JPH0157884B2 - - Google Patents

Info

Publication number
JPH0157884B2
JPH0157884B2 JP19619682A JP19619682A JPH0157884B2 JP H0157884 B2 JPH0157884 B2 JP H0157884B2 JP 19619682 A JP19619682 A JP 19619682A JP 19619682 A JP19619682 A JP 19619682A JP H0157884 B2 JPH0157884 B2 JP H0157884B2
Authority
JP
Japan
Prior art keywords
metal
optical fiber
coating
optical fibers
coated optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19619682A
Other languages
Japanese (ja)
Other versions
JPS5986017A (en
Inventor
Takao Shioda
Ryozo Yamauchi
Koichi Inada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP19619682A priority Critical patent/JPS5986017A/en
Publication of JPS5986017A publication Critical patent/JPS5986017A/en
Publication of JPH0157884B2 publication Critical patent/JPH0157884B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2558Reinforcement of splice joint
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/245Removing protective coverings of light guides before coupling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、金属被覆光フアイバの接続方法に
関するものである。 金属被覆光フアイバは、光フアイバ裸線の外周
に珪素(Si)、アルミニウム(Al)、銅(Cu)、銀
(Ag)、錫(Sn)、鉛(Pb)、インジウム(In)等
からなる緻密な金属被膜を形成し、この金属被膜
によつて光フアイバ裸線を保護するようにしたも
ので、耐水性や長期信頼性等の優れたものであ
る。ところが、このような金属被覆光フアイバの
融着接続にあつては、金属被膜があるため通常の
光フアイバと同様の方法で行なうと種々の問題を
招くことになる。まず融着接続するには、新しい
平滑な接続端面を得る必要がある。そのために、
通常は光フアイバ裸線の外周に適当な傷を入れ、
この部分に曲げ応力を加え、ぜい性破壊させて、
光フアイバ裸線を切断し接続端面を作るのである
が、金属被覆光フアイバの場合、金属被膜を貫い
て適当な傷を光フアイバ裸線外周に入れることが
困難であるため、新しい平滑な接続端面を形成す
ることが難しかつた。また、金属被覆光フアイバ
を金属被覆された状態で切断して、新しい平滑な
接続端面を得ることが出来たとしても、切断部ま
で金属に被覆されているので、この金属被覆光フ
アイバを融着接続する際には、光フアイバ裸線を
溶融するのに必要な熱(約1800℃)で光フアイバ
裸線と同時に金属被膜も加熱される。このため、
被覆の金属が空気中の酸素と化合したり、不活性
雰囲気中で融着接続を行なつたとしても、光フア
イバ裸線の二酸化珪素(SiO2)の酸素(O2)と、
被膜の金属が化合したりして、金属酸化物とな
り、金属被膜は、光フアイバ裸線の保護が充分で
きなくなる。その上、光フアイバ裸線と金属被膜
を同時に加熱した場合、光フアイバ裸線中に被膜
の金属が溶融混入し、光フアイバ裸線の強度が低
下したり、光フアイバ裸線の純度が低下して光損
失が増加したりする不都合を生じる。 本発明は、上記事情を鑑みてなされたもので、
光フアイバ裸線の端部に、新しい平滑な接続端面
を容易に形成することができ、さらに金属被覆光
フアイバの接続部が充分に大きな接続強度を有
し、かつ接続箇所の光損失の増加が少ない金属被
覆光フアイバの接続方法を提供するものである。 以下、図面を参照して本発明の接続方法の一例
を説明する。第1図は、本発明の金属被覆光フア
イバの接続方法を工程順に示すものである。金属
被覆光フアイバ1,1は二酸化珪素(SiO2)を
主成分とする石英系コアーグラツド型の光フアイ
バ裸線2,2の外周に珪素(Si)、アルミニウム
(Al)、銅(Cu)、銀(Ag)、錫(Sn)、鉛(Pb)、
インジウム(In)等の金属からなる、膜厚0.5〜
30μm程度の金属被膜3,3が被覆されたもので
ある。この金属被膜3は、化学気相析出法(C.
V.D)や溶融金属浸漬法あるいは物理蒸着法(P.
V.D)、スパツタリングなどによつて形成された
ものである。このような金属被覆光フアイバ1,
1は接続にあたつて、まず金属被膜3,3が除去
される。第1図bに示したように、接続される一
対の金属被覆光フアイバ1,1は、その端部数セ
ンチメートルが溶解液4に浸漬され金属被膜3が
除去される。この溶解液4には、3〜30%の塩酸
(HCl)、硝酸(HNO3)あるいは、これらの混酸
が用いられ、常温で0.5〜10分程度の浸漬を行う
ことが好ましい。ここで塩酸(HCl)、硝酸
(HNO3)、あるいはこれらの混酸を溶解液4に用
いる理由は、光フアイバ裸線2の主成分である二
酸化珪素(SiO2)は、酸性酸化物であるから、
フツ化水素酸(HF)を除いて他の酸には下表に
示すようにほとんど侵されないが、被膜を形成す
る金属(Si、Al、Cu、Ag、Sn、Pb、In等)は、
いずれも酸と反応して溶けるためであり、さらに
酸の中でも溶解が短時間で行なえる強酸が実用的
なためである。しかし強酸の中で硫酸(H2SO4
による処理は、SO3イオンが金属被覆光フアイバ
1,1の浸漬部分に残留する可能性があるので好
ましくない。硝酸(HNO3)や塩酸(HCl)は揮
散性を有しているのでこの問題がない。
The present invention relates to a method for connecting metal coated optical fibers. Metal coated optical fiber is made of silicon (Si), aluminum (Al), copper (Cu), silver (Ag), tin (Sn), lead (Pb), indium (In), etc. on the outer periphery of the bare optical fiber. A dense metal coating is formed to protect the bare optical fiber, and it has excellent water resistance and long-term reliability. However, in the case of fusion splicing such metal-coated optical fibers, since there is a metal coating, various problems will arise if the fusion splicing is carried out in the same manner as for ordinary optical fibers. First, for fusion splicing, it is necessary to obtain a new smooth splicing end surface. for that,
Usually, an appropriate scratch is made on the outer periphery of the bare optical fiber,
Applying bending stress to this part causes brittle fracture,
