JPH09125147A - Production of ferritic stainless steel sheet excellent in magnetic property - Google Patents

Production of ferritic stainless steel sheet excellent in magnetic property

Info

Publication number
JPH09125147A
JPH09125147A JP28626095A JP28626095A JPH09125147A JP H09125147 A JPH09125147 A JP H09125147A JP 28626095 A JP28626095 A JP 28626095A JP 28626095 A JP28626095 A JP 28626095A JP H09125147 A JPH09125147 A JP H09125147A
Authority
JP
Japan
Prior art keywords
rolled
stainless steel
cold
annealing
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28626095A
Other languages
Japanese (ja)
Inventor
Yasuhiro Shimizu
庸宏 清水
Tomio Satsunoki
富美夫 札軒
Haruki Ariyoshi
春樹 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28626095A priority Critical patent/JPH09125147A/en
Publication of JPH09125147A publication Critical patent/JPH09125147A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a stainless steel sheet excellent in magnetic properties and weldability by annealing a rolled sheet of ferritic stainless steel at specific temp. to regulate crystalline grain size to specific value and applying specific stress relief annealing to the rolled steel sheet after forming. SOLUTION: A slab of a ferritic stainless steel, containing, e.g. <=0.01%, by weight, C, 0.1-0.6% Si, 0.1-1.0% Mn, 9-13% Cr, 0.05-0.5% Ti, and <=0.015% N, is hot-rolled. The resultant plate is cold-rolled once or is cold-rolled two or more times subjected to intermediate annealing between cold rolling stages. The resultant cold rolled sheet is annealed at 925-1100 deg.C, by which grain size is grown to 70-300μm. Then, this steel sheet is formed into product shape and further subjected to stress relief annealing at 750-1000 deg.C for about 30sec to 30min.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、テレビブラウン管
サポートフレーム用等の電気電子部品に用いられる、軟
磁性ステンレス鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a soft magnetic stainless steel plate used for electric and electronic parts such as a TV CRT support frame.

【0002】[0002]

【従来の技術】これまでテレビブラウン管サポートフレ
ーム用等の電気電子部品に用いられる、いわゆる軟磁性
ステンレス鋼板としては、磁気特性、例えば最大比透磁
率を高めるため、例えば特開昭62−23962号公報
に開示されているようにフェライト系ステンレス鋼板に
Si、Alを添加する例がある。しかしながら、Si、
Alの過度の添加は、材料の加工性、特に伸びを悪く
し、テレビブラウン管サポートフレーム用に曲げ等の加
工を行うと割れが発生し問題となっている。
2. Description of the Related Art So-called soft magnetic stainless steel sheets used for electric and electronic parts for TV cathode ray tube support frames and the like have hitherto been disclosed in, for example, JP-A-62-23962. There is an example of adding Si and Al to a ferritic stainless steel sheet as disclosed in US Pat. However, Si,
Excessive addition of Al deteriorates the workability of the material, particularly the elongation, and cracks occur when bending the TV CRT support frame, which is a problem.

【0003】一方、別な手段で磁気特性を高めるために
は、例えば特開平2−182834号公報にはフェライ
ト系ステンレス鋼板の最終焼鈍を2段階の温度範囲で行
うことにより、ゴス方位({110}<001>)を強
く集積させる集合組織を得、磁気特性を高める例が開示
されている。しかしながら、2段階の温度範囲で最終焼
鈍を行うことは操業上困難であり、またコストアップに
もなり望ましくない。
On the other hand, in order to improve the magnetic properties by another means, for example, in Japanese Patent Laid-Open No. 2-182834, final annealing of a ferritic stainless steel sheet is carried out in a temperature range of two stages to obtain a Goss orientation ({110 } <001>) is strongly aggregated to obtain a texture, and an example of enhancing magnetic properties is disclosed. However, it is not preferable to perform the final annealing in the temperature range of two stages because it is difficult in operation and the cost increases.

