JPH09110578A - Control of oxygen concentration in silicon single crystal - Google Patents

Control of oxygen concentration in silicon single crystal

Info

Publication number
JPH09110578A
JPH09110578A JP28786295A JP28786295A JPH09110578A JP H09110578 A JPH09110578 A JP H09110578A JP 28786295 A JP28786295 A JP 28786295A JP 28786295 A JP28786295 A JP 28786295A JP H09110578 A JPH09110578 A JP H09110578A
Authority
JP
Japan
Prior art keywords
pulling
silicon single
single crystal
oxygen concentration
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28786295A
Other languages
Japanese (ja)
Other versions
JP3564830B2 (en
Inventor
Hideo Okamoto
日出夫 岡本
Toshiharu Uesugi
敏治 上杉
Tetsuhiro Oda
哲宏 小田
Atsushi Iwasaki
淳 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP28786295A priority Critical patent/JP3564830B2/en
Publication of JPH09110578A publication Critical patent/JPH09110578A/en
Application granted granted Critical
Publication of JP3564830B2 publication Critical patent/JP3564830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To control, irrespective of pull-up operation time, the oxygen concentrations at the identical growth position within a desired range, for plural rods of silicon single crystal pulled up by conventional or multiple CZ process and differing in pull-up operation time from one another. SOLUTION: In pulling up by conventional or multiple CZ process plural rods of silicon single crystal by use of a pull-up device equipped with a quartz crucible, (1) the relationship between pull-up operation time when pull-up operations are made using the identical device under the identical operational condition and the oxygen concentration at the identical growth position for silicon single crystal is determined with the number of revolutions of the crucible as parameter, (2) the number of revolutions of the crucible is set based on the above relationship and a desired oxygen concentration range at the identical growth position for the silicon single crystal set in advance, and a pull-up operation is conducted using the identical device under the identical operational conditions with those when the above relationship is determined, except for the number of revolutions of the crucible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はシリコン単結晶の引
上げ方法に関し、詳しくはCZ法(Czochralski法)、
マルチプルCZ法、または連続チャージ引上げ法により
引上げられるシリコン単結晶中の酸素濃度制御方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pulling a silicon single crystal, and more specifically, a CZ method (Czochralski method),
The present invention relates to a method for controlling oxygen concentration in a silicon single crystal pulled by the multiple CZ method or the continuous charge pulling method.

【0002】[0002]

【従来の技術】従来、CZ法によるシリコン単結晶の製
造における酸素濃度制御方法については、種々のものが
提案されている。例えば、特公昭60−6911号公報
には、一定のルツボ回転数で成長させたシリコン単結晶
の軸方向の酸素濃度プロファイルに基づいて、その傾度
と逆の傾度となるようにルツボ回転数の傾度を制御する
ことにより、シリコン単結晶の軸方向の酸素濃度分布を
一定の範囲内に制御するものが開示されている。また、
特開昭64−61383号公報には、単結晶引上げ装置
において、ルツボ内融液の液面上を流れる不活性ガスの
流速を制御することで、単結晶の酸素濃度を制御する方
法が開示されている。
2. Description of the Related Art Conventionally, various methods have been proposed for controlling the oxygen concentration in the production of silicon single crystals by the CZ method. For example, in Japanese Examined Patent Publication No. 60-6911, based on the oxygen concentration profile in the axial direction of a silicon single crystal grown at a constant crucible rotation speed, the inclination of the crucible rotation speed is set so as to have a gradient opposite to that. It is disclosed that the oxygen concentration distribution in the axial direction of the silicon single crystal is controlled within a certain range by controlling the. Also,
Japanese Unexamined Patent Publication No. 64-61383 discloses a method for controlling the oxygen concentration of a single crystal by controlling the flow rate of an inert gas flowing on the liquid surface of the melt in a crucible in a single crystal pulling apparatus. ing.

【0003】ところで最近、通常のCZ法に代わる単結
晶引上げ法として、上記マルチプルCZ法(RCCZ
法:Recharge CZ法)、または連続チャージ引上げ法
(CCCZ法:Continuous-Charging CZ法)が開発さ
れている。マルチプルCZ法は、シリコン単結晶の引上
げを終了した後のルツボ内残留融液を固化させることな
く、原料多結晶を再充填して再度引上げを行う操作を繰
り返すことにより、同じルツボから複数本のシリコン単
結晶を引き上げる方法である。連続チャージ引上げ法
は、原料のシリコン融液または粒状多結晶を連続的にル
ツボにチャージすることにより、ルツボ内の融液量を一
定に保ちながら単結晶の引上げを継続するものである
(志村 史夫:「半導体シリコン結晶工学」、丸善
(株)を参照)。
By the way, recently, as a single crystal pulling method replacing the ordinary CZ method, the multiple CZ method (RCCZ) is used.
Method: Recharge CZ method) or continuous charge pulling method (CCCZ method: Continuous-Charging CZ method) has been developed. The multiple CZ method repeats the operation of refilling the raw material polycrystal and pulling again without solidifying the residual melt in the crucible after the pulling of the silicon single crystal is completed. This is a method of pulling a silicon single crystal. The continuous charge pulling method is to continuously pull the single crystal while keeping the melt amount in the crucible constant by continuously charging the raw material silicon melt or granular polycrystal into the crucible (Fumio Shimura. : "Semiconductor Silicon Crystal Engineering", Maruzen Co., Ltd.).

【0004】[0004]

【発明が解決しようとする課題】ところが、本発明者は
これらマルチプルCZ法、連続チャージ引上げ法では原
材料の歩留りおよび単結晶の生産性が向上する利点があ
るものの、CZ法(通常のCZ法)と同様に、引上げ操
業時間(多結晶溶融完了直後からの経過時間をいう、以
下同じ)の経過とともに引上げ中のシリコン単結晶中の
酸素濃度が軸方向で次第に低下することを発見した。す
なわち、引上げ操業時間が長くなることで、同一装置・
同一操作条件で引上げた場合でも、(1)CZ法および
マルチプルCZ法では、操業時間が異なる複数本のシリ
コン単結晶を比較した場合、同一成長位置(シリコン単
結晶の軸方向において同一の位置)の酸素濃度(Oi)
が引上げ操業時間の経過とともに低下し、(2)連続チ
ャージ引上げ法では、引上げ操業時間の経過とともにシ
リコン単結晶中の酸素濃度が低下する結果、引き上げら
れたシリコン単結晶における軸方向の酸素濃度が、軸方
向に漸減することを確認した。引上げ操業時間が異なる
複数本のシリコン単結晶が発生する理由としては、結晶
の有転位化等の理由により引上げ中の結晶を再度溶融
し、再び結晶の引上げを行うこと、引上げ結晶の次数
(次数とは、同じ石英ルツボから複数本のシリコン単結
晶を引上げる場合に、単結晶の引上げを完了する本数を
示す。)が違うこと、その他が挙げられる。
However, the present inventors have found that the multiple CZ method and the continuous charge pulling method have the advantages of improving the raw material yield and the productivity of single crystals, but the CZ method (normal CZ method) is used. Similarly to the above, it was discovered that the oxygen concentration in the silicon single crystal being pulled gradually decreased in the axial direction with the lapse of pulling operation time (the time elapsed immediately after the completion of melting of the polycrystal, the same applies hereinafter). In other words, as the pulling operation time increases, the same equipment
Even when pulled under the same operating conditions, (1) the CZ method and the multiple CZ method have the same growth position (the same position in the axial direction of the silicon single crystal) when a plurality of silicon single crystals having different operating times are compared. Oxygen concentration (Oi)
Decreases with the elapse of the pulling operation time, and (2) in the continuous charge pulling method, the oxygen concentration in the silicon single crystal decreases with the elapse of the pulling operation time, and as a result, the oxygen concentration in the axial direction in the pulled silicon single crystal increases. , It was confirmed that it gradually decreased in the axial direction. The reason why multiple silicon single crystals with different pulling operation time are generated is that the crystal being pulled is melted again due to the dislocation of the crystal, and the crystal is pulled again. And, when pulling a plurality of silicon single crystals from the same quartz crucible, indicate the number of single crystals that have been pulled.), And others.

【0005】本発明は上記知見に基づくもので、その目
的は、CZ法またはマルチプルCZ法にあっては、引き
上げられたシリコン単結晶の同一成長位置の酸素濃度
を、引上げ操業時間の経過に関わらず所望の範囲内に制
御することであり、連続チャージ引上げ法では、引き上
げられたシリコン単結晶における軸方向の酸素濃度分布
を、引上げ操業時間の経過に関わらず所望の範囲内に制
御することである。
The present invention is based on the above findings, and its object is, in the CZ method or the multiple CZ method, the oxygen concentration at the same growth position of the pulled silicon single crystal, regardless of the elapse of the pulling operation time. In the continuous charge pulling method, the oxygen concentration distribution in the axial direction in the pulled silicon single crystal is controlled within the desired range regardless of the pulling operation time. is there.

