal bar of the separation part 25f, and is more preferably 30 to 40 cm. If it is less than the lower limit, the residual stress cannot be relieved due to insufficient heat treatment range, causing a defect of cracking in the crystal processing stage. Even if the upper limit is exceeded, there is no particular problem, but this is a limitation on the device structure. The heat treatment of the lower portion of the silicon single crystal rod 25 is preferably performed at a heater temperature of 1000 to 1400 ° C. for 120 to 180 minutes, and more preferably at a heater temperature of 1100 to 1300 ° C. for 120 to 180 minutes. The reason why the heater temperature is in the range of 1000 to 1400 ° C. is that if it is less than the lower limit value, rapid cooling occurs and residual stress exists in the single crystal rod. This is because the surface of the rod may melt again. The reason why the heat treatment time is in the range of 120 to 180 minutes is that if the heat treatment time is less than the lower limit value, the heat treatment cannot be performed sufficiently and residual stress exists in the single crystal rod, which exceeds the upper limit value. However, the effect is not changed, but the manufacturing cost is increased.

また、電熱ヒータ18による加熱は高温から低温に段階的又は連続的に温度を下降しながら行っても良い。具体的には、シリコン単結晶棒25を下降し始めた直後から連続的に電熱ヒータによる加熱温度を下降させ、シリコン単結晶棒25の下部が熱遮蔽部材36の下端から完全に露出して下降を停止するまでに電熱ヒータによる加熱を停止させてもよい。また、シリコン単結晶棒25を下降し始めた直後は電熱ヒータによる加熱温度を一定に保ち、所望の位置まで単結晶棒が下降した際に、電熱ヒータによる加熱温度を所定の温度にまで低下して、更にその低下した温度を一定に保持するように段階的に加熱しても良い。   Further, the heating by the electric heater 18 may be performed while decreasing the temperature stepwise or continuously from a high temperature to a low temperature. Specifically, the heating temperature by the electric heater is continuously lowered immediately after the silicon single crystal rod 25 starts to descend, and the lower portion of the silicon single crystal rod 25 is completely exposed from the lower end of the heat shielding member 36 and lowered. The heating by the electric heater may be stopped before the operation is stopped. Further, immediately after the silicon single crystal rod 25 starts to descend, the heating temperature by the electric heater is kept constant, and when the single crystal rod descends to a desired position, the heating temperature by the electric heater is lowered to a predetermined temperature. In addition, heating may be performed in stages so as to keep the lowered temperature constant.