【0004】[0004]

【発明が解決しようとする課題】本発明は以上のことを
かえりみ、磁気特性および加工性に優れたステンレス鋼
板を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a stainless steel plate having excellent magnetic properties and workability.

【0005】[0005]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。 (1)フェライト系ステンレス鋼スラブを熱間圧延を行
い熱延板とし、続いて1回あるいは中間焼鈍を含む2回
以上の冷間圧延を行い冷延板とし、この冷延板に925
〜1100℃の温度範囲で焼鈍を行って結晶粒径を70
〜300μmに成長させ、次いで製品形状に成形加工
し、さらに750〜1000℃の温度範囲で歪取り焼鈍
を行うこと、および(2)重量%にて、 C ≦0.01%、 Si:0.1〜0.6%、 Mn:0.1〜1.0%、 Cr:9〜13%、 Ti:0.05〜0.5%、N ≦0.015% とし、残部がFeおよび不可避的不純物からなるフェラ
イト系ステンレス鋼スラブを熱間圧延を行い熱延板と
し、続いて1回あるいは中間焼鈍を含む2回以上の冷間
圧延を行って冷延板とし、この冷延板に925〜110
0℃の温度範囲で焼鈍を行い、次いで結晶粒径を70〜
300μmに成長させ、続いて製品形状に成形加工し、
さらに750〜1000℃の温度範囲で歪取り焼鈍を行
うことである。
The gist of the present invention is as follows. (1) A ferritic stainless steel slab is hot-rolled to form a hot-rolled sheet, and subsequently cold-rolled once or twice or more including intermediate annealing to obtain a cold-rolled sheet.
Anneal in the temperature range of ~ 1100 ° C to reduce the grain size to 70
.About.300 .mu.m, then formed into a product shape, and further subjected to strain relief annealing in a temperature range of 750 to 1000.degree. C., and (2) wt%, C.ltoreq.0.01%, Si: 0. 1 to 0.6%, Mn: 0.1 to 1.0%, Cr: 9 to 13%, Ti: 0.05 to 0.5%, N ≤ 0.015%, the balance being Fe and unavoidable A ferritic stainless steel slab containing impurities is hot-rolled to form a hot-rolled sheet, and then cold-rolled by one or more cold rolling including intermediate annealing to obtain a cold-rolled sheet. 110
Annealing is performed in the temperature range of 0 ° C., and then the crystal grain size is 70 to
It grows up to 300 μm, and then it is formed into a product shape,
Further, strain relief annealing is performed in the temperature range of 750 to 1000 ° C.

【0006】[0006]

【発明の実施の形態】以下、本発明合金の限定理由につ
いて詳細に説明する。Cは、含有量が多くなりすぎると
合金中に炭化物を形成し磁気特性を劣化させるため、そ
の上限を0.01%とした。さらに好ましくは、0.0
07%以下が良い。Siは、脱酸剤として有効であり、
また磁気特性を向上させる元素であるが、0.1%未満
ではその効果が少なく、一方、0.6%を超えた添加で
は加工性、特に伸びを低下させる。従ってSiの範囲
は、0.10〜0.60%とした。さらに好ましくは
0.30〜0.50%が良い。Mnは、脱硫、脱酸剤と
して有効であるが、0.1%未満ではその効果が少な
く、また1.0%を超えると、耐食性が劣化する。従っ
て、Mnの範囲は、0.10〜1.0%とした。さらに
好ましくは0.20〜0.50%が良い。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the alloy of the present invention will be described in detail below. If the content of C is too large, carbides are formed in the alloy to deteriorate magnetic properties, so the upper limit was made 0.01%. More preferably, 0.0
07% or less is good. Si is effective as a deoxidizer,
Although it is an element that improves the magnetic properties, if it is less than 0.1%, its effect is small, and if it exceeds 0.6%, the workability, especially elongation is reduced. Therefore, the range of Si is 0.10 to 0.60%. More preferably, 0.30 to 0.50% is good. Mn is effective as a desulfurizing and deoxidizing agent, but if it is less than 0.1%, its effect is small, and if it exceeds 1.0%, the corrosion resistance deteriorates. Therefore, the range of Mn is 0.10 to 1.0%. More preferably, it is 0.20 to 0.50%.

