JPH09132438A - Partially hermetic coating method for optical fiber - Google Patents

Partially hermetic coating method for optical fiber

Info

Publication number
JPH09132438A
JPH09132438A JP7286921A JP28692195A JPH09132438A JP H09132438 A JPH09132438 A JP H09132438A JP 7286921 A JP7286921 A JP 7286921A JP 28692195 A JP28692195 A JP 28692195A JP H09132438 A JPH09132438 A JP H09132438A
Authority
JP
Japan
Prior art keywords
optical fiber
carbon film
coat layer
varnish coat
varnish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7286921A
Other languages
Japanese (ja)
Inventor
Kenji Enomoto
憲嗣 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7286921A priority Critical patent/JPH09132438A/en
Publication of JPH09132438A publication Critical patent/JPH09132438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for partially applying a carbon hermetic coating on an optical fiber which obviates the formation of the reaction products and unreacted residues generated by cracking of a varnish layer at the time of initial reaction of reformation of a carbon film, improves the deposition state of the carbon film of this part and improves a fatigue characteristic, initial strength, etc. SOLUTION: The carbon film 12 is removed from the hermetically coated optical fiber which is provided with the carbon film 12 on the outer periphery of the optical fiber 11 and is provided with the varnish coating layer 14 on its outer periphery. The carbon film 19 is formed again on the optical fiber 11 of the part where this carbon film 12 is removed. At this time, the varnish coating layers 14 on both sides of the part where the carbon film 12 is removed are removed to the prescribed length and thereafter, the optical fiber 11 is irradiation with a laser beam, by which the temp. is elevated. A gaseous raw material 18 is brought into contact with this part, by which the carbon film 19 is formed again.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバに部分
的にカーボンハーメチック被覆を施す方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for partially applying a carbon hermetic coating to an optical fiber.

【0002】[0002]

【従来の技術】一般的な石英ガラス製の光ファイバは、
コネクタ接続や融着接続の際には被覆を除去してその端
末加工が行われる。このために、これらの端末加工にあ
たって接続用の各種治具との接触で光ファイバの表面に
微少なクラックが生じ易い。光ファイバの表面にクラッ
クがあると光ファイバを取り巻く環境中の水分(特にH
2 )がこのクラックの先端に侵入して、クラックを序々
に大きくして光ファイバの強度を著しく劣化させる(疲
労現象)。そこで、このような疲労現象を防止し光ファ
イバ強度の長期信頼性を高めるため、光ファイバ表面に
水分を透過させないカーボンハーメチック被覆を形成す
る方法が開発されている。
2. Description of the Related Art A general silica glass optical fiber is
For connector connection and fusion splicing, remove the coating and
Powder processing is performed. For this reason, these terminal processing
By simply contacting various jigs for connection to the surface of the optical fiber
Small cracks are likely to occur. Crush the surface of the optical fiber.
If there is a crack, moisture in the environment surrounding the optical fiber (especially H
Two) Invades the tip of this crack,
To significantly reduce the strength of the optical fiber.
Labor phenomenon). Therefore, prevent such fatigue phenomenon and prevent
To improve long-term reliability of fiber strength,
Form a carbon hermetic coating that is impermeable to moisture
Methods have been developed.

【0003】ハーメチック被覆光ファイバの製法の一つ
に、線引直後の光ファイバに炭化水素系原料ガスを接触
させ、該炭化水素系原料ガスを熱分解させて光ファイバ
の残留熱を利用して光ファイバ表面に500Å程度のカ
ーボン膜を形成する方法がある。このカーボン膜により
2 の侵入はほぼ完全に抑えられるため、光ファイバの
耐水素特性は著しい改善をみせている。
One of the methods for producing a hermetically coated optical fiber is to bring a hydrocarbon-based raw material gas into contact with an optical fiber immediately after drawing and thermally decompose the hydrocarbon-based raw material gas to utilize the residual heat of the optical fiber. There is a method of forming a carbon film of about 500 Å on the surface of the optical fiber. Since this carbon film almost completely prevents H 2 from penetrating, the hydrogen resistance of the optical fiber is remarkably improved.

【0004】また、同時にカーボン膜はH2 Oの侵入を
抑えるので、石英ガラスに見られるH2 Oに起因する応
力腐食が起こらず、疲労特性も著しく改善される。更
に、ハーメチック被覆光ファイバの初期強度も通常の光
ファイバと同等あるいはそれ以上の強度のものが製造可
能となっている。こうした信頼性の高いハーメチック被
覆光ファイバ同士を融着接続すると、融着接続部分では
融着時の放電熱によって表面のカーボン膜が酸化、消失
してしまい、光ファイバ表面が露出した状態となってし
まう。この状態で放置しておくと前記融着接続部分は、
他の部分に比べ強度、疲労特性等の信頼性を著しく損な
う。
Further, since at the same time carbon film suppressing of H 2 O penetration does not occur stress corrosion caused in H 2 O found in quartz glass, fatigue properties are also markedly improved. Further, it is possible to manufacture a hermetically coated optical fiber having an initial strength equal to or higher than that of a normal optical fiber. When these highly reliable hermetically coated optical fibers are fusion-spliced together, the carbon film on the surface is oxidized and disappeared by the discharge heat during fusion at the fusion-spliced part, leaving the optical fiber surface exposed. I will end up. If left in this state, the fusion spliced part will
Compared to other parts, the reliability of strength, fatigue characteristics, etc. is significantly impaired.

