JPH04193706A - Refining method for silicon - Google Patents

Refining method for silicon

Info

Publication number
JPH04193706A
JPH04193706A JP32232090A JP32232090A JPH04193706A JP H04193706 A JPH04193706 A JP H04193706A JP 32232090 A JP32232090 A JP 32232090A JP 32232090 A JP32232090 A JP 32232090A JP H04193706 A JPH04193706 A JP H04193706A
Authority
JP
Japan
Prior art keywords
silicon
gas
tuyere
added
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32232090A
Other languages
Japanese (ja)
Inventor
Kenkichi Yushimo
湯下 憲吉
Matao Araya
荒谷 復夫
Hiroyuki Baba
裕幸 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32232090A priority Critical patent/JPH04193706A/en
Publication of JPH04193706A publication Critical patent/JPH04193706A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Silicon Compounds (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To make advantageous mass production of the high-purity silicon by blowing gaseous Ar or H2 into silicon in a molten state in a silica vessel. CONSTITUTION:The silicon 2 contg. impurity elements, such as B, C, P, Fe, and Al, is melted in the vessel 1 which has a gas blowing tuyere in the bottom and consists essentially of the silica. The Ar or H2 or the gaseous mixture composed thereof is blown from the tuyere 3. The B and C which are the impurities are advantageously removed if gaseous oxidative H2O, CO2 and/or O2 is added into the gas to be blown from the tuyere 3. The removal of the B is advantageously accelerated if the powders of >=1 kinds among SiO2, CaO, CaCl2, and CaF2 are added into the blowing gas and when the concn. of the B in the raw material Si is high. In this reason, such addition is preferable. A small amt. of HCl is added into the blowing gas in order to remove the impurity Fe.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、主に太陽電池に用いる高純度シリコンの精製
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention mainly relates to a method for purifying high-purity silicon used in solar cells.

〈従来の技術〉 太陽電池に使用するシリコン中のP、B、C1Fe、 
AI、 T+などの不純物は少ない方がよく、シリコン
は高純度であることが望まれる。また、太陽電池が広く
利用されるためには、このシリコンを安価に量産するこ
とが必要である。
<Prior art> P, B, C1Fe, in silicon used for solar cells,
It is better to have fewer impurities such as AI and T+, and it is desirable for silicon to have high purity. In addition, in order for solar cells to be widely used, it is necessary to mass-produce this silicon at low cost.

従来、この太陽電池用シリコンとして半導体用のシリコ
ンが用いられてきたが、高価なためより安価な製造法が
検討されている。例えば特開昭63−218506号公
報にはプラズマを用いる精製方法が提案されている。
Conventionally, silicon for semiconductors has been used as silicon for solar cells, but because it is expensive, cheaper manufacturing methods are being considered. For example, Japanese Patent Laid-Open No. 63-218506 proposes a purification method using plasma.

〈発明が解決しようとする課題〉 しかしながら、この方法では金属シリコンより除去しに
くいBの除去ができ、量産も可能であるが、プラズマを
用いるため、高価な静ガスと電力の多量消費は避けられ
ず、精製コストの点で未だ問題があった。
<Problem to be solved by the invention> However, although this method can remove B, which is difficult to remove than metal silicon, and can be mass-produced, it uses plasma, so expensive static gas and large amounts of electricity consumption cannot be avoided. First, there were still problems in terms of refining costs.

そこで、工業的により有利に太陽電池用のシリコンを製
造する技術の開発が望まれていた。
Therefore, there has been a desire to develop a technology for industrially more advantageous production of silicon for solar cells.

本発明の目的は、上記問題点を解決し、より有利に高純
度の原料シリコンを大量に供給できるシリコンの精製方
法を提供することである。
An object of the present invention is to provide a silicon refining method that can solve the above problems and more advantageously supply a large amount of highly pure raw material silicon.

〈課題を解決するだめの手段〉 本発明者らは、前記問題点を解決Jるため、基礎実験を
重ねた結果、シリコン中の炭素、ボ[Iンの除去にはシ
リコン浴の攪拌強化と、さらに加えるに、酸化性ガスと
の反応界面積の増加が重要な要因であることを知見し、
これに基づいて本発明を構成したものである。
<Means to Solve the Problem> In order to solve the above-mentioned problem, the inventors of the present invention have conducted repeated basic experiments and found that strengthening the agitation of the silicon bath can be used to remove carbon and boron in silicon. In addition, we found that an increase in the reaction interface area with oxidizing gas was an important factor.
The present invention is constructed based on this.