【0007】Crは、ステンレス鋼の耐食性を付与する
基本的な元素であり、9.0%未満の含有ではその効果
が少なく、一方、13.0%を超える含有では、磁気特
性が劣化する。従ってCrの範囲は、9.0〜13.0
%とした。さらに好ましくは、10.0〜11.5%が
良い。Tiは、耐食性及び磁気特性を向上させる元素で
あるが、0.05%未満ではその効果が少なく、また、
0.5%を超える添加では、加工性、特に伸びを低下さ
せる。従ってTiの範囲は、0.05〜0.5%とし
た。さらに好ましくは、0.1〜0.3%が良い。N
は、含有量が多くなりすぎると合金中に窒化物を形成し
磁気特性を劣化させるため、その上限を0.015%と
した。さらに好ましくは、0.01%以下が良い。
[0007] Cr is a basic element that imparts the corrosion resistance of stainless steel. If it is contained in less than 9.0%, its effect is small, while if it exceeds 13.0%, the magnetic properties are deteriorated. Therefore, the Cr range is 9.0 to 13.0.
%. More preferably, it is 10.0 to 11.5%. Ti is an element that improves corrosion resistance and magnetic properties, but if less than 0.05%, its effect is small, and
Addition of more than 0.5% lowers workability, especially elongation. Therefore, the range of Ti is set to 0.05 to 0.5%. More preferably, it is 0.1 to 0.3%. N
When the content is too large, a nitride is formed in the alloy to deteriorate the magnetic properties, so the upper limit was made 0.015%. More preferably, it is 0.01% or less.

【0008】次に製造方法を規定した理由を述べる。所
定の化学成分の合金スラブを、熱間圧延を行い熱延板と
し、続いて1回あるいは中間焼鈍を含む2回以上の冷間
圧延を行い冷延板とし、続いて焼鈍を925〜1100
℃の温度範囲で行い、結晶粒径を70〜300μmに成
長させる。焼鈍温度が925℃未満の場合には、結晶粒
径が70μm未満にしか成長しないことに対応し、その
場合には高い磁気特性が得られない。磁気特性として
は、最大比透磁率が5000以上の高い値である事が望
まれている。
Next, the reasons for defining the manufacturing method will be described. An alloy slab having a predetermined chemical composition is hot-rolled to form a hot-rolled sheet, and subsequently cold-rolled once or twice or more including intermediate annealing to obtain a cold-rolled sheet, followed by annealing 925 to 1100.
The crystal grain size is grown to 70 to 300 μm in the temperature range of ° C. When the annealing temperature is less than 925 ° C., the crystal grain size grows to less than 70 μm, and in that case, high magnetic properties cannot be obtained. As for the magnetic properties, it is desired that the maximum relative permeability be as high as 5000 or more.