更に、所定時間熱処理したシリコン単結晶棒25の下部を電熱ヒータ18の電力を切断してCZ炉10内で維持する。炉内温度を低下させることにより単結晶棒を冷却し、冷却した単結晶棒をCZ炉内から取出す。このようにして得られたシリコン単結晶棒25の直胴部25dを150mm〜300mm程度の一定長さに切断してブロック化する。本発明の製造方法を経て得られたシリコン単結晶棒は、切断加工の割れの原因となる残留応力が解放されるため、単結晶棒の直胴部をブロック化する際に、晶癖線を有し、かつエッチピット部を含む領域25hで切断加工しても、単結晶に大きな割れが発生することがない。そのため、シリコン電極板の製品化率を向上することができる。   Furthermore, the electric power of the electric heater 18 is cut off and maintained in the CZ furnace 10 at the lower part of the silicon single crystal rod 25 heat-treated for a predetermined time. The single crystal rod is cooled by lowering the furnace temperature, and the cooled single crystal rod is taken out from the CZ furnace. The straight body portion 25d of the silicon single crystal rod 25 thus obtained is cut into a fixed length of about 150 mm to 300 mm and blocked. In the silicon single crystal rod obtained through the manufacturing method of the present invention, the residual stress that causes cracking in the cutting process is released, so when the straight body portion of the single crystal rod is blocked, Even if it is cut in the region 25h including the etch pit portion, no large cracks are generated in the single crystal. Therefore, the product rate of silicon electrode plates can be improved.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
図1に示すCZ炉を使用してシリコン単結晶棒を製造した。具体的には、先ずチャンバ11内を25torr(約3.3kPa)に減圧し、更にArガスを100l/minの割合で導入し続けた。次いで石英るつぼ13内に結晶用シリコン原料及びボロンを投入し、電熱ヒータ18のヒータ電力を160kWにしてシリコン原料及びボロンを融解してシリコン融液12とした。続いて、るつぼ駆動手段17により支軸16を介して石英るつぼ13を6rpmの速度で回転させ、回転引上げ手段の図示しない引上げ用モータによりワイヤケーブル23を繰出し、種結晶24を石英るつぼ13とは逆方向に6rpmの回転速度で回転させながら、種結晶24を降下させ、種結晶24の先端部をシリコン融液12に接触させた。種結晶24の先端部が融解した後に種結晶24を徐々に引上げることにより、種絞り部25a、コーン部25b、肩部25cを形成した。更に直径がφ340mm、軸方向長さが760mmの直胴部を形成し、直胴部形成後は、軸方向長さ50mmで結晶直径を300mm程度まで絞り込んでテール部25eを形成した。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
A silicon single crystal rod was manufactured using the CZ furnace shown in FIG. Specifically, first, the inside of the chamber 11 was depressurized to 25 torr (about 3.3 kPa), and Ar gas was continuously introduced at a rate of 100 l / min. Next, silicon raw material for crystal and boron were put into the quartz crucible 13, the heater power of the electric heater 18 was set to 160 kW, and the silicon raw material and boron were melted to obtain a silicon melt 12. Subsequently, the crucible driving means 17 rotates the quartz crucible 13 through the support shaft 16 at a speed of 6 rpm, the wire cable 23 is fed out by a pulling motor (not shown) of the rotary pulling means, and the seed crystal 24 is the quartz crucible 13. The seed crystal 24 was lowered while rotating in the reverse direction at a rotational speed of 6 rpm, and the tip of the seed crystal 24 was brought into contact with the silicon melt 12. After the tip of the seed crystal 24 has melted, the seed crystal 24 is gradually pulled up to form a seed squeezed portion 25a, a cone portion 25b, and a shoulder portion 25c. Further, a straight barrel portion having a diameter of 340 mm and an axial length of 760 mm was formed. After the straight barrel portion was formed, the tail portion 25e was formed by narrowing the crystal diameter to about 300 mm with an axial length of 50 mm.

次に図2に示すように、テール部25e形成後はシリコン単結晶棒25の引上げを停止するとともに、石英るつぼ13を一時的に下降させてシリコン融液12とシリコン単結晶棒25とを切り離した。切り離したシリコン単結晶棒25とシリコン融液12表面との距離は80mm程度とした。   Next, as shown in FIG. 2, after the tail portion 25e is formed, the pulling of the silicon single crystal rod 25 is stopped, and the quartz crucible 13 is temporarily lowered to separate the silicon melt 12 and the silicon single crystal rod 25 from each other. It was. The distance between the separated silicon single crystal rod 25 and the surface of the silicon melt 12 was about 80 mm.

次に、図3に示すように、シリコン単結晶棒25及び石英るつぼ13を1.5mm/minの下降速度で一緒に下降させ、シリコン単結晶棒25の下部を熱遮蔽部材36の下端から徐々に露出させ、露出するシリコン単結晶棒25の下部を電熱ヒータ18の輻射熱に直接曝すことにより所定時間熱処理を施した。このシリコン単結晶棒25及び石英るつぼ13の下降は200mm程度下降させた約135分後に停止した。また、電熱ヒータ18のヒータ電力を結晶切り離し前の160kWから100kWにまで出力を低下してヒータ温度を1300℃とし、このヒータ電力で60分間保持した。60分間経過後はヒータ電力を50kWにまで更に低下してヒータ温度を1100℃とし、このヒータ電力で60分間保持し、保持後はヒータ電力を切断した。この熱処理工程における石英るつぼ及びシリコン単結晶棒の下降速度とヒータ電力の関係を図5に示す。ヒータ電力切断後は、シリコン単結晶棒25を下降させた位置で維持したまま12時間保持してシリコン単結晶棒25を冷却した。冷却後はCZ炉内からシリコン単結晶棒25を取出し、シリコン単結晶棒25の直胴部25dを150mm〜300mm程度の一定長さに切断してブロック化した。ブロック化において、晶癖線を有し、かつエッチピット部を含む領域25hで切断加工しても、単結晶に大きな割れが発生することがなかった。また、各切断部位についても異常なく切断できた。   Next, as shown in FIG. 3, the silicon single crystal rod 25 and the quartz crucible 13 are lowered together at a descending speed of 1.5 mm / min, and the lower portion of the silicon single crystal rod 25 is gradually lowered from the lower end of the heat shielding member 36. Then, the lower part of the exposed silicon single crystal rod 25 was directly exposed to the radiant heat of the electric heater 18 for heat treatment for a predetermined time. The lowering of the silicon single crystal rod 25 and the quartz crucible 13 stopped about 135 minutes after being lowered by about 200 mm. Further, the output of the heater power of the electric heater 18 was reduced from 160 kW before crystal separation to 100 kW, the heater temperature was set to 1300 ° C., and this heater power was held for 60 minutes. After 60 minutes, the heater power was further reduced to 50 kW, the heater temperature was set to 1100 ° C., the heater power was held for 60 minutes, and the heater power was cut after the hold. The relationship between the descending speed of the quartz crucible and the silicon single crystal rod and the heater power in this heat treatment step is shown in FIG. After the heater power was cut off, the silicon single crystal rod 25 was cooled by holding for 12 hours while maintaining the silicon single crystal rod 25 at the lowered position. After cooling, the silicon single crystal rod 25 was taken out of the CZ furnace, and the straight body portion 25d of the silicon single crystal rod 25 was cut into a fixed length of about 150 mm to 300 mm and blocked. In the block formation, even when cutting was performed in the region 25h having crystal habit lines and including the etch pit portion, no large cracks were generated in the single crystal. Moreover, it was able to cut | disconnect without abnormality also about each cutting | disconnection site | part.