ずなわぢ、本発明は、13、C,P、 Fe、へ1等の
不純物元素を含むシリコンを底部にガス吹込め羽L1を
有するシリカを主成分とする容器内で溶融し、該羽口か
らAr若しくはH□又はこれらの混合ガスを吹込むこと
を特徴とするシリコンの精製方法であり、さらに望まし
くは、上記吹込みガスにH□0、CO□及び/又は0□
ガスを添加することであり、またあるいはさらに、ll
Clを添加することもできる。
In the present invention, silicon containing impurity elements such as 13, C, P, Fe, and 1 is melted in a container mainly composed of silica having gas injection vanes L1 at the bottom, and the tuyere A method for refining silicon characterized by blowing Ar, H□, or a mixed gas thereof, more preferably H□0, CO□ and/or 0□ into the blown gas.
adding gas, and/or in addition, ll
Cl can also be added.

また、羽口から吹込まれるガスにSiO□、CaO1C
aCI□及びCaF2の各粉末から選ばれた1種以上を
添加することもできる。
In addition, SiO□, CaO1C are added to the gas blown from the tuyere.
It is also possible to add one or more selected from powders of aCI□ and CaF2.

く作 用〉 第1図は本発明を実施する際に用いる基本的な装置を示
したもので、B、C,P、Fe、AIなどの不純物を1
 ppm以上含む金属シリコン2を、底部にガス吹込み
羽口(ガス吹込み孔)3を有するシリカあるいはシリカ
を主成分とする容器I内でシリコンの融点以上の温度に
加熱して溶融し、底部に設けた羽口より計、H□などの
不活性ガス、あるいはこれにf(20、CO□、又は少
量の02などの酸化性ガスを混合したガスを吹込むこと
ができるように構成されている。4は誘導力ij熱コイ
ル、6はガス排出用フードである。
Figure 1 shows the basic equipment used to carry out the present invention, which removes impurities such as B, C, P, Fe, and AI.
Metallic silicon 2 containing ppm or more is heated to a temperature higher than the melting point of silicon to melt it in a silica or silica-based container I having a gas blowing tuyere (gas blowing hole) 3 at the bottom. The structure is such that an inert gas such as H□ or a gas mixed with an oxidizing gas such as f(20, CO□, or a small amount of 02) can be blown into the tuyere provided in the tuyere. 4 is an induction heat coil, and 6 is a gas exhaust hood.

このように容器底部よりガスを吹込むことで、容器内の
シリコンは停滞域を形成ゼす、浴全体が強く攪拌される
と同時に、浴中を上昇するガス気泡とシリコンの界面が
反応界面となるため、反応を非常に速く進行さ・けるこ
とができる。またシリコン中の炭素、ボロンは、このよ
・うな方法では酸化物ガスの形で除去されると考えられ
るが、シリカ又はシリカを主成分とする容器を用いるこ
よで、容器より反応に必要な酸素が供給されると同時に
、容器より他の不純物が混入するのを防くごとができる
。また、反応をより速く進めるには、底部より吹込むガ
スに、H□0、CO2及び/又は少量の酸素などの酸化
性ガスを混入することで有利に進めることができる。
By blowing gas from the bottom of the container, the silicon in the container forms a stagnation area.At the same time, the entire bath is strongly stirred, and the interface between the gas bubbles rising in the bath and the silicon becomes a reaction interface. Therefore, the reaction can proceed very quickly. Carbon and boron in silicon are thought to be removed in the form of oxide gas by such a method, but by using silica or a container mainly composed of silica, the oxygen necessary for the reaction can be removed from the container. At the same time, it is possible to prevent other impurities from entering the container. In addition, in order to advance the reaction more quickly, it is advantageous to mix an oxidizing gas such as H□0, CO2 and/or a small amount of oxygen into the gas blown in from the bottom.