The bare optical fiber is cut to create a connection end face, but in the case of metal-coated optical fibers, it is difficult to penetrate the metal coating and make appropriate scratches on the outer periphery of the bare optical fiber, so a new smooth connection end face is created. It was difficult to form. In addition, even if it is possible to cut a metal-coated optical fiber while it is metal-coated to obtain a new smooth connection end face, the cut end is still coated with metal, so this metal-coated optical fiber cannot be fused. When connecting, the metal coating is heated at the same time as the bare optical fiber using the heat (approximately 1800°C) required to melt the bare optical fiber. For this reason,
Even if the coating metal combines with oxygen in the air or fusion splicing is performed in an inert atmosphere, the oxygen (O 2 ) in the silicon dioxide (SiO 2 ) of the bare optical fiber,
The metals in the coating may combine to form metal oxides, and the metal coating cannot sufficiently protect the bare optical fiber. Furthermore, if the bare optical fiber and the metal coating are heated at the same time, the metal of the coating will melt and mix into the bare optical fiber, reducing the strength of the bare optical fiber and reducing the purity of the bare optical fiber. This causes problems such as increased optical loss. The present invention was made in view of the above circumstances, and
A new smooth connection end surface can be easily formed at the end of a bare optical fiber, and the connection part of the metal-coated optical fiber has a sufficiently large connection strength, and there is no increase in optical loss at the connection point. The present invention provides a method for connecting fewer metal coated optical fibers. An example of the connection method of the present invention will be described below with reference to the drawings. FIG. 1 shows the method for connecting metal-coated optical fibers according to the present invention in the order of steps. The metal-coated optical fibers 1, 1 are silica-based core-graded bare optical fibers 2, 2 whose main component is silicon dioxide (SiO 2 ). (Ag), tin (S n ), lead (Pb),
Made of metal such as indium (In), film thickness 0.5~
It is coated with metal films 3, 3 of about 30 μm. This metal coating 3 is produced by chemical vapor deposition method (C.
VD), molten metal immersion method or physical vapor deposition method (P.
VD), sputtering, etc. Such a metal coated optical fiber 1,
1, in connection, the metal coatings 3, 3 are first removed. As shown in FIG. 1b, the ends of the pair of metal-coated optical fibers 1, 1 to be connected are immersed several centimeters into a dissolving solution 4 to remove the metal coating 3. Hydrochloric acid (HCl), nitric acid (HNO 3 ), or a mixed acid thereof with a concentration of 3 to 30% is used as the dissolving solution 4, and it is preferable to perform immersion at room temperature for about 0.5 to 10 minutes. The reason why hydrochloric acid (HCl), nitric acid (HNO 3 ), or a mixed acid thereof is used as the dissolving solution 4 is that silicon dioxide (SiO 2 ), which is the main component of the bare optical fiber 2, is an acidic oxide. ,
As shown in the table below, it is hardly attacked by other acids except hydrofluoric acid (HF), but the metals that form the film (Si, Al, Cu, Ag, Sn, Pb, In, etc.)
This is because they all dissolve when they react with acids, and among acids, strong acids are the most practical because they can dissolve in a short time. However, among the strong acids sulfuric acid (H 2 SO 4 )
This treatment is not preferred because SO 3 ions may remain in the immersed portion of the metal-coated optical fibers 1,1. Nitric acid (HNO 3 ) and hydrochloric acid (HCl) do not have this problem because they are volatile.