<比較例1>
実施例1と同様にして直胴部25dまで引き上げ、直胴部形成後は、軸方向長さ150mmで結晶直径を250mm程度まで絞り込んでテール部25eを形成した。テール部25e形成後はシリコン単結晶棒25の引上げを停止するとともに、石英るつぼ13を一時的に下降させてシリコン融液12とシリコン単結晶棒25とを切り離した。シリコン融液12からシリコン単結晶棒25を切り離した後は、シリコン単結晶棒25をシリコン融液12の直上で結晶位置を維持しつつ、ヒータ電力を切断した。この状態で12時間保持してシリコン単結晶棒25を冷却した。冷却後はCZ炉内からシリコン単結晶棒25を取出し、シリコン単結晶棒25の直胴部25dを150mm〜300mm程度の一定長さに切断してブロック化した。ブロック化において、晶癖線を有し、かつエッチピット部を含む領域25hで切断加工したところ、単結晶に大きな割れが発生した。同様にして複数回シリコン単結晶棒を製造してブロック化を試みたが、全ての単結晶棒について、晶癖線を有し、かつエッチピット部を含む領域25hで切断加工したところ、単結晶に大きな割れが発生してしまった。
<Comparative Example 1>
In the same manner as in Example 1, the straight body portion 25d was pulled up, and after the formation of the straight body portion, the tail portion 25e was formed by narrowing the crystal diameter to about 250 mm with an axial length of 150 mm. After the tail portion 25e was formed, the pulling of the silicon single crystal rod 25 was stopped, and the quartz crucible 13 was temporarily lowered to separate the silicon melt 12 and the silicon single crystal rod 25 from each other. After the silicon single crystal rod 25 was separated from the silicon melt 12, the heater power was cut while maintaining the crystal position of the silicon single crystal rod 25 directly above the silicon melt 12. This state was maintained for 12 hours to cool the silicon single crystal rod 25. After cooling, the silicon single crystal rod 25 was taken out of the CZ furnace, and the straight body portion 25d of the silicon single crystal rod 25 was cut into a fixed length of about 150 mm to 300 mm and blocked. In the block formation, a large crack was generated in the single crystal when it was cut in the region 25h having the habit line and including the etch pit portion. Similarly, silicon single crystal rods were manufactured a plurality of times and attempted to be blocked. When all single crystal rods were cut in the region 25h having crystal habit lines and including etch pits, single crystals were obtained. A big crack has occurred.

本発明の製造方法におけるシリコン融液からシリコン単結晶棒を引上げる工程を示す図。The figure which shows the process of pulling up the silicon single crystal rod from the silicon melt in the production method of the present invention. 本発明の製造方法におけるシリコン融液とシリコン単結晶棒とを切り離す工程を示す図。The figure which shows the process of isolate | separating a silicon melt and a silicon single crystal rod in the manufacturing method of this invention. 本発明の製造方法におけるシリコン単結晶棒の下部を熱処理する工程を示す図。The figure which shows the process of heat-processing the lower part of the silicon single crystal rod in the manufacturing method of this invention. 本発明の製造方法により得られたシリコン単結晶棒を示す図。The figure which shows the silicon single crystal rod obtained by the manufacturing method of this invention. 熱処理工程における石英るつぼ及びシリコン単結晶棒の下降速度とヒータ電力の関係を示す図。The figure which shows the relationship between the descending speed of a quartz crucible and a silicon single crystal rod in a heat treatment process, and heater electric power. 一般的なプラズマエッチング装置の断面構成図。The cross-sectional block diagram of a general plasma etching apparatus.

