JPH09142823A - Purification of metal silicon and device for purifying the same - Google Patents

Purification of metal silicon and device for purifying the same

Info

Publication number
JPH09142823A
JPH09142823A JP31071995A JP31071995A JPH09142823A JP H09142823 A JPH09142823 A JP H09142823A JP 31071995 A JP31071995 A JP 31071995A JP 31071995 A JP31071995 A JP 31071995A JP H09142823 A JPH09142823 A JP H09142823A
Authority
JP
Japan
Prior art keywords
silicon
molten metal
metal silicon
inert gas
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31071995A
Other languages
Japanese (ja)
Inventor
Naomichi Nakamura
尚道 中村
Kenkichi Yushimo
憲吉 湯下
Hiroyuki Baba
裕幸 馬場
Yasuhiko Sakaguchi
泰彦 阪口
Hisae Terajima
久栄 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31071995A priority Critical patent/JPH09142823A/en
Publication of JPH09142823A publication Critical patent/JPH09142823A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for purifying metal silicon, capable of solving the difficulty of the removal of boron from the silicon melted with plasma and more effectively purifying the metal silicon than conventional methods, and to provide a device for purifying the same. SOLUTION: This method for purifying the metal silicon comprises blowing a plasma jet flow comprising an inert gas on the surface 2 of the melted silicon in a melted metal silicon bath to remove impurities contained therein. Therein, steam is mixed with the inert gas or blown on the surface of the melted silicon in the melted metal silicon bath, and a direct magnetic field is further applied so that the direction of the flux is parallel to the surface of the melted silicon in the melted metal silicon bath.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池用金属シ
リコンの製造に関し、特に低純度の市販金属シリコンを
太陽電池用として使用可能な純度まで精製する技術に係
わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of metallic silicon for solar cells, and more particularly to a technique for purifying low-purity commercial metallic silicon to a purity that can be used for solar cells.

【0002】[0002]

【従来の技術】太陽電池用金属シリコンの原料として用
いられる金属シリコン(以下、単にシリコンという)の
純度は、99.9999%、所謂シックスナイン以上が
必要とされている。ところが、従来、該太陽電池用シリ
コンには、半導体用シリコン(純度が約イレブンナイ
ン)が用いられており、それは非常に高価なものであっ
た。そこで、より安価な太陽電池用シリコンを得るため
に、純度99.5%程度の市販シリコンを精製して純度
を高め、太陽電池用シリコンの原料として使用すること
が研究されている。
2. Description of the Related Art The purity of metallic silicon (hereinafter simply referred to as silicon) used as a raw material of metallic silicon for solar cells is required to be 99.9999%, that is, so-called six nines or more. However, conventionally, silicon for semiconductors (purity is about eleven nine) has been used as the silicon for solar cells, which is very expensive. Therefore, in order to obtain more inexpensive silicon for solar cells, it has been studied to purify commercially available silicon having a purity of about 99.5% to increase its purity and use it as a raw material for silicon for solar cells.

【0003】一方、上記市販シリコンには種々の不純物
元素が含まれているが、そのうちFe、Al、Ti等の
金属元素については、例えば、特開平5−124809
号公報等に見られるように、それら元素がシリコンに対
して固液分配係数が小さいことを利用して、一方向凝固
法により精製除去する技術が開発されている。しかしな
がら、非金属元素のボロンは、該固液分配係数が約0.
8と金属元素に比較してけた違いに大きく、一方向凝固
法では目標濃度まで低減することが困難であるので、一
方向凝固法に代わる別の精製技術が必要とされ、多くの
研究開発がなされてきた。
On the other hand, the above-mentioned commercially available silicon contains various impurity elements. Among them, metal elements such as Fe, Al and Ti are disclosed in, for example, Japanese Unexamined Patent Publication No. 5-124809.
As can be seen in Japanese Laid-Open Patent Publication No. 2003-242242, a technique for purifying and removing by a unidirectional solidification method has been developed by utilizing the fact that these elements have a small solid-liquid partition coefficient with respect to silicon. However, boron, which is a nonmetallic element, has a solid-liquid partition coefficient of about 0.
8 is much larger than that of metallic elements, and it is difficult to reduce the target concentration by the unidirectional solidification method. Therefore, another refining technology to replace the unidirectional solidification method is required, and many research and development activities are required. It has been done.