【0005】このようなカーボン膜消失部分の部分的な
カーボン膜再形成法として (1)炭酸ガスレーザ等の照射により光ファイバを加熱
し、照射部分の光ファイバ周囲に炭化水素系原料ガス供
給してカーボン膜を被覆する熱CVD法。 (2)光ファイバ周囲にプラズマを発生させ、その中に
炭化水素系原料ガスを供給し、原料分子を活性化させカ
ーボン膜を被覆するプラズマ法。 等が試みられている。本発明は、前記(1)の熱CVD
法の改良に関するものである。
As a partial carbon film reforming method for such a carbon film disappearing portion, (1) an optical fiber is heated by irradiation with a carbon dioxide gas laser or the like, and a hydrocarbon-based raw material gas is supplied around the irradiated portion of the optical fiber. A thermal CVD method for coating a carbon film. (2) A plasma method in which plasma is generated around the optical fiber, and a hydrocarbon-based source gas is supplied into it to activate the source molecules and coat the carbon film. And so on. The present invention relates to the thermal CVD of (1) above.
It concerns the improvement of the law.

【0006】[0006]

【発明が解決しようとする課題】ハーメチック被覆光フ
ァイバを融着接続するには、まずハーメチック被覆光フ
ァイバの外周に形成されているUV樹脂被覆層を所定の
長さだけ除去する。その後、融着機への取り付け時に生
じる光ファイバへの傷防止用として樹脂被覆層除去部に
保護用ワニスを塗布してワニスコート層を形成する。こ
のような前処理を行った光ファイバを融着機にセットし
て融着接続する。融着接続部のカーボン膜は、ワニスコ
ート層と共に放電アークの放電熱によって消失する。た
だし、融着接続部の両端から数mm以上離れた部分では
ワニスコート層が存在している。
In order to fusion splice the hermetically coated optical fiber, the UV resin coating layer formed on the outer periphery of the hermetically coated optical fiber is first removed by a predetermined length. Then, a varnish coat layer is formed by applying a protective varnish to the resin coating layer-removed portion to prevent scratches on the optical fiber that occur when the varnish coater is attached to the fusion machine. The optical fiber that has been subjected to such pretreatment is set in a fusion splicer and spliced. The carbon film at the fusion-bonded portion disappears due to the discharge heat of the discharge arc together with the varnish coat layer. However, the varnish coat layer is present at a portion separated by several mm or more from both ends of the fusion spliced portion.

【0007】この両端数mm以上離れた部分のワニスコ
ート層を含む融着接続部を外気の流れを遮断した容器中
にセットして、上記した熱CVD法により原料ガス等を
導入してカーボン膜消失部分を含む両端数mmをオーバ
ーコートしながらカーボン膜の再形成を行う。しかしな
がら原料ガスの熱分解反応初期には、ワニスコート層の
分解による反応生成物及び未反応残留物の発生がカーボ
ン膜の形成と同時に起こる。このため再形成されたカー
ボン膜を構成するカーボン小片板の堆積状態が乱雑にな
り、長手方向で被覆むらが生じる。特にカーボン膜消失
部分の両端数mmのオーバコート部分にその影響が顕著に
現れる。更に、このことは再形成されたカーボン膜にま
で悪影響を及ぼす。その結果、H2 O分子がカーボン小
片板間の隙間を通って光ファイバ表面へ到達しやすくな
り疲労特性を悪化させる原因となっている。また、乱雑
に堆積したカーボン小片板は小片板間で亀裂が生じ易く
初期強度を低下させる原因となっている。
The fusion-bonded portion containing the varnish coat layer at a portion separated by several mm or more at both ends is set in a container that blocks the flow of the outside air, and the raw material gas is introduced by the above-mentioned thermal CVD method to introduce a carbon film. The carbon film is reformed while overcoating several mm on both ends including the disappeared portion. However, in the initial stage of the thermal decomposition reaction of the raw material gas, reaction products and unreacted residues due to the decomposition of the varnish coat layer occur simultaneously with the formation of the carbon film. For this reason, the deposited state of the carbon small piece plates constituting the reformed carbon film becomes disordered, and uneven coating occurs in the longitudinal direction. In particular, the effect is remarkable in the overcoat part of several mm on both sides of the part where the carbon film disappears. Furthermore, this has a detrimental effect on the reformed carbon film. As a result, H 2 O molecules easily reach the surface of the optical fiber through the gaps between the carbon small piece plates, which causes deterioration of fatigue characteristics. In addition, the carbon small pieces that are randomly deposited tend to cause cracks between the small pieces, which causes a decrease in initial strength.

