JPH02267110A - Lance for decarburizing metal silicon and decarburization - Google Patents

Lance for decarburizing metal silicon and decarburization

Info

Publication number
JPH02267110A
JPH02267110A JP8679589A JP8679589A JPH02267110A JP H02267110 A JPH02267110 A JP H02267110A JP 8679589 A JP8679589 A JP 8679589A JP 8679589 A JP8679589 A JP 8679589A JP H02267110 A JPH02267110 A JP H02267110A
Authority
JP
Japan
Prior art keywords
silicon
lance
silica
decarburizing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8679589A
Other languages
Japanese (ja)
Other versions
JP2538044B2 (en
Inventor
Kenkichi Yushimo
湯下 憲吉
Takashi Suhara
須原 俊
Makoto Fukai
深井 真
Matao Araya
荒谷 復夫
Masaru Nagahashi
長橋 賢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1086795A priority Critical patent/JP2538044B2/en
Publication of JPH02267110A publication Critical patent/JPH02267110A/en
Application granted granted Critical
Publication of JP2538044B2 publication Critical patent/JP2538044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification

Abstract

PURPOSE:To decarburize metal silicon efficiently and inexpensively without contaminating silicon by immersing a lance having an inner and an outer faces of refractory core tube coated with silica in metal silicon melt while blowing an inert gas against the surface molten silicon and introducing a gas containing an oxidizing agent into the metal silicon melt. CONSTITUTION:Metal silicon melt 3 heated and molten by a heater 8 is retained in a quartz crucible 1 supported by a graphite crucible 2. An inert gas 5 is blown from an upper spray lance 4 against the surface of the melt 3. With the introduction of the gas, an inert gas 7 containing an oxidizing agent is sent from a decarburizing lance 6 immersed in the melt 3. Oxygen, water or silica is used as the oxidizing agent. In the decarburizing lance 6, the inner and the outer faces of a refractory core tube 11 of mullite, etc., are covered with silica such as a quartz tube 12, etc. The decarburizing lance 6 has durability in the silicon melt 3 and will not contaminate the silicon melt. Consequently, the silicon melt 3 is efficiently decarburized so that polycrystalline silicon useful for electronic materials, especially raw material for solar battery can be inexpensively obtained.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は金属シリコンに含有される炭素を除去するため
にガスを吹込む脱炭用ランスおよび金属シリコンの脱炭
方法に関するものであり、電子材料用とりわけ太陽電池
用原料である多結晶シリコンを効率よくかつ安価に製造
するため、これに含有される炭素を除去する技術に関す
るものである。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to a decarburization lance for blowing gas to remove carbon contained in metal silicon, and a method for decarburizing metal silicon. The present invention relates to a technology for removing carbon contained in polycrystalline silicon, which is a raw material for materials, particularly solar cells, in order to efficiently and inexpensively manufacture it.

[従来の技術] 従来より、電子材料用シリコン例えば太陽電池用原料と
して使用する多結晶シリコンは、珪石(SiOz)およ
び炭素から得た冶金シリコン(MG−3i)を例えば、
次の(1)、(2)、(3)に示すようなガス化のプロ
セスを経て精製している。
[Prior Art] Conventionally, silicon for electronic materials, such as polycrystalline silicon used as a raw material for solar cells, has been produced using metallurgical silicon (MG-3i) obtained from silica stone (SiOz) and carbon, for example.
It is purified through the gasification process shown in (1), (2), and (3) below.

M G −S i + 3 [−1CI2→S i t
(CI23 + )(2S i l−I C、+23 
+ H2−S i + 3 It C+24SiHCR
3= S i +3 S i CQ 4 + 2 H2・・・
・・・ (3) このようにして得られたシリコンは、ガス化というプロ
セスが入ることにより、エネルギー消費量の増大、プロ
セス管理・品質管理等の必要といった問題があり、この
プロセスで得られる高純度シリコンが高価となる要因の
一つであった。
M G -S i + 3 [-1CI2→S i t
(CI23 + ) (2S i l-I C, +23
+ H2-S i + 3 It C+24SiHCR
3=S i +3 S i CQ 4 + 2 H2...
... (3) Silicon obtained in this way has problems such as increased energy consumption and the need for process control and quality control due to the gasification process, and the high quality obtained by this process This was one of the reasons why pure silicon became expensive.