【0009】結晶粒径と磁気特性の関係について図1に
示す。結晶粒径が70μm未満で磁気特性が低い理由
は、70μm未満の結晶粒径では結晶粒界面積が大きく
なり、磁化過程において、磁壁の移動が粒界によってピ
ニングを受けやすくなるためと考えられる。焼鈍温度の
高温化による結晶粒径の成長により、結晶粒界面積が減
少し磁気特性は向上する。しかしながら、焼鈍温度が1
100℃を超えた場合には結晶粒径が300μmを超え
て製品形状が曲げ加工等を行うと、加工肌荒れが発生す
るため望ましくない。よって焼鈍温度範囲を925〜1
100℃とした。さらに好ましくは950〜1050℃
が良い。尚、焼鈍の保定時間は、30秒〜10分が好ま
しい。また、粒径の範囲は70〜300μmとした。さ
らに、好ましくは70〜220μmが良い。
FIG. 1 shows the relationship between the crystal grain size and the magnetic characteristics. The reason why the magnetic properties are low when the crystal grain size is less than 70 μm is that the crystal grain boundary area becomes large when the crystal grain size is less than 70 μm, and the movement of the domain wall is easily pinned by the grain boundaries during the magnetization process. The growth of the crystal grain size due to the higher annealing temperature reduces the grain boundary area and improves the magnetic properties. However, the annealing temperature is 1
If the temperature exceeds 100 ° C. and the crystal grain size exceeds 300 μm and the product shape is subjected to bending or the like, roughening of the processed surface occurs, which is not desirable. Therefore, the annealing temperature range is 925 to 1
It was 100 ° C. More preferably 950 to 1050 ° C
Is good. The holding time for annealing is preferably 30 seconds to 10 minutes. The particle size range was 70 to 300 μm. Further, it is preferably 70 to 220 μm.

【0010】その後、調質圧延を行う場合は所定の伸び
率を付与するか、あるいは調質圧延を行わない場合はそ
のまま製品形状に成形加工する。尚、割れ等を起こさず
に加工成型を行うためには、伸びが34%以上の値であ
る事が望まれている。その後、750〜1000℃の温
度範囲で歪取り焼鈍を行う。750℃未満では、加工後
の歪が残存するために高い磁気特性が得られない。ま
た、1000℃を超えた場合には、歪除去の効果が飽和
され、また工程にも負荷が加わるため望ましくない。よ
って、歪取り焼鈍温度範囲を、750〜1000℃とし
た。さらに、好ましくは、800〜900℃が良い。
尚、歪取り焼鈍の保定時間は、30秒〜30分が好まし
い。
After that, when temper rolling is performed, a predetermined elongation is imparted, or when temper rolling is not performed, the product is directly shaped into a product shape. Incidentally, in order to carry out work molding without causing cracks or the like, it is desired that the elongation is 34% or more. Then, strain relief annealing is performed in the temperature range of 750 to 1000 ° C. If the temperature is lower than 750 ° C., high magnetic properties cannot be obtained due to residual strain after processing. On the other hand, when the temperature exceeds 1000 ° C., the effect of strain relief is saturated and a load is added to the process, which is not desirable. Therefore, the strain relief annealing temperature range is set to 750 to 1000 ° C. Further, it is preferably 800 to 900 ° C.
The retention time of the strain relief annealing is preferably 30 seconds to 30 minutes.

【0011】[0011]

【実施例】【Example】

(実施例1)次に、本発明を実施例と比較例を用いて、
具体的に説明する。重量%にて、C:0.01%、S
i:0.14%、Mn:0.33%、Cr:9.3%、
Ti:0.12%、N:0.0133%とし、残部がF
eおよび不可避的不純物からなる合金を、真空誘導溶解
炉で溶製し、連続鋳造法によりスラブとした。その後1
250℃×2時間加熱後熱間圧延を行い、板厚3.7mm
の熱延板を得た。その後、熱延板端部をスリットし表面
の疵取りを行い、冷間圧延にて板厚2.0mmの中間冷延
薄板を得、中間焼鈍を900℃×1分、大気中にて行っ
た後、硝弗酸により酸洗処理を行い、再び冷延を行い板
厚1.0mmの冷延薄板を得、焼鈍を915〜1120℃
×1分、大気中にて行った後、硝弗酸により酸洗処理を
行った。得られた最終焼鈍板のL方向断面組織から、光
学顕微鏡により比較法にて粒径を測定した。続いて、3
0mm幅×300mm長の試験片を切り出し、歪取り焼鈍を
770℃×5分、大気中にて行った。
(Example 1) Next, the present invention will be described with reference to Examples and Comparative Examples.
This will be specifically described. % By weight, C: 0.01%, S
i: 0.14%, Mn: 0.33%, Cr: 9.3%,
Ti: 0.12%, N: 0.0133%, balance F
An alloy consisting of e and unavoidable impurities was melted in a vacuum induction melting furnace and made into a slab by a continuous casting method. Then one
After heating at 250 ℃ for 2 hours, hot rolling is performed and the plate thickness is 3.7 mm.
Was obtained. Then, the edges of the hot-rolled sheet were slit to remove the surface flaws, cold rolled to obtain an intermediate cold-rolled thin sheet having a sheet thickness of 2.0 mm, and intermediate annealing was performed at 900 ° C. for 1 minute in the atmosphere. After that, pickling with nitric hydrofluoric acid, cold rolling again to obtain a cold rolled thin sheet with a thickness of 1.0 mm, and annealing at 915 to 1120 ° C.
After 1 minute in the atmosphere, a pickling treatment was performed with nitric hydrofluoric acid. From the L-direction cross-sectional structure of the obtained final annealed plate, the particle size was measured by a comparative method using an optical microscope. Then 3
A 0 mm wide × 300 mm long test piece was cut out and subjected to strain relief annealing at 770 ° C. for 5 minutes in the atmosphere.