符号の説明Explanation of symbols

10 CZ炉
12 シリコン融液
13 石英るつぼ
18 電熱ヒータ
25 シリコン単結晶棒
36 熱遮蔽部材
10 CZ furnace 12 Silicon melt 13 Quartz crucible 18 Electric heater 25 Silicon single crystal rod 36 Heat shielding member

Claims (6)

CZ炉(10)内に設けられた石英るつぼ(13)内に貯留されたシリコン原料を電熱ヒータ(18)により加熱して融解されたシリコン融液(12)から所定の長さのシリコン単結晶棒(25)を筒状の熱遮蔽部材(36)により包囲しながら引上げる工程と、
前記ヒータ(18)により加熱している状態で前記所定の長さに引上げられたシリコン単結晶棒(25)の引上げを停止して前記るつぼ(13)を一時的に下降させることにより前記シリコン融液(12)とシリコン単結晶棒(25)とを切り離す工程と、
前記切り離したシリコン単結晶棒(25)と前記るつぼ(13)を所定の位置まで一緒に下降させて前記シリコン単結晶棒(25)の下部を前記熱遮蔽部材(36)の下端から徐々に露出させるとともに、前記露出するシリコン単結晶棒(25)の下部を前記ヒータ(18)の輻射熱に直接曝すことにより所定時間熱処理する工程と
を含むシリコン単結晶の製造方法。
A silicon single crystal having a predetermined length from a silicon melt (12) melted by heating a silicon raw material stored in a quartz crucible (13) provided in a CZ furnace (10) with an electric heater (18). Pulling up the rod (25) while being surrounded by the cylindrical heat shield member (36);
By stopping the pulling of the silicon single crystal rod (25) pulled up to the predetermined length while being heated by the heater (18) and temporarily lowering the crucible (13), the silicon melt is melted. Separating the liquid (12) and the silicon single crystal rod (25);
The separated silicon single crystal rod (25) and the crucible (13) are lowered together to a predetermined position, and the lower portion of the silicon single crystal rod (25) is gradually exposed from the lower end of the heat shielding member (36). And a heat treatment for a predetermined time by directly exposing a lower portion of the exposed silicon single crystal rod (25) to radiant heat of the heater (18).
所定時間熱処理したシリコン単結晶棒(25)の下部をヒータ(18)の電力を切断してCZ炉(10)内で維持する工程を更に含む請求項1記載の製造方法。   The manufacturing method according to claim 1, further comprising the step of maintaining the inside of the CZ furnace (10) by cutting off the power of the heater (18) under the silicon single crystal rod (25) heat-treated for a predetermined time. シリコン単結晶棒(25)の下部への熱処理が前記シリコン単結晶棒(25)を下降しながら行われ、
ヒータ(18)による加熱が高温から低温に段階的又は連続的に温度を下降しながら行われる請求項1記載の製造方法。
Heat treatment to the lower part of the silicon single crystal rod (25) is performed while lowering the silicon single crystal rod (25),
The manufacturing method according to claim 1, wherein the heating by the heater (18) is performed while gradually or continuously decreasing the temperature from a high temperature to a low temperature.
シリコン単結晶棒(25)の下部の熱処理が1000〜1400℃のヒータ温度で120〜180分間行われる請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the heat treatment of the lower part of the silicon single crystal rod (25) is performed at a heater temperature of 1000 to 1400 ° C for 120 to 180 minutes. シリコン単結晶棒(25)の所定の長さが70〜120cmであって、前記シリコン単結晶棒の下部がシリコン単結晶棒の下端から0〜40cmである請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the predetermined length of the silicon single crystal rod (25) is 70 to 120 cm, and the lower portion of the silicon single crystal rod is 0 to 40 cm from the lower end of the silicon single crystal rod. シリコン単結晶棒(25)の直径が240〜450mmである請求項1記載の製造方法。   The method according to claim 1, wherein the silicon single crystal rod (25) has a diameter of 240 to 450 mm.
JP2004360645A 2004-12-14 2004-12-14 Method for producing silicon single crystal Active JP4396505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360645A JP4396505B2 (en) 2004-12-14 2004-12-14 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360645A JP4396505B2 (en) 2004-12-14 2004-12-14 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2006169016A true JP2006169016A (en) 2006-06-29
JP4396505B2 JP4396505B2 (en) 2010-01-13