また、特に原料Si中のB濃度が高い場合には、底部羽
口より吹込まれるガスにSin、、Cab、 CaCl
□、(:aFeの一種以上の混合物をわ)末で添加する
ことで、Bの除去が有利に促進される。
In addition, especially when the B concentration in the raw material Si is high, the gas blown from the bottom tuyere contains Sin, Cab, CaCl.
The removal of B is advantageously promoted by adding a mixture of one or more of □, (:aFe) at the end.

本発明では、このようにして、反応時間を短くして有利
にシリコン中のC1■3を除去できるが、シリコン中の
P、AIなどのガスとして除去し易い成分も同時にシリ
コンより除去できる。またFeを除去するには該吹込み
ガスに少量のHClを添加し、蒸気圧の高い鉄の塩化物
を生成させ、これをガスとともに系外に除去することで
達成できる。
In the present invention, in this way, C1-3 in silicon can be advantageously removed by shortening the reaction time, but components that are easily removed as gases such as P and AI in silicon can also be removed from silicon at the same time. Further, Fe can be removed by adding a small amount of HCl to the blown gas to generate iron chloride having a high vapor pressure, and removing this from the system together with the gas.

これらの処理は、Siの融点以上の温度で行われるが、
作業性、反応速度の点より1450〜1650’Cの範
囲が望ましい。
These treatments are performed at a temperature above the melting point of Si,
From the viewpoint of workability and reaction rate, a range of 1450 to 1650'C is desirable.

〈実施例〉 第1図に示す装置出回じ構造を有する装置を用いてシリ
コンの精製を行った。容器はシリカ製の容器を用い、底
部に1mmφの孔径の羽口3木を設けている。8kgの
金属シリコンを該容器内で誘導加熱により1550’C
に加熱溶解し、25NI/minで静ガスを底部羽口よ
り吹込んだ。原料として用いた金属シリコン中の不純物
含有量ならびに処理後のシリコン中の不純物含有量を表
1に示す。
<Example> Silicon was purified using an apparatus having the apparatus circulation structure shown in FIG. The container is made of silica, and three tuyeres with a hole diameter of 1 mm are provided at the bottom. 8 kg of metallic silicon was heated to 1550'C by induction heating in the container.
The mixture was heated and dissolved, and static gas was blown in from the bottom tuyere at 25 NI/min. Table 1 shows the impurity content in the metal silicon used as a raw material and the impurity content in the silicon after treatment.

実施例1は吹込みガスにAr、実施例2はH□、実施例
3はArとH3、を用いたときの結果である。実施例4
.5.6は各々計ガスにH□05%、CO□ 2%、0
□O205%を添力Hシたときの結果で、これらガスの
添加により不純物の除去速度はより大きくなることがわ
かる。
The results were obtained when Ar was used as the blown gas in Example 1, H□ was used in Example 2, and Ar and H3 were used in Example 3. Example 4
.. 5.6 is H□05%, CO□2%, 0 in each meter gas.
□The results are obtained when 05% O2 is added to H. It can be seen that the impurity removal rate is increased by adding these gases.

実施例7ば実施例4の条件にフラ・ンクスとじて5iO
z/CaO(] : 1 )の混合粉末を2.0 g 
/minで吹込んだときの結果で、実施例8はSiO□
/CaCl□/CaFz (1: 1 : I)の混合
粉末を2.0g/minで吹込んだときの結果である。
Example 7 The conditions of Example 4 were combined with 5iO.
2.0 g of mixed powder of z/CaO(]: 1)
Example 8 shows the results when blowing at a rate of /min.
These are the results when a mixed powder of /CaCl□/CaFz (1:1:I) was injected at 2.0 g/min.

この処理では、処理後シリコン浴を静置してフラックス
とシリコンの分離を図ることが必要であったが、反応は
最も早く進行した。
In this treatment, it was necessary to leave the silicon bath still after treatment to separate the flux and silicon, but the reaction proceeded most quickly.

実施例9は上記結果ではシリコン中のl?eが除去でき
ないため、実施例1の^rガスにH01ガスを1%添加
したときの結果で、Fe分の除去も行われた。
In Example 9, the above results show that l? Since e could not be removed, the result was when 1% H01 gas was added to the ^r gas in Example 1, and Fe was also removed.