【0012】磁気特性測定は、JISC2550に準
じ、25cmエプスタイン法により試験片を8枚積層さ
せ、最大比透磁率μmを測定した。結晶粒径と最大比透
磁率の関係を図1に示す。本発明範囲より外れる、焼鈍
温度が915℃の場合には、結晶粒径が38μmであ
り、最大比透磁率も2850と低い。また、本発明範囲
より外れる、焼鈍温度が1120℃の場合には、結晶粒
径が355μmに成長し、最大比透磁率は13900と
なるが、加工後に肌荒れが発生する。一方、本発明範囲
内の焼鈍温度では、最大比透磁率は5000以上、結晶
粒径は70〜300μmの値を示す。
The magnetic properties were measured according to JIS C2550 by stacking eight test pieces by the 25 cm Epstein method and measuring the maximum relative magnetic permeability μm. The relationship between the crystal grain size and the maximum relative magnetic permeability is shown in FIG. When the annealing temperature, which is out of the range of the present invention, is 915 ° C., the crystal grain size is 38 μm, and the maximum relative magnetic permeability is as low as 2850. When the annealing temperature is out of the range of the present invention and the annealing temperature is 1120 ° C., the crystal grain size grows to 355 μm and the maximum relative magnetic permeability becomes 13900, but roughening occurs after processing. On the other hand, at the annealing temperature within the range of the present invention, the maximum relative magnetic permeability is 5000 or more and the crystal grain size is 70 to 300 μm.

【0013】(実施例2)表1に本発明例と比較例の化
学成分および焼鈍条件、結晶粒径、磁気特性等を示す。
表1に示すような本発明合金と比較合金を、真空誘導溶
解炉で溶製し、連続鋳造法によりスラブとした。その後
1250℃×2時間加熱後熱間圧延を行い、板厚3.8
mmの熱延板を得た。その後、熱延板端部をスリットし表
面の疵取りを行い、1回の冷間圧延にて板厚1.0mmの
冷延薄板を得、焼鈍を910〜1130℃×1分、大気
中にて行った後、硝弗酸により酸洗処理を行った。得ら
れた焼鈍板のL方向断面組織から、光学顕微鏡により比
較法にて結晶粒径を測定した。続いて、1%伸び率にて
調質圧延を行い、30mm幅×300mm長の試験片を切り
出し、歪取り焼鈍を760〜1040℃×6分、大気中
にて行った。磁気特性測定は、実施例1と同様に、最大
比透磁率μmを測定した。
(Example 2) Table 1 shows the chemical composition, annealing conditions, crystal grain size, magnetic properties and the like of the present invention and comparative examples.
The alloy of the present invention and the comparative alloy as shown in Table 1 were melted in a vacuum induction melting furnace and made into a slab by a continuous casting method. After that, heating is performed at 1250 ° C. for 2 hours and hot rolling is performed to obtain a plate thickness of 3.8.
A hot rolled sheet of mm was obtained. After that, the end of the hot-rolled sheet is slit and the surface is scratched to obtain a cold-rolled sheet having a thickness of 1.0 mm by one cold rolling, and annealed in the atmosphere at 910 to 1130 ° C for 1 minute. After that, a pickling treatment with nitric hydrofluoric acid was performed. From the L-direction cross-sectional structure of the obtained annealed plate, the crystal grain size was measured by a comparative method with an optical microscope. Then, temper rolling was performed at an elongation rate of 1%, a test piece having a width of 30 mm and a length of 300 mm was cut out, and strain relief annealing was performed at 760 to 1040 ° C. for 6 minutes in the atmosphere. In the magnetic property measurement, the maximum relative magnetic permeability μm was measured in the same manner as in Example 1.