これに対して、特開昭61−117110に開示されて
いるような、炭材を用いてアーク炉により5i02を還
元して金属シリコンを製造する方法によれば、ガス化の
プロセスを経ることなく効率よ(かつ安価に高純度シリ
コンを得ることができる。
On the other hand, according to the method of producing metallic silicon by reducing 5i02 in an arc furnace using carbonaceous materials, as disclosed in Japanese Patent Application Laid-open No. 61-117110, there is no need to go through the gasification process. High purity silicon can be obtained efficiently (and inexpensively).

〔発明が解決しようとする課題1 しかしながら、特開昭61−117110に開示される
方法によって得たシリコンは、原料あるいは炉材から炭
素が混入することをまぬがれることができず、これを除
去する必要がある。
[Problem to be Solved by the Invention 1] However, the silicon obtained by the method disclosed in JP-A-61-117110 cannot avoid being contaminated with carbon from raw materials or furnace materials, and it is necessary to remove this. There is.

金属シリコン中の炭素は固溶状態あるいは炭化珪素(S
 i C)の状態で存在するものと考えられるが、電子
材料用とりわけ太陽電池用原料とじて使用する金属シリ
コンでは、SiCのような析出物が存在すると製品の特
性を悪化させる原因となるため予め脱炭する必要がある
Carbon in metallic silicon is in a solid solution state or in silicon carbide (S
i C) However, in metallic silicon used as a raw material for electronic materials, especially solar cells, the presence of precipitates such as SiC can cause deterioration of the product properties, so it must be prepared in advance. It is necessary to decarburize.

本発明の目的は、金属シリコン中の炭素を効率よく除去
する方法を提供し、ガス化プロセスを経ずに高純度シリ
コンを得ることができるようにすることにある。
An object of the present invention is to provide a method for efficiently removing carbon from metal silicon, thereby making it possible to obtain high purity silicon without going through a gasification process.

〔課題を解決するための手段1 本発明は高純度シリコン脱炭用のランスとして耐火性芯
管をシリカで被覆したランスを開発したものである。
[Means for Solving the Problems 1] The present invention has developed a lance for decarburizing high-purity silicon in which a refractory core tube is coated with silica.

また、本発明方法によれば溶融シリコン表面に不活性ガ
スを吹付けることと、溶融シリコン内に耐火性芯管をシ
リカで被覆した脱炭用ランスを用いて不活性ガスと共に
酸化剤を吹込むことを特徴とする金属シリコンの脱炭方
法が提供される。
In addition, according to the method of the present invention, an inert gas is sprayed onto the surface of the molten silicon, and an oxidizing agent is blown into the molten silicon together with the inert gas using a decarburization lance whose refractory core tube is coated with silica. A method for decarburizing metallic silicon is provided.

この場合、酸化剤が酸素または水あるいはシリカである
ことが好ましく、酸化剤の供給量が次式のいずれかを満
足するようにするとよい。
In this case, the oxidizing agent is preferably oxygen, water, or silica, and the amount of the oxidizing agent supplied is preferably such that it satisfies one of the following formulas.

2≦O2換算酸化性ガス%   ・・・・・−(4)0
.05≦シリカ(g)/シリコン(kg)・・・・・・
(5) 〔作用〕 金属シリコン中の炭素は固溶状態あるいは炭化珪素(S
 i C)の状態で存在するものと考えられられる。
2≦O2 equivalent oxidizing gas%・・・・・・−(4)0
.. 05≦Silica (g)/Silicon (kg)・・・・・・
(5) [Function] Carbon in metallic silicon is in a solid solution state or in silicon carbide (S
It is thought to exist in the state iC).