本発明の実施例では、表1かられかるように、シリコン
中のFe、AIの除去は必ずしも太陽電池用として十分
な量まで低減されないが、これは処理後に一方向凝固な
ど通常の処理方法を併用することで十分な結果を得るこ
とができる。すなわち、実施例4で処理したシリコンを
、1mm/minの速度で一方向に凝固させたシリコン
鋳塊の中央部より切り出した多結晶シリコン基板を用い
た太陽電池では、H%の変換効率が得られた。
In the examples of the present invention, as can be seen from Table 1, the removal of Fe and AI from silicon is not necessarily reduced to a sufficient amount for solar cells, but this is because ordinary treatment methods such as unidirectional solidification are not used after treatment. Sufficient results can be obtained by using them together. That is, in a solar cell using a polycrystalline silicon substrate cut from the center of a silicon ingot made by solidifying silicon treated in Example 4 in one direction at a rate of 1 mm/min, a conversion efficiency of H% was obtained. It was done.

以上のように、本発明ではプラズマを使用しないため、
プラズマ発生のためのArガス、電力が不要であるなど
、経済的にも有利な結果が得られている。
As described above, since plasma is not used in the present invention,
Economically advantageous results have been obtained, such as no need for Ar gas or electricity for plasma generation.

〈発明の効果〉 本発明は、従来複雑な工程により製造される半導体用シ
リコンを用いていた太陽電池に対して、冶金的手法によ
り低コストかつ量産製の高い原料シリコン製造技術を提
供したもので、これにより将来のエネルギー問題に対し
て自然エネルギー(太陽エネルギー)を安価に利用でき
る道を拓くものである。
<Effects of the Invention> The present invention provides a low-cost, mass-produced, and high-quality raw material silicon manufacturing technology using a metallurgical method for solar cells that conventionally used semiconductor-grade silicon manufactured through complicated processes. This will pave the way for the inexpensive use of natural energy (solar energy) to solve future energy problems.

また、Si合金など他の産業に対しても高純度の原料シ
リコンを安価に製造できることになり、Si合金分野の
発展にも貢献し得る技術である。
Furthermore, it is possible to produce high-purity raw material silicon at low cost for other industries such as Si alloys, and this technology can also contribute to the development of the Si alloy field.

また、本発明の説明ではSiの溶融に誘導加熱を用いた
が、抵抗加熱や他の一般的に用いられる加熱方法のいず
れを用いCも、本発明の範囲から逸脱するものではない
Further, although induction heating is used to melt Si in the description of the present invention, resistance heating or any other commonly used heating method may be used without departing from the scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に用いられる装置の説明図である。 1・・・容 器、 2・・・熔融シリコン、 3・・・ガス吹込み羽口、 4・・・誘導加熱コイル、 5・・・ガス導入口、 6・・・ガス排出用フード。 特許出願人   川崎製鉄株式会社 第1図 ガス FIG. 1 is an explanatory diagram of an apparatus used in the method of the present invention. 1... Container, 2...Melted silicon, 3...Gas injection tuyere, 4...induction heating coil, 5...Gas inlet, 6...Gas exhaust hood. Patent applicant: Kawasaki Steel Corporation Figure 1 gas

Claims (1)

【特許請求の範囲】 1、B、C、P、Fe、Al等の不純物元素を含むシリ
コンを底部にガス吹込み羽口を有するシリカを主成分と
する容器内で溶融し、該羽口からAr若しくはH_2又
はこれらの混合ガスを吹込むことを特徴とするシリコン
の精製方法。 2、羽口から吹込まれるガスに酸化性のH_2O、CO
_2及び/又はO_2ガスを添加することを特徴とする
請求項1記載のシリコンの精製方法。 3、羽口から吹込まれるガスにHClを添加することを
特徴とする請求項1又は2記載のシリコンの精製方法。 4、羽口から吹込まれるガスにSiO_2、CaO、C
aCl_2及びCaF_2の各粉末から選ばれた1種以
上を添加することを特徴とする請求項1、2又は3記載
のシリコンの精製方法。
[Claims] 1. Silicon containing impurity elements such as B, C, P, Fe, and Al is melted in a container mainly composed of silica and has a gas injection tuyere at the bottom. A silicon purification method characterized by blowing Ar, H_2, or a mixed gas thereof. 2. Oxidizing H_2O, CO in the gas blown from the tuyere
The method for refining silicon according to claim 1, characterized in that _2 and/or O_2 gas is added. 3. The method for refining silicon according to claim 1 or 2, characterized in that HCl is added to the gas blown through the tuyere. 4. SiO_2, CaO, C in the gas blown from the tuyere
The method for refining silicon according to claim 1, 2 or 3, characterized in that one or more selected from each powder of aCl_2 and CaF_2 is added.
JP32232090A 1990-11-28 1990-11-28 Refining method for silicon Pending JPH04193706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32232090A JPH04193706A (en) 1990-11-28 1990-11-28 Refining method for silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32232090A JPH04193706A (en) 1990-11-28 1990-11-28 Refining method for silicon