【0014】[0014]

【表1】 [Table 1]

【0015】No.1〜13は本発明例、No.14〜26
は比較例である。比較例No.14は、C量が本発明範囲
を超えるものであり、この場合においては、結晶粒径が
小さくなり磁気特性が著しく低下している。比較例No.
15は、Si量が本発明範囲より低く、結晶粒径が小さ
くなり磁気特性が著しく低下している。比較例No.16
は、Si量が本発明範囲より高く、磁気特性は高いが、
伸びが低い。比較例No.17は、Mn量が本発明範囲よ
り低く、粒径が小となり磁気特性が著しく低下してい
る。比較例No.18は、Cr量が本発明範囲より高く、
磁気特性が著しく低下している。比較例No.19は、T
i量が本発明範囲より低く、磁気特性が著しく低下して
いる。比較例No.20は、Ti量が本発明範囲より高
く、磁気特性は高いが、伸びが低い。比較例No.21
は、N量が本発明範囲より高く、粒径が小となり、磁気
特性が著しく低下している。
No. Nos. 1 to 13 are examples of the present invention. 14-26
Is a comparative example. Comparative Example No. In No. 14, the amount of C exceeds the range of the present invention, and in this case, the crystal grain size becomes small and the magnetic properties are remarkably deteriorated. Comparative Example No.
In No. 15, the amount of Si was lower than the range of the present invention, the crystal grain size was small, and the magnetic properties were remarkably deteriorated. Comparative Example No. 16
Has a Si content higher than the range of the present invention and has high magnetic properties,
Low growth. Comparative Example No. In No. 17, the Mn content was lower than the range of the present invention, the particle size was small, and the magnetic properties were remarkably deteriorated. Comparative Example No. No. 18 had a Cr content higher than the range of the present invention,
The magnetic properties are significantly reduced. Comparative Example No. 19 is T
The i amount is lower than the range of the present invention, and the magnetic properties are remarkably deteriorated. Comparative Example No. In No. 20, the amount of Ti is higher than the range of the present invention, the magnetic properties are high, but the elongation is low. Comparative Example No. 21
Has a N content higher than the range of the present invention, has a small particle size, and has significantly deteriorated magnetic properties.