電子材料用原料、例えば太陽電池用原料に使用する場合
はSiCのような析出物は製品の特性を損なう原因とな
り得ると考えられるため、予め脱炭する必要がある。
When used as a raw material for electronic materials, for example, a raw material for solar cells, it is necessary to decarburize the material in advance, since precipitates such as SiC are considered to be a cause of impairing the properties of the product.

溶融シリコンの脱炭は次の式(6)で進行すると考える
It is considered that decarburization of molten silicon proceeds according to the following equation (6).

[C] + [0] =CO(g’)   ・・・・・
・(6)Nozakiら(J、Rad、Chem、 3
2(19761p43−501によれば、(6)式のC
Oの分圧は、シリコンの融点直上で。
[C] + [0] =CO(g')...
・(6) Nozaki et al. (J, Rad, Chem, 3
2 (According to 19761 p43-501, C in equation (6)
The partial pressure of O is just above the melting point of silicon.

PC8=2X10−7[C]   [O]・−=(7)
で与えられる。
PC8=2X10-7 [C] [O]・-=(7)
is given by

ただし、 P co :気相中のCOの分圧[atml[C] :
溶融シリコン中のCの濃度tppml[0] :溶融シ
リコン中の0の濃度fppm)である。
However, P co : Partial pressure of CO in the gas phase [atml[C] :
Concentration of C in molten silicon tppml[0]: concentration of C in molten silicon fppm).

従って、溶融シリコン中の炭素濃度[C]lppm)は [C] =Pco/2xlO−7[0] −=−(8)
となる。(8)式より、溶融シリコン中の炭素濃度は気
相中の00分圧を小さくするか、溶融シリコン中の酸素
濃度を高くすれば炭素濃度は小さくなることが明らかで
ある。気相中の00分圧を小さくするのは、例えば溶融
シリコンに不活性ガスを吹付けて表面を不活性ガスで覆
うかあるいは不活性ガスを吹付けながら減圧状態にする
ことなどにより行うことができる。
Therefore, the carbon concentration [C]lppm) in molten silicon is [C] =Pco/2xlO-7[0] -=-(8)
becomes. From equation (8), it is clear that the carbon concentration in molten silicon can be reduced by decreasing the 00 partial pressure in the gas phase or by increasing the oxygen concentration in molten silicon. The 00 partial pressure in the gas phase can be reduced, for example, by spraying an inert gas onto the molten silicon to cover the surface with the inert gas, or by creating a reduced pressure state while spraying the inert gas. can.

溶融シリコン中の酸素濃度を大きくするには、例えば溶
融シリコンに酸化剤を添加すればよい。
In order to increase the oxygen concentration in the molten silicon, for example, an oxidizing agent may be added to the molten silicon.

酸化剤としては構成する元素に酸素を含むものであれば
よい。この場合酸化剤の添加法としては例えばH20,
02などの酸化性ガスを吹付けるか、またはシリコン中
に吹込むか、またはその両者を併用することなどがある
。またはシリカを溶融シリコン表面におくことおよび/
またはシリコン中にガスと共に吹込むことなどでもよい
。シリコン中に吹込む場合には、シリカに多量の水分を
吸着させたものも使用することができる。またシリカ坩
堝あるいはシリカをスタンプした坩堝内で溶融シリコン
を保持することなどでもよい。
The oxidizing agent may be one containing oxygen as a constituent element. In this case, the method of adding the oxidizing agent is, for example, H20,
In some cases, an oxidizing gas such as 02 or the like may be blown into the silicon, or both may be used in combination. or placing silica on the molten silicon surface and/or
Alternatively, it may be blown into silicon together with a gas. When blowing into silicon, silica that has absorbed a large amount of water can also be used. Alternatively, molten silicon may be held in a silica crucible or a crucible stamped with silica.