Publications (1)

Publication Number Publication Date
JPH04193706A true JPH04193706A (en) 1992-07-13

Family

ID=18142320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32232090A Pending JPH04193706A (en) 1990-11-28 1990-11-28 Refining method for silicon

Country Status (1)

Country Link
JP (1) JPH04193706A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961944A (en) * 1996-10-14 1999-10-05 Kawasaki Steel Corporation Process and apparatus for manufacturing polycrystalline silicon, and process for manufacturing silicon wafer for solar cell
WO2002016265A1 (en) * 2000-08-21 2002-02-28 Astropower, Inc. Method and apparatus for purifying silicon
JP2003002629A (en) * 2001-06-21 2003-01-08 Sharp Corp Method and apparatus for purifying fused silicon
FR2827592A1 (en) * 2001-07-23 2003-01-24 Invensil Process for preparing photovoltaic quality silicon comprises oxygen or chlorine refining, re-melting, transfer of molten silicon to plasma refining in crucible furnace, refining under plasma and pouring into mold under controlled atmosphere
JP2006104030A (en) * 2004-10-07 2006-04-20 Sharp Corp Method of purifying silicon
WO2008035799A1 (en) 2006-09-29 2008-03-27 Shin-Etsu Chemical Co., Ltd. Method for purification of silicon, silicon, and solar cell
JP2009062275A (en) * 2008-12-24 2009-03-26 Showa Denko Kk Purification method of silicon
JP2009114026A (en) * 2007-11-07 2009-05-28 Shin Etsu Chem Co Ltd Method for refining metal silicon
US7615202B2 (en) 2005-03-07 2009-11-10 Nippon Steel Materials Co., Ltd. Method for producing high purity silicon
US8003546B2 (en) 2008-12-16 2011-08-23 Samsung Electronics Co., Ltd. Method of growing silicon and method of manufacturing solar cell using the same
US8034151B2 (en) 2004-03-03 2011-10-11 Nippon Steel Corporation Method for removing boron from silicon
CN103771419A (en) * 2014-01-10 2014-05-07 黑河合盛光伏科技有限公司 Method for removing boron in polycrystalline silicon
CN106185948A (en) * 2016-07-11 2016-12-07 厦门大学 A kind of industrial silicon slag making dephosphorization process
CN106744977A (en) * 2016-12-09 2017-05-31 永平县泰达废渣开发利用有限公司 A kind of graphite furnace lifting method of the molten silicon of utilization induction furnace
CN108467043A (en) * 2018-03-06 2018-08-31 昆明理工大学 A method of the slag agent of calcium silicates containing chlorine and wet oxygen mixed gas cooperative reinforcing Refining industrial silicon