【0004】今までに提案されている種々のボロン除去
技術のうちで最も有力なものは、熱プラズマを利用する
ものである。例えば、特願平4−228414号公報
は、水蒸気を含んだ不活性ガスを動作ガスとするプラズ
マジェットを溶融シリコンに噴射してボロンを除去する
精製方法を開示している。しかしながら、この精製方法
では、シリコン溶湯表面のうち、プラズマが照射された
部分だけでボロンの除去反応が進行し、他の部分では除
去できないので、ボロン除去の処理時間が長いという問
題があった。また、特開平5−139713号公報は、
水蒸気を含んだ不活性ガスを動作ガスとするプラズマ照
射法に加えて、溶融シリコンを保持した容器の底から不
活性ガスを吹込み、撹拌を強化する方法を提案し、それ
によりボロン除去処理の時間短縮を達成している。しか
しながら、この方法では、溶融シリコン浴を汚染せずに
底吹用羽口を設けることが困難であり、さらに溶融シリ
コンが強い撹拌を受け、該羽口が著しく損傷し、全体と
して容器の寿命が短くなるという別の問題が生じた。
Among the various boron removal techniques proposed so far, the most influential one uses a thermal plasma. For example, Japanese Patent Application No. 4-228414 discloses a refining method of removing boron by injecting a plasma jet using an inert gas containing water vapor as an operating gas into molten silicon. However, this purification method has a problem that the boron removal reaction proceeds only in the plasma-irradiated portion of the surface of the molten silicon and cannot be removed in other portions, so that the treatment time for removing boron is long. Further, JP-A-5-139713 discloses
In addition to the plasma irradiation method that uses an inert gas containing water vapor as the working gas, we propose a method of injecting an inert gas from the bottom of the container holding the molten silicon to enhance stirring, and thereby the boron removal treatment. Time savings have been achieved. However, with this method, it is difficult to provide a bottom blowing tuyere without contaminating the molten silicon bath, and the molten silicon is subjected to strong agitation, which significantly damages the tuyere, resulting in an overall life of the container. Another problem of shortening occurred.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上述したプ
ラズマ溶解による溶融シリコンからのボロン除去技術の
問題点を解決し、より効率的な金属シリコンの精製方法
及び装置を提供することを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems of the technique for removing boron from molten silicon by plasma melting and to provide a more efficient method and apparatus for purifying metallic silicon. There is.

【0006】[0006]

【課題を解決するための手段】発明者は、上記目的を達
成するため鋭意研究し、撹拌力の向上のために電磁力を
利用することに着眼し、本発明を完成させた。すなわ
ち、本発明は、不活性ガスからなるプラズマジェット流
を溶融金属シリコン浴の湯面に噴射し、含有不純物を除
去する金属シリコンの精製方法において、水蒸気を前記
不活性ガスに混入又は別途に上記溶融金属シリコン浴の
湯面に吹き付けると共に、磁束の方向が該溶融金属シリ
コン浴の湯面に平行になるよう直流磁場を印加すること
を特徴とする金属シリコンの精製方法である。
Means for Solving the Problems The inventor has conducted extensive studies in order to achieve the above-mentioned object, and focused on utilizing electromagnetic force to improve the stirring force, and completed the present invention. That is, the present invention is a method for purifying metal silicon in which a plasma jet stream composed of an inert gas is jetted onto the molten metal silicon bath to remove impurities contained therein, and water vapor is mixed with the inert gas or separately described above. The method for purifying metal silicon is characterized in that a direct current magnetic field is applied such that the magnetic flux is sprayed onto the surface of the molten metal silicon bath and the direction of the magnetic flux is parallel to the surface of the molten metal silicon bath.

【0007】また、本発明は、上記溶融金属シリコン浴
に、磁束密度分布を付与することを特徴とする金属シリ
コンの精製方法である。さらに、本発明は、溶融金属シ
リコンの保持容器と、該保持容器の上方にあって炉底電
極との間に不活性ガスのプラズマジェット流を発生する
プラズマトーチと、水蒸気を前記不活性ガスに混入又は
別途に前記溶融金属浴の浴面に吹き付ける水蒸気供給手
段を備えた金属シリコンの精製装置において、上記保持
容器の側壁外側に、磁束の方向が湯面に平行な直流磁場
を生じるよう磁石を配設したことを特徴とする金属シリ
コンの精製装置であり、上記磁石が電磁石であることを
特徴とする金属シリコンの精製装置でもある。さらに加
えて、本発明は、溶融金属シリコンの保持容器と、該保
持容器の上方にあって炉底電極との間に不活性ガスのプ
ラズマジェット流を発生するプラズマトーチと、水蒸気
を前記不活性ガスに混入又は前記溶融金属シリコン浴の
湯面に吹き付ける水蒸気供給手段とを備えた金属シリコ
ンの精製装置において、上記溶融金属シリコン浴内に不
均一な磁束密度分布の発生手段を設けたことを特徴とす
る金属シリコンの精製装置であり、上記磁束密度の発生
手段を、上記保持容器の側壁外側に配置する磁石の磁極
の大きさを溶融金属シリコン浴の断面積の概ね80%以
下としてなる、あるいは、上記磁束密度の発生手段を、
上記保持容器の側壁外側に配置する磁石を複数個とし、
隣り合う同士の極性が互いに異なるようにしてなること
を特徴とする金属シリコンの精製装置である。
The present invention is also a method for purifying metallic silicon, characterized in that a magnetic flux density distribution is applied to the molten metallic silicon bath. Furthermore, the present invention provides a molten metal silicon holding container, a plasma torch which is above the holding container and which generates a plasma jet stream of an inert gas between the furnace bottom electrode, and steam to the inert gas. In a refining apparatus for metallic silicon provided with a steam supply means for mixing or separately spraying on the bath surface of the molten metal bath, a magnet is provided on the outside of the side wall of the holding container so as to generate a DC magnetic field whose magnetic flux direction is parallel to the molten metal surface. The apparatus is also a refining apparatus for metallic silicon, which is characterized in that the magnet is an electromagnet. Furthermore, the present invention provides a holding container for molten metal silicon, a plasma torch above the holding container for generating a plasma jet stream of an inert gas between the furnace bottom electrode, and steam for the inert gas. In a refining apparatus for metallic silicon provided with a water vapor supply means that is mixed with gas or is sprayed onto the molten metal silicon bath surface, a means for generating an uneven magnetic flux density distribution is provided in the molten metal silicon bath. And a magnetic pole of a magnet disposed on the outside of the side wall of the holding container in which the magnetic flux density generating means is set to approximately 80% or less of the cross-sectional area of the molten metal silicon bath, or , The magnetic flux density generating means,
With a plurality of magnets arranged on the outside of the side wall of the holding container,
This is a refining apparatus for metallic silicon, characterized in that adjacent polarities are different from each other.