次に溶融シリコン中に酸化剤を吹込むランスについて説
明する。電子材料用シリコン例えば太陽電池用原料とし
て使用する多結晶シリコンは、99.999重量%以上
の純度が必要であるため、炭素以外の不純物濃度も低く
抑える必要がある。
Next, a lance for injecting an oxidizing agent into molten silicon will be explained. Silicon for electronic materials For example, polycrystalline silicon used as a raw material for solar cells needs to have a purity of 99.999% by weight or more, so it is also necessary to keep the concentration of impurities other than carbon low.

従って、上述のガス吹込みによる脱炭を行う際には、シ
リコンを汚染しないように吹込み管の材質を選択する必
要がある。
Therefore, when decarburizing by blowing gas as described above, it is necessary to select the material of the blowing pipe so as not to contaminate the silicon.

そこで、まず、汚染のおそれのない石英(Si02)管
を用いてガス吹込を試みたが、石英が軟化して石英管が
シリコン浴面に浮上し、継続した吹込みができなかった
First, an attempt was made to blow gas into the bath using a quartz (Si02) tube that is free from contamination, but the quartz softened and floated to the surface of the silicon bath, making continuous blowing impossible.

次いで、ムライト管(主成分=3AI2203・2Si
O2)およびマグネシア管(主成分:Mg0)を用いて
吹込みを試みた。その結果、3時間以上の吹込みに成功
した。しかしシリコン中には第3図に曲線21.22で
示すように、ムライ1〜管、マグネシア管の主成分であ
るAg、、Mgが入り、シリコンが汚染されていること
が判明した。
Next, a mullite tube (main component = 3AI2203/2Si
Blowing was attempted using a magnesia tube (main component: Mg0). As a result, we succeeded in blowing for over 3 hours. However, as shown by curves 21 and 22 in FIG. 3, it was found that Ag and Mg, which are the main components of the Murai tube and the magnesia tube, entered the silicon and the silicon was contaminated.

ここで、本発明者らは、シリコンを汚染することがなく
、長時間安定したガス吹込みが可能となる脱炭用ランス
を開発した。すなわち、本発明のランスはムライト管、
マグネシア等の耐火性芯管の外壁を石英で被覆した吹込
みランスである。このランスはシリコンの融点以上で軟
化等が起らず、安定にガス吹込みを行うことができる、
例えば、簡便なものではムライト管11の内・外を石英
管12で覆う三重管(第2図(a)、(b))でよい。
Here, the present inventors have developed a decarburization lance that does not contaminate silicon and allows stable gas injection for a long period of time. That is, the lance of the present invention is a mullite tube,
This is a blowing lance with a refractory core tube made of magnesia, etc., whose outer wall is coated with quartz. This lance does not soften at temperatures above the melting point of silicon, allowing stable gas injection.
For example, a simple one may be a triple tube (FIGS. 2(a) and 2(b)) in which the inside and outside of a mullite tube 11 are covered with quartz tubes 12.

この場合、1℃/minのガス吹込みで1時間以上の安
定した吹込みが可能となり、シリコン中のAf2濃度も
第3図に曲線23で示したように変化なく、汚染が認め
られなかった。石英管12はシリコン洛中に浸った部分
では肉薄となっており、これは軟化とシリコン浴の運動
に起因するものである。第2図(a)、(b)の構造で
は耐火性芯管としてムライト管の他にはアルミナ管、窒
化アルミニウム管、窒化硼素管、マグネシア管、黒鉛管
などでもよい。
In this case, stable gas injection for more than 1 hour was possible with gas injection at a rate of 1°C/min, and the Af2 concentration in the silicon did not change as shown by curve 23 in Figure 3, and no contamination was observed. . The quartz tube 12 is thin in the portion immersed in the silicone bath, and this is due to softening and movement of the silicone bath. In the structures shown in FIGS. 2(a) and 2(b), the refractory core tube may be an alumina tube, an aluminum nitride tube, a boron nitride tube, a magnesia tube, a graphite tube, etc. in addition to a mullite tube.