【0016】比較例No.22は、C、N量が本発明範囲
より高く、結晶粒径が小さくなり磁気特性が著しく低下
している。比較例No.23は、化学成分範囲は本発明範
囲内であるが、焼鈍温度が本発明範囲より低く、結晶粒
径が小さくなり磁気特性が著しく低下している。比較例
No.24は、化学成分範囲は本発明範囲内であるが、焼
鈍温度が本発明範囲より高く、結晶粒径が大きくなり磁
気特性は高いが、成品形状に成形加工した時に肌荒れが
生じた。比較例No.25は、化学成分範囲は本発明範囲
内であるが、歪取り焼鈍温度が本発明範囲より低く、加
工後の歪みが残存しているために磁気特性が低い。比較
例No.26は、化学成分範囲は本発明範囲内であるが、
歪取り焼鈍温度が本発明範囲より高く、加工後の歪みは
除去されているが、その効果は飽和し、また工程にも負
荷が大と考えられるため望ましくない。尚、本発明範囲
を外れる、Crが9.0%未満の場合及びMnが1.0
%を超える場合には、耐食性が劣化し、望ましくないた
め、磁気特性は測定しなかった。
Comparative Example No. In No. 22, the amount of C and N is higher than the range of the present invention, the crystal grain size is small, and the magnetic properties are remarkably deteriorated. Comparative Example No. No. 23 has a chemical composition within the range of the present invention, but the annealing temperature is lower than the range of the present invention, the crystal grain size becomes small, and the magnetic properties are remarkably deteriorated. Comparative example
No. Although the chemical composition range of No. 24 is within the range of the present invention, the annealing temperature is higher than the range of the present invention, the crystal grain size becomes large and the magnetic characteristics are high, but roughening occurred when molded into a product shape. Comparative Example No. In No. 25, the chemical composition range is within the range of the present invention, but the strain relief annealing temperature is lower than the range of the present invention, and the strain after processing remains, so the magnetic properties are low. Comparative Example No. 26, the chemical composition range is within the range of the present invention,
Although the strain relief annealing temperature is higher than the range of the present invention and the strain after working is removed, the effect is saturated and the load on the process is considered to be large, which is not desirable. Incidentally, when the content of Cr is less than 9.0% and the content of Mn is 1.0, which is out of the range of the present invention.
If it exceeds%, the corrosion resistance deteriorates and this is not desirable, so the magnetic properties were not measured.

【0017】[0017]

【発明の効果】以上のことから明らかなように、本発明
によれば、磁気特性および加工性に優れたステンレス鋼
板を得る事ができる。
As is apparent from the above, according to the present invention, it is possible to obtain a stainless steel plate having excellent magnetic properties and workability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】粒径と最大比透磁率の関係を示す図である。FIG. 1 is a diagram showing the relationship between particle size and maximum relative magnetic permeability.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フェライト系ステンレス鋼スラブを熱間
圧延を行い熱延板とし、続いて1回あるいは中間焼鈍を
含む2回以上の冷間圧延を行い冷延板とし、この冷延板
に925〜1100℃の温度範囲で焼鈍を行って結晶粒
径を70〜300μmに成長させ、次いで製品形状に成
形加工し、さらに750〜1000℃の温度範囲で歪取
り焼鈍を行うことを特徴とする磁気特性に優れたフェラ
イト系ステンレス鋼板の製造方法。
1. A ferritic stainless steel slab is hot-rolled to form a hot-rolled sheet, and subsequently cold-rolled once or two or more times including intermediate annealing to obtain a cold-rolled sheet. ˜1100 ° C., annealing is performed in the temperature range to grow the crystal grain size to 70 to 300 μm, the product shape is then formed, and strain relief annealing is performed in the 750 to 1000 ° C. temperature range. A method for producing a ferritic stainless steel sheet having excellent characteristics.
【請求項2】 重量%にて、 C ≦0.01%、 Si:0.1〜0.6%、 Mn:0.1〜1.0%、 Cr:9〜13%、 Ti:0.05〜0.5%、 N ≦0.015%を含有し、残部がFeおよび不可避
的不純物からなるフェライト系ステンレス鋼スラブを熱
間圧延を行い熱延板とし、この熱延板に1回あるいは中
間焼鈍を含む2回以上の冷間圧延を行って冷延板とし、
この冷延板に925〜1100℃の温度範囲で焼鈍を行
い、次いで結晶粒径を70〜300μmに成長させ、続
いて製品形状に成形加工し、さらに750〜1000℃
の温度範囲で歪取り焼鈍を行うことを特徴とする磁気特
性に優れたフェライト系ステンレス鋼板の製造方法。
2. In weight%, C ≦ 0.01%, Si: 0.1-0.6%, Mn: 0.1-1.0%, Cr: 9-13%, Ti: 0. A ferritic stainless steel slab containing 0.05 to 0.5% and N ≤ 0.015% and the balance being Fe and unavoidable impurities is hot-rolled to form a hot-rolled sheet. Cold rolled at least twice including intermediate annealing to obtain a cold rolled sheet,
This cold-rolled sheet is annealed in the temperature range of 925 to 1100 ° C., then grown to a crystal grain size of 70 to 300 μm, and subsequently molded into a product shape, and further 750 to 1000 ° C.
A method for producing a ferritic stainless steel sheet having excellent magnetic properties, which comprises performing strain relief annealing in the temperature range of 1.
JP28626095A 1995-11-02 1995-11-02 Production of ferritic stainless steel sheet excellent in magnetic property Withdrawn JPH09125147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28626095A JPH09125147A (en) 1995-11-02 1995-11-02 Production of ferritic stainless steel sheet excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28626095A JPH09125147A (en) 1995-11-02 1995-11-02 Production of ferritic stainless steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH09125147A true JPH09125147A (en) 1997-05-13