【表】 溶解液4によつて、第1図cに示すように端部
の金属被膜3,3が除去された金属被覆光フアイ
バ1,1は、金属被膜3,3の除去部5,5が充
分に洗浄され、乾燥される。このようにして得ら
れた光フアイバ裸線を接続するためには新しい平
滑な端面が必要であるが、この状態における端面
6,6は、端面6,6が置かれていた環境によつ
て汚れていたり、面が平滑でない場合が多い。し
たがつて、第1図cに示すように、光フアイバ裸
線が露出している除去部5,5の外周に適当な深
さの傷7,7が入れられ、この部分に曲げ応力が
加えられ、ぜい性破壊によつて切断されて、第1
図dに示すような新しい平滑な接続端面8,8が
形成される。 このようにして得られた2つの新しい接続端面
8,8は、第1図eに示したように、互いに正確
に光フアイバ裸線の中心軸線を一致させて突き合
わせた状態で通常の融着接続装置によつて接続さ
れる。 ついでこの接続された金属被覆光フアイバ9の
被膜除去部10とその周辺は、化学気相析出法
(C.V.D)、溶融金属浸漬法、スパツタリングおよ
び物理蒸着法(P.V.D)などにより金属被膜が再
形成される。被覆される金属は、除去された被膜
の金属と同種であることが望ましい。また、これ
らの方法によつて形成される被膜は、化学気相析
出法(C.V.D)によれば0.5〜3μm、溶融金属浸
漬法によれば5〜30μm、スパツタリングによれ
ば0.5〜1μm、物理蒸着法(P.V.D)によれば1μ
m程度の膜厚とされる。 この時、金属被覆するための装置に収容された
部分全体に金属被膜が施されるので、被膜除去部
とその両側の被膜の除去されていない部分に金属
被膜が再形成される。 したがつて、再形成された金属被膜11の部分
は、その外形が第1図fに示すように、被膜が重
複した部分は若干被膜が厚くなつている。 第2図は、金属被膜11を再形成する方法を例
示したものである。これらの図を参照して、真空
蒸着法(第2図a〕、二極スパツタリング法〔第
2図b〕、および化学気相析出法〔第2図c〕に
よる金属被膜の再形成について説明する。真空蒸
着法によつて金属被膜11を形成する場合には、
真空容器12に接続された金属光フアイバ9の被
膜除去部10を収容して、10-6Torr程度の真空
条件の中で、蒸着源13から金属原子を被膜除去
部を中心に蒸着する。また、二極スパツタリング
法による場合には、真空容器14に、接続された
金属被覆光フアイバ9の被膜除去部10を収容
し、真空容器14の中を真空にした後、ガスを導
入し適当な圧力(1〜10-3Torr程度)にする。
スパツタされる金属をカソード15としてアノー
ド16との間にグロー放電させることで被膜除去
部10を中心に被膜を形成させる。次に化学気相
析出法による場合には、密閉容器17に、接続さ
れた金属被覆光フアイバ9の被膜除去部10を収
容し、これを密閉容器17の外周に設けられた高
周波加熱コイル18によつて加熱し、この密閉容
器17に、モノシラン(SiH4)、モノゲルマン
(GeH4)などの金属化合物を含む反応ガスを送
り込む。この金属化合物は、気相化学反応によつ
て金属となり、接続された金属被覆光フアイバ9
の表面に付着して金属被膜11を形成する。 このように、この接続方法は、あらかじめ金属
被膜3を除去した状態で光フアイバ裸線2の切断
を行つて、接続端面を形成するので、新しい平滑
な接続端面8が得られる。また、金属被膜3が除
去され、新しい接続端面8を有する光フアイバ裸
線2同志を融着接続するので、融着接続する時金
属原子が光フアイバ裸線2中に溶融混入すること
がなく、接続部は、高い接続強度が得られるとと
もに長期信頼性が優れ、光損失の増加も少ない。 次に、実施例を示したこの発明を具体的に説明
する。 実施例 光フアイバ裸線2の外径が125μm、金属被膜
3が膜厚1μmのAlから成る金属被覆光フアイバ
1を接続した。10%HClの溶解液4に接続する金
属被覆光フアイバ1,1の先端約3cmを25℃で3
分間浸漬して、Alの金属被膜3,3を溶解除去
した。この除去部5,5を充分に水洗、乾燥した
後、通常の切断器によつて除去部5,5の間で切
断を行ない、新しい平滑な接続端面8,8を得
た。こうして得た2つの接続端面8,8を正確に
突き合わせた状態でアーク接続機により融着接続
した。ついで、この接続された金属光フアイバ9
の被膜除去部10を二極スパツタリング装置に収
容して、3×10-3Torr、5mAイオン電流でプラ
ズマを発生させて、Alの蒸着を15分間行い0.8μm
の被膜厚を得た。以上の操作でアルミニウム被覆
光フアイバの接続を行い、サンプルを100本作成
した。これらの破断強度を測定したところ、最低
値が4.2Kg、平均値は7.0Kgであつた。 以上説明したように、本発明の金属被覆光フア
イバの接線方法は、光フアイバ裸線外周に金属被
膜が形成された金属被覆光フアイバを融着接続す
る際に、接続される光フアイバの金属被膜を除去
し、この部分に新しい接続端面を形成し、この接
続端面を突き合せた状態で融着接続した後、金属
被膜の除去部に金属被膜を再形成するものである
から、光フアイバ裸線外周に切断用の傷を入れる
際、金属被膜を貫いて入れるのではなく、光フア
イバ裸線に直接傷を入れられるので、適当な深さ
の傷を容易に入れることができ、従つて良好な新
しい平滑な接続用の端面を得ることができる。ま
た、光フアイバ裸線同志を融着接続する際には、
金属被膜を形成する金属原子が光フアイバ裸線中
に溶融混入することがなく、高い接続強度が得ら
れるとともに、長期信頼性が優れ、光損失の増加
も少ない、良好な接続を得ることができる。さら
に、接続部分には金属被膜を再形成するので、接
続部分の光フアイバ裸線の保護が充分におこなわ
れ金属被覆光フアイバ本来のすぐれた特性を維持
できる。よつて本発明の金属被覆光フアイバの接
続方法によつて接続された金属被覆光フアイバ
は、光の損失の増加が少なく、高い接続強度を持
つ長期信頼性の優れたものとなる。
[Table] The metal-coated optical fibers 1, 1 from which the metal coatings 3, 3 at the end portions have been removed by the dissolving solution 4 as shown in FIG. are thoroughly washed and dried. In order to connect the bare optical fibers obtained in this way, a new smooth end face is required, but in this state the end faces 6, 6 are contaminated by the environment in which they were placed. In many cases, the surface is rough or the surface is not smooth. Therefore, as shown in FIG. 1c, scratches 7, 7 of appropriate depth are made on the outer periphery of the removed parts 5, 5 where the bare optical fibers are exposed, and bending stress is applied to these parts. The first
New smooth connecting end faces 8, 8 are formed as shown in FIG. d. The two new connection end surfaces 8, 8 obtained in this way are connected by normal fusion splicing with the central axes of the bare optical fibers aligned and butted against each other, as shown in FIG. 1e. connected by the device. Then, a metal coating is re-formed on the removed portion 10 of the connected metal-coated optical fiber 9 and its surrounding area by chemical vapor deposition (CVD), molten metal immersion, sputtering, physical vapor deposition (PVD), etc. Ru. Preferably, the metal coated is the same type of metal as the coating that was removed. The coatings formed by these methods are 0.5 to 3 μm by chemical vapor deposition (CVD), 5 to 30 μm by molten metal dipping, 0.5 to 1 μm by sputtering, and 0.5 to 1 μm by physical vapor deposition. According to the law (PVD) 1μ