【0006】[0006]

【課題を解決するための手段】請求項1に記載のシリコ
ン単結晶中の酸素濃度制御方法は、石英製ルツボを備え
た引上げ装置を用いて、シリコン単結晶をCZ法により
引き上げる方法において、(1)同一装置・同一操作条
件下で引上げを行った場合の引上げ操業時間と、シリコ
ン単結晶における同一成長位置の酸素濃度との関係を、
前記ルツボの回転数をパラメータとして求め、(2)あ
らかじめ設定した、シリコン単結晶における同一成長位
置の所望の酸素濃度範囲と、前記引上げ操業時間と酸素
濃度との関係から前記ルツボの回転数を設定するととも
に、該回転数以外の条件は、前記関係を求めたときと同
一装置・同一操作条件として引上げを行うことにより、
シリコン単結晶における同一成長位置の酸素濃度が、結
晶の有転位化等の理由により引上げ中の結晶を再度溶融
し、再び結晶の引上げを行う場合などにおいて、引上げ
操業時間の経過に伴って低下するのを抑制することを特
徴とする。
A method for controlling an oxygen concentration in a silicon single crystal according to claim 1 is a method for pulling a silicon single crystal by a CZ method using a pulling device equipped with a quartz crucible, 1) The relationship between the pulling operation time and the oxygen concentration at the same growth position in the silicon single crystal when pulling is performed under the same device and the same operating condition,
The rotation speed of the crucible is obtained as a parameter, and (2) the rotation speed of the crucible is set based on a preset desired oxygen concentration range at the same growth position in the silicon single crystal and the relationship between the pulling operation time and the oxygen concentration. At the same time, the conditions other than the rotation speed are increased by setting the same device and the same operation conditions as when the above relationship was obtained.
The oxygen concentration at the same growth position in a silicon single crystal decreases with the lapse of pulling operation time when the crystal being pulled is melted again due to dislocation of the crystal and the crystal is pulled again. It is characterized by suppressing

【0007】請求項2に記載のシリコン単結晶中の酸素
濃度制御方法は、石英製ルツボと該ルツボの側壁を加熱
する加熱ヒータとを備えた引上げ装置を用いて、シリコ
ン単結晶をCZ法により引き上げる方法において、
(1)同一装置・同一操作条件下で引上げを行った場合
の引上げ操業時間と、シリコン単結晶における同一成長
位置の酸素濃度との関係を、前記ルツボの上端部と加熱
ヒータの発熱中心との上下方向の離間距離をパラメータ
として求め、(2)あらかじめ設定した、シリコン単結
晶における同一成長位置の所望の酸素濃度範囲と、前記
引上げ操業時間と酸素濃度との関係から前記上下方向の
離間距離を設定するとともに、該離間距離以外の条件
は、前記関係を求めたときと同一装置・同一操作条件と
して引上げを行うことにより、シリコン単結晶における
同一成長位置の酸素濃度が、結晶の有転位化等の理由に
より引上げ中の結晶を再度溶融し、再び結晶の引上げを
行う場合などにおいて、引上げ操業時間の経過に伴って
低下するのを抑制することを特徴とする。
According to a second aspect of the present invention, there is provided a method for controlling oxygen concentration in a silicon single crystal, wherein a silicon single crystal is subjected to a CZ method by using a pulling apparatus equipped with a quartz crucible and a heater for heating a side wall of the crucible. In the method of pulling up,
(1) The relationship between the pulling operation time and the oxygen concentration at the same growth position in a silicon single crystal when pulling was performed under the same equipment and under the same operating conditions was compared between the upper end of the crucible and the heat generation center of the heater. The vertical separation distance is obtained as a parameter, and (2) the vertical separation distance is determined from the preset desired oxygen concentration range at the same growth position in the silicon single crystal and the relationship between the pulling operation time and the oxygen concentration. The conditions other than the separation distance are set so that the oxygen concentration at the same growth position in the silicon single crystal is changed to cause dislocation, etc. For the reason that the crystal being pulled is melted again for the reason of (1) and the crystal is pulled again, it is possible to suppress the decrease with the lapse of pulling operation time. It is characterized in.

【0008】請求項3に記載のシリコン単結晶中の酸素
濃度制御方法は、石英製ルツボを備えた引上げ装置を用
いて、シリコン単結晶をマルチプルCZ法により引き上
げる方法において、(1)同一装置・同一操作条件下で
引上げを行った場合の引上げ操業時間と、シリコン単結
晶における同一成長位置の酸素濃度との関係を、前記ル
ツボの回転数をパラメータとして求め、(2)あらかじ
め設定した、シリコン単結晶における同一成長位置の所
望の酸素濃度範囲と、前記引上げ操業時間と酸素濃度と
の関係から前記ルツボの回転数を設定するとともに、該
回転数以外の条件は、前記関係を求めたときと同一装置
・同一操作条件として引上げを行うことにより、シリコ
ン単結晶における同一成長位置の酸素濃度が、結晶の有
転位化等の理由により引上げ中の結晶を再度溶融し、再
び結晶の引上げを行う場合や、引上げ結晶の次数が異な
る場合などにおいて、引上げ操業時間の経過に伴って低
下するのを抑制することを特徴とする。
The method for controlling the oxygen concentration in a silicon single crystal according to claim 3 is a method for pulling a silicon single crystal by the multiple CZ method using a pulling device equipped with a quartz crucible, wherein (1) the same device: The relationship between the pulling operation time in the case of pulling under the same operating conditions and the oxygen concentration at the same growth position in the silicon single crystal was obtained by using the rotation speed of the crucible as a parameter, and (2) preset silicon single crystal was used. A desired oxygen concentration range at the same growth position in the crystal is set, and the rotation speed of the crucible is set from the relationship between the pulling operation time and the oxygen concentration, and the conditions other than the rotation speed are the same as when the relationship was obtained. By pulling up under the same equipment and operating conditions, the oxygen concentration at the same growth position in the silicon single crystal may cause the dislocation of the crystal. Ri crystals melt again during pulling, and when again performing pulling of the crystal, in a case where the degree of pulling crystal is different, which comprises suppressing a decrease with the passage of pulling operation time.

【0009】請求項4に記載のシリコン単結晶中の酸素
濃度制御方法は、石英製ルツボと該ルツボの側壁を加熱
する加熱ヒータとを備えた引上げ装置を用いて、シリコ
ン単結晶をマルチプルCZ法により引き上げる方法にお
いて、(1)同一装置・同一操作条件下で引上げを行っ
た場合の引上げ操業時間と、シリコン単結晶における同
一成長位置の酸素濃度との関係を、前記ルツボの上端部
と加熱ヒータの発熱中心との上下方向の離間距離をパラ
メータとして求め、(2)あらかじめ設定した、シリコ
ン単結晶における同一成長位置の所望の酸素濃度範囲
と、前記引上げ操業時間と酸素濃度との関係から前記上
下方向の離間距離を設定するとともに、該離間距離以外
の条件は、前記関係を求めたときと同一装置・同一操作
条件として引上げを行うことにより、シリコン単結晶に
おける同一成長位置の酸素濃度が、結晶の有転位化等の
理由により引上げ中の結晶を再度溶融し、再び結晶の引
上げを行う場合や、引上げ結晶の次数が異なる場合など
において、引上げ操業時間の経過に伴って低下するのを
抑制することを特徴とする。
According to a fourth aspect of the present invention, there is provided a method for controlling oxygen concentration in a silicon single crystal, wherein a silicon single crystal is subjected to a multiple CZ method by using a pulling apparatus equipped with a quartz crucible and a heater for heating a side wall of the crucible. (1) The relationship between the pulling operation time when pulling is performed under the same equipment and under the same operating conditions and the oxygen concentration at the same growth position in the silicon single crystal, the upper end portion of the crucible and the heater. The vertical distance from the heat generation center of is obtained as a parameter, and (2) the above-mentioned upper and lower sides are selected from the preset desired oxygen concentration range at the same growth position in the silicon single crystal and the relation between the pulling operation time and the oxygen concentration. The separation distance in the direction is set, and the conditions other than the separation distance are set to the same device / operation condition as when the above relationship was obtained. By doing so, when the oxygen concentration at the same growth position in the silicon single crystal causes the crystal under pulling to be melted again for the reason that the crystal has dislocations, etc., and the crystal is pulled up again, or the order of the pulled crystal is different. In the above, it is characterized in that it is suppressed from decreasing with the elapse of the pulling operation time.

【0010】請求項5に記載のシリコン単結晶中の酸素
濃度制御方法は、石英製ルツボを備えた引上げ装置を用
いて、シリコン単結晶を連続チャージ引上げ法により引
き上げる方法において、(1)同一装置・同一操作条件
下で引上げを行った場合の引上げ操業時間と、該操業時
間が経過した時刻に対応するシリコン単結晶における成
長位置の酸素濃度との関係を、前記ルツボの回転数をパ
ラメータとして求め、(2)あらかじめ設定した、シリ
コン単結晶における軸方向の所望酸素濃度範囲と、前記
引上げ操業時間と酸素濃度との関係から、引上げ開始後
の経過時間と前記ルツボの回転数との関係を設定すると
ともに、該回転数以外の条件は、前記関係を求めたとき
と同一装置・同一操作条件として引上げを行うことによ
り、シリコン単結晶中の引上げ軸方向の酸素濃度が引上
げ操業時間の経過に伴って低下するのを抑制することを
特徴とする。
The method for controlling the oxygen concentration in a silicon single crystal according to claim 5 is a method for pulling a silicon single crystal by a continuous charge pulling method using a pulling apparatus equipped with a quartz crucible, wherein (1) the same apparatus is used. The relationship between the pulling operation time when pulling is performed under the same operating conditions and the oxygen concentration at the growth position in the silicon single crystal corresponding to the time when the operating time has elapsed is obtained by using the rotation speed of the crucible as a parameter. (2) The relationship between the elapsed time after the start of pulling and the rotation speed of the crucible is set based on the preset desired oxygen concentration range in the axial direction of the silicon single crystal, the pulling operation time, and the oxygen concentration. In addition, the conditions other than the rotation speed were set to the same apparatus and the same operating conditions as when the above relationship was obtained, and the silicon single bond was applied. Oxygen concentration in the pulling axis direction in which is characterized in that suppress deterioration with the passage of pulling operation time.