Family

ID=17702069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28626095A Withdrawn JPH09125147A (en) 1995-11-02 1995-11-02 Production of ferritic stainless steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH09125147A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110186184A1 (en) * 2002-03-27 2011-08-04 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel casting and sheet and method for producing the same
CN103934300A (en) * 2014-03-24 2014-07-23 无锡宝顺不锈钢有限公司 Production method of stainless steel belt with sandblast surface for electronic circuit board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110186184A1 (en) * 2002-03-27 2011-08-04 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel casting and sheet and method for producing the same
US8628631B2 (en) * 2002-03-27 2014-01-14 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel casting and sheet and method for producing the same
CN103934300A (en) * 2014-03-24 2014-07-23 无锡宝顺不锈钢有限公司 Production method of stainless steel belt with sandblast surface for electronic circuit board

Similar Documents

Publication Publication Date Title
US10643771B2 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JP2002332549A (en) Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor
JPS62103321A (en) Manufacture of silicon steel sheet having superior soft magnetic characteristic
JP4105962B2 (en) Sulfuric acid dew-point corrosion steel cold-rolled steel sheet for air preheater heat transfer element and manufacturing method thereof
JP3603726B2 (en) Austenitic stainless steel sheet for electronic components
JPH09125147A (en) Production of ferritic stainless steel sheet excellent in magnetic property
JP2002332548A (en) Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor
JP3281243B2 (en) Ferritic stainless steel sheet excellent in magnetic properties and method for producing the same
JP4972773B2 (en) Method for producing high silicon steel sheet
JP3510445B2 (en) Fe-Ni alloy thin plate for electronic parts with excellent softening and annealing properties
JP3629102B2 (en) Ferritic stainless steel sheet with excellent magnetic properties and method for producing the same
JP2013119635A (en) Steel sheet and manufacturing method therefor
JP3709709B2 (en) Ferritic stainless steel with excellent formability and manufacturing method thereof
JP4283425B2 (en) Method for producing ferritic stainless steel sheet with excellent high temperature strength and magnetic properties
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming
JP4342061B2 (en) Ferritic stainless steel material for frame and manufacturing method thereof
JP4616568B2 (en) Thin steel plate excellent in slow aging at room temperature and bake hardenability and method for producing the same
JPH0798975B2 (en) Method for producing Fe-Ni alloy
JPS6389622A (en) Production of grain oriented high-si silicon steel sheet
JP4494653B2 (en) Manufacturing method of ferritic stainless steel sheet
JP2939118B2 (en) Fe-Ni alloy for electronic and electromagnetic applications
JP3042273B2 (en) Method for producing Fe-Ni-based alloy thin plate for IC lead frame with excellent rust resistance
JP4297586B2 (en) Stainless steel for CRT support frame and its manufacturing method
JP3296924B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing without coarse grains and little oxide film
JPH09316542A (en) Manufacture of ferritic stainless steel sheet, excellent in magnetic property, and formed part

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107