The film thickness is approximately m. At this time, since the metal coating is applied to the entire part housed in the metal coating apparatus, the metal coating is re-formed on the part from which the coating has been removed and the unremoved portions of the coating on both sides thereof. Therefore, the outer shape of the re-formed metal coating 11 is as shown in FIG. 1f, and the coating is slightly thicker in the overlapping area. FIG. 2 illustrates a method for re-forming the metal coating 11. With reference to these figures, the re-formation of the metal film by the vacuum evaporation method (Fig. 2a), the bipolar sputtering method [Fig. 2b], and the chemical vapor deposition method [Fig. 2c] will be explained. .When forming the metal coating 11 by vacuum evaporation method,
A vacuum container 12 houses a coating removal section 10 of a metal optical fiber 9 connected thereto, and metal atoms are deposited from a deposition source 13 centering on the coating removal section under a vacuum condition of approximately 10 -6 Torr. In addition, in the case of using the bipolar sputtering method, the coating removal section 10 of the connected metal-coated optical fiber 9 is housed in the vacuum container 14, and after the inside of the vacuum container 14 is evacuated, gas is introduced and an appropriate Increase the pressure (approximately 1 to 10 -3 Torr).
The metal to be sputtered is used as a cathode 15 and a glow discharge is caused between it and an anode 16 to form a film around the film removal portion 10 . Next, in the case of using the chemical vapor deposition method, the coat removed part 10 of the connected metal-coated optical fiber 9 is housed in the closed container 17, and this is connected to the high-frequency heating coil 18 provided on the outer periphery of the closed container 17. Then, it is heated, and a reaction gas containing a metal compound such as monosilane (SiH 4 ) or monogermane (GeH 4 ) is fed into the closed container 17 . This metal compound becomes a metal through a gas phase chemical reaction, and the metal-coated optical fiber 9 is connected to the metal compound.
The metal film 11 is formed by adhering to the surface of the metal film 11 . In this way, in this connection method, the bare optical fiber 2 is cut with the metal coating 3 removed in advance to form the connection end surface, so that a new smooth connection end surface 8 can be obtained. Further, since the metal coating 3 is removed and the bare optical fibers 2 having a new connection end surface 8 are fusion spliced, metal atoms are not melted and mixed into the bare optical fibers 2 during fusion splicing. The connection part provides high connection strength, excellent long-term reliability, and little increase in optical loss. Next, this invention will be specifically explained with reference to examples. EXAMPLE A metal-coated optical fiber 1 made of Al having a bare optical fiber 2 having an outer diameter of 125 μm and a metal coating 3 having a thickness of 1 μm was connected. Approximately 3 cm of the tip of the metal-coated optical fiber 1, which is connected to the 10% HCl solution 4, was heated at 25°C.
The aluminum metal coatings 3, 3 were dissolved and removed by immersion for a minute. After thoroughly washing and drying the removed portions 5, 5, a cut was made between the removed portions 5, 5 using an ordinary cutter to obtain new smooth connecting end surfaces 8, 8. The two connection end surfaces 8, 8 thus obtained were fusion-spliced using an arc splicing machine while accurately abutting each other. Next, this connected metal optical fiber 9