【0008】かかる発明を用いることにより、上述した
プラズマ溶解による溶融シリコンからのボロン除去技術
の問題点が解決でき、より効率的な金属シリコンの精製
が可能となる。
By using such an invention, it is possible to solve the above-mentioned problems of the technique for removing boron from molten silicon by plasma melting, and more efficient purification of metallic silicon becomes possible.

【0009】[0009]

【発明の実施の形態】本発明は、溶融金属シリコンの保
持容器の底部に、プラズマトーチに対する対向電極を設
け、溶融物に直接通電する移送型直流プラズマにより、
精製対象の金属シリコンを溶解することを基本形態とす
る。この移送型動作によるプラズマは、非移送型動作に
比較して熱効率に優れるという利点がある。そして、そ
の際、溶融金属シリコンの浴内には、湯面に垂直に電流
が流れることになるが、この電流密度をJとして磁束が
湯面に平行になるよう直流磁束密度Bを印加するのが、
本発明の重要ポイントである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a transfer type direct current plasma in which a counter electrode for a plasma torch is provided at the bottom of a container for holding molten metal silicon, and a molten direct current is directly applied to the melt.
The basic form is to dissolve the metallic silicon to be purified. The plasma by the transfer type operation has an advantage that it is superior in thermal efficiency as compared with the non-transfer type operation. At that time, a current flows in the molten metal silicon bath perpendicularly to the molten metal surface, and the DC flux density B is applied so that the magnetic flux becomes parallel to the molten metal surface with this current density as J. But,
This is an important point of the present invention.

【0010】この磁束密度の印加は、 vector F=vector J×vector B …(1) のベクトル積で与えられる電磁力Fを浴中に誘起する。
従って、金属シリコン浴の湯面についてこの電磁力の作
用を見ると、ボロン除去反応が起きるプラズマ照射部は
同時に電流密度が最も高くなるため、(1)式で与えら
れる電磁力も周囲に比べて強い。それ故、図1に示すよ
うに、溶融金属シリコンの一部分のみが長時間プラズマ
照射部4に滞留するのではなく、該電磁力6によって容
器周縁部方面へ移動すると同時に、プラズマ照射部4以
外に滞留していた溶湯が該照射部4へ新たに移動する流
れが生じる。この溶湯の流れ3は、溶融金属シリコンを
撹拌する力として作用し、ボロン除去反応に有効に働く
のである。
The application of this magnetic flux density induces in the bath an electromagnetic force F given by the vector product of vector F = vector J * vector B (1).
Therefore, looking at the effect of this electromagnetic force on the surface of the metal silicon bath, the plasma irradiation part where the boron removal reaction occurs has the highest current density at the same time, and the electromagnetic force given by equation (1) is stronger than the surroundings. . Therefore, as shown in FIG. 1, not only a part of the molten metal silicon stays in the plasma irradiation unit 4 for a long time, but it moves toward the container peripheral portion by the electromagnetic force 6 and, at the same time, other than the plasma irradiation unit 4. A flow occurs in which the retained molten metal is newly moved to the irradiation unit 4. The flow 3 of the molten metal acts as a force for stirring the molten metal silicon, and effectively acts on the boron removal reaction.

【0011】また、プラズマ溶解では、図2に示すよう
に、プラズマトーチ7先端のアーク電極の断面積に対し
て溶融物の底部に設置する対向電極の面積を広く取るこ
とが一般的であるが、この場合、溶融物内の電流分布は
湯面から湯底に近付くに従ってアーク中心軸から同心円
状に拡がり、湯面に平行な電流成分が生じる。この電流
成分と湯面に平行に印加した直流磁場とにより深さ方向
の電磁力6成分が誘起され、本発明では、湯面に平行な
方向ばかりでなく深さ方向の撹拌も促進される。なお、
直流磁場の印加は、電磁石及び/又は永久磁石を用いて
行うようにした。
Further, in plasma melting, as shown in FIG. 2, it is general that the area of the counter electrode installed at the bottom of the melt is large with respect to the cross-sectional area of the arc electrode at the tip of the plasma torch 7. In this case, the current distribution in the melt spreads concentrically from the center axis of the arc as the molten metal approaches the molten metal bottom, and a current component parallel to the molten metal surface is generated. This current component and the direct-current magnetic field applied parallel to the molten metal surface induce six electromagnetic force components in the depth direction. In the present invention, not only the direction parallel to the molten metal surface but also the stirring in the depth direction is promoted. In addition,
The DC magnetic field was applied using an electromagnet and / or a permanent magnet.