【0008】本発明は上記の課題を解決し、カーボン膜
の再形成に際して反応初期に発生する保護ワニス層の分
解による反応生成物及び、未反応残留物の発生が起こら
なくなり従来よりも、再形成されたカーボン膜の堆積状
態が改善され、その結果、疲労特性、初期強度等が向上
された光ファイバに部分的にハーメチック被覆を施す方
法を提供することを目的とするものである。
The present invention solves the above-mentioned problems and eliminates the generation of reaction products and unreacted residues due to the decomposition of the protective varnish layer generated at the initial stage of the reaction when the carbon film is reformed. It is an object of the present invention to provide a method for partially applying a hermetic coating to an optical fiber in which the deposited state of the carbon film thus obtained is improved, and as a result, fatigue characteristics, initial strength and the like are improved.

【0009】[0009]

【課題を解決するための手段】本発明は上記の課題を解
決するために以下のような手段を有している。
The present invention has the following means to solve the above problems.

【0010】請求項1記載の発明は、光ファイバの外周
にカーボン膜を有するハーメチック被覆光ファイバのカ
ーボン膜消失予測部分及びその周辺にワニスコート層を
施した後、前記カーボン膜および前記ワニスコート層が
部分的に消失した光ファイバにカーボン膜を再形成する
光ファイバの部分的ハーメチック被覆方法において、前
記カーボン膜とワニスコート層が消失した部分の両側の
ワニスコート層を所定長さ除去した後に、前記カーボン
膜が除去された光ファイバにレーザ光を照射して温度を
高めた後、原料ガスを接触させて熱CVD法によりカー
ボン膜を再形成することを特徴とする。
According to the first aspect of the present invention, a varnish coat layer is applied to a portion where carbon film disappearance is predicted in a hermetically coated optical fiber having a carbon film on the outer periphery of the optical fiber and its periphery, and then the carbon film and the varnish coat layer are provided. In the partially hermetic coating method of the optical fiber to re-form a carbon film on the partially disappeared optical fiber, after removing a predetermined length of the varnish coat layer on both sides of the part where the carbon film and the varnish coat layer have disappeared, The optical fiber from which the carbon film has been removed is irradiated with laser light to raise the temperature, and then a raw material gas is brought into contact with the optical fiber to re-form the carbon film by a thermal CVD method.

【0011】請求項2記載の発明は、前記カーボン膜が
消失した光ファイバの両側のワニスコート層の所定長さ
除去は、カーボン膜を再形成する際のレーザ光より低い
出力のレーザ光を照射して行うことを特徴とする。
According to a second aspect of the present invention, the varnish coat layer on both sides of the optical fiber from which the carbon film has disappeared is removed by a predetermined length by irradiating a laser beam having an output lower than that of the laser beam for reforming the carbon film. It is characterized by doing.

【0012】[0012]

【作用】本発明のうち請求項1の光ファイバの部分的ハ
ーメチック被覆方法によれば、カーボン膜が消失した光
ファイバにカーボン膜を再形成する際に、カーボン膜と
ワニスコート層が消失した部分の両側のワニスコート層
を所定長さ除去しているので、カーボン膜の形成の反応
初期にレーザ光の照射によるワニスコート層の分解によ
り反応生成物、未反応残留物が生じなくなり、その部分
のカーボン小片板の堆積状態が改善される。
According to the partially hermetic coating method of the optical fiber of the first aspect of the present invention, the portion where the carbon film and the varnish coat layer disappear when the carbon film is re-formed on the optical fiber where the carbon film disappears. Since the varnish coat layer on both sides of the varnish coat is removed by a predetermined length, the reaction product and unreacted residue are not generated due to the decomposition of the varnish coat layer by the irradiation of laser light in the initial reaction of the formation of the carbon film, The deposition state of the carbon small piece plate is improved.

【0013】すなわち、ワニスコート層の分解により反
応生成物、未反応残留物が生じなくなることによって、
融着接続部分の再生カーボン小片板が基盤に対し水平あ
るいは水平に近くに堆積する。それ以外の乱雑方位のカ
ーボン小片板は、CVD反応が起こっている雰囲気下で
は堆積しにくくなる。従って、カーボン膜を構成してい
るカーボン小片板の配向性が改善され、疲労特性、初期
強度等が著しく向上する。
That is, since the reaction product and the unreacted residue are not generated due to the decomposition of the varnish coat layer,
Recycled carbon strips at the fusion splice deposit horizontally or near horizontally to the substrate. It is difficult to deposit carbon strips having other random orientations in the atmosphere where the CVD reaction is occurring. Therefore, the orientation of the carbon small piece plate constituting the carbon film is improved, and the fatigue characteristics, initial strength, etc. are remarkably improved.

【0014】本発明のうち請求項2の光ファイバの部分
的ハーメチック被覆方法によれば、カーボン膜が消失し
た光ファイバの両側のワニスコート層の所定長さ除去
は、カーボン膜を再形成する際のレーザ光より低い出力
のレーザ光を照射して行うので、ワニスコート層が燃焼
によって分解せずに熱分解して揮発するので反応生成
物、未反応残留物が生じない。また、カーボン膜が消失
した光ファイバの部分に高い出力のレーザ光を照射する
ことがないので光ファイバをレーザ光で晒して損傷させ
ることがない。
According to the partially hermetic coating method of the optical fiber of the second aspect of the present invention, the varnish coat layer on both sides of the optical fiber where the carbon film has disappeared is removed by a predetermined length when the carbon film is re-formed. Since the varnish coat layer is thermally decomposed and volatilized without being decomposed by combustion, a reaction product and an unreacted residue are not generated. Further, since the high-power laser beam is not applied to the portion of the optical fiber where the carbon film has disappeared, the optical fiber is not exposed to the laser beam and damaged.

【0015】[0015]

【発明の実施の形態】以下に本発明を実施例により詳細
に説明する。 (実施例1)図1ないし図4に本発明の光ファイバの部
分的ハーメチック被覆方法の一実施例を示す。図1ない
し図4において10はハーメチック被覆光ファイバであ
る。このハーメチック被覆光ファイバ10は、外径12
5μmの石英系光ファイバ11の外周に、カーボン膜の
被覆12、UV樹脂皮膜層13が順次設けられている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to examples. (Embodiment 1) FIGS. 1 to 4 show an embodiment of a method for partially hermetically coating an optical fiber according to the present invention. 1 to 4, reference numeral 10 is a hermetically coated optical fiber. The hermetically coated optical fiber 10 has an outer diameter of 12
A carbon film coating 12 and a UV resin coating layer 13 are sequentially provided on the outer periphery of a 5 μm silica optical fiber 11.

【0016】上記ハーメチック被覆光ファイバ10の端
末をトリクレン溶液に1〜2分程度浸してその先端のU
V樹脂皮膜層を、例えば15mm程度除去してカーボン
膜12を露出させる。カーボン膜12が露出した部分を
ウレタン系絶縁ワニス希釈液に漬けた後むらの生じない
ようにウレタン系絶縁ワニスを塗布し、ヒートガンでウ
レタン系絶縁ワニスを乾燥させる。この作業を3回程繰
り返して50μm程度のワニスコート層14を図2
(イ)のように形成する。続いて2本の前記ワニスコー
ト層14を形成したハーメチック被覆光ファイバ10の
端末を図示していない融着接続機にそれぞれ対向させた
状態でセットして予備放電、融着放電を行ってハーメチ
ック被覆光ファイバ10の端面同士を図2(ロ)のよう
に融着接続する。
The end of the hermetically coated optical fiber 10 is dipped in a trichlene solution for about 1 to 2 minutes and U at the tip thereof is immersed.
The carbon film 12 is exposed by removing the V resin film layer by, for example, about 15 mm. After immersing the exposed portion of the carbon film 12 in a urethane insulating varnish diluting solution, a urethane insulating varnish is applied so as to prevent unevenness, and the urethane insulating varnish is dried with a heat gun. This operation is repeated about 3 times to form the varnish coat layer 14 of about 50 μm in FIG.
It is formed as shown in (a). Subsequently, the ends of the hermetically coated optical fibers 10 having the two varnish coat layers 14 formed thereon are set facing each other to a fusion splicer (not shown), and preliminary discharge and fusion discharge are performed to perform hermetic coating. The end faces of the optical fiber 10 are fusion-spliced as shown in FIG.

【0017】融着時の放電で融着接続部15を含むその
周囲は、約4〜5mm程度ワニスコート層14およびカ
ーボン膜の被覆12が消失して石英系の光ファイバ11
が露出する。この露出した融着接続部15を含む光ファ
イバ11を硫弗酸溶液に浸漬させて約3分間エッチング
した後、アセトンで洗浄して乾燥させ、図示していない
カーボン膜再形成装置にセットする。カーボン膜再形成
装置にセットされたハーメチック被覆光ファイバ10の
融着接続部15を含む露出した光ファイバ11に、図3
に示すようにカーボン膜再形成時に使用する所定のレー
ザより低い2/3の出力のレーザ光を照射しながら長手
方向にハーメチック被覆光ファイバ10を走査してカー
ボン膜12が融着時の放電で消失している際から図2
(ハ)に示すように両側約1〜2mm程度ワニスコート
層14を熱分解させて除去しカーボン膜12を露出させ
た。
The varnish coat layer 14 and the carbon film coating 12 disappear about 4 to 5 mm around the periphery including the fusion splicing portion 15 due to the discharge at the time of fusion, and the silica-based optical fiber 11 is removed.
Is exposed. The optical fiber 11 including the exposed fusion spliced portion 15 is dipped in a sulfuric hydrofluoric acid solution, etched for about 3 minutes, washed with acetone, dried, and set in a carbon film reforming apparatus (not shown). The exposed optical fiber 11 including the fusion splicing portion 15 of the hermetically coated optical fiber 10 set in the carbon film reforming apparatus is shown in FIG.
As shown in (1), the hermetically coated optical fiber 10 is scanned in the longitudinal direction while irradiating a laser beam having an output of 2/3, which is lower than a predetermined laser used for reforming the carbon film, and the carbon film 12 is discharged by fusion. Figure 2 from the time it disappears
As shown in (c), the varnish coat layer 14 was thermally decomposed and removed by about 1 to 2 mm on both sides to expose the carbon film 12.

【0018】その後、図4に示すように前記のワニスコ
ート層消失部16及び露出した融着接続部15を含む光
ファイバ11をカーボン膜再形成時の所定の出力のレー
ザを照射しながら原料ガス導入管17Aより原料ガス1
8を導入してカーボン膜19を再形成し、図2(ニ)に
示すように光ファイバ11に部分的にハーメチック被覆
20を設けた。図4において17Bは排気管を示す。上
記の実施例で得られた融着接続部15のハーメチック被
覆20を有するハーメチック被覆光ファイバ10Aの特
性を表1に示す。
Thereafter, as shown in FIG. 4, the optical fiber 11 including the vanish coat layer disappearing portion 16 and the exposed fusion splicing portion 15 is irradiated with a laser having a predetermined output when the carbon film is reformed, and the raw material gas is irradiated. Raw material gas 1 from the inlet pipe 17A
8 was introduced to reform the carbon film 19, and the optical fiber 11 was partially provided with the hermetic coating 20 as shown in FIG. In FIG. 4, 17B shows an exhaust pipe. Table 1 shows the characteristics of the hermetically coated optical fiber 10A having the hermetic coating 20 of the fusion splicing portion 15 obtained in the above-mentioned embodiment.

【0019】(実施例2)実施例1と同様に前処理及び
融着接続を行い、融着接続部15を含む光ファイバ11
を硫弗酸溶液に浸漬させて実施例1と同様に約3分間エ
ッチングした後カーボン膜再生用の装置にセットする。
カーボン膜形成装置にセットされたハーメチック被覆光
ファイバ10の融着接続部15を含む露出した光ファイ
バ11に図3に示すようにカーボン膜再形成時の使用す
るレーザの3/5の出力でレーザ光を照射しながら長手
方向にハーメチック被覆光ファイバ10を走査してカー
ボン膜の被覆12が融着時の放電で消失している際から
図2(ハ)に示すように両側約1〜2mm程度ワニスコ
ート層14を熱分解させて除去しカーボン膜12を露出
させた。その後、実施例1と同様の処理を行いカーボン
膜19Aを再形成して図2(ニ)に示すように光ファイ
バ11に部分的にハーメチック被覆20Aを設けた。上
記の実施例で得られた融着接続部15のハーメチック被
覆20Aを有するハーメチック被覆光ファイバ10Bの
特性を表1に示す。
(Embodiment 2) Pretreatment and fusion splicing are performed in the same manner as in Embodiment 1, and the optical fiber 11 including the fusion splicing portion 15 is provided.
Was immersed in a sulfuric hydrofluoric acid solution, etched for about 3 minutes in the same manner as in Example 1, and then set in an apparatus for regenerating a carbon film.
As shown in FIG. 3, the exposed optical fiber 11 including the fusion splicing portion 15 of the hermetically coated optical fiber 10 set in the carbon film forming apparatus is used as a laser at the output of 3/5 of the laser used for reforming the carbon film From the time when the hermetically coated optical fiber 10 is scanned in the longitudinal direction while irradiating light and the coating 12 of the carbon film disappears due to the discharge at the time of fusion, as shown in FIG. The varnish coat layer 14 was thermally decomposed and removed to expose the carbon film 12. Then, the same treatment as in Example 1 was performed to re-form the carbon film 19A, and the optical fiber 11 was partially provided with the hermetic coating 20A as shown in FIG. Table 1 shows the characteristics of the hermetically coated optical fiber 10B having the hermetically coated 20A of the fusion spliced portion 15 obtained in the above-mentioned embodiment.

【0020】(実施例3)実施例1と同様に前処理及び
融着接続を行い、融着接続部15を含む光ファイバ11
を硫弗酸溶液に浸漬させて実施例1と同様に約3分間エ
ッチングした後カーボン膜再形成装置にセットする。カ
ーボン膜形成装置にセットされたハーメチック被覆光フ
ァイバ10の融着接続部15を含む露出した光ファイバ
11に図3に示すようにカーボン膜再形成時の所定の1
/2の出力でレーザ光を照射しながら長手方向にハーメ
チック被覆光ファイバ10を2度走査してカーボン膜1
2が融着時の放電で消滅している際から図2(ハ)に示
すように両側約1〜2mm程度ワニスコート層14を熱
分解させて除去しカーボン膜12を露出させた。その
後、実施例1と同様の処理を行いカーボン膜19Bを再
形成して図2(ニ)に示すように光ファイバ11に部分
的にハーメチック被覆20Bを設けた。上記の実施例で
得られた融着接続部15のハーメチック被覆20Bを有
するハーメチック被覆光ファイバ10Cの特性を表1に
示す。
(Embodiment 3) Pretreatment and fusion splicing are performed in the same manner as in Embodiment 1, and the optical fiber 11 including the fusion splicing portion 15 is provided.
Was immersed in a sulfuric hydrofluoric acid solution and etched for about 3 minutes in the same manner as in Example 1, and then set in a carbon film reforming apparatus. As shown in FIG. 3, the exposed optical fiber 11 including the fusion splicing portion 15 of the hermetically coated optical fiber 10 set in the carbon film forming apparatus is provided with a predetermined one when the carbon film is re-formed.
The carbon film 1 is obtained by scanning the hermetically coated optical fiber 10 twice in the longitudinal direction while irradiating the laser beam with an output of 1/2.
As shown in FIG. 2C, the varnish coat layer 14 was thermally decomposed and removed to remove the carbon film 12 from the time when 2 disappeared due to the electric discharge during fusion bonding. After that, the same treatment as in Example 1 was performed to re-form the carbon film 19B, and the optical fiber 11 was partially provided with the hermetic coating 20B as shown in FIG. Table 1 shows the characteristics of the hermetically coated optical fiber 10C having the hermetically coated 20B of the fusion spliced portion 15 obtained in the above-mentioned embodiment.

【0021】(比較例)比較のために、実施例1と同様
に前処理及び融着接続を行い、融着接続部15を含む光
ファイバ11を硫弗酸溶液に浸漬させて実施例1と同様
に約3分間エッチングした後カーボン膜再形成の装置に
セットして、実施例1の図2(ハ)に示す工程を除い
て、直ちに、融着接続部15を含む光ファイバ11をカ
ーボン膜再形成時の所定のレーザ出力で図5に示すよう
に照射しながら原料ガス導入管17Aより原料ガス18
を導入して図6に示すようにカーボン膜19Cを再形成
して光ファイバ11に部分的にハーメチック被覆30を
設けた。上記の比較例で得られた融着接続部15のハー
メチック被覆30を有するハーメチック被覆光ファイバ
40の特性を表1に示す。
(Comparative Example) For comparison, pretreatment and fusion splicing were performed in the same manner as in Example 1, and the optical fiber 11 including the fusion splicing portion 15 was dipped in a sulfuric hydrofluoric acid solution to obtain Example 1. Similarly, after etching for about 3 minutes, the optical fiber 11 including the fusion splicing portion 15 was immediately set to a carbon film by setting in a carbon film reforming apparatus, except for the step shown in FIG. While irradiating with a predetermined laser output at the time of reforming as shown in FIG.
Was introduced to re-form the carbon film 19C as shown in FIG. 6 to partially provide the optical fiber 11 with the hermetic coating 30. Table 1 shows the characteristics of the hermetically coated optical fiber 40 having the hermetic coating 30 of the fusion splicing portion 15 obtained in the above comparative example.

【0022】[0022]

【表1】 注)特性測定法について 引張強度:条長40cmの引張試験、引張速度:5%/分、サンプル数 =50 動疲労係数:条長40cm、引張速度:O.5,1.0,5,10,50%/分、サンプル数 =20から求めた。[Table 1] Note) About property measurement method Tensile strength: Tensile test with 40 cm length, Tensile speed: 5% / min, Number of samples = 50 Dynamic fatigue coefficient: 40 cm length, Tensile speed: O.5,1.0,5,10,50 % / Min, sample number = 20.

【0023】上記、実施例1〜3および比較例の特性を
示す表1により引張強度50%値および動疲労係数は、
比較例に比べて実施例1〜3が著しく優れていることが
判る。また、その外観を走査型電子顕微鏡で観察したと
ころ比較例で得たものはカーボン膜表面に細かいツブが
見られ、カーボン膜再形成部分の両際はカーボン膜の乱
れがあり、一部に表面の亀裂が生じているものもあっ
た。しかし、実施例1〜3ではこの様なカーボン膜の乱
れもなく、一様な膜が形成されていた。
According to Table 1 showing the characteristics of Examples 1 to 3 and Comparative Example, the 50% tensile strength value and the dynamic fatigue coefficient are as follows:
It can be seen that Examples 1 to 3 are remarkably superior to the Comparative Example. In addition, when the appearance was observed with a scanning electron microscope, the one obtained in the comparative example had fine pits on the carbon film surface, and the carbon film was disturbed on both sides of the carbon film reforming part, and the surface was partially Some of them had cracks. However, in Examples 1 to 3, there was no such disorder of the carbon film, and a uniform film was formed.

【0024】[0024]

【発明の効果】以上述べたように、本発明のうち請求項
1の光ファイバの部分的ハーメチック被覆方法によれ
ば、カーボン膜が消失した光ファイバにカーボン膜を再
形成する際に、カーボン膜とワニスコート層が消失した
部分の両側のワニスコート層を所定長さ除去しているの
で、カーボン膜の形成時の反応初期にレーザ光の照射に
よるワニスコート層の分解により生じる反応生成物、未
反応残留物が生じなくなり、その部分のカーボン小片板
の堆積状態が改善され疲労特性、初期強度等が著しく向
上する。
As described above, according to the partially hermetic coating method for an optical fiber of claim 1 of the present invention, when the carbon film is re-formed on the optical fiber from which the carbon film has disappeared, the carbon film Since the varnish coat layer on both sides of the part where the varnish coat layer has disappeared is removed by a predetermined length, the reaction product generated by the decomposition of the varnish coat layer by the irradiation of the laser beam during the initial reaction when forming the carbon film, The reaction residue does not occur, the deposition state of the carbon small piece plate in that portion is improved, and the fatigue characteristics, initial strength, etc. are remarkably improved.

【0025】本発明のうち請求項2の光ファイバの部分
的ハーメチック被覆方法によれば、カーボン膜が消失し
た光ファイバの両側のワニスコート層の所定長さ除去
は、カーボン膜を再形成する際のレーザ光より低い出力
のレーザ光を照射して行うので、ワニスコート層が燃焼
によって分解せずに熱分解して揮発するので反応生成
物、未反応残留物が生じない。また、カーボン膜が消失
した光ファイバの部分に高い出力のレーザ光を照射する
ことがないので光ファイバをレーザ光で晒して損傷させ
ることがなくなる。
According to the partially hermetic coating method of the optical fiber of the second aspect of the present invention, the varnish coat layer on both sides of the optical fiber where the carbon film has disappeared is removed by a predetermined length when the carbon film is re-formed. Since the varnish coat layer is thermally decomposed and volatilized without being decomposed by combustion, a reaction product and an unreacted residue are not generated. In addition, since the high-power laser beam is not applied to the portion of the optical fiber where the carbon film has disappeared, the optical fiber is not exposed to the laser beam and damaged.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に使用されるハーメチック被覆光ファイ
バの断面図である。
FIG. 1 is a cross-sectional view of a hermetically coated optical fiber used in the present invention.

【図2】本発明の光ファイバの部分的ハーメチック被覆
方法の工程の一実施例を示す説明図である。
FIG. 2 is an explanatory view showing an example of steps of the method for partially hermetically coating an optical fiber according to the present invention.

【図3】本発明の光ファイバの部分的ハーメチック被覆
方法の工程の一部を示す説明図である。
FIG. 3 is an explanatory view showing a part of the steps of the method for partially hermetically coating an optical fiber according to the present invention.

【図4】本発明の光ファイバの部分的ハーメチック被覆
方法の工程の他の一部を示す説明図である。
FIG. 4 is an explanatory view showing another part of the steps of the method for partially hermetically coating an optical fiber according to the present invention.

【図5】光ファイバの部分的ハーメチック被覆方法の比
較例の工程の一部を示す説明図である。
FIG. 5 is an explanatory view showing a part of the steps of a comparative example of the partial hermetic coating method for an optical fiber.

【図6】光ファイバの部分的ハーメチック被覆方法の比
較例の工程の他の一部を示す説明図である。
FIG. 6 is an explanatory diagram showing another part of the process of the comparative example of the partial hermetic coating method for an optical fiber.

【符号の説明】 10 ハーメチック被覆光ファイバ 11 光ファイバ 12 カーボン膜の被覆 13 UV樹脂被覆層 14 ワニスコート層 15 融着接続部 16 ワニスコート層消失部 18 原料ガス 19 再形成するカーボン膜 19A 再形成するカーボン膜 19B 再形成するカーボン膜 20 ハーメチック被覆 20A ハーメチック被覆 20B ハーメチック被覆[Description of Reference Signs] 10 Hermetically-coated optical fiber 11 Optical fiber 12 Carbon film coating 13 UV resin coating layer 14 Varnish coat layer 15 Fusion splicing portion 16 Varnish coat layer disappearing portion 18 Raw material gas 19 Reforming carbon film 19A Reforming Carbon film to be formed 19B Carbon film to be reformed 20 Hermetic coating 20A Hermetic coating 20B Hermetic coating

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバの外周にカーボン膜を有する
ハーメチック被覆光ファイバのカーボン膜消失予測部分
及びその周辺にワニスコート層を施した後、前記カーボ
ン膜および前記ワニスコート層が部分的に消失した光フ
ァイバにカーボン膜を再形成する光ファイバの部分的ハ
ーメチック被覆方法において、前記カーボン膜とワニス
コート層が消失した部分の両側のワニスコート層を所定
長さ除去した後に、前記カーボン膜が除去された光ファ
イバにレーザ光を照射して温度を高めた後、原料ガスを
接触させて熱CVD法によりカーボン膜を再形成するこ
とを特徴とする光ファイバの部分的ハーメチック被覆方
法。
1. A carbon film and a varnish coat layer partially disappeared after a varnish coat layer was applied to a portion where the carbon film disappearance was predicted in a hermetically coated optical fiber having a carbon film on the outer circumference of the optical fiber and its periphery. In a partial hermetic coating method of an optical fiber for reforming a carbon film on an optical fiber, after removing a predetermined length of the varnish coat layer on both sides of the part where the carbon film and the varnish coat layer have disappeared, the carbon film is removed. A laser beam is applied to the optical fiber to raise its temperature, and then a raw material gas is brought into contact with the optical fiber to re-form a carbon film by a thermal CVD method.
【請求項2】 前記カーボン膜が消失した光ファイバの
両側のワニスコート層の所定長さの除去は、カーボン膜
を再形成する際のレーザ光より低い出力のレーザ光を照
射して行うことを特徴とする請求項1記載の光ファイバ
の部分的ハーメチック被覆方法。
2. The removal of a predetermined length of the varnish coat layer on both sides of the optical fiber from which the carbon film has disappeared is performed by irradiating a laser beam having a lower output than the laser beam used for reforming the carbon film. A method of partially hermetically coating an optical fiber according to claim 1.
JP7286921A 1995-11-06 1995-11-06 Partially hermetic coating method for optical fiber Pending JPH09132438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7286921A JPH09132438A (en) 1995-11-06 1995-11-06 Partially hermetic coating method for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7286921A JPH09132438A (en) 1995-11-06 1995-11-06 Partially hermetic coating method for optical fiber

Publications (1)

Publication Number Publication Date
JPH09132438A true JPH09132438A (en) 1997-05-20

Family

ID=17710694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7286921A Pending JPH09132438A (en) 1995-11-06 1995-11-06 Partially hermetic coating method for optical fiber

Country Status (1)

Country Link
JP (1) JPH09132438A (en)

Similar Documents

Publication Publication Date Title
EP0401324B1 (en) High strength optical fiber splice
JP4479010B2 (en) Semiconductor substrate heat treatment method
US4958905A (en) Method and apparatus for forming high strength splices in optical fibers
EP0462893B1 (en) Method for splicing and reinforcing carbon coated optical fibers
JP2797335B2 (en) Splicing method of hermetic coated optical fiber
JPS6325239A (en) Glass core using rod-in-tube procedure and manufacture of optical fiber with clad
JPH09132438A (en) Partially hermetic coating method for optical fiber
JPS58104034A (en) Preparation of optical fiber having high strength
JP3074224B2 (en) Carbon fiber hermetic coating method for optical fiber
US5623570A (en) Method of fusion-splicing optical fiber
US6612006B2 (en) Apparatus for extracting a fiber from a fiber-ferrule
JP2943469B2 (en) Processing method for fusion splicing terminal of optical fiber
JP2999069B2 (en) Manufacturing method of optical fiber coupler
JPS58156546A (en) Production of high-strength optical fiber
JP4058626B2 (en) Optical fiber fusion splicing method and optical fiber
JPH06247748A (en) Production of hermetically-coated optical fiber
JPH05227629A (en) Method for finishing end of insulated cable
JP3132867B2 (en) Recoating method of carbon coated optical fiber
JP2001221921A (en) Method for processing end face of optical fiber
JPH06247747A (en) Production of carbon hermetically-coated optical fiber
JPH04357141A (en) Hermetic coating for optical fiber
JPH06252133A (en) Manufacture of semiconductor device
JPH0157884B2 (en)
JPH0527135A (en) Method for connecting coated optical fiber
JPH05246741A (en) Method for recoating carbon-coated optical fiber