The film removal section 10 was placed in a two-pole sputtering device, plasma was generated at 3×10 -3 Torr and 5 mA ion current, and Al was evaporated for 15 minutes to a thickness of 0.8 μm.
The coating thickness was obtained. The aluminum-coated optical fibers were connected using the above procedure, and 100 samples were created. When their breaking strengths were measured, the lowest value was 4.2Kg and the average value was 7.0Kg. As explained above, the metal-coated optical fiber tangential method of the present invention is used to fusion splice metal-coated optical fibers in which a metal coating is formed on the outer periphery of the bare optical fiber. is removed, a new connection end face is formed in this part, and after fusion splicing is performed with these connection end faces abutted, a metal coating is re-formed on the part where the metal coating has been removed, so it is not a bare optical fiber. When making cutting scratches on the outer periphery, the scratches can be made directly on the bare optical fiber rather than through the metal coating, so it is easy to make scratches with an appropriate depth and a good quality. A new smooth end face for connection can be obtained. Also, when fusion splicing bare optical fibers,
The metal atoms that form the metal coating do not melt and mix into the bare optical fiber, making it possible to obtain high connection strength, excellent long-term reliability, and a good connection with little increase in optical loss. . Furthermore, since the metal coating is re-formed on the connection portion, the bare optical fiber at the connection portion is sufficiently protected and the original excellent characteristics of the metal-coated optical fiber can be maintained. Therefore, metal-coated optical fibers spliced by the metal-coated optical fiber splicing method of the present invention have little increase in optical loss, high connection strength, and excellent long-term reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜fは、本発明の接続方法を工程順に
示すもので、第1図aは2本の接続される金属被
覆光フアイバの端部を示す斜視図、第1図bは接
続される端部を金属被膜の溶解液に浸漬している
状態を示す斜視図、第1図cは接続される端部の
金属被膜が除去された状態を示す斜視図、第1図
dは接続される端部に接続端面を形成した状態を
示す斜視図、第1図eは光フアイバ裸線が接続さ
れた状態を示す斜視図、第1図fは金属被膜が再
成形された状態を示す断面図、第2図a〜cは、
いずれも金属被膜の再形成に用いる装置の概略構
成図で、第2図aは真空蒸着装置、第2図bは二
極スパツタ装置、第2図cは化学気相析出装置を
示す。 1……金属被覆光フアイバ、2……光フアイバ
裸線、3……金属被膜、4……溶解液、5……除
去部、6……端面、7……傷、8……接続端面、
9……接続された金属被覆光フアイバ、10……
被膜除去部、11……金属被膜。
Figures 1a to 1f show the connecting method of the present invention in the order of steps. Figure 1a is a perspective view showing the ends of two metal-coated optical fibers to be connected, and Figure 1b is a perspective view showing the ends of two metal-coated optical fibers to be connected. Fig. 1c is a perspective view showing a state in which the end to be connected is immersed in a metal coating solution, Fig. 1c is a perspective view showing the end to be connected with the metal coating removed, and Fig. 1d is a perspective view showing the end to be connected. Fig. 1e is a perspective view showing a state in which a bare optical fiber is connected, and Fig. 1f is a cross section showing a state in which the metal coating has been remolded. Figures 2a-c are
All of them are schematic diagrams of the apparatus used for re-forming the metal coating; FIG. 2a shows a vacuum evaporation device, FIG. 2b shows a bipolar sputtering device, and FIG. 2c shows a chemical vapor deposition device. DESCRIPTION OF SYMBOLS 1... Metal coated optical fiber, 2... Bare optical fiber, 3... Metal coating, 4... Solution, 5... Removed part, 6... End surface, 7... Scratch, 8... Connection end surface,
9... Connected metal coated optical fiber, 10...
Film removal section, 11...metal film.