Family

ID=36670162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360645A Active JP4396505B2 (en) 2004-12-14 2004-12-14 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP4396505B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104533A1 (en) * 2008-02-18 2009-08-27 株式会社Sumco Silicon single crystal growing device and quartz crucible
JP2010024129A (en) * 2008-06-16 2010-02-04 Sumco Corp Method of growing silicon single crystal
JP2016204172A (en) * 2015-04-16 2016-12-08 住友金属鉱山株式会社 Cooling method and production method of single crystal, and single crystal growth apparatus
JP2017061391A (en) * 2015-09-24 2017-03-30 トヨタ自動車株式会社 Method for producing SiC single crystal
JP2017206420A (en) * 2016-05-20 2017-11-24 株式会社Sumco Producing method of silicon single crystal, and silicon single crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404884A (en) * 2011-10-09 2012-04-04 广州市晶蓝灯饰有限公司 Transitional connection method for heating rod and water cooling electrode of crystal growing furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104533A1 (en) * 2008-02-18 2009-08-27 株式会社Sumco Silicon single crystal growing device and quartz crucible
JPWO2009104533A1 (en) * 2008-02-18 2011-06-23 株式会社Sumco Silicon single crystal growth apparatus and quartz crucible
JP5131285B2 (en) * 2008-02-18 2013-01-30 株式会社Sumco Silicon single crystal growth apparatus and quartz crucible
JP2010024129A (en) * 2008-06-16 2010-02-04 Sumco Corp Method of growing silicon single crystal
JP2016204172A (en) * 2015-04-16 2016-12-08 住友金属鉱山株式会社 Cooling method and production method of single crystal, and single crystal growth apparatus
JP2017061391A (en) * 2015-09-24 2017-03-30 トヨタ自動車株式会社 Method for producing SiC single crystal
JP2017206420A (en) * 2016-05-20 2017-11-24 株式会社Sumco Producing method of silicon single crystal, and silicon single crystal
US10490398B2 (en) 2016-05-20 2019-11-26 Sumco Corporation Manufacturing method of monocrystalline silicon and monocrystalline silicon

Also Published As

Publication number Publication date
JP4396505B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
KR102095597B1 (en) Manufacturing method of silicon single crystal
CN114318500B (en) Crystal pulling furnace and method for pulling monocrystalline silicon rod and monocrystalline silicon rod
JP2009114054A (en) Method for producing semiconductor single crystal having improved oxygen concentration characteristics
JP5283543B2 (en) Method for growing silicon single crystal
KR100679135B1 (en) Thermal shield member of silicon single crystal pulling system
JP6631460B2 (en) Method for producing silicon single crystal and silicon single crystal
EP1908861A1 (en) Silicon single crystal pulling apparatus and method thereof
JP4396505B2 (en) Method for producing silicon single crystal
CN108350603B (en) Method for producing silicon single crystal
JP2017222551A (en) Production method of silicon single crystal
JP6631406B2 (en) Method for producing silicon single crystal
WO2023051616A1 (en) Crystal pulling furnace for pulling monocrystalline silicon rod
EP1614774A1 (en) Process for producing single crystal
WO1999037833A1 (en) Single crystal pull-up apparatus
KR101395392B1 (en) Growing Method for Silicon Single Crystal Ingot
JP2011057460A (en) Method for growing silicon single crystal
KR100558156B1 (en) Silicon single crystal growing method
JP2007284323A (en) Manufacturing device and manufacturing method for semiconductor single crystal
JP3900816B2 (en) Silicon wafer manufacturing method
JP5668786B2 (en) Method for growing silicon single crystal and method for producing silicon wafer
JP2004292288A (en) Method for melting raw material for silicon single crystal
JP4360069B2 (en) Method for growing silicon single crystal
JP6699620B2 (en) Method for producing silicon single crystal
KR101625431B1 (en) Method for growing a silicon single crystal using czochralski method and silicon single crystal ingot
JP2002249396A (en) Method for growing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4396505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250