また、この他には第2図(C)、(d)に示すように、
ムライト、アルミナ、マグネシア、窒化アルミニウム、
窒化硼素黒鉛等の耐火性芯管11の周囲をシリカ(Si
O2)スタンプにより被覆した構造でもよい。
In addition, as shown in Figure 2 (C) and (d),
Mullite, alumina, magnesia, aluminum nitride,
Silica (Si
O2) A structure coated with a stamp may be used.

〔実施例〕〔Example〕

次に本発明の実施例について以下説明する。 Next, embodiments of the present invention will be described below.

第1図はシリコンの脱炭に用いた装置の縦断面図である
。黒鉛坩堝2に支えられた石英坩堝l内にシリコン溶湯
3を保持している。上吹きランス4から不活性ガス5を
溶湯上面に吹付け、本発明に係る脱炭用ランス6がら酸
化剤を不活性ガスと共にシリコン涸渇3中に吹込む。8
はヒータである。
FIG. 1 is a longitudinal sectional view of an apparatus used for decarburizing silicon. Molten silicon 3 is held in a quartz crucible 1 supported by a graphite crucible 2. An inert gas 5 is blown onto the upper surface of the molten metal from the top blowing lance 4, and an oxidizing agent is blown into the silicon depletion 3 together with the inert gas from the decarburization lance 6 according to the present invention. 8
is a heater.

の石英坩堝1を外径220mm、高さ200mmの黒鉛
坩堝2内に装入した第1図に示すような容器に、溶融シ
リコンを5kg装入し、1500℃に昇温した。第2図
(a)、(b)に示す金属シリコン脱炭用ランスを溶融
シリコン中に浸漬して酸化剤を含む不活性ガスを供給す
るとともに浴面にArを2Of27min吹付け、脱炭
精練を80〜120m1n行った。脱炭用ランスは耐火
芯管11が内径、外径がそれぞれ6mm、10mmのム
ライト管であり、それを被覆する管に石英管を用いたガ
ス吹込みランスとした。その結果を次の表に示す。
5 kg of molten silicon was charged into a container as shown in FIG. 1, in which a quartz crucible 1 was placed in a graphite crucible 2 having an outer diameter of 220 mm and a height of 200 mm, and the temperature was raised to 1500°C. The metal silicon decarburization lance shown in Figures 2 (a) and (b) is immersed in molten silicon, an inert gas containing an oxidizing agent is supplied, and Ar is sprayed onto the bath surface for 20 minutes to decarburize the silicon. 80-120m1n was carried out. The decarburization lance was a gas injection lance in which the refractory core tube 11 was a mullite tube with an inner diameter of 6 mm and an outer diameter of 10 mm, respectively, and a quartz tube was used as the tube covering it. The results are shown in the table below.

表中の純度は、シリコン以外の金属元素を不純物として
取扱った場合の値を示している。
The purity in the table indicates the value when metal elements other than silicon are treated as impurities.

外径178mm、高さ178mm、肉厚5mmまず、吹
込ガスに酸化性ガスを用いた場合について説明する。
Outer diameter: 178 mm, height: 178 mm, wall thickness: 5 mm First, a case where an oxidizing gas is used as the blown gas will be explained.

シリコン3の上吹きランス4から表面にArを50 N
 2 /minで吹付けたときのシリコン中の炭素濃度
は第4図中の曲線31のようになった。同条件において
、シリコン中にArを5NI2/min吹込んだとき、
Ar−10%02を5N2/min吹込んだときのそれ
ぞれのシリコン中の炭素濃度の変化は第1図中の曲線3
2.33のようになった。溶融シリコン3中にガスを吹
込むことにより、効率よく脱炭が進行する。とりわけ、
酸素ガスを不活性ガスと共に吹込むことにより、さらに
効率よく脱炭が進行する。吹込みガス中に混入させるガ
スの02換算ガス濃度(%)と、脱炭中の炭素濃度が初
期濃度の半分になるときの時間(T)との関係を第5図
に示す。
Apply 50 N of Ar to the surface of silicon 3 from top-blowing lance 4.
The carbon concentration in silicon when sprayed at a rate of 2/min was as shown by curve 31 in FIG. Under the same conditions, when Ar is injected into silicon at a rate of 5NI2/min,
The change in carbon concentration in each silicon when Ar-10%02 is injected at 5N2/min is shown in curve 3 in Figure 1.
It became like 2.33. By blowing gas into the molten silicon 3, decarburization progresses efficiently. Above all,
By blowing oxygen gas together with inert gas, decarburization progresses more efficiently. FIG. 5 shows the relationship between the 02 equivalent gas concentration (%) of the gas mixed into the blown gas and the time (T) when the carbon concentration during decarburization becomes half of the initial concentration.