Claims (1)

【特許請求の範囲】 1 光フアイバ裸線外周に金属被膜が形成された
金属被覆光フアイバを融着接続する際に、接続さ
れる光フアイバの金属被膜を除去した後、この除
去部分に新しい接続端面を形成し、この接続端面
を突き合わせた状態で融着接続した後、金属被膜
の除去部に金属被膜を再形成することを特徴とす
る金属被覆光フアイバの接続方法。 2 金属被膜の除去に、塩酸、硝酸、あるいはこ
れらの混酸を用いることを特徴とする特許請求の
範囲第1項記載の金属被覆光フアイバの接続方
法。 3 金属被膜の再形成を、化学気相析出法、物理
蒸着法、スパツタリング法、あるいは溶融金属浸
漬法によつて行うことを特徴とする特許請求の範
囲第1項記載の金属被覆光フアイバの接続方法。
[Claims] 1. When fusion splicing metal-coated optical fibers with a metal coating formed on the outer periphery of the bare optical fiber, after removing the metal coating of the optical fibers to be spliced, a new connection is made on the removed portion. A method for connecting metal-coated optical fibers, which comprises forming end faces, fusion splicing with the connecting end faces abutted, and then re-forming a metal film on a portion where the metal film has been removed. 2. The method for connecting metal-coated optical fibers according to claim 1, characterized in that hydrochloric acid, nitric acid, or a mixed acid thereof is used to remove the metal coating. 3. Connection of a metal-coated optical fiber according to claim 1, wherein the metal coating is re-formed by a chemical vapor deposition method, a physical vapor deposition method, a sputtering method, or a molten metal immersion method. Method.
JP19619682A 1982-11-09 1982-11-09 Connecting method of metal-coated optical fiber Granted JPS5986017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19619682A JPS5986017A (en) 1982-11-09 1982-11-09 Connecting method of metal-coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19619682A JPS5986017A (en) 1982-11-09 1982-11-09 Connecting method of metal-coated optical fiber