【0011】請求項6に記載のシリコン単結晶中の酸素
濃度制御方法は、石英製ルツボと該ルツボの側壁を加熱
する加熱ヒータとを備えた引上げ装置を用いて、シリコ
ン単結晶を連続チャージ引上げ法により引き上げる方法
において、(1)同一装置・同一操作条件下で引上げを
行った場合の引上げ操業時間と、該操業時間が経過した
時刻に対応するシリコン単結晶における成長位置の酸素
濃度との関係を、前記ルツボの上端部と加熱ヒータの発
熱中心との上下方向の離間距離をパラメータとして求
め、(2)あらかじめ設定した、シリコン単結晶におけ
る軸方向の所望酸素濃度範囲と、前記引上げ操業時間と
酸素濃度との関係から、引上げ開始後の経過時間と前記
上下方向の離間距離との関係を設定するとともに、該離
間距離以外の条件は、前記関係を求めたときと同一装置
・同一操作条件として引上げを行うことにより、シリコ
ン単結晶中の引上げ軸方向の酸素濃度が操業時間の経過
に伴って低下するのを抑制することを特徴とする。
According to a sixth aspect of the present invention, there is provided a method for controlling oxygen concentration in a silicon single crystal, wherein a silicon single crystal is continuously charged by using a pulling device equipped with a quartz crucible and a heater for heating a side wall of the crucible. In the method of pulling by the method, (1) the relationship between the pulling operation time when pulling is performed under the same equipment and under the same operating conditions, and the oxygen concentration at the growth position in the silicon single crystal corresponding to the time when the operating time has passed. Is calculated using the vertical distance between the upper end of the crucible and the heat generation center of the heater as a parameter, and (2) the preset desired oxygen concentration range in the axial direction of the silicon single crystal, and the pulling operation time. From the relationship with the oxygen concentration, the relationship between the elapsed time after the start of pulling and the vertical distance is set, and the conditions other than the distance are It is characterized in that the pulling is performed under the same apparatus and the same operating conditions as when the above relation is obtained, thereby suppressing the oxygen concentration in the pulling axial direction in the silicon single crystal from decreasing with the lapse of operating time. .

【0012】請求項1,3,5に記載の発明は、同一装
置・同一操作条件下で引上げを行った場合のシリコン単
結晶中の酸素濃度の低下を、ルツボ回転数を増大させる
ことにより補償するものである。
According to the first, third and fifth aspects of the present invention, the decrease in the oxygen concentration in the silicon single crystal when the pulling is performed under the same apparatus and the same operating conditions is compensated for by increasing the crucible rotation speed. To do.

【0013】請求項2,4,6の発明は、同一装置・同
一操作条件下で引上げを行った場合のシリコン単結晶中
の酸素濃度の低下を、ルツボの上端部と加熱ヒータの発
熱中心との上下方向の離間距離を増大することにより補
償するものである。
According to the second, fourth, and sixth aspects of the present invention, the decrease in the oxygen concentration in the silicon single crystal when the pulling is performed under the same equipment and the same operating conditions is caused by the upper end of the crucible and the heat generation center of the heater. This is compensated by increasing the vertical separation distance.

【0014】[0014]

【発明の実施の形態】以下、本発明の構成および効果を
図面に基づいて説明する。 実施の形態1 図1は、CZ法(通常CZ法)またはマルチプルCZ法
によるシリコン単結晶引上げ装置の要部構造を示す概略
断面図である。この引上げ装置においてステンレス製の
円筒状チャンバー1内に、内周側が石英からなり外周側
が黒鉛からなるルツボ2が、鉛直方向に設けた支持軸3
で支持されている。ルツボ2の周囲には、炭素材からな
る円筒状の加熱ヒータ4が配備され、この加熱ヒータ4
の周囲には同じく炭素材からなる円筒状の断熱材5が配
備されている。前記支持軸3(従ってルツボ2)は、制
御機構を備えた回転駆動装置(図示せず)により回転可
能、かつ回転数が微調整可能となっている。前記加熱ヒ
ータ4は、制御機構を備えたおよびスライド機構(図示
せず)により上下動可能、かつ上下方向の位置が微調整
可能となっている。
BEST MODE FOR CARRYING OUT THE INVENTION The structure and effects of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. 1 is a schematic cross-sectional view showing a main part structure of a silicon single crystal pulling apparatus by a CZ method (normal CZ method) or a multiple CZ method. In this pulling apparatus, in a cylindrical chamber 1 made of stainless steel, a crucible 2 having an inner peripheral side made of quartz and an outer peripheral side made of graphite is provided with a support shaft 3 vertically provided.
Supported by. A cylindrical heater 4 made of a carbon material is arranged around the crucible 2.
A cylindrical heat insulating material 5 also made of a carbon material is provided around the. The support shaft 3 (and thus the crucible 2) can be rotated by a rotary drive device (not shown) having a control mechanism, and the number of rotations can be finely adjusted. The heater 4 has a control mechanism and can be moved up and down by a slide mechanism (not shown), and its vertical position can be finely adjusted.

【0015】チャンバー1の上方には、ステンレス製の
円筒状プルチャンバー6が、チャンバー1と同心状に連
結して設けられ、これらチャンバー1とプルチャンバー
6との接続部には、アイソレーションバルブ7が配備さ
れている。プルチャンバー6は、引き上げられたシリコ
ン単結晶を収容し、かつ外部に取り出すための空間を形
成している。プルチャンバー6の上方には、シリコン単
結晶の巻上げ装置(図示せず)が、鉛直軸を中心として
回転可能に配備されている。この巻上げ装置からはワイ
ヤー8が吊下され、このワイヤー8の下端には種保持治
具9により種結晶10が取り付けられている。プルチャ
ンバー6の上部にはAr等の不活性ガスの供給口11
が、チャンバー1の底部には不活性ガスの排気口12が
それぞれ設けられている。この排気口12は真空発生装
置(図示せず)に連絡され、チャンバー1およびプルチ
ャンバー6内を所定の真空度に維持できるようになって
いる。
A cylindrical pull chamber 6 made of stainless steel is concentrically connected to the chamber 1 above the chamber 1, and an isolation valve 7 is provided at a connecting portion between the chamber 1 and the pull chamber 6. Has been deployed. The pull chamber 6 accommodates the pulled silicon single crystal and forms a space for taking it out to the outside. A silicon single crystal winding device (not shown) is arranged above the pull chamber 6 so as to be rotatable about a vertical axis. A wire 8 is hung from the winding device, and a seed crystal 10 is attached to the lower end of the wire 8 by a seed holding jig 9. A supply port 11 for an inert gas such as Ar is provided above the pull chamber 6.
However, an exhaust port 12 for the inert gas is provided at the bottom of the chamber 1. The exhaust port 12 is connected to a vacuum generator (not shown) so that the chamber 1 and the pull chamber 6 can be maintained at a predetermined vacuum degree.

【0016】実施の形態2 図2は、連続チャージ引上げ法によるシリコン単結晶引
上げ装置の要部構造を示す概略断面図である。この装置
のチャンバー1内には、連続チャージ引上げ法によるシ
リコン単結晶の引上げを可能とするための装置を配備し
てある。その他の構成は、図1の装置と同様である。す
なわち、外径がルツボ2の内径より小さい石英製の円筒
状隔壁21がルツボ2と同心状に設けられ、チャンバー
1の外部上方には、粒状多結晶シリコンの供給装置31
が設けられている。この供給装置31は粒状多結晶シリ
コン41のコンテナ32、該コンテナ32の下端部に連
結配備した振動フィーダ33、これらコンテナ32およ
び振動フィーダ33を密閉状態で収容する密閉室(開閉
蓋付き)34、振動フィーダ33の出口に接続した石英
製の供給管35等を備えて構成されている。供給管35
の下半部はチャンバー1に挿入され、その下端部はルツ
ボ2と前記隔壁21との間隙に挿入されている。前記密
閉室34の上部にはArガス等の不活性ガスの供給口3
4aが、下部には不活性ガスの排気口34bがそれぞれ
開口されている。なお、図1および図2において51は
シリコン融液、52は引上げ途中のシリコン単結晶であ
る。
Embodiment 2 FIG. 2 is a schematic cross-sectional view showing the main structure of a silicon single crystal pulling apparatus by the continuous charge pulling method. In the chamber 1 of this apparatus, an apparatus for enabling the pulling of the silicon single crystal by the continuous charge pulling method is provided. Other configurations are similar to those of the apparatus shown in FIG. That is, a quartz cylindrical partition wall 21 having an outer diameter smaller than the inner diameter of the crucible 2 is provided concentrically with the crucible 2, and a supply device 31 of granular polycrystalline silicon is provided above the chamber 1 above the chamber 1.
Is provided. The supply device 31 includes a container 32 of granular polycrystalline silicon 41, a vibration feeder 33 connected to the lower end portion of the container 32, a closed chamber (with an opening / closing lid) 34 for accommodating the container 32 and the vibration feeder 33 in a closed state, A quartz supply pipe 35 connected to the outlet of the vibration feeder 33 is provided. Supply pipe 35
The lower half part of the is inserted into the chamber 1, and the lower end part thereof is inserted into the gap between the crucible 2 and the partition wall 21. A supply port 3 for an inert gas such as Ar gas is provided above the closed chamber 34.
4a, and an inert gas exhaust port 34b is opened at the bottom. 1 and 2, 51 is a silicon melt, and 52 is a silicon single crystal in the process of pulling.