02換算ガス濃度が2%以上ではほぼ同程度の効果があ
った。なお、Ar−20%02ガス吹込では、吹込口に
シリカが生成し、安定したガス供給を行うことができな
かった。
Almost the same effect was obtained when the 02 equivalent gas concentration was 2% or more. In addition, when blowing Ar-20%02 gas, silica was generated at the blowing port, making it impossible to stably supply the gas.

次に、吹込ガスにシリカを酸化剤として混入した場合に
ついて述べる。このときの吹込シリカ(g)/シリコン
(kg)と、脱炭中の炭素濃度が半分になるときの時間
との関係を第6図に示す。
Next, a case will be described in which silica is mixed into the blown gas as an oxidizing agent. FIG. 6 shows the relationship between the blown silica (g)/silicon (kg) at this time and the time required for the carbon concentration to be halved during decarburization.

シリカ(g)とシリコン(kg)との比が0.05以上
でほぼ同じ脱炭効果がある。シリカ(g)/シリコン(
kg)が0.5を越えた場合はシリコン表面に浮上する
シリカ粉が急激に増加し、脱炭反応に寄与するシリカ粉
の割合が少なくなる。
When the ratio of silica (g) to silicon (kg) is 0.05 or more, almost the same decarburization effect is obtained. Silica (g)/Silicon (
kg) exceeds 0.5, the amount of silica powder floating on the silicon surface increases rapidly, and the proportion of silica powder contributing to the decarburization reaction decreases.

[発明の効果] 本発明の金属シリコンの脱炭用ランスはシリコン中の炭
素をガス吹込みにより除去する際に用いられるもので、
S1溶湯中において耐久性を有すると共にSi溶湯を汚
染しない。従って、溶融シリコン表面に不活性ガスを吹
付けることと、この脱炭用ランスを用いて溶融シリコン
中に酸化剤を含む不活性ガス吹込みを併用する脱炭方法
により効率よ(金属シリコン中の炭素を除去することが
可能となった。
[Effects of the Invention] The lance for decarburizing metal silicon of the present invention is used when removing carbon from silicon by blowing gas,
It has durability in the S1 molten metal and does not contaminate the Si molten metal. Therefore, an efficient decarburization method that uses a combination of blowing an inert gas onto the surface of the molten silicon and using this decarburization lance to inject an inert gas containing an oxidizing agent into the molten silicon is more efficient. It became possible to remove carbon.

従って、電子材料用原料、例えば太陽電池用原料に使用
するシリコンとして、炭材を用いたアーク炉で5i02
を還元して得たものを本発明方法によって脱炭して使用
することが可能となった。
Therefore, 5i02
It has become possible to use the product obtained by reducing the carbon by decarburizing it by the method of the present invention.