Publications (2)

Publication Number Publication Date
JPS5986017A JPS5986017A (en) 1984-05-18
JPH0157884B2 true JPH0157884B2 (en) 1989-12-07

Family

ID=16353785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19619682A Granted JPS5986017A (en) 1982-11-09 1982-11-09 Connecting method of metal-coated optical fiber

Country Status (1)

Country Link
JP (1) JPS5986017A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287410A (en) * 1989-04-28 1990-11-27 Furukawa Electric Co Ltd:The Method for connecting optical fiber
US8879065B1 (en) * 2011-05-10 2014-11-04 The Board Of Trustees Of The University Of Alabama For And On Behalf Of The University Of Alabama In Huntsville Systems and methods for localized surface plasmon resonance sensing

Also Published As

Publication number Publication date
JPS5986017A (en) 1984-05-18

Similar Documents

Publication Publication Date Title
JPH0287106A (en) Fusion splicing method for hermetically coated optical fiber
US6620282B2 (en) Method and apparatus for solid bonding, a conductor bonding method, a packaging method, and a bonding agent and a method for manufacturing a bonding agent
EP0539711B1 (en) Process for manufacturing integrated optical components using silicon mask
JPH07172866A (en) Method for forming delustered finished face
JPH04318503A (en) Optical-fiber machining method
KR20010070107A (en) Method of manufacturing a glass substrate for displays and a glass substrate for displays manufactured by same
US4854956A (en) Method of manufacturing optical fibres having a core and a cladding of glass applying the rod-in-tube technique
JPH0157884B2 (en)
US4973345A (en) Surface treatments for optical fibre preforms
EP0266889B1 (en) Surface treatments for optical fibre preforms
EP0508458B1 (en) Method for connecting optical fibers
US4706256A (en) Fritless endbell assembly
KR100262139B1 (en) Optical fiber wire drawing method and the wire drawing device
US5623570A (en) Method of fusion-splicing optical fiber
JP3307493B2 (en) Manufacturing method of quartz optical fiber with lens
JPS59187302A (en) Jacket removing method of optical fiber cable
JPH0859275A (en) Surface treatment of fluoride optical fiber preform
JPS6191603A (en) Optical fiber end surface mirror and its manufacture
JP3074224B2 (en) Carbon fiber hermetic coating method for optical fiber
JPS6017709A (en) Reinformcing method of welding connection part of optical fiber
JP2821239B2 (en) Method for forming metal multilayer film on glass substrate
SU860625A1 (en) Method of producing superconductive coating based on intermetallic compound
JPS593414B2 (en) Method for manufacturing metal coated optical fiber
JP2021098639A (en) Method of manufacturing silica glass
JPS63291405A (en) Manufacture of superconducting coil