【0017】〔試験例1〕次に、図1の引上げ装置を用
いて行ったCZ法(通常CZ法)によるシリコン単結晶
の引上げ試験について説明する。まず、引上げ結晶N
o.1(1バッチ目の結晶)では、前記真空発生装置を
駆動するとともに、不活性ガスを供給することにより、
チャンバー1内およびプルチャンバー6内の圧力を10
0mbarに維持した。この状態において、あらかじめ
ルツボ2に仕込んだ多結晶シリコンを加熱ヒータ4によ
り溶解させた。次に、ルツボ2内のシリコン融液51の
表面にワイヤー8下端部の種結晶10を浸漬し、ルツボ
2をR1 rpmで回転させ、ワイヤー8を回転させなが
ら所定の速度で引き上げた。以上の操作により、直径D
iインチ、全長Liインチのシリコン単結晶を製造し
た。この結晶の中心部引上げ時の引上げ操業時間はTi
であった。
[Test Example 1] Next, a pulling test of a silicon single crystal by the CZ method (normal CZ method) performed using the pulling apparatus of FIG. 1 will be described. First, pulling crystal N
o. In 1 (first batch of crystals), by driving the vacuum generator and supplying an inert gas,
The pressure in the chamber 1 and the pull chamber 6 is set to 10
It was kept at 0 mbar. In this state, the polycrystalline silicon charged in advance in the crucible 2 was melted by the heater 4. Next, the seed crystal 10 at the lower end of the wire 8 was immersed in the surface of the silicon melt 51 in the crucible 2, the crucible 2 was rotated at R 1 rpm, and the wire 8 was pulled up at a predetermined speed while rotating. By the above operation, the diameter D
A silicon single crystal having i inches and a total length of Li inches was manufactured. The pulling time for pulling the center of this crystal is Ti
Met.

【0018】引上げ結晶No.2(2バッチ目の結晶)
は、引上げ結晶No.1と同一条件で、これと同一寸法
のシリコン単結晶として製造した。ただし、多結晶シリ
コンの溶解後、一定時間放置してから単結晶の引上げを
開始した。この引上げ結晶No.2の中心部の引上げ操
業時間はT2 であった。さらに、引上げ結晶No.3〜
No.5を引上げ結晶No.1と同一条件で、これと同
一寸法のシリコン単結晶として製造した。引上げ結晶N
o.1〜No.5は、多結晶シリコン溶解後の放置時間
が異なり、下記の試験において単結晶直胴中心部の引上
げ時の引上げ操業時間は、T1 <T2 <T3 <T4 <T
5 (数字は結晶No.を示す)となる。
Pulled crystal No. 2 (2nd batch of crystals)
Is a pulled crystal No. Under the same conditions as in No. 1, a silicon single crystal having the same size as that of No. 1 was manufactured. However, after the polycrystalline silicon was melted, the single crystal was pulled up after standing for a certain period of time. This pulled crystal No. The pulling up time in the center of No. 2 was T 2 . Further, the pulled crystal No. 3 ~
No. Crystal No. 5 was pulled up. Under the same conditions as in No. 1, a silicon single crystal having the same size as that of No. 1 was manufactured. Pulled crystal N
o. 1 to No. No. 5 is different in the standing time after melting the polycrystalline silicon, and in the following test, the pulling operation time when pulling the central portion of the single crystal straight body was T 1 <T 2 <T 3 <T 4 <T
5 (the number indicates the crystal No.).

【0019】〔試験例2〕次に、図1の引上げ装置を用
いて行った、マルチプルCZ法によるシリコン単結晶の
引上げ試験について説明する。まず、引上げ結晶No.
11(1バッチ目の1本目で引上げた結晶)では、前記
真空発生装置を駆動するとともに、不活性ガスを供給す
ることにより、チャンバー1内およびプルチャンバー6
内の圧力を100mbarに維持した。この状態におい
て、あらかじめルツボ2に仕込んだ多結晶シリコンを加
熱ヒータ4により溶解させた。次に、ルツボ2内のシリ
コン融液51の表面に、ワイヤー8下端部の種結晶10
を浸漬し、ルツボ2をR1 rpmで回転させ、ワイヤー
8を回転させながら所定の速度で引き上げた。以上の操
作により、直径Diインチ、全長Liインチのシリコン
単結晶を製造した。
[Test Example 2] Next, a pulling test of a silicon single crystal by the multiple CZ method performed using the pulling apparatus of FIG. 1 will be described. First, the pulled crystal No.
In No. 11 (the crystal pulled up in the first batch of the first batch), the vacuum generator was driven and an inert gas was supplied to the inside of the chamber 1 and the pull chamber 6.
The pressure inside was maintained at 100 mbar. In this state, the polycrystalline silicon charged in advance in the crucible 2 was melted by the heater 4. Next, on the surface of the silicon melt 51 in the crucible 2, the seed crystal 10 at the lower end of the wire 8 is
Was dipped, the crucible 2 was rotated at R 1 rpm, and the wire 8 was pulled up at a predetermined speed while rotating. By the above operation, a silicon single crystal having a diameter of Di inch and a total length of Li inch was manufactured.

【0020】引上げ結晶No.12(1バッチ目の2本
目で引上げた結晶)では、ルツボ2内に残留するシリコ
ンを溶融状態に維持し、この状態で多結晶シリコン41
をルツボ2に追加投入し、ルツボ2内融液の液面を引上
げ結晶No.11と同一にし、以下、引上げ結晶No.
11と同一条件で引上げ結晶No.12の操作を行い、
引上げ結晶No.11と同一寸法のシリコン単結晶を製
造した。さらに、引上げ結晶No.12と同一の操作を
繰り返すことにより、引上げ結晶No.13〜15の操
作を行い、引上げ結晶No.11と同一寸法のシリコン
単結晶を製造した。
Pulled crystal No. No. 12 (the crystal pulled up in the second batch of the first batch), the silicon remaining in the crucible 2 is maintained in a molten state, and in this state, the polycrystalline silicon 41
Is additionally charged into the crucible 2 and the liquid level of the melt in the crucible 2 is pulled up to crystal No. 2. The same as No. 11 and the pulling crystal No.
Under the same conditions as for No. 11, the pulled crystal No. Do 12 steps,
Pulled crystal No. A silicon single crystal having the same size as 11 was manufactured. Further, the pulled crystal No. By repeating the same operation as in No. 12, the pulled crystal No. The operations of Nos. 13 to 15 were performed to pull up the crystal No. A silicon single crystal having the same size as 11 was manufactured.

【0021】次に、ルツボ2の回転数をR1 からR
2 (ただし、R2 >R1 )に変えた以外は引上げ結晶N
o.11と同一の条件で、引上げ結晶No.21〜25
(2バッチ目の1本目から5本目に引上げた結晶)の操
作を行い、以下同様に、ルツボ2の回転数をR3
4 ,R5 (ただし、R5 >R4 >R3 >R2 )に変え
た以外は引上げ結晶No.11と同一の条件で、引上げ
結晶No.31〜35、41〜45、51〜55(それ
ぞれ、3,4,5バッチ目の、1〜5本目に引上げた結
晶)の操作を行い、引上げ結晶No.11と同一寸法の
シリコン単結晶を製造した。
Next, the rotation speed of the crucible 2 is changed from R 1 to R.
2 (However, R 2 > R 1 )
o. Under the same conditions as in No. 11, the pulled crystal No. 21-25
(The crystals of the first batch to the fifth batch of the second batch) were operated, and the rotation speed of the crucible 2 was changed to R 3 ,
The pulled crystal Nos. Were changed to R 4 and R 5 (provided that R 5 > R 4 > R 3 > R 2 ). Under the same conditions as in No. 11, the pulled crystal No. 31-35, 41-45, 51-55 (the crystals of the 3rd, 4th, and 5th batches, and the crystals that were pulled up to the 1st to 5th lines, respectively), and the pulled crystal No. A silicon single crystal having the same size as 11 was manufactured.

【0022】このようにして得られたCZ法(通常CZ
法)による5本のシリコン単結晶、およびマルチプルC
Z法による25本のシリコン単結晶について、その軸方
向および直径方向の中心部(直胴部の重心近傍)の酸素
濃度Oicを測定した。結果は図3,4に示すとおり
で、ルツボ2の回転数をパラメータとする酸素濃度変化
曲線l10(図3)およびl11〜l15(図4)が得られ
た。すなわち図3,4は、引上げ操業時間が異なる複数
本のシリコン単結晶についての引上げ結晶No.と、同
一成長位置の酸素濃度との関係を、ルツボの回転数をパ
ラメータとして求めたものである。図3のl10および図
4のl11の傾きから、CZ法(通常CZ法)とマルチプ
ル法とで、引上げ操業時間とシリコン単結晶中の酸素濃
度の低下割合との関係が同一であることが確認できた。
また、図3,4から、(1)ルツボ2の回転数を一定に
した場合、あとで引上げられた結晶ほど(つまり引上げ
操業時間の経過に従って)、酸素濃度Oicが低下する
こと、(2)引上げ操業時間が等しく、引上げバッチが
異なる単結晶を比較すると、ルツボ2の回転数が大きい
ほど、酸素濃度Oicが高くなることが分かった。
The CZ method thus obtained (normal CZ
Method) 5 silicon single crystals and multiple C
With respect to 25 silicon single crystals by the Z method, the oxygen concentration Oic in the central portion (in the vicinity of the center of gravity of the straight body portion) in the axial direction and the diametrical direction was measured. The results are as shown in FIGS. 3 and 4, and oxygen concentration change curves l 10 (FIG. 3) and l 11 to l 15 (FIG. 4) with the number of rotations of the crucible 2 as a parameter were obtained. That is, FIGS. 3 and 4 show pulling crystal Nos. Of a plurality of silicon single crystals having different pulling operation times. And the oxygen concentration at the same growth position were obtained using the rotation speed of the crucible as a parameter. From the slopes of l 10 in FIG. 3 and l 11 in FIG. 4, the relationship between the pulling operation time and the reduction rate of the oxygen concentration in the silicon single crystal is the same between the CZ method (normal CZ method) and the multiple method. Was confirmed.
Further, from FIGS. 3 and 4, (1) when the rotation speed of the crucible 2 is constant, the oxygen concentration Oic decreases as the crystal is pulled up later (that is, as the pulling operation time elapses), (2) When comparing single crystals having different pulling operation times and different pulling batches, it was found that the oxygen concentration Oic increased as the rotation speed of the crucible 2 increased.