このことにより高純度シリコンをガス化プロセスによら
ず安価に製造することができるようになり、産業界に寄
与するところがすこぶる大である。
This makes it possible to produce high-purity silicon at low cost without using a gasification process, which will greatly contribute to industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を説明するための坩堝の縦断面図、
第2図は本発明の実施例のシリコン脱炭用ランスの構造
を示す説明図、第3図は吹込みランスの材質とシリコン
中の不純物濃度変化との関係を示すグラフ、第4図はシ
リコン中の炭素濃度などを示すグラフ、第5図は吹込み
ガス中の02換算酸化ガス濃度と、シリコンの脱炭を始
めてから炭素濃度が半分になるときの時間との関係を示
すグラフ、第6図は吹込むシリカ(g)/シリコン(k
g)に対するシリコンの脱炭を始めてから炭素濃度が半
分になるときの時間との関係を示すグラフである。 ■・・・石英坩堝    2・・・黒鉛坩堝3・・・シ
リコン溶湯  4・・・上吹きランス5・・・不活性ガ
ス   6・・・脱炭ランス7−・−酸化剤を含む不活
性ガス
FIG. 1 is a longitudinal sectional view of a crucible for explaining the method of the present invention;
Fig. 2 is an explanatory diagram showing the structure of a lance for silicon decarburization according to an embodiment of the present invention, Fig. 3 is a graph showing the relationship between the material of the blowing lance and the change in impurity concentration in silicon, and Fig. 4 is a graph showing the relationship between the material of the injection lance and the change in impurity concentration in silicon. Fig. 5 is a graph showing the relationship between the 02-equivalent oxidizing gas concentration in the blown gas and the time taken for the carbon concentration to become half after starting decarburization of silicon. The figure shows the blown silica (g)/silicon (k)
It is a graph showing the relationship between the time when the carbon concentration becomes half after starting the decarburization of silicon for g). ■...Quartz crucible 2...Graphite crucible 3...Silicon molten metal 4...Top-blowing lance 5...Inert gas 6...Decarburization lance 7--Inert gas containing oxidizing agent

Claims (1)

【特許請求の範囲】 1 耐火性芯管の内外面をシリカで被覆した浸漬部を有
する金属シリコン脱炭用ランス。 2 溶融シリコンの脱炭方法において、溶融シリコン表
面に不活性ガスを吹きつけるとともに、該溶融シリコン
内に請求項1記載のランスを浸漬して該ランスより酸化
剤を含む不活性ガスを吹込むことを特徴とする溶融シリ
コンの脱炭方法。 3 酸化剤が酸素、水またはシリカである請求項2記載
の方法。 4 酸化剤の供給量が次式を満足するいずれかである請
求項2または3記載の方法。 2≦O_2換算酸化性ガス% 0.05≦シリカ(g)/シリコン(kg)
[Scope of Claims] 1. A lance for metal silicon decarburization having an immersion part in which the inner and outer surfaces of a refractory core tube are coated with silica. 2. In the method for decarburizing molten silicon, in addition to blowing an inert gas onto the surface of the molten silicon, the lance according to claim 1 is immersed in the molten silicon, and an inert gas containing an oxidizing agent is blown from the lance. A method for decarburizing molten silicon characterized by: 3. The method according to claim 2, wherein the oxidizing agent is oxygen, water or silica. 4. The method according to claim 2 or 3, wherein the supply amount of the oxidizing agent satisfies the following formula. 2≦O_2 equivalent oxidizing gas% 0.05≦Silica (g)/Silicon (kg)
JP1086795A 1989-04-07 1989-04-07 Metal silicon decarburizing lance and decarburizing method Expired - Fee Related JP2538044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086795A JP2538044B2 (en) 1989-04-07 1989-04-07 Metal silicon decarburizing lance and decarburizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086795A JP2538044B2 (en) 1989-04-07 1989-04-07 Metal silicon decarburizing lance and decarburizing method

Publications (2)

Publication Number Publication Date
JPH02267110A true JPH02267110A (en) 1990-10-31
JP2538044B2 JP2538044B2 (en) 1996-09-25

Family

ID=13896719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086795A Expired - Fee Related JP2538044B2 (en) 1989-04-07 1989-04-07 Metal silicon decarburizing lance and decarburizing method

Country Status (1)

Country Link
JP (1) JP2538044B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010275A1 (en) * 1997-08-28 1999-03-04 Crystal Systems, Inc. Method and apparatus for purifying silicon
JP2006240963A (en) * 2005-03-07 2006-09-14 Nippon Steel Corp Method for manufacturing high purity silicon
WO2006104107A1 (en) * 2005-03-29 2006-10-05 Kyocera Corporation Polycrystalline silicon substrate, method for producing same, polycrystalline silicon ingot, photoelectric converter and photoelectric conversion module
DE102010001094A1 (en) 2010-01-21 2011-07-28 Evonik Degussa GmbH, 45128 Method for decarburizing a silicon melt
WO2011088952A1 (en) 2010-01-21 2011-07-28 Evonik Degussa Gmbh Process for coarse decarburization of a silicon melt
WO2013132629A1 (en) 2012-03-08 2013-09-12 新日鉄マテリアルズ株式会社 Method for manufacturing highly pure silicon, highly pure silicon obtained by this method, and silicon raw material for manufacturing highly pure silicon

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010275A1 (en) * 1997-08-28 1999-03-04 Crystal Systems, Inc. Method and apparatus for purifying silicon
US5972107A (en) * 1997-08-28 1999-10-26 Crystal Systems, Inc. Method for purifying silicon
JP2006240963A (en) * 2005-03-07 2006-09-14 Nippon Steel Corp Method for manufacturing high purity silicon
JP4741860B2 (en) * 2005-03-07 2011-08-10 新日鉄マテリアルズ株式会社 Method for producing high purity silicon
WO2006104107A1 (en) * 2005-03-29 2006-10-05 Kyocera Corporation Polycrystalline silicon substrate, method for producing same, polycrystalline silicon ingot, photoelectric converter and photoelectric conversion module
DE102010001094A1 (en) 2010-01-21 2011-07-28 Evonik Degussa GmbH, 45128 Method for decarburizing a silicon melt
WO2011088952A1 (en) 2010-01-21 2011-07-28 Evonik Degussa Gmbh Process for coarse decarburization of a silicon melt
WO2011088953A1 (en) 2010-01-21 2011-07-28 Evonik Degussa Gmbh Process for decarburization of a silicon melt
DE102010001093A1 (en) 2010-01-21 2011-07-28 Evonik Degussa GmbH, 45128 Process for the coarse decarburization of a silicon melt
WO2013132629A1 (en) 2012-03-08 2013-09-12 新日鉄マテリアルズ株式会社 Method for manufacturing highly pure silicon, highly pure silicon obtained by this method, and silicon raw material for manufacturing highly pure silicon

Also Published As

Publication number Publication date
JP2538044B2 (en) 1996-09-25

Similar Documents

Publication Publication Date Title
US7682585B2 (en) Silicon refining process
JP3205352B2 (en) Silicon purification method and apparatus
US5972107A (en) Method for purifying silicon
JP4523274B2 (en) High purity metallic silicon and its smelting method
JPH0747484B2 (en) Method of refining silicon
CA2227693C (en) Method for removing boron from metallurgical grade silicon and apparatus
CA1250131A (en) Melt consolidation of silicon powder
JPH04193706A (en) Refining method for silicon
JPH02267110A (en) Lance for decarburizing metal silicon and decarburization
JP2003012317A (en) Method for refining silicon
JPH05262512A (en) Purification of silicon
US4176166A (en) Process for producing liquid silicon
US4272488A (en) Apparatus for producing and casting liquid silicon
JP2846408B2 (en) Silicon purification method
JPH05330815A (en) Method for refining silicon
JPH0476330B2 (en)
JPH05139713A (en) Method and device for refining silicon
EP0794160A1 (en) Process for producing refractory powder from used contact masses resulting from the production of silanes and refractory products obtained therefrom
JPH10139415A (en) Solidification and purification of molten silicon
JPH10120412A (en) Purification of metal silicon
US9352970B2 (en) Method for producing silicon for solar cells by metallurgical refining process
JP2006104030A (en) Method of purifying silicon
HU196632B (en) Process for producing high-purity steels
JP2003119016A (en) Method of refining metallic silicon, and refining apparatus therefor
JPH0459632A (en) Production of nitrogen-containing synthetic quartz glass member

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees