JPH06247747A - Production of carbon hermetically-coated optical fiber - Google Patents

Production of carbon hermetically-coated optical fiber

Info

Publication number
JPH06247747A
JPH06247747A JP5035254A JP3525493A JPH06247747A JP H06247747 A JPH06247747 A JP H06247747A JP 5035254 A JP5035254 A JP 5035254A JP 3525493 A JP3525493 A JP 3525493A JP H06247747 A JPH06247747 A JP H06247747A
Authority
JP
Japan
Prior art keywords
optical fiber
carbon
gas
hydrogen
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5035254A
Other languages
Japanese (ja)
Inventor
Michihiko Yanagisawa
道彦 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5035254A priority Critical patent/JPH06247747A/en
Publication of JPH06247747A publication Critical patent/JPH06247747A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/22Deposition from the vapour phase
    • C03C25/223Deposition from the vapour phase by chemical vapour deposition or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings
    • C03C25/1061Inorganic coatings
    • C03C25/1062Carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To easily prevent a lowering of mechanical strength by applying a carbon hermetic coat on the surface of an optical fiber by plasma CVD with a gaseous mixture of hydrocarbons and hydrogen as the raw gas. CONSTITUTION:An evacuating pipeline 2, raw gas feed pipeline 3, ethylene source 4, hydrogen source 5, argon source 6, spiral electrode 7 and matching circuit 9 are provided on a reaction vessel 1 to obtain a carbon hermetically- coated optical fiber. A high-frequency output of 60-110 W and about 13.56 MHz is then impressed on the electrode 7, the vessel 1 is evacuated by a vacuum pump, and plasma 10 is produced. A gaseous mixture of hydrocarbons (e.g. ethylene) and hydrogen is introduced into the plasma to control the vessel to 0.08-0.4Torr, and optical fiber 11 is passed through the plasma to apply a carbon hermetic coat on the surface, and a carbon hermetically-coated optical fiber 11a is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラズマCVD法を用
いて光ファイバの表面にカーボンハーメチック被覆を施
してカーボンハーメチック被覆光ファイバを製造するカ
ーボン被覆光ファイバの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon-coated optical fiber in which the surface of the optical fiber is coated with a carbon hermetic coating by a plasma CVD method to produce a carbon-hermetic coated optical fiber.

【0002】[0002]

【従来の技術】一般的な光ファイバは石英ガラス製であ
って、その製造或いは取扱い時に各種の治具との接触或
いは空気中のダスト等によって光ファイバ表面に微小な
傷が容易に生じる。光ファイバの表面に傷があると、環
境中の水分がこの傷に侵入して傷を広げ(疲労現象)、
ファイバ強度の著しい劣化を招く。
2. Description of the Related Art A general optical fiber is made of quartz glass, and when it is manufactured or handled, minute scratches easily occur on the surface of the optical fiber due to contact with various jigs or dust in the air. If there is a scratch on the surface of the optical fiber, moisture in the environment penetrates into this scratch and spreads it (fatigue phenomenon),
This causes a significant deterioration in fiber strength.

【0003】このような現象を防止し、光ファイバ強度
の長期信頼性を高めるため、光ファイバの表面に水分を
透過させないカーボンハーメチック被覆を形成する方法
が開発されている。その方法として、以下のものが提案
されている。
In order to prevent such a phenomenon and increase the long-term reliability of the strength of the optical fiber, a method of forming a carbon hermetic coating that does not allow water to pass through has been developed on the surface of the optical fiber. The following methods have been proposed as the method.

【0004】(イ)紡糸直後の残留熱を利用して、光フ
ァイバの表面で炭化水素系原料ガスを熱分解させること
によりカーボンハーメチック被覆を生成させる方法。
(A) A method for producing a carbon hermetic coating by thermally decomposing a hydrocarbon-based raw material gas on the surface of an optical fiber by utilizing residual heat immediately after spinning.

【0005】(ロ)炭酸ガスレーザを照射して光ファイ
バを加熱し、加熱された光ファイバの周囲に炭化水素系
原料ガスを供給し、(イ)と同じ原理で熱分解カーボン
を堆積させカーボンハーメチック被覆を生成させる方
法。
(B) A carbon dioxide laser is irradiated to heat the optical fiber, a hydrocarbon-based source gas is supplied around the heated optical fiber, and pyrolytic carbon is deposited on the basis of the same principle as in (a). A method of producing a coating.

【0006】(ハ)光ファイバの周囲にプラズマを発生
させ、その中に炭化水素系原料ガスを供給して原料分子
を活性化させてカーボンハーメチック被覆を形成させる
方法(プラズマCVD法)。
(C) A method in which plasma is generated around the optical fiber and a hydrocarbon-based source gas is supplied to activate the source molecules to form a carbon hermetic coating (plasma CVD method).

【0007】実際に長尺のカーボンハーメチック被覆光
ファイバを製作するためには、成膜速度や機械特性の劣
化防止の点で(イ)の方法が採用されている。
In order to actually manufacture a long carbon hermetically coated optical fiber, the method (a) is adopted from the viewpoint of preventing the deterioration of the film forming speed and mechanical characteristics.

【0008】また、カーボンハーメチック被覆光ファイ
バの融着接続時においては、融着時の放電熱によってカ
ーボンハーメチック被覆が消失し、石英表面が露出す
る。この状態で放置しておくと融着部分は他の部分に比
べ信頼性(強度,疲労特性)が著しく劣化する。このよ
うな所への部分的なカーボンハーメチック被覆の形成に
は(ロ),(ハ)の方法が検討されている。
Further, during fusion splicing of carbon hermetically coated optical fibers, the carbon hermetic coating disappears due to discharge heat during fusion, and the quartz surface is exposed. If left untouched in this state, the fusion-bonded part will have much lower reliability (strength and fatigue characteristics) than other parts. Methods (b) and (c) have been studied for forming a partial carbon hermetic coating on such a place.

【0009】本発明は(ハ)を対象としているので、従
来のプラズマCVD法について、更に詳細に説明する。
従来のプラズマCVD法では、光ファイバをセットした
反応容器内を減圧状態に保ち、その中に設けられた電極
に直流あるいは交流電場を供給し、カーボンハーメチッ
ク被覆を施そうとする光ファイバの周囲にプラズマを発
生させ、この中に原料ガスを導入してカーボンハーメチ
ック被覆を形成する方法である。この場合、原料として
は、トルエン,ベンゼン等の炭化水素系有機溶剤等の液
体原料をアルゴン等の不活性ガスでバブリングして導入
する方法や、エチレン,メタン等の炭化水素系ガスをア
ルゴンで希釈し供給する方法が一般的に行われている。
Since the present invention is directed to (c), the conventional plasma CVD method will be described in more detail.
In the conventional plasma CVD method, the inside of the reaction vessel in which the optical fiber is set is kept in a depressurized state, a DC or AC electric field is supplied to the electrode provided therein, and a carbon hermetic coating is applied around the optical fiber. In this method, plasma is generated and a raw material gas is introduced into the plasma to form a carbon hermetic coating. In this case, as a raw material, a liquid raw material such as a hydrocarbon organic solvent such as toluene or benzene is bubbled with an inert gas such as argon and introduced, or a hydrocarbon type gas such as ethylene or methane is diluted with argon. Then, the method of supplying is generally used.

【0010】ところで、カーボンハーメチック被覆光フ
ァイバの機械特性は、その膜質に大きく左右される。膜
質としては、ポリエチレンに似た有機重合膜からグラフ
ァイト状炭素膜まで、巨視的には粉体から油状膜まで極
めて広範囲の膜質が現れる。これには膜中の水素含有量
が大きく関係していると考えられる。
By the way, the mechanical properties of the carbon hermetically coated optical fiber are greatly influenced by the film quality. As a film quality, a wide range of film quality appears from an organic polymer film similar to polyethylene to a graphite-like carbon film, and macroscopically from powder to oil film. It is considered that this is largely related to the hydrogen content in the film.

【0011】[0011]

【発明が解決しようとする課題】カーボンハーメチック
被覆に対して要求される疲労特性を備えるには、水素を
ほとんど含有しない被覆構造が望ましいが、プラズマC
VD法では電子衝撃によって脱離した水素イオンが再結
合してしまうため、所望の構造を持った膜を形成させる
のは困難である。印加するパワーを上げ、水素の再結合
を阻止する方法があるが、あまりパワーが大きいと光フ
ァイバが過剰に加熱され溶け落ちたりする場合があり満
足な効果は得られていない。
In order to provide the fatigue characteristics required for a carbon hermetic coating, a coating structure containing almost no hydrogen is desirable, but plasma C
In the VD method, hydrogen ions desorbed by electron impact are recombined, so that it is difficult to form a film having a desired structure. There is a method of increasing the applied power to prevent the recombination of hydrogen, but if the power is too large, the optical fiber may be excessively heated and melted down, and a satisfactory effect has not been obtained.

【0012】本発明の目的は、光ファイバに水素含有量
の少ないカーボンハーメチック被覆を容易に形成できる
カーボンハーメチック被覆光ファイバの製造方法を提供
することにある。
It is an object of the present invention to provide a method for producing a carbon hermetically coated optical fiber which can easily form a carbon hermetic coating having a low hydrogen content on the optical fiber.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成する本
発明の手段を説明すると、本発明はプラズマCVD法を
用いて光ファイバの表面にカーボンハーメチック被覆を
施してカーボンハーメチック被覆光ファイバを製造する
カーボンハーメチック被覆光ファイバの製造方法におい
て、原料ガスとして少なくとも炭化水素系ガスと水素ガ
スとの混合ガスを用いることを特徴とする。
Means for Solving the Problems To explain the means of the present invention for achieving the above object, the present invention uses a plasma CVD method to apply a carbon hermetic coating to the surface of an optical fiber to produce a carbon hermetic coated optical fiber. In the method for producing a carbon hermetically coated optical fiber, a mixed gas of at least a hydrocarbon gas and a hydrogen gas is used as a raw material gas.

【0014】[0014]

【作用】炭化水素系原料ガスから脱離した多量の水素ラ
ジカルは、水素分子として排気されるものと、カーボン
ハーメチック被覆表面の未結合手と再結合するものがあ
るが、本発明のように原料ガスとして少なくとも炭化水
素系ガスと水素ガスとの混合ガスを用いると、混合した
水素ガスから生じる多量の水素ラジカルが炭化水素系ガ
スから生じる水素ラジカルとすぐに結合してH2 分子を
形成し、排気される。即ち、導入された水素ラジカルに
は水素原子の引き抜き効果があり、これにより被覆中に
残留水素の極めて少ないカーボンハーメチック被覆を光
ファイバに施すことができる。
A large amount of hydrogen radicals desorbed from the hydrocarbon source gas are discharged as hydrogen molecules and some are recombined with dangling bonds on the surface of the carbon hermetic coating. When a mixed gas of at least a hydrocarbon-based gas and hydrogen gas is used as the gas, a large amount of hydrogen radicals generated from the mixed hydrogen gas are immediately combined with hydrogen radicals generated from the hydrocarbon-based gas to form H 2 molecules, Exhausted. That is, the introduced hydrogen radicals have the effect of abstracting hydrogen atoms, which allows the carbon fiber to be coated with a carbon hermetic coating having very little residual hydrogen in the coating.

【0015】[0015]

【実施例】図1は、本発明のカーボンハーメチック被覆
光ファイバの製造方法を実施する装置の一実施例を示し
たものである。図において、1は反応容器、2は反応容
器1内を真空引きする図示しない真空ポンプに接続する
ために反応容器1の下部に設けられている真空引き配
管、3は反応容器1に原料ガスを供給する原料ガス供給
配管、4は原料ガス供給配管3に接続されているエチレ
ンガス供給源、5は原料ガス供給配管3に接続されてい
る水素ガス供給源、6は原料ガス供給配管3に接続され
ているアルゴンガス供給源である。7は反応容器1内の
中央に同軸状に配置された螺旋状電極、8は螺旋状電極
7に高周波電圧をマッチング回路9を介して印加する高
周波発振器、10は螺旋状電極7に対する高周波電圧の
印加で反応容器1内に発生するプラズマ、11は反応容
器1内の螺旋状電極7の中央を通り抜けるとき原料ガス
が供給されているプラズマ10によりカーボンハーメチ
ック被覆が施されてカーボンハーメチック被覆光ファイ
バ11aとなる光ファイバである。
1 shows an embodiment of an apparatus for carrying out the method for producing a carbon hermetically coated optical fiber of the present invention. In the figure, 1 is a reaction vessel, 2 is a vacuum evacuation pipe provided in the lower part of the reaction vessel 1 for connecting to a vacuum pump (not shown) that evacuates the inside of the reaction vessel 1, and 3 is a source gas for the reaction vessel 1. Supplying source gas supply pipe, 4 is ethylene gas supply source connected to the source gas supply pipe 3, 5 is hydrogen gas supply source connected to the source gas supply pipe 3, and 6 is connecting to the source gas supply pipe 3. It is a source of argon gas. Reference numeral 7 is a spiral electrode coaxially arranged in the center of the reaction vessel 1, 8 is a high frequency oscillator for applying a high frequency voltage to the spiral electrode 7 through a matching circuit 9, and 10 is a high frequency voltage for the spiral electrode 7. The plasma generated in the reaction vessel 1 by the application of the voltage 11 is carbon hermetically coated by the plasma 10 to which the raw material gas is supplied when passing through the center of the spiral electrode 7 in the reaction vessel 1 and the carbon hermetically coated optical fiber 11a. Is an optical fiber.

【0016】本実施例では、螺旋状電極7に高周波電圧
を印加してプラズマ10を発生させ、このプラズマ10
中に炭化水素系ガスの一種であるエチレンガスに水素ガ
スを混合した混合ガスを導入し、このプラズマ10中に
光ファイバ11を通してその表面にカーボンハーメチッ
ク被覆を施し、カーボンハーメチック被覆光ファイバ1
1aを得た。
In the present embodiment, a high frequency voltage is applied to the spiral electrode 7 to generate plasma 10, and the plasma 10 is generated.
A mixed gas prepared by mixing hydrogen gas with ethylene gas, which is a kind of hydrocarbon-based gas, is introduced into the plasma 10, an optical fiber 11 is passed through the plasma 10, and a carbon hermetic coating is applied to the surface of the plasma 10.
1a was obtained.

【0017】この場合の条件は、次の通りである。高周
波出力は約60〜110 W、周波数は13.56 MHz である。反
応容器1内は図示しない真空ポンプで排気し、混合ガス
の真空度は約0.08〜0.4 Torrに調節した。原料ガスとし
ては、成膜速度に違いはあるものの炭化水素系ガスなら
ばエチレンガスの代りにメタンガス,アセチレンガス等
でもよい。また、ガス圧力(真空度)は2.0 Torrが上限
で、これを越えるとガス流量比を変えても密着のよい膜
は生成しにくい。
The conditions in this case are as follows. The high frequency output is about 60 to 110 W and the frequency is 13.56 MHz. The inside of the reaction vessel 1 was evacuated by a vacuum pump (not shown), and the degree of vacuum of the mixed gas was adjusted to about 0.08 to 0.4 Torr. As the raw material gas, methane gas, acetylene gas, or the like may be used instead of ethylene gas as long as it is a hydrocarbon gas, although there is a difference in the film forming rate. The upper limit of the gas pressure (vacuum degree) is 2.0 Torr, and if the gas pressure (vacuum degree) is exceeded, it is difficult to form a film with good adhesion even if the gas flow rate ratio is changed.

【0018】得られたカーボンハーメチック被覆光ファ
イバ11aは、次に樹脂被覆器に通しその外周に紫外線
硬化樹脂(以下、UV樹脂と称する。)を被覆した。
The carbon hermetically coated optical fiber 11a thus obtained was then passed through a resin coater and its outer periphery was coated with an ultraviolet curable resin (hereinafter referred to as UV resin).

【0019】その結果、サンプルとして、通信用のカー
ボンハーメチック被覆光ファイバ(光ファイバ外径125
μm,カーボン被覆厚1000オングストローム,UV樹脂
被覆外径250 μm)を得た。
As a result, as a sample, a carbon hermetically coated optical fiber for communication (optical fiber outer diameter 125
μm, carbon coating thickness 1000 Å, UV resin coating outer diameter 250 μm).

【0020】かくして製造されたUV樹脂被覆のカーボ
ンハーメチック被覆光ファイバを2本用意し、それぞれ
の先端でUV樹脂被覆を除去した後、アーク放電を利用
して融着接続した。融着接続部ではアーク放電により約
3mmにわたってカーボンハーメチック被覆が剥がれた。
Two UV-resin-coated carbon hermetically coated optical fibers thus prepared were prepared, the UV-resin coating was removed at their tips, and then fusion splicing was performed using arc discharge. At the fusion-bonded portion, the carbon hermetic coating was peeled off for about 3 mm by arc discharge.

【0021】この融着接続部を反応容器1の螺旋状電極
7内の中央にセットした。この場合、螺旋状電極7とし
ては、太さ1mmの電極用線材を内径約10mm,高さ約10mm
の螺旋状に成形したものを用いた。
This fusion spliced part was set in the center of the spiral electrode 7 of the reaction vessel 1. In this case, as the spiral electrode 7, an electrode wire having a thickness of 1 mm is used, which has an inner diameter of about 10 mm and a height of about 10 mm.
The spirally shaped product was used.

【0022】このような螺旋状電極7に高周波電圧を印
加してプラズマ10を発生させ、このプラズマ10中に
エチレンガスに水素ガスを混合した混合ガスを導入し、
このプラズマ10中で融着接続部の表面にカーボンハー
メチック被覆を施した。このときの成膜時間は約10秒で
あった。
A high frequency voltage is applied to the spiral electrode 7 to generate plasma 10, and a mixed gas of hydrogen gas mixed with ethylene gas is introduced into the plasma 10.
In this plasma 10, the surface of the fusion spliced portion was coated with carbon hermetic. The film formation time at this time was about 10 seconds.

【0023】得られたカーボンハーメチック被覆付の融
着接続部のサンプルを電子顕微鏡で観察したところ、再
被覆したカーボンハーメチック被覆の厚みは100 〜300
nmであった。また、カーボンハーメチック被覆の表面
は、凹凸もほとんどなく平滑であった。
When the sample of the fusion spliced portion with the carbon hermetic coating thus obtained was observed with an electron microscope, the thickness of the re-coated carbon hermetic coating was 100 to 300.
was nm. Further, the surface of the carbon hermetic coating was smooth with almost no unevenness.

【0024】このようにして作製したサンプルを引張試
験で破断強度を調べた。比較例として、エチレンだけを
原料とし他のパラメータを同一に保った。また、水の透
過防止特性を調べるため湿度100 %,温度80℃の状態に
100 時間放置(湿熱試験)した後の破断強度も調査し
た。これらの結果を表1に示す。
The breaking strength of the sample thus produced was examined by a tensile test. As a comparative example, only ethylene was used as a raw material and other parameters were kept the same. In addition, in order to investigate the water permeation prevention property, the humidity was set to 100% and the temperature was set to 80 ° C.
The breaking strength after leaving for 100 hours (wet heat test) was also investigated. The results are shown in Table 1.

【0025】[0025]

【表1】 この結果からエチレンガスに水素ガスを混合した混合ガ
スを原料ガスとしたカーボンハーメチック被覆は、水素
ガスを混合しないエチレンガスを原料ガスとしたカーボ
ンハーメチック被覆に比べて水分の透過防止特性が優れ
ていることが判明した。
[Table 1] From these results, the carbon hermetic coating using a mixed gas of hydrogen gas mixed with ethylene gas as a raw material gas is superior in moisture permeation prevention property to the carbon hermetic coating using a raw material gas of ethylene gas not mixed with hydrogen gas. It has been found.

【0026】[0026]

【発明の効果】以上説明したように本発明に係るカーボ
ンハーメチック被覆光ファイバの製造方法では、原料ガ
スとして少なくとも炭化水素系ガスと水素ガスとの混合
ガスを用いたので、混合した水素ガスから生じる多量の
水素ラジカルが炭化水素系ガスから生じる水素ラジカル
とすぐに結合してH2 分子を形成し、即ち、導入された
水素ラジカルに水素原子の引き抜き効果があり、これに
より被覆中に残留水素の極めて少ない緻密なカーボンハ
ーメチック被覆を容易に光ファイバに施すことができ
る。このため本発明により得られるカーボンハーメチッ
ク被覆光ファイバによれば、水分が光ファイバの表面に
及ぶことがないため、該光ファイバの機械的強度の劣化
を良好に防ぐことができる。
As described above, in the method for producing a carbon hermetically coated optical fiber according to the present invention, since a mixed gas of at least a hydrocarbon gas and a hydrogen gas is used as a raw material gas, it is produced from the mixed hydrogen gas. A large amount of hydrogen radicals immediately combine with the hydrogen radicals generated from the hydrocarbon-based gas to form H 2 molecules, that is, the introduced hydrogen radicals have an effect of abstracting hydrogen atoms, which causes residual hydrogen in the coating. Very few dense carbon hermetic coatings can be easily applied to optical fibers. Therefore, according to the carbon hermetically coated optical fiber obtained by the present invention, moisture does not reach the surface of the optical fiber, and thus the deterioration of the mechanical strength of the optical fiber can be favorably prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るカーボンハーメチック被覆光ファ
イバの製造方法を実施する装置の一例を示す縦断面図で
ある。
FIG. 1 is a longitudinal sectional view showing an example of an apparatus for carrying out a method for producing a carbon hermetically coated optical fiber according to the present invention.

【符号の説明】[Explanation of symbols]

1 反応容器 2 真空引き配管 3 原料ガス供給配管 4 エチレンガス供給源 5 水素ガス供給源 6 アルゴンガス供給源 7 螺旋状電極 8 高周波発振器 9 マッチング回路 10 プラズマ 11 光ファイバ 11a カーボンハーメチック被覆光ファイバ 1 Reaction Vessel 2 Vacuum Evacuation Pipe 3 Raw Material Gas Supply Pipe 4 Ethylene Gas Supply Source 5 Hydrogen Gas Supply Source 6 Argon Gas Supply Source 7 Spiral Electrode 8 High Frequency Oscillator 9 Matching Circuit 10 Plasma 11 Optical Fiber 11a Carbon Hermetically Coated Optical Fiber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 プラズマCVD法を用いて光ファイバの
表面にカーボンハーメチック被覆を施してカーボンハー
メチック被覆光ファイバを製造するカーボン被覆光ファ
イバの製造方法において、 原料ガスとして少なくとも炭化水素系ガスと水素ガスと
の混合ガスを用いることを特徴とするカーボンハーメチ
ック被覆光ファイバの製造方法。
1. A method for producing a carbon-coated optical fiber in which a carbon hermetic coating is applied to the surface of the optical fiber by a plasma CVD method to produce a carbon-hermetically coated optical fiber, wherein at least a hydrocarbon gas and a hydrogen gas are used as raw material gases. A method for producing a carbon hermetically coated optical fiber, which comprises using a mixed gas of
JP5035254A 1993-02-24 1993-02-24 Production of carbon hermetically-coated optical fiber Pending JPH06247747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5035254A JPH06247747A (en) 1993-02-24 1993-02-24 Production of carbon hermetically-coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5035254A JPH06247747A (en) 1993-02-24 1993-02-24 Production of carbon hermetically-coated optical fiber

Publications (1)

Publication Number Publication Date
JPH06247747A true JPH06247747A (en) 1994-09-06

Family

ID=12436690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5035254A Pending JPH06247747A (en) 1993-02-24 1993-02-24 Production of carbon hermetically-coated optical fiber

Country Status (1)

Country Link
JP (1) JPH06247747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046621A1 (en) * 1998-03-12 1999-09-16 Tomoegawa Paper Co., Ltd. Optical connection component and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046621A1 (en) * 1998-03-12 1999-09-16 Tomoegawa Paper Co., Ltd. Optical connection component and method of producing the same
US6567603B1 (en) 1998-03-12 2003-05-20 Tomoegawa Paper Co., Ltd. Optical interconnection apparatus and process for fabrication of the same

Similar Documents

Publication Publication Date Title
JPH0283240A (en) Airtight sealed treated optical fiber
US5677010A (en) Method for producing a polymer coating inside hollow plastic articles
JP4494792B2 (en) Chemical vapor deposition by corona on support.
JP6031038B2 (en) Substrate bonding method and composite structure manufacturing method
JP2008516089A (en) Plasma coating method
JP2001514328A5 (en)
JP2003526010A (en) Diamond-like glass thin film
JPH1050685A (en) Cvd apparatus and cleaning thereof
JP5318876B2 (en) Method for stable hydrophilic enhancement of substrates by atmospheric pressure plasma deposition
Kasih et al. Poly (methyl methacrylate) Films Deposited via Non‐Equilibrium Atmospheric Pressure Plasma Polymerization Using Argon as Working Gas
JPH0394210A (en) Hermetic coat fiber and its manufacture
FR2801814A1 (en) METHOD FOR DEPOSITING A COATING ON THE INTERNAL SURFACE OF AEROSOL DISPENSING HOUSINGS
Poll et al. Optical properties of plasma polymer films
JPH06247747A (en) Production of carbon hermetically-coated optical fiber
JPH06247748A (en) Production of hermetically-coated optical fiber
JP3355892B2 (en) Method of forming carbon film
JP2723472B2 (en) Apparatus and method for depositing borophosphosilicate glass on a substrate
JP2571957B2 (en) Carbon-based or carbon-based coating via buffer layer and method of making same
EP0784714B1 (en) Low surface energy coatings
JPH05297239A (en) Method for covering optical fiber with carbon
JPS6116285B2 (en)
JP2000109581A (en) Deposition of barrier coating film on plastic material by barrier coating and high-output plasma chemical vapor deposition
KR100284387B1 (en) Manufacturing method of polycarbonate transparent plate with improved abrasion resistance and scratch resistance using plasma assisted chemical vapor deposition
JP2796167B2 (en) Optical fiber manufacturing equipment
Zou et al. Modification of Si (100) surface by plasma-enhanced graft polymerization of allylpentafluorobenzene