【0012】さらに、本発明では、深さ方向の撹拌を促
進するため、溶融金属シリコン浴内に空間的な磁束密度
勾配を付与するようにした。これにより、(1)式で与
えられる電磁力6に分布が生じ、図3〜図5に例示され
るように、周囲に比較して強い電磁力6を受ける溶融物
が、前記保持容器1の内壁、あるいは反対向きの電磁力
6を受ける他の部分と押し合うことによって湯面に平行
な方向へ押し上げられる。一方、比較的弱い電磁力6を
受ける溶融物は、上記押し上げられた部分の重みによっ
て溶湯底部へ押し下げられ、その結果、溶融金属シリコ
ン浴中に深さ方向の流れが生じる。この磁束密度勾配の
付与については、種々の手段が考えられる。例えば、図
3(a)のように、磁極の面積を浴の断面積よりも十分
小さく取ることにより、単一の磁石で磁極部分に極値を
持つ磁束密度分布を付与することができる。また、図4
(a)に示すように、複数の磁石を用い、磁極の極性を
種々組み合わせて、目的の磁束密度分布を付与すること
も可能である。
Further, in the present invention, in order to promote the stirring in the depth direction, a spatial magnetic flux density gradient is provided in the molten metal silicon bath. As a result, a distribution is generated in the electromagnetic force 6 given by the equation (1), and as illustrated in FIGS. It is pushed up in a direction parallel to the molten metal surface by pressing against the inner wall or another portion receiving the electromagnetic force 6 in the opposite direction. On the other hand, the melt subjected to the relatively weak electromagnetic force 6 is pushed down to the bottom of the molten metal by the weight of the pushed-up portion, and as a result, a depthwise flow is generated in the molten metal silicon bath. Various means can be considered for imparting the magnetic flux density gradient. For example, as shown in FIG. 3A, by making the area of the magnetic poles sufficiently smaller than the cross-sectional area of the bath, it is possible to give a magnetic flux density distribution having an extreme value to the magnetic pole portions with a single magnet. FIG.
As shown in (a), a plurality of magnets may be used and the polarities of the magnetic poles may be combined in various ways to provide a desired magnetic flux density distribution.

【0013】なお、特開平5−254817号公報に
は、移動磁場を印加することによって該シリコン浴を撹
拌する方法が提案されているが、その方法では磁場を移
動させるための複雑な機構及び構造が必要である。これ
に対して、本発明は、永久磁石及び/又は直流電磁石に
よって簡便に有効な撹拌力を得ることができ、さらに磁
極の大きさや配置によって撹拌パターンを容易に変更で
きるという利点がある。
Incidentally, Japanese Patent Application Laid-Open No. 5-254817 proposes a method of stirring the silicon bath by applying a moving magnetic field. In this method, a complicated mechanism and structure for moving the magnetic field are proposed. is required. On the other hand, the present invention has an advantage that an effective stirring force can be easily obtained by the permanent magnet and / or the DC electromagnet, and the stirring pattern can be easily changed depending on the size and arrangement of the magnetic poles.

【0014】ところで、本発明で使用されるプラズマ動
作ガスとしては不活性ガスが好適であり、とりわけA
r、He及びそれらの混合ガスが好適に用いられる。ま
た、水蒸気は、プラズマ動作ガスに所定量を混合しても
良いが、動作ガスとは別系統でプラズマアーク内及び/
又はシリコン浴面に直接添加することもできる。なお、
混合や添加に必要な水蒸気供給手段は、公知のものを利
用すれば良い。そして、水蒸気の添加量は、金属シリコ
ン1kg当たり1mol/min以下にすることが望ま
しい。この量を越えると、金属シリコンの湯面にシリカ
の皮膜が形成されやすくなり、ボロン除去反応が阻害さ
れるからである。溶融金属シリコンの保持容器として
は、1600〜1700℃の温度範囲で溶融金属シリコ
ンを保持できるものであれば特に問題はないが、該容器
1を形成する材料に起因する汚染およびプラズマトーチ
7に対する対向電極としての導通性を考慮すると、水冷
された銅製容器1を用いることが望ましい。特に、該水
冷銅製容器1は、それ自体がプラズマトーチ7の対向電
極して機能するため、容器にプラズマ電流の導通確保の
ための手段を施す必要がなく、真に好都合である。ただ
し、本発明は、石英るつぼやシリカスタンプ材等他の材
質で作成した容器に、適当な導通手段を施して使用する
ことを妨げるものではない。
By the way, an inert gas is suitable as the plasma working gas used in the present invention, and in particular, A
r, He and mixed gas thereof are preferably used. Further, the steam may be mixed with the plasma working gas in a predetermined amount, but in a system separate from the working gas,
Alternatively, it can be added directly to the silicon bath surface. In addition,
As the steam supply means necessary for mixing and addition, known means may be used. The amount of water vapor added is preferably 1 mol / min or less per 1 kg of metallic silicon. If the amount exceeds this amount, a silica film is likely to be formed on the molten metal surface of the metal silicon, and the boron removal reaction is hindered. The molten metal silicon holding container is not particularly limited as long as it can hold the molten metal silicon in the temperature range of 1600 to 1700 ° C., but it is not contaminated due to the material forming the container 1 and facing the plasma torch 7. Considering the conductivity of the electrode, it is desirable to use the water-cooled copper container 1. In particular, since the water-cooled copper container 1 itself functions as the counter electrode of the plasma torch 7, there is no need to provide any means for ensuring the continuity of the plasma current, which is truly convenient. However, the present invention does not prevent the use of a container made of other material such as a quartz crucible or a silica stamp material by providing an appropriate conducting means.

【0015】以下、実施例において、本発明の内容を詳
細に説明するが、本発明は、以下の実施例に示す具体的
条件に何ら拘束されるものではない。
Hereinafter, the contents of the present invention will be described in detail with reference to Examples, but the present invention is not limited to the specific conditions shown in the following Examples.

【0016】[0016]

【実施例】【Example】

(実施例1)本発明に係る精製装置において、水冷銅製
容器1にボロン含有量が約6ppmの市販の金属シリコ
ン10kgを装入し、これに電流900AのArプラズ
マアークを照射して溶融状態とした。該溶融金属シリコ
ンの湯面2に、磁束が平行になるよう容器1壁の外側に
配置した磁石で10mTの均一磁場を印加したところ、
図1および図2に示すような溶湯の流れ3が目視観察で
きた。この溶湯からボロン濃度の分析用試料を採取した
後、溶湯表面のプラズマアーク照射部に0.5mol/
minの割合で水蒸気の添加を開始した(水蒸気供給手
段は図示せず)。該水蒸気添加の開始2時間後に該水蒸
気を停止し、再びボロン濃度の分析用試料を採取した。
これら2つの分析用試料は、ICP(誘導結合プラズマ
発光)分析にかけられ、水蒸気添加前後での溶融金属シ
リコン中のボロン濃度が比較された。
(Example 1) In a refining apparatus according to the present invention, a water-cooled copper container 1 was charged with 10 kg of commercially available metallic silicon having a boron content of about 6 ppm, which was irradiated with Ar plasma arc with a current of 900 A to obtain a molten state. did. When a uniform magnetic field of 10 mT was applied to the molten metal silicon surface 2 by a magnet arranged outside the wall of the container 1 so that the magnetic flux was parallel,
The molten metal flow 3 as shown in FIGS. 1 and 2 was visually observed. After collecting a sample for analysis of boron concentration from this molten metal, 0.5 mol /
Addition of water vapor was started at a rate of min (water vapor supply means is not shown). Two hours after the start of the addition of the steam, the steam was stopped, and a sample for analysis of the boron concentration was taken again.
These two analytical samples were subjected to ICP (Inductively Coupled Plasma Emission) analysis to compare the boron concentration in the molten metallic silicon before and after the addition of water vapor.

【0017】(実施例2)実施例1と同じ水冷銅製容器
1の外側周囲に、図3に示すように、板状の電磁石を水
平に配置した。その際、磁石の大きさは、溶融物の断面
積の20%とした。金属実施例1と同様の条件で市販の
金属シリコンにプラズマアーク8を照射し、該金属シリ
コンを溶湯とし、磁極直近で10mTとなるように電磁
石の電流を調整した。この磁場の印加により、図3に示
すような溶湯の流れが目視観察された。その後、実施例
1と同様の手順で水蒸気添加を行い、水蒸気添加前後で
の溶融金属シリコン中のボロン濃度が比較された。
Example 2 As shown in FIG. 3, a plate-shaped electromagnet was horizontally arranged around the outside of the same water-cooled copper container 1 as in Example 1. At that time, the size of the magnet was set to 20% of the cross-sectional area of the melt. Metallic commercially available metallic silicon was irradiated with a plasma arc 8 under the same conditions as in Metal Example 1, and the metallic silicon was used as a molten metal, and the electric current of the electromagnet was adjusted so as to be 10 mT in the vicinity of the magnetic pole. By applying this magnetic field, the flow of the molten metal as shown in FIG. 3 was visually observed. Then, steam addition was performed in the same procedure as in Example 1, and the boron concentrations in the molten metallic silicon before and after the steam addition were compared.

【0018】(実施例3)実施例1と同じ水冷銅製容器
の外側周囲に、図4に示すように、2組の水平板状電磁
石を2段にして磁極が互いに逆になるように配置した。
実施例1と同様の条件で市販の金属シリコンにプラズマ
アークを照射し、溶融金属シリコンの溶湯を保持し、磁
極直近で10mTとなるように電磁石の電流を調整し
た。この磁場の印加により、図4に示すような溶湯の流
れが目視観察により得られた。その後、実施例1と同様
の手順で水蒸気添加を行い、水蒸気添加前後の溶融金属
シリコン中でのボロン濃度が比較された。
(Embodiment 3) As shown in FIG. 4, two sets of horizontal plate-shaped electromagnets are arranged in two stages around the outside of the same water-cooled copper container as in Embodiment 1 so that the magnetic poles are opposite to each other. .
Commercially available metallic silicon was irradiated with a plasma arc under the same conditions as in Example 1, a molten metal of molten metallic silicon was held, and the electric current of the electromagnet was adjusted so as to be 10 mT in the vicinity of the magnetic pole. By applying this magnetic field, a flow of molten metal as shown in FIG. 4 was obtained by visual observation. Then, steam addition was performed in the same procedure as in Example 1, and the boron concentrations in the molten metallic silicon before and after the steam addition were compared.

【0019】(実施例4)実施例1と同じ水冷銅製容器
の外側周囲に、図5に示すように、2組の板状電磁石を
鉛直方向に2列に配置し、極性が互いに逆になるように
した。実施例1と同様の条件で市販の金属シリコンにプ
ラズマアークを照射し、溶融金属シリコンの溶湯とし、
磁極直近で10mTとなるように電磁石の電流を調整し
た。この磁場の印加により、図5に示すような溶湯の流
れが目視観察された。その後、実施例1と同様の手順で
水蒸気添加を行い、水蒸気添加前後の溶融金属シリコン
中でのボロン濃度が比較された。
(Embodiment 4) As shown in FIG. 5, two sets of plate-shaped electromagnets are arranged vertically in two rows around the outside of the same water-cooled copper container as in Embodiment 1, and the polarities thereof are opposite to each other. I did it. Commercially available metallic silicon was irradiated with a plasma arc under the same conditions as in Example 1 to obtain a molten metal of molten metallic silicon,
The current of the electromagnet was adjusted so that it was 10 mT in the vicinity of the magnetic pole. By applying this magnetic field, the flow of the molten metal as shown in FIG. 5 was visually observed. Then, steam addition was performed in the same procedure as in Example 1, and the boron concentrations in the molten metallic silicon before and after the steam addition were compared.

【0020】(比較例)実施例1と同じ水冷銅製容器及
び市販の金属シリコンを用い、プラズマの照射等を同じ
条件として溶融金属シリコンの溶湯を得、水蒸気添加を
行って、水蒸気添加前後での溶融金属シリコン中のボロ
ン濃度を比較した。ただし、この場合には磁場は印加し
なかった。
(Comparative Example) Using the same water-cooled copper container and commercially available metallic silicon as in Example 1, a molten metal of molten metallic silicon was obtained under the same conditions of plasma irradiation and the like, and steam was added. The boron concentration in molten metallic silicon was compared. However, in this case, no magnetic field was applied.

【0021】表1に、上述の実施例及び比較例で採取し
た分析用試料の分析結果をボロン濃度に関してのみ示
す。なお、水蒸気添加前の値は、[B0 ]欄に、2時間
水蒸気添加後の値は、[B]欄に表記した。表1より、
通常は除去し難いボロンが1ppmまで低下しているこ
とが明らかである。また、ボロン除去速度をdlog
([B0 ]/[B])÷2hrで計算すると、本発明に
係る精製方法を用いた実施例は、比較例に対して2倍以
上のボロン除去速度を示すこともわかる。さらに、図6
には、実施例4の磁石配置での磁場と平均ボロン除去速
度の関係を示した。磁場を印加する本発明に係る精製方
法によれば、磁場のない比較例に対して平均ボロン除去
速度が明らかに向上している。
Table 1 shows the analysis results of the analytical samples collected in the above-mentioned Examples and Comparative Examples only with respect to the boron concentration. The values before addition of steam are shown in the column [B 0 ] and the values after addition of steam for 2 hours are shown in the column [B]. From Table 1,
It is clear that boron, which is usually difficult to remove, has dropped to 1 ppm. Also, the boron removal rate is dlog
When calculated by ([B 0 ] / [B]) ÷ 2 hr, it is also found that the example using the purification method according to the present invention shows a boron removal rate that is more than twice that of the comparative example. Furthermore, FIG.
Shows the relationship between the magnetic field and the average boron removal rate in the magnet arrangement of Example 4. According to the refining method of the present invention in which a magnetic field is applied, the average boron removal rate is clearly improved as compared with the comparative example having no magnetic field.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】以上説明したように、本発明により、安
価な市販の金属シリコンを出発原料としてボロン含有量
の低い高純度シリコンが得られた、また、その際、製造
時間が従来に比べ大幅に短縮することができた。
As described above, according to the present invention, high-purity silicon having a low boron content was obtained by using inexpensive commercially available metallic silicon as a starting material, and at that time, the manufacturing time was significantly longer than that of the conventional one. Could be shortened to

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る精製方法で溶融金属シリコンの溶
湯に直流磁場を印加したときの湯面上の状況を示す平面
図である。
FIG. 1 is a plan view showing a situation on a molten metal surface when a DC magnetic field is applied to a molten metal silicon by a refining method according to the present invention.

【図2】図1の側断面図である。FIG. 2 is a side sectional view of FIG.

【図3】溶融金属シリコン浴に磁束密度分布を形成させ
た場合を示す図であり、(a)は実施例2における磁石
配置図、(b)は(a)のA点から見た側面におけるシ
リコン浴の運動状況を示す図である。
3A and 3B are diagrams showing a case where a magnetic flux density distribution is formed in a molten metal silicon bath, FIG. 3A is a magnet layout diagram in Example 2, and FIG. 3B is a side view seen from point A of FIG. It is a figure which shows the exercise condition of a silicon bath.

【図4】溶融金属シリコン浴に磁束密度分布を形成させ
た場合を示す図であり、(a)は実施例3における磁石
配置図、(b)は(a)のB点から見た側面におけるシ
リコン浴の運動状況を示す概略図である。
4A and 4B are diagrams showing a case where a magnetic flux density distribution is formed in a molten metal silicon bath, FIG. 4A is a magnet layout diagram in Example 3, and FIG. 4B is a side view seen from a point B of FIG. 4A. It is the schematic which shows the exercise condition of a silicon bath.

【図5】溶融金属シリコン浴に磁束密度分布を形成させ
た場合を示す図であり、(a)は実施例4における磁石
配置を示す平面図、(b)は(a)のC点から見た側面
図、(c)は(a)のD点から見た側面におけるシリコ
ン浴の運動状況を示す概略図である。
5A and 5B are diagrams showing a case where a magnetic flux density distribution is formed in a molten metal silicon bath, FIG. 5A is a plan view showing a magnet arrangement in Example 4, and FIG. 5B is a view from point C of FIG. 5A. FIG. 3C is a side view, and FIG. 6C is a schematic view showing the movement state of the silicon bath on the side surface viewed from the point D in FIG.

【図6】本発明に係る精製方法を適用した場合の市販金
属シリコンからの平均ボロン除去速度と印加磁場との関
係を示す図である。
FIG. 6 is a diagram showing the relationship between the average boron removal rate from commercially available metallic silicon and the applied magnetic field when the purification method according to the present invention is applied.

【符号の説明】[Explanation of symbols]

1 水冷銅製容器(保持容器) 2 溶融金属シリコン浴の湯面 3 溶湯の流れ 4 プラズマ照射部 5 外部磁場 6 電磁力 7 プラズマトーチ 8 プラズマアーク 9 溶融金属シリコンの断面 10 溶湯内の電流分布 11 電磁石鉄心 12 電磁石コイル 13 電磁石電源 14 磁極位置 1 Water-cooled copper container (holding container) 2 Surface of molten metal silicon bath 3 Flow of molten metal 4 Plasma irradiation part 5 External magnetic field 6 Electromagnetic force 7 Plasma torch 8 Plasma arc 9 Cross section of molten metal silicon 10 Current distribution in molten metal 11 Electromagnet Iron core 12 Electromagnetic coil 13 Electromagnetic power supply 14 Magnetic pole position

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬場 裕幸 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究所内 (72)発明者 阪口 泰彦 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究所内 (72)発明者 寺嶋 久栄 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Baba No. 1 Kawasaki-cho, Chuo-ku, Chiba City Research Institute of Kawasaki Steel Co., Ltd. (72) Yasuhiko Sakaguchi No. 1 Kawasaki-cho, Chuo-ku, Chiba Kawasaki Steel Co. In-house (72) Inventor Hisae Terashima 1 Kawasaki-cho, Chuo-ku, Chiba City Kawasaki Steel Co., Ltd. Technical Research Institute

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 不活性ガスからなるプラズマジェット流
を溶融金属シリコン浴の湯面に噴射し、含有不純物を除
去する金属シリコンの精製方法において、 水蒸気を前記不活性ガスに混入又は別途に前記溶融金属
シリコン浴の湯面に吹き付けると共に、磁束の方向が該
溶融金属シリコン浴の湯面に平行になるよう直流磁場を
印加することを特徴とする金属シリコンの精製方法。
1. A method for refining metallic silicon in which a plasma jet stream composed of an inert gas is sprayed onto a molten metal silicon bath surface to remove impurities contained therein, and water vapor is mixed with the inert gas or separately melted. A method for purifying metallic silicon, which comprises spraying onto a molten metal surface of a metal silicon bath and applying a direct-current magnetic field so that the direction of magnetic flux is parallel to the molten metal silicon bath surface.
【請求項2】 上記溶融金属シリコン浴に、磁束密度分
布を付与することを特徴とする請求項1記載の金属シリ
コンの精製方法。
2. The method for refining metallic silicon according to claim 1, wherein a magnetic flux density distribution is applied to the molten metallic silicon bath.
【請求項3】 溶融金属シリコンの保持容器と、該保持
容器の上方にあって炉底電極との間に不活性ガスのプラ
ズマジェット流を発生するプラズマトーチと、水蒸気を
不活性ガスに混入又は別途に溶融金属シリコン浴の湯面
に吹き付ける水蒸気供給手段とを備えた金属シリコンの
精製装置において、 上記保持容器の側壁外側に、磁束の方向が湯面に平行な
直流磁場を生じるよう磁石を配設したことを特徴とする
金属シリコンの精製装置。
3. A molten metal silicon holding container, a plasma torch for generating a plasma jet stream of an inert gas between the holding container and a furnace bottom electrode, and a water vapor mixed with the inert gas. In a metallic silicon refining apparatus separately equipped with a water vapor supply means for spraying on the molten metal silicon bath surface, a magnet is arranged on the outside of the side wall of the holding container so as to generate a DC magnetic field whose magnetic flux direction is parallel to the molten metal surface. A refining device for metallic silicon, which is characterized by being installed.
【請求項4】 上記磁石が電磁石であることを特徴とす
る請求項3記載の金属シリコンの精製装置。
4. The apparatus for purifying metallic silicon according to claim 3, wherein the magnet is an electromagnet.
【請求項5】 溶融金属シリコンの保持容器と、該保持
容器の上方にあって炉底電極との間に不活性ガスのプラ
ズマジェット流を発生するプラズマトーチと、水蒸気を
不活性ガスに混入又は別途に溶融金属シリコン浴の湯面
に吹き付ける水蒸気供給手段とを備えた金属シリコンの
精製装置において、 上記溶融金属シリコン浴内に不均一な磁束密度分布の発
生手段を設けたことを特徴とする金属シリコンの精製装
5. A molten metal silicon holding container, a plasma torch for generating a plasma jet stream of an inert gas between the holding container and the furnace bottom electrode, and a water vapor mixed with the inert gas. A metal silicon refining apparatus separately provided with a steam supply means for spraying the molten metal silicon bath on the surface of the molten metal, wherein the means for generating an uneven magnetic flux density distribution is provided in the molten metal silicon bath. Silicon refining equipment
【請求項6】 上記磁束密度の発生手段を、上記保持容
器の側壁外側に配置する磁石を複数個とし、隣り合う同
士の極性が互いに異なるようにしてなることを特徴とす
る請求項5記載の金属シリコンの精製装置。
6. The magnetic flux density generating means comprises a plurality of magnets arranged outside a side wall of the holding container, and the polarities of adjacent magnets are different from each other. Refining equipment for metallic silicon.
JP31071995A 1995-11-29 1995-11-29 Purification of metal silicon and device for purifying the same Withdrawn JPH09142823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31071995A JPH09142823A (en) 1995-11-29 1995-11-29 Purification of metal silicon and device for purifying the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31071995A JPH09142823A (en) 1995-11-29 1995-11-29 Purification of metal silicon and device for purifying the same

Publications (1)

Publication Number Publication Date
JPH09142823A true JPH09142823A (en) 1997-06-03

Family

ID=18008661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31071995A Withdrawn JPH09142823A (en) 1995-11-29 1995-11-29 Purification of metal silicon and device for purifying the same

Country Status (1)

Country Link
JP (1) JPH09142823A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855367A1 (en) * 1997-01-22 1998-07-29 Kawasaki Steel Corporation Method for removing boron from metallurgical grade silicon and apparatus
FR2772741A1 (en) * 1997-12-19 1999-06-25 Centre Nat Rech Scient Silicon refining process for industrial mass production of photovoltaic cell grade silicon
JP2010517924A (en) * 2007-02-14 2010-05-27 コミサリア ア エナジー アトミック Silicon purification equipment
KR101372785B1 (en) * 2011-12-23 2014-03-12 주식회사 포스코 Refining apparatus of silicon melt
US8926749B2 (en) 2002-02-20 2015-01-06 Hemlock Semi Conductor Flowable chips and methods for the preparation and use of same, and apparatus for use in the methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855367A1 (en) * 1997-01-22 1998-07-29 Kawasaki Steel Corporation Method for removing boron from metallurgical grade silicon and apparatus
FR2772741A1 (en) * 1997-12-19 1999-06-25 Centre Nat Rech Scient Silicon refining process for industrial mass production of photovoltaic cell grade silicon
WO1999032402A1 (en) * 1997-12-19 1999-07-01 Centre National De La Recherche Scientifique Method and installation for refining silicon
US8926749B2 (en) 2002-02-20 2015-01-06 Hemlock Semi Conductor Flowable chips and methods for the preparation and use of same, and apparatus for use in the methods
US9909231B2 (en) 2002-02-20 2018-03-06 Hemlock Semiconductor Operations Llc Flowable chips and methods for the preparation and use of same, and apparatus for use in the methods
JP2010517924A (en) * 2007-02-14 2010-05-27 コミサリア ア エナジー アトミック Silicon purification equipment
KR101372785B1 (en) * 2011-12-23 2014-03-12 주식회사 포스코 Refining apparatus of silicon melt

Similar Documents

Publication Publication Date Title
ES2357501T3 (en) HIGH PURITY METALLURGICAL SILICON AND ELABORATION PROCEDURE.
AU2008299523A1 (en) Process for the production of medium and high purity silicon from metallurgical grade silicon
US5244488A (en) Direct smelting process with a thermal plasma
JPH04193706A (en) Refining method for silicon
JP2002029727A5 (en)
JPH09142823A (en) Purification of metal silicon and device for purifying the same
JP2846408B2 (en) Silicon purification method
Kawakami et al. Electrode reactions in DC electroslag remelting of steel rod
JP2012236723A (en) Method for continuously refining silicon
JPH07267624A (en) Purification of silicon and apparatus therefor
US3352997A (en) Method of refining surfacecontaminated metals
JPH1149510A (en) Method for refining metal silicon and apparatus therefor
Paton et al. Arc slag remelting for high strength steel & various alloys
US9840755B2 (en) Refining device and refining method for titanium scraps and sponge titanium using deoxidising gas
JPS55149770A (en) Molding method for crude ingot of active metal or high- melting-point metal or alloy of these metals
JP2856839B2 (en) Silicon purification method
JPS6473028A (en) Recovering method for high purity tantalum from scrap tantalum
JPH0925522A (en) Production of high purity metallic material
US9352970B2 (en) Method for producing silicon for solar cells by metallurgical refining process
CN112063864A (en) Method for preparing high-purity nickel-based high-temperature alloy by magnetic field enhanced electron beam refining pouring technology
KR20110004129A (en) Manufacturing method for silicon
JPH05139713A (en) Method and device for refining silicon
JPH10212113A (en) Method for removing boron from metal silicon
JPH10265214A (en) Refining of silicon
JPH10273374A (en) Purification of silicon

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204