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961944A (en) * 1996-10-14 1999-10-05 Kawasaki Steel Corporation Process and apparatus for manufacturing polycrystalline silicon, and process for manufacturing silicon wafer for solar cell
WO2002016265A1 (en) * 2000-08-21 2002-02-28 Astropower, Inc. Method and apparatus for purifying silicon
US6632413B2 (en) 2000-08-21 2003-10-14 Astropower, Inc. Method for purifying silicon
JP2003002629A (en) * 2001-06-21 2003-01-08 Sharp Corp Method and apparatus for purifying fused silicon
FR2827592A1 (en) * 2001-07-23 2003-01-24 Invensil Process for preparing photovoltaic quality silicon comprises oxygen or chlorine refining, re-melting, transfer of molten silicon to plasma refining in crucible furnace, refining under plasma and pouring into mold under controlled atmosphere
WO2003010090A1 (en) * 2001-07-23 2003-02-06 Invensil Medium purity metallurgical silicon and method for preparing same
WO2003014019A1 (en) * 2001-07-23 2003-02-20 Invensil High purity metallurgical silicon and method for preparing same
JP2004537491A (en) * 2001-07-23 2004-12-16 アンヴァンシル High-purity metallic silicon and its smelting method
US8034151B2 (en) 2004-03-03 2011-10-11 Nippon Steel Corporation Method for removing boron from silicon
JP2006104030A (en) * 2004-10-07 2006-04-20 Sharp Corp Method of purifying silicon
US7615202B2 (en) 2005-03-07 2009-11-10 Nippon Steel Materials Co., Ltd. Method for producing high purity silicon
JP5210167B2 (en) * 2006-09-29 2013-06-12 信越化学工業株式会社 Method for purifying silicon
WO2008035799A1 (en) 2006-09-29 2008-03-27 Shin-Etsu Chemical Co., Ltd. Method for purification of silicon, silicon, and solar cell
JP2009114026A (en) * 2007-11-07 2009-05-28 Shin Etsu Chem Co Ltd Method for refining metal silicon
US8003546B2 (en) 2008-12-16 2011-08-23 Samsung Electronics Co., Ltd. Method of growing silicon and method of manufacturing solar cell using the same
JP2009062275A (en) * 2008-12-24 2009-03-26 Showa Denko Kk Purification method of silicon
CN103771419A (en) * 2014-01-10 2014-05-07 黑河合盛光伏科技有限公司 Method for removing boron in polycrystalline silicon
CN106185948A (en) * 2016-07-11 2016-12-07 厦门大学 A kind of industrial silicon slag making dephosphorization process
CN106185948B (en) * 2016-07-11 2018-12-11 厦门大学 A kind of industrial silicon slag making dephosphorization process
CN106744977A (en) * 2016-12-09 2017-05-31 永平县泰达废渣开发利用有限公司 A kind of graphite furnace lifting method of the molten silicon of utilization induction furnace
CN108467043A (en) * 2018-03-06 2018-08-31 昆明理工大学 A method of the slag agent of calcium silicates containing chlorine and wet oxygen mixed gas cooperative reinforcing Refining industrial silicon

Similar Documents

Publication Publication Date Title
JP4523274B2 (en) High purity metallic silicon and its smelting method
JP3325900B2 (en) Method and apparatus for producing polycrystalline silicon, and method for producing silicon substrate for solar cell
JPH04193706A (en) Refining method for silicon
US20070245854A1 (en) Silicon refining process
CN101353167A (en) Preparation of hyperpure metallurgy silicon
EP4279453A2 (en) Process for the production of commercial grade silicon
CN105603257A (en) Production method of high-quality ferrotitanium
JPH05262512A (en) Purification of silicon
CN101323898A (en) Oxygen one-step impurity removing refining method for raw ferro nickel
JPH05330815A (en) Method for refining silicon
CN101323897A (en) Air one-step impurity removing refining method for raw ferro nickel
JPH02267110A (en) Lance for decarburizing metal silicon and decarburization
JPH05139713A (en) Method and device for refining silicon
JPS6036632A (en) Production of metallic alloy by thermit method
JPH10130011A (en) Removing method of boron from metal silicon
JPS61153201A (en) Method for regenerating scrap of magnet containing rare earth element
JPH10212113A (en) Method for removing boron from metal silicon
CN108249447A (en) A kind of method of volatility slag gas collaboration purifying polycrystalline silicon
JPS6141712A (en) Removal of contamination metal form pig iron, steel, other metals and metal alloy
JPH0416504A (en) Method for purifying silicon
JP4132918B2 (en) Method for producing low carbon ferroboron
JP2003119016A (en) Method of refining metallic silicon, and refining apparatus therefor
US1858386A (en) Process for preparing and purifying alloys
JPS6280249A (en) Production of amorphous alloy
JPH10251007A (en) Method for melting metal silicon and method for oxidation refining using the same