【0023】したがって、目標の酸素濃度がOit(p
pma)である場合には、図4のグラフにおいて、縦軸
の「Oit」の点を通り横軸に平行な直線Lを引き、こ
の直線Lと、各引上げ結晶No.を示す点を通り縦軸に
平行な直線との交点を通る前記酸素濃度変化曲線のルツ
ボ回転数r1 〜r5 (ただし、r5 >r4 >r3 >r2
>r1 )を求め、各引上げ結晶No.の操作においては
ルツボ回転数をr1 〜r5 に設定すれば、各引上げ結晶
No.で得られるシリコン単結晶の酸素濃度OicをO
itに近い値にすることができる。なお、上記した交点
を通る酸素濃度変化曲線が存在しない場合には、酸素濃
度変化曲線l11〜l15を内挿または外挿することによ
り、望ましいルツボ回転数の近似値を求めればよい。
Therefore, the target oxygen concentration is Oit (p
pma), in the graph of FIG. 4, a straight line L passing through the point of “Oit” on the vertical axis and parallel to the horizontal axis is drawn, and this straight line L and each pulled crystal No. Of the crucible rotation speed r 1 to r 5 (where r 5 > r 4 > r 3 > r 2 of the oxygen concentration change curve that passes through an intersection with a straight line parallel to the vertical axis.
> R 1 ), each pulled crystal No. When the crucible rotation number is set to r 1 to r 5 in the operation of No. 3, each pulling crystal No. The oxygen concentration Oic of the silicon single crystal obtained in
It can be close to it. In the case where the oxygen concentration variation curve passing through the intersection as described above does not exist, the oxygen concentration variation curve l 11 to l 15 by interpolating or extrapolating, may be obtained an approximation of the desired crucible rotation speed.

【0024】以上の要領で求めた、「引上げ結晶No.
と望ましいルツボ回転数」との関係を図5に示す。すな
わち図5は、図4を基に作成した、シリコン単結晶中の
酸素濃度制御方法を示すグラフであって、引上げ操業時
間の異なる複数本のシリコン単結晶について、同一成長
位置の酸素濃度を所望の範囲内に制御する場合の、シリ
コン単結晶の引上げ結晶No.の引上げ操業時間におけ
るルツボ回転数の設定値との関係を示すものである。
"Pulled-up crystal No. 3" obtained in the above manner
FIG. 5 shows the relationship between “and desired crucible rotation speed”. That is, FIG. 5 is a graph showing the oxygen concentration control method in the silicon single crystal prepared based on FIG. 4, in which the oxygen concentration at the same growth position is desired for a plurality of silicon single crystals having different pulling operation times. In the case of controlling within the range of the pulling crystal No. of the silicon single crystal. 3 shows the relationship with the set value of the number of rotations of the crucible in the pulling operation time of.

【0025】次に、ルツボ2の回転数を図5に示すとお
りに設定し、その他の条件は引上げ結晶No.11と同
一にして引上げ結晶No.61〜65の操作を行い、引
上げ結晶No.11と同一寸法のシリコン単結晶を製造
した。引上げ操業時間の異なる5本のシリコン単結晶に
ついて、酸素濃度Oicを測定した。結果は図5に併記
したとおりで、酸素濃度Oicをほぼ目標値Oit±
1.0(ppma ASTM’79、以下同じ)の範囲
内に制御することができた。
Next, the rotation speed of the crucible 2 was set as shown in FIG. No. 11 pulling crystal No. 11 61-65, and pulling crystal No. A silicon single crystal having the same size as 11 was manufactured. The oxygen concentration Oic was measured for five silicon single crystals having different pulling operation times. The results are as shown in FIG. 5, and the oxygen concentration Oic is almost the target value Oit ±
It could be controlled within the range of 1.0 (ppma ASTM'79, the same applies hereinafter).

【0026】〔試験例3〕試験例2では、ルツボ2の回
転数と酸素濃度Oicとの関係を検討したが、この試験
例3では、複数本のシリコン単結晶についての引上げ結
晶No.と、同一成長位置の酸素濃度との関係を、ルツ
ボ2の上端部と加熱ヒータ4の発熱中心Hcとの上下方
向の離間距離D(図1を参照)をパラメータとして求め
た。この場合、全ての引上げ結晶No.でルツボ2の回
転数をRrpmとし、CZ法(通常CZ法)での引上げ
結晶No.101〜105では離間距離DをD1 に、マ
ルチプルCZ法による引上げ結晶No.111〜115
では離間距離DをD1 に、引上げ結晶No.121〜1
25では離間距離DをD2 に、引上げ結晶No.131
〜135では離間距離DをD3 に、引上げ結晶No.1
41〜145では離間距離DをD4 に、引上げ結晶N
o.151〜155では前記離間距離DをD5 に、それ
ぞれ設定し(ただし、D5 >D4 >D3 >D2
1 )、その他の操作条件は試験例1と同一にして直径
Diインチ、全長Liインチのシリコン単結晶をCZ法
(通常CZ法)で5本、マルチプルCZ法で25本それ
ぞれ製造した。この場合、前記離間距離Dの調節は、前
記スライド機構により加熱ヒータ4を上下方向に移動さ
せることで行った。
[Test Example 3] In Test Example 2, the relationship between the number of rotations of the crucible 2 and the oxygen concentration Oic was examined. In Test Example 3, the pulling crystal Nos. For a plurality of silicon single crystals were examined. And the oxygen concentration at the same growth position were obtained using the vertical distance D (see FIG. 1) between the upper end of the crucible 2 and the heat generation center Hc of the heater 4 as a parameter. In this case, all the pulled crystal Nos. And the number of rotations of the crucible 2 was set to R rpm, and the pulling crystal No. by the CZ method (normal CZ method) was used. In Nos. 101 to 105, the separation distance D was set to D 1 and the pulled crystal No. 1 by the multiple CZ method was used. 111-115
Then, the separation distance D is set to D 1 , and the pulled crystal No. 121 ~ 1
In No. 25, the separation distance D is set to D 2 , and the pulled crystal No. 131
˜135, the separation distance D was set to D 3 and the pulled crystal No. 1
41 to 145, the separation distance D is set to D 4 , and the pulled crystal N
o. The distance D in the 151 to 155 to the D 5, respectively set (although, D 5> D 4> D 3> D 2>
D 1 ), other operating conditions were the same as in Test Example 1, and five silicon single crystals having a diameter of Di inch and a total length of Li inch were manufactured by the CZ method (normal CZ method) and 25 by the multiple CZ method. In this case, the distance D was adjusted by moving the heater 4 in the vertical direction by the slide mechanism.

【0027】このようにして得られたCZ法(通常CZ
法)での5本および、マルチプルCZ法で25本のシリ
コン単結晶について、直胴部の重心近傍の酸素濃度Oi
cを測定した。結果は図6,7に示すとおりで、前記離
間距離をパラメータとする酸素濃度変化曲線l20(図
6)および、l21〜l25(図7)が得られた。すなわち
図6,7は、引上げ操業時間が異なる複数本のシリコン
単結晶についての引上げ結晶No.と、同一成長位置の
酸素濃度との関係を前記離間距離をパラメータとして求
めたものである。図6のl20および図7のl21の傾きか
ら、CZ法(通常CZ法)とマルチプル法とで、引上げ
操業時間とシリコン単結晶中の酸素濃度の低下割合との
関係が同一であることが確認できた。また、図6,7か
ら、(1)前記離間距離を一定にした場合、あとに引き
上げられる結晶ほど(つまり引上げ操業時間の経過に従
って)、酸素濃度Oicが低下すること、(2)引上げ
操業時間の経過が等しく、引上げバッチが異なるシリコ
ン単結晶を比較すると、前記離間距離が長いほど、酸素
濃度Oicが高くなることが分かった。
The CZ method thus obtained (usually CZ
Oxygen concentration Oi in the vicinity of the center of gravity of the straight body part for five silicon single crystals
c was measured. The results are shown in FIGS. 6 and 7, and the oxygen concentration change curve l 20 (FIG. 6) and l 21 to l 25 (FIG. 7) using the separation distance as a parameter were obtained. That is, FIGS. 6 and 7 show pulling crystal Nos. Of a plurality of silicon single crystals having different pulling operation times. And the oxygen concentration at the same growth position are obtained by using the separation distance as a parameter. From the slopes of l 20 in FIG. 6 and l 21 in FIG. 7, the relationship between the pulling operation time and the reduction rate of the oxygen concentration in the silicon single crystal is the same between the CZ method (normal CZ method) and the multiple method. Was confirmed. Further, from FIGS. 6 and 7, (1) when the separation distance is constant, the oxygen concentration Oic decreases as the crystal is pulled up later (that is, as the pulling operation time elapses), and (2) pulling operation time It was found that the oxygen concentration Oic increased as the separation distance was longer, by comparing the silicon single crystals having the same course of the above and different pulling batches.

【0028】したがって、目標の酸素濃度がOit(p
pma)である場合には、図7のグラフにおいて、縦軸
の「Oit」の点を通り横軸に平行な直線Lを引き、こ
の直線Lと、各引上げ結晶No.を示す点を通り縦軸に
平行な直線との交点を通る前記酸素濃度変化曲線の離間
距離d1 〜d5 (ただし、d5 >d4 >d3 >d2 >d
1 )を求め、各引上げ結晶No.の操作においては離間
距離をd1 〜d5 に設定すれば、各引上げ結晶No.で
得られるシリコン単結晶の酸素濃度OicをOitに近
い値にすることができる。なお、上記した交点を通る酸
素濃度変化曲線が存在しない場合には、酸素濃度変化曲
線l21〜l25を内挿または外挿することにより、望まし
い離間距離の近似値を求めればよい。
Therefore, the target oxygen concentration is Oit (p
pma), in the graph of FIG. 7, a straight line L passing through the point of “Oit” on the vertical axis and parallel to the horizontal axis is drawn, and this straight line L and each pulled crystal No. Distances d 1 to d 5 (where d 5 > d 4 > d 3 > d 2 > d) of the oxygen concentration change curve that passes through the intersection with a straight line parallel to the vertical axis.
1 ) is calculated, and each pulled crystal No. If the operations by setting the distance to d 1 to d 5, the pulling crystal No. The oxygen concentration Oic of the silicon single crystal obtained in step 1 can be set to a value close to Oit. If there is no oxygen concentration change curve passing through the above-mentioned intersection, the desired approximate distance distance may be obtained by interpolating or extrapolating the oxygen concentration change curves l 21 to l 25 .

【0029】以上の要領で求めた「引上げ結晶No.と
望ましい離間距離との関係」を図8に示す。すなわち図
8は図7を基に作成した、シリコン単結晶中の酸素濃度
制御方法を示すグラフであって、複数本のシリコン単結
晶について、同一成長位置の酸素濃度を所望の範囲内に
制御する場合の、シリコン単結晶の引上げ結晶No.
と、該結晶No.における前記離間距離の設定値との関
係を示すものである。
FIG. 8 shows the "relationship between the pulled crystal No. and the desired separation distance" obtained by the above procedure. That is, FIG. 8 is a graph showing a method for controlling the oxygen concentration in a silicon single crystal, which is created based on FIG. 7, and controls the oxygen concentration at the same growth position within a desired range for a plurality of silicon single crystals. In the case of the pulling crystal No.
And the crystal No. 3 shows the relationship with the set value of the separation distance in FIG.

【0030】次に、前記離間距離を図8に示すとおりに
設定し、その他の条件は引上げ結晶No.111と同一
にして引上げ結晶No.161〜165の操作を行い、
引上げ結晶No.111と同一寸法のシリコン単結晶を
製造した。引上げ操業時間の異なる5本のシリコン単結
晶について、酸素濃度Oicを測定した。結果は図8に
併記したとおりで、酸素濃度Oicをほぼ目標値Oit
±1.0(ppma)の範囲内に制御することができ
た。
Next, the separation distance is set as shown in FIG. 8, and the other conditions are the pulled crystal No. The same as No. 111, the pulled crystal No. 161-165,
Pulled crystal No. A silicon single crystal having the same size as 111 was manufactured. The oxygen concentration Oic was measured for five silicon single crystals having different pulling operation times. The results are as shown in FIG. 8, and the oxygen concentration Oic is almost the target value Oit.
It could be controlled within the range of ± 1.0 (ppma).

【0031】〔試験例4〕図2は、連続チャージ引上げ
法によるシリコン単結晶引上げ装置の要部構造を示す概
略断面図である。この装置を用いて行ったシリコン単結
晶の引上げ試験例について説明する。まず、試験例1と
同様にルツボ2の回転数をR11〜R15(ただし、R15
14>R13>R12>R11)の5通りに変え、その他の操
作条件は同一に設定し直径Diインチ、全長Liインチ
のシリコン単結晶を合計5本製造した。これにより、引
上げ操業時間と、該操業時間が経過した時刻に対応する
シリコン単結晶における成長位置の酸素濃度Oiとの関
係を、ルツボ2の回転数をパラメータとして求めた。こ
れを図9に示す。なお、引上げ操作中、多結晶シリコン
41を連続的に投入することにより、ルツボ2内の融液
量を一定に制御した。また、チャンバー1内およびプル
チャンバー6内の圧力は、実施例1と同じく100mb
arに維持した。
[Test Example 4] FIG. 2 is a schematic cross-sectional view showing a main structure of a silicon single crystal pulling apparatus by a continuous charge pulling method. An example of a pulling test of a silicon single crystal conducted using this apparatus will be described. First, in the same manner as in Test Example 1, the rotational speed of the crucible 2 was set to R 11 to R 15 (provided that R 15 >
R 14 > R 13 > R 12 > R 11 ) was changed in five ways, and the other operating conditions were set the same, and a total of 5 silicon single crystals with a diameter of Di inches and a total length of Li inches were produced. Thus, the relationship between the pulling operation time and the oxygen concentration Oi at the growth position in the silicon single crystal corresponding to the time when the operation time has elapsed was obtained using the rotation speed of the crucible 2 as a parameter. This is shown in FIG. The amount of melt in the crucible 2 was controlled to be constant by continuously charging the polycrystalline silicon 41 during the pulling operation. The pressure inside the chamber 1 and the pull chamber 6 is 100 mb, as in the first embodiment.
maintained at ar.

【0032】次に、試験例1と同様の要領で図9のグラ
フから、図10に示すように、引上げ開始後の経過時間
とルツボ回転数r11〜r15の関係を設定する(ただし、
15>r1413>r12>r11であり、前記経過時間が長
くなるに従ってルツボ回転数を増大する。)とともに、
該回転数以外の条件は、前記関係を求めたときと同一の
操作条件で引上げ操作を行った。その結果、図10に併
記したとおり、酸素濃度Oicをほぼ目標値Oit±
1.0(ppma)の範囲内に制御することができた。
Next, in the same manner as in Test Example 1, as shown in FIG. 10 from the graph of FIG. 9, the relationship between the elapsed time after the start of pulling and the crucible rotation speeds r 11 to r 15 is set (however,
r 15 > r 14 > 13 > r 12 > r 11 and the crucible rotation speed increases as the elapsed time increases. ),
With respect to the conditions other than the rotation speed, the pulling operation was performed under the same operating conditions as when the above relationship was obtained. As a result, as shown in FIG. 10, the oxygen concentration Oic is almost equal to the target value Oit ±.
It was possible to control within the range of 1.0 (ppma).

【0033】〔試験例5〕図2の引上げ装置を用いて行
った、連続チャージ引上げ法によるシリコン単結晶の引
上げ試験の別例について説明する。この場合、全ての引
上げ結晶No.でルツボ2の回転数をRrpmとし、前
記離間距離をD11〜D15(ただし、D15>D14>D13
12>D11)の5通りに変え、その他の操作条件は試験
例4と同一に設定し直径Diインチ、全長Liインチの
シリコン単結晶を合計5本製造した。これにより、引上
げ操業時間と、該操業時間が経過した時刻に対応するシ
リコン単結晶における成長位置の酸素濃度Oiとの関係
を、前記離間距離をパラメータとして求めた。これを図
11に示す。なお、引上げ操作中、多結晶シリコン41
を連続的に投入することにより、ルツボ2内の融液量を
一定に制御した。また、チャンバー1内およびプルチャ
ンバー6内の圧力は、実施例1と同じく100mbar
に維持した。
[Test Example 5] Another example of the pulling test of the silicon single crystal by the continuous charge pulling method, which was carried out by using the pulling apparatus shown in FIG. 2, will be described. In this case, all the pulled crystal Nos. And the rotation speed of the crucible 2 is R rpm, and the separation distance is D 11 to D 15 (where D 15 > D 14 > D 13 >).
D 12 > D 11 ), the other operating conditions were set to be the same as in Test Example 4, and a total of 5 silicon single crystals having a diameter of Di inches and a total length of Li inches were manufactured. Thus, the relationship between the pulling operation time and the oxygen concentration Oi at the growth position in the silicon single crystal corresponding to the time when the operation time has elapsed was obtained using the separation distance as a parameter. This is shown in FIG. During the pulling operation, the polycrystalline silicon 41
Was continuously charged to control the melt amount in the crucible 2 to be constant. The pressure inside the chamber 1 and the pull chamber 6 is 100 mbar as in the first embodiment.
Maintained.

【0034】次に、試験例1と同様の要領で図11のグ
ラフから、図12に示すように、引上げ開始後の経過時
間と離間距離d11〜d15の関係を設定する(ただし、d
15>d14>d13>d12>d11であり、前記経過時間が長
くなるに従って離間距離を長くする。)とともに、該離
間距離以外の条件は、前記関係を求めたときと同一の操
作条件で引上げを行った。その結果、図12に併記した
とおり、酸素濃度Oicをほぼ目標値Oit±1.0
(ppma)の範囲内に制御することができた。
Then, in the same manner as in Test Example 1, the relationship between the elapsed time after the start of pulling and the distances d 11 to d 15 is set from the graph of FIG. 11 (however, d
15> d 14> d 13> a d 12> d 11, to increase the distance according to the elapsed time becomes longer. ), The conditions other than the separation distance were raised under the same operating conditions as when the above relationship was obtained. As a result, as also shown in FIG. 12, the oxygen concentration Oic is almost the target value Oit ± 1.0.
It was possible to control within the range of (ppma).

【0035】[0035]

【発明の効果】以上の説明で明らかなように 請求項
1,3,5に記載の発明では、同一装置・同一操作条件
下で引上げを行った場合のシリコン単結晶中の酸素濃度
の低下を、ルツボ回転数を増大させることにより補償す
るものであるから、CZ法またはマルチプルCZ法にあ
っては、引き上げたシリコン単結晶の同一成長位置の酸
素濃度を、引上げ操業時間の長短に関わらず所望の範囲
内に制御することができるし、連続チャージ引上げ法で
は、引き上げられたシリコン単結晶における軸方向の酸
素濃度分布を、引上げ操業時間の長短に関わらず所望の
範囲内に制御することが可能となる。また請求項2,
4,6の発明では、同一装置・同一操作条件下で引上げ
を行った場合のシリコン単結晶中の酸素濃度の低下を、
ルツボの上端部と加熱ヒータの発熱中心との上下方向の
離間距離を増大することにより補償するものであるか
ら、CZ法、マルチプルCZ法または連続チャージ引上
げ法による引上げにおいて請求項1,3,5と同様の優
れた効果が得られる。
As is apparent from the above description, in the inventions described in claims 1, 3 and 5, it is possible to reduce the oxygen concentration in the silicon single crystal when the pulling is performed under the same apparatus and the same operating conditions. Since the compensation is performed by increasing the number of rotations of the crucible, in the CZ method or the multiple CZ method, the oxygen concentration at the same growth position of the pulled silicon single crystal is desired regardless of the length of pulling operation time. The continuous charge pulling method can control the oxygen concentration distribution in the axial direction of the pulled silicon single crystal within a desired range regardless of the length of pulling operation time. Becomes Further, claim 2,
In the inventions of Nos. 4 and 6, the decrease of the oxygen concentration in the silicon single crystal when the pulling is carried out under the same apparatus and the same operating condition is
Since the compensation is made by increasing the vertical distance between the upper end of the crucible and the heat generation center of the heater, the pulling by the CZ method, the multiple CZ method or the continuous charge pulling method is performed. The same excellent effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1に係るもので、CZ法
(通常CZ法)またはマルチプルCZ法によるシリコン
単結晶引上げ装置の要部構造を示す概略断面図である。
FIG. 1 relates to the first embodiment of the present invention and is a schematic cross-sectional view showing a main part structure of a silicon single crystal pulling apparatus by a CZ method (normal CZ method) or a multiple CZ method.

【図2】本発明の実施の形態2に係るもので、連続チャ
ージ引上げ法によるシリコン単結晶引上げ装置の要部構
造を示す概略断面図である。
FIG. 2 relates to the second embodiment of the present invention and is a schematic cross-sectional view showing a main part structure of a silicon single crystal pulling apparatus by a continuous charge pulling method.

【図3】試験例1,2の結果を示すグラフである。FIG. 3 is a graph showing the results of Test Examples 1 and 2.

【図4】試験例1,2の結果を示すグラフである。FIG. 4 is a graph showing the results of Test Examples 1 and 2.

【図5】図4を基に作成された、本発明のシリコン単結
晶中の酸素濃度制御方法を示すグラフである。
FIG. 5 is a graph showing the method for controlling the oxygen concentration in the silicon single crystal of the present invention, which was created based on FIG.

【図6】試験例3の結果を示すグラフである。FIG. 6 is a graph showing the results of Test Example 3.

【図7】試験例3の結果を示すグラフである。FIG. 7 is a graph showing the results of Test Example 3.

【図8】図7を基に作成された、本発明のシリコン単結
晶中の酸素濃度制御方法を示すグラフである。
FIG. 8 is a graph showing the method for controlling the oxygen concentration in the silicon single crystal of the present invention, which was created based on FIG. 7.

【図9】試験例4の結果を示すグラフである。FIG. 9 is a graph showing the results of Test Example 4.

【図10】図9を基に作成された、本発明のシリコン単
結晶中の酸素濃度制御方法を示すグラフである。
FIG. 10 is a graph showing the method for controlling the oxygen concentration in the silicon single crystal of the present invention, which was created based on FIG. 9.

【図11】試験例5の結果を示すグラフである。FIG. 11 is a graph showing the results of Test Example 5.

【図12】図11を基に作成された、本発明のシリコン
単結晶中の酸素濃度制御方法を示すグラフである。
FIG. 12 is a graph showing the method for controlling the oxygen concentration in the silicon single crystal of the present invention, which was created based on FIG. 11.

【符号の説明】[Explanation of symbols]

1 チャンバー 2 ルツボ 3 支持軸 4 加熱ヒータ 5 断熱材 6 プルチャンバー 7 アイソレーションバルブ 8 ワイヤー 9 種保持治具 10 種結晶 11,34a 不活性ガスの供給口 12,34b 不活性ガスの排気口 21 隔壁 31 多結晶シリコンの供給装置 32 コンテナ 33 振動フィーダ 34 密閉室 35 供給管 41 多結晶シリコン 51 シリコン融液 52 シリコン単結晶 1 Chamber 2 Crucible 3 Support Shaft 4 Heater 5 Heat Insulating Material 6 Pull Chamber 7 Isolation Valve 8 Wire 9 Species Holding Jig 10 Species Crystal 11,34a Inert Gas Supply Port 12,34b Inert Gas Exhaust Port 21 Partition Wall 31 Polycrystalline Silicon Supply Device 32 Container 33 Vibration Feeder 34 Closed Chamber 35 Supply Pipe 41 Polycrystalline Silicon 51 Silicon Melt 52 Silicon Single Crystal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩崎 淳 福井県武生市北府2丁目13番50号 信越半 導体株式会社武生工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Atsushi Iwasaki 2-13-50 Kitafu, Takefu City, Fukui Prefecture Shin-Etsu Semiconductor Co., Ltd. Takefu Factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 石英製ルツボを備えた引上げ装置を用い
て、シリコン単結晶をCZ法により引き上げる方法にお
いて、 (1)同一装置・同一操作条件下で引上げを行った場合
の引上げ操業時間と、シリコン単結晶における同一成長
位置の酸素濃度との関係を、前記ルツボの回転数をパラ
メータとして求め、 (2)あらかじめ設定した、シリコン単結晶における同
一成長位置の所望の酸素濃度範囲と、前記引上げ操業時
間と酸素濃度との関係から前記ルツボの回転数を設定す
るとともに、該回転数以外の条件は、前記関係を求めた
ときと同一装置・同一操作条件として引上げを行うこと
により、シリコン単結晶における同一成長位置の酸素濃
度が引上げ操業時間の経過に伴って低下するのを抑制す
ることを特徴とするシリコン単結晶中の酸素濃度制御方
法。
1. A method for pulling a silicon single crystal by a CZ method using a pulling apparatus having a quartz crucible, (1) a pulling operation time when pulling is performed under the same apparatus and under the same operating conditions, The relationship with the oxygen concentration at the same growth position in the silicon single crystal was obtained using the number of rotations of the crucible as a parameter, and (2) the desired oxygen concentration range at the same growth position in the silicon single crystal, which was set in advance, and the pulling operation. While setting the rotation speed of the crucible from the relationship between time and oxygen concentration, the conditions other than the rotation speed, in the silicon single crystal by pulling up as the same device and the same operating conditions as when the relationship was obtained. The oxygen concentration in the silicon single crystal is characterized by suppressing the decrease of the oxygen concentration at the same growth position with the lapse of pulling operation time. Control method.
【請求項2】 石英製ルツボと該ルツボの側壁を加熱す
る加熱ヒータとを備えた引上げ装置を用いて、シリコン
単結晶をCZ法により引き上げる方法において、 (1)同一装置・同一操作条件下で引上げを行った場合
の引上げ操業時間と、シリコン単結晶における同一成長
位置の酸素濃度との関係を、前記ルツボの上端部と加熱
ヒータの発熱中心との上下方向の離間距離をパラメータ
として求め、 (2)あらかじめ設定した、シリコン単結晶における同
一成長位置の所望の酸素濃度範囲と、前記引上げ操業時
間と酸素濃度との関係から前記上下方向の離間距離を設
定するとともに、該離間距離以外の条件は、前記関係を
求めたときと同一装置・同一操作条件として引上げを行
うことにより、シリコン単結晶における同一成長位置の
酸素濃度が引上げ操業時間の経過に伴って低下するのを
抑制することを特徴とするシリコン単結晶中の酸素濃度
制御方法。
2. A method for pulling a silicon single crystal by the CZ method using a pulling device equipped with a quartz crucible and a heater for heating the side wall of the crucible, comprising: (1) under the same device and under the same operating conditions. The relationship between the pulling operation time when pulling is performed and the oxygen concentration at the same growth position in the silicon single crystal, is obtained by using the vertical distance between the upper end of the crucible and the heat generation center of the heater as a parameter, 2) The preset distance is set based on a preset desired oxygen concentration range at the same growth position in the silicon single crystal and the relationship between the pulling operation time and the oxygen concentration. , The oxygen concentration at the same growth position in the silicon single crystal was increased by pulling under the same equipment and the same operating conditions as when the above relationship was obtained. Oxygen concentration control method of a silicon single crystal, characterized in that to suppress a decrease with the passage of raising operating hours.
【請求項3】 石英製ルツボを備えた引上げ装置を用い
て、シリコン単結晶をマルチプルCZ法により引き上げ
る方法において、 (1)同一装置・同一操作条件下で引上げを行った場合
の引上げ操業時間と、シリコン単結晶における同一成長
位置の酸素濃度との関係を、前記ルツボの回転数をパラ
メータとして求め、 (2)あらかじめ設定した、シリコン単結晶における同
一成長位置の所望の酸素濃度範囲と、前記引上げ操業時
間と酸素濃度との関係から前記ルツボの回転数を設定す
るとともに、該回転数以外の条件は、前記関係を求めた
ときと同一装置・同一操作条件として引上げを行うこと
により、シリコン単結晶における同一成長位置の酸素濃
度が引上げ操業時間の経過に伴って低下するのを抑制す
ることを特徴とするシリコン単結晶中の酸素濃度制御方
法。
3. A method of pulling a silicon single crystal by a multiple CZ method using a pulling device equipped with a quartz crucible, comprising: (1) pulling operation time when pulling is performed under the same device and under the same operating conditions. The relationship between the oxygen concentration at the same growth position in the silicon single crystal is obtained by using the number of rotations of the crucible as a parameter, and (2) the preset desired oxygen concentration range at the same growth position in the silicon single crystal and the pulling rate are set. The rotation speed of the crucible is set from the relationship between the operating time and the oxygen concentration, and the conditions other than the rotation speed are the same apparatus and the same operating conditions as when the above relationship was obtained, and the silicon single crystal is pulled up. Silicon single crystal characterized by suppressing the decrease of oxygen concentration at the same growth position in the steel with the elapse of pulling operation time Oxygen concentration control method of.
【請求項4】 石英製ルツボと該ルツボの側壁を加熱す
る加熱ヒータとを備えた引上げ装置を用いて、シリコン
単結晶をマルチプルCZ法により引き上げる方法におい
て、 (1)同一装置・同一操作条件下で引上げを行った場合
の引上げ操業時間と、シリコン単結晶における同一成長
位置の酸素濃度との関係を、前記ルツボの上端部と加熱
ヒータの発熱中心との上下方向の離間距離をパラメータ
として求め、 (2)あらかじめ設定した、シリコン単結晶における同
一成長位置の所望の酸素濃度範囲と、前記引上げ操業時
間と酸素濃度との関係から前記上下方向の離間距離を設
定するとともに、該離間距離以外の条件は、前記関係を
求めたときと同一装置・同一操作条件として引上げを行
うことにより、シリコン単結晶における同一成長位置の
酸素濃度が引上げ操業時間の経過に伴って低下するのを
抑制することを特徴とするシリコン単結晶中の酸素濃度
制御方法。
4. A method for pulling a silicon single crystal by the multiple CZ method using a pulling device equipped with a quartz crucible and a heater for heating the side wall of the crucible, comprising: (1) the same device under the same operating conditions. The pulling operation time when pulling in, and the relationship between the oxygen concentration at the same growth position in the silicon single crystal, the vertical separation distance between the upper end of the crucible and the heat generation center of the heater, as a parameter, (2) The preset distance is set in advance from the desired oxygen concentration range at the same growth position in the silicon single crystal and the relationship between the pulling operation time and the oxygen concentration, and conditions other than the distance are set. By pulling under the same equipment and same operating conditions as when the above relation was obtained, the same growth position in the silicon single crystal Oxygen concentration control method of a silicon single crystal, wherein a hydrogen concentration to suppress a decrease with the passage of pulling operation time.
【請求項5】 石英製ルツボを備えた引上げ装置を用い
て、シリコン単結晶を連続チャージ引上げ法により引き
上げる方法において、 (1)同一装置・同一操作条件下で引上げを行った場合
の引上げ操業時間と、該操業時間が経過した時刻に対応
するシリコン単結晶における成長位置の酸素濃度との関
係を、前記ルツボの回転数をパラメータとして求め、 (2)あらかじめ設定した、シリコン単結晶における軸
方向の所望酸素濃度範囲と、前記引上げ操業時間と酸素
濃度との関係から、引上げ開始後の経過時間と前記ルツ
ボの回転数との関係を設定するとともに、該回転数以外
の条件は、前記関係を求めたときと同一装置・同一操作
条件として引上げを行うことにより、シリコン単結晶中
の引上げ軸方向の酸素濃度が引上げ操業時間の経過に伴
って低下するのを抑制することを特徴とするシリコン単
結晶中の酸素濃度制御方法。
5. A method of pulling a silicon single crystal by a continuous charge pulling method using a pulling apparatus equipped with a quartz crucible, (1) Pulling operation time when pulling is performed under the same equipment and under the same operating conditions. And the oxygen concentration at the growth position in the silicon single crystal corresponding to the time when the operation time has elapsed, using the rotation speed of the crucible as a parameter, and (2) preset axial direction of the silicon single crystal. From the relationship between the desired oxygen concentration range, the pulling operation time and the oxygen concentration, the relationship between the elapsed time after the start of pulling and the rotation speed of the crucible is set, and conditions other than the rotation speed are determined by the relationship. By performing pulling under the same equipment and operating conditions as in the above case, the oxygen concentration in the pulling axial direction in the silicon single crystal can be adjusted by the pulling operation time. Oxygen concentration control method of a silicon single crystal, characterized in that suppress deterioration me.
【請求項6】 石英製ルツボと該ルツボの側壁を加熱す
る加熱ヒータとを備えた引上げ装置を用いて、シリコン
単結晶を連続チャージ引上げ法により引き上げる方法に
おいて、 (1)同一装置・同一操作条件下で引上げを行った場合
の引上げ操業時間と、該操業時間が経過した時刻に対応
するシリコン単結晶における成長位置の酸素濃度との関
係を、前記ルツボの上端部と加熱ヒータの発熱中心との
上下方向の離間距離をパラメータとして求め、 (2)あらかじめ設定した、シリコン単結晶における軸
方向の所望酸素濃度範囲と、前記引上げ操業時間と酸素
濃度との関係から、引上げ開始後の経過時間と前記上下
方向の離間距離との関係を設定するとともに、該離間距
離以外の条件は、前記関係を求めたときと同一装置・同
一操作条件として引上げを行うことにより、シリコン単
結晶中の引上げ軸方向の酸素濃度が操業時間の経過に伴
って低下するのを抑制することを特徴とするシリコン単
結晶中の酸素濃度制御方法。
6. A method for pulling a silicon single crystal by a continuous charge pulling method using a pulling apparatus equipped with a quartz crucible and a heater for heating a side wall of the crucible, comprising: (1) the same apparatus and the same operating conditions. The relationship between the pulling operation time when the pulling is performed below and the oxygen concentration at the growth position in the silicon single crystal corresponding to the time when the operating time has passed, between the upper end of the crucible and the heat generation center of the heater. From the relationship between the preset desired oxygen concentration range in the axial direction of the silicon single crystal, the pulling operation time and the oxygen concentration, which are set in advance as the parameter, the vertical distance is used as a parameter, and the elapsed time after the start of pulling and the above The relationship with the vertical separation distance is set, and the conditions other than the separation distance are the same device / same operating conditions as when the above relationship was obtained. By performing up, the oxygen concentration control method of a silicon single crystal, characterized in that the oxygen concentration of the pulling axis direction in the silicon single crystal to suppress a decrease with the passage of operation time.
JP28786295A 1995-10-09 1995-10-09 Method for controlling oxygen concentration in silicon single crystal Expired - Fee Related JP3564830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28786295A JP3564830B2 (en) 1995-10-09 1995-10-09 Method for controlling oxygen concentration in silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28786295A JP3564830B2 (en) 1995-10-09 1995-10-09 Method for controlling oxygen concentration in silicon single crystal

Publications (2)

Publication Number Publication Date
JPH09110578A true JPH09110578A (en) 1997-04-28
JP3564830B2 JP3564830B2 (en) 2004-09-15

Family

ID=17722725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28786295A Expired - Fee Related JP3564830B2 (en) 1995-10-09 1995-10-09 Method for controlling oxygen concentration in silicon single crystal

Country Status (1)

Country Link
JP (1) JP3564830B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228286A (en) * 1998-02-13 1999-08-24 Shin Etsu Handotai Co Ltd Production of single crystal
JP2011001241A (en) * 2009-06-22 2011-01-06 Shin Etsu Handotai Co Ltd Apparatus and method for producing single crystal
JP2017088462A (en) * 2015-11-13 2017-05-25 株式会社Sumco Method of manufacturing silicon single crystal
JP2017105675A (en) * 2015-12-10 2017-06-15 株式会社Sumco Method of manufacturing silicon single crystal
JP2020105048A (en) * 2018-12-27 2020-07-09 株式会社Sumco Production method of single crystal silicon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228286A (en) * 1998-02-13 1999-08-24 Shin Etsu Handotai Co Ltd Production of single crystal
JP2011001241A (en) * 2009-06-22 2011-01-06 Shin Etsu Handotai Co Ltd Apparatus and method for producing single crystal
JP2017088462A (en) * 2015-11-13 2017-05-25 株式会社Sumco Method of manufacturing silicon single crystal
JP2017105675A (en) * 2015-12-10 2017-06-15 株式会社Sumco Method of manufacturing silicon single crystal
JP2020105048A (en) * 2018-12-27 2020-07-09 株式会社Sumco Production method of single crystal silicon

Also Published As

Publication number Publication date
JP3564830B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
US5980630A (en) Manufacturing method of single crystal and apparatus of manufacturing the same
US7282095B2 (en) Silicon single crystal pulling method
WO2001063027A1 (en) Method for preparing silicon single crystal and silicon single crystal
US8764900B2 (en) Apparatus and method for producing single crystals
US5851283A (en) Method and apparatus for production of single crystal
US20100126410A1 (en) Apparatus and method for pulling silicon single crystal
JPH09110578A (en) Control of oxygen concentration in silicon single crystal
JP4457584B2 (en) Method for producing single crystal and single crystal
KR100533502B1 (en) Method of manufacturing silicon single crystal and silicon single crystal manufactured by the method
JP4951186B2 (en) Single crystal growth method
JP4801869B2 (en) Single crystal growth method
JP7359241B2 (en) Manufacturing method of silicon single crystal
JP4360069B2 (en) Method for growing silicon single crystal
JPH1072277A (en) Silicon single crystal growing method and device therefor
JP7238709B2 (en) Manufacturing method of silicon single crystal
JP3885245B2 (en) Single crystal pulling method
JP2672667B2 (en) Method and apparatus for pulling semiconductor single crystal
KR20100071507A (en) Apparatus, method of manufacturing silicon single crystal and method of controlling oxygen density of silicon single crystal
JP4207498B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP2009126738A (en) Method for manufacturing silicon single crystal
JP2010076947A (en) Production method of silicon single crystal and silicon single crystal produced by the method
JP2004256322A (en) Method for manufacturing silicon single crystal, silicon single crystal, and apparatus for pulling silicon single crystal
JP2004083317A (en) Pulling up method for silicon single crystal
JPH08333189A (en) Apparatus for pulling up crystal
JP3750172B2 (en) Single crystal pulling method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees