JPH09124515A - 炭素酸化物の水素化方法 - Google Patents

炭素酸化物の水素化方法

Info

Publication number
JPH09124515A
JPH09124515A JP28757095A JP28757095A JPH09124515A JP H09124515 A JPH09124515 A JP H09124515A JP 28757095 A JP28757095 A JP 28757095A JP 28757095 A JP28757095 A JP 28757095A JP H09124515 A JPH09124515 A JP H09124515A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
carbon
carbon oxide
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28757095A
Other languages
English (en)
Inventor
Seijiro Suda
精二郎 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N T T LEASE KK
SUISO ENERG KENKYUSHO KK
Original Assignee
N T T LEASE KK
SUISO ENERG KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N T T LEASE KK, SUISO ENERG KENKYUSHO KK filed Critical N T T LEASE KK
Priority to JP28757095A priority Critical patent/JPH09124515A/ja
Publication of JPH09124515A publication Critical patent/JPH09124515A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】 【課題】 一酸化炭素や二酸化炭素のような炭素酸化物
から有用な有機化合物や燃料を製造するための水素化を
効率よく行う方法を提供する。 【解決手段】 炭素酸化物を水素化して他の化合物に変
換するに当り、水素吸蔵合金に炭素酸化物を接触させ、
次いで水素吸蔵合金から水素を放出させて反応させる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、一酸化炭素や二酸
化炭素のような炭素酸化物を水素化して、有用な有機化
合物や燃料を製造する際に、効率よく水素化を行う方法
に関するものである。
【0002】
【従来の技術】化石燃料の燃焼に伴って大量に発生する
二酸化炭素を原料として、電気化学的、光電気化学的あ
るいは生化学的に還元し、有用な化合物を製造する試み
は、かなり以前からなされているが、目的とする生成物
の選択性が低く、エネルギー効率も低いことから、まだ
実用化の段階には至っていない。
【0003】他方、二酸化炭素や一酸化炭素のような1
個の炭素を含む炭素酸化物を、触媒の存在下で水素化し
て、メタン、メタノール、ホルムアルデヒドなどの有機
化合物を製造する方法は、いわゆるC1化学として最近
注目を浴びており、その中の一酸化炭素のメタン化は天
然ガスの代替物の製造プロセスとして、また一酸化炭素
からのメタノール合成は合成ガスからのメタノール製造
プロセスとして工業的生産が行われている。しかしなが
ら、これらの化学的な方法は、触媒を用いなければなら
ないが、これらの反応に用いる触媒は希有金属系の原料
から調製されるためにコスト高になるのを免れないし、
また反応の促進と収率の向上をはかるために、高い温度
や圧力のもとで行う必要があり、反応の制御がむずかし
い上に、設備や装置の面でも経費がかさむという欠点が
あった。
【0004】
【発明が解決しようとする課題】本発明は、従来方法の
もつ欠点を克服し、炭素酸化物を穏和な条件下で、迅速
かつ高い効率で水素化する方法を提供するためになされ
たものである。
【0005】
【課題を解決するための手段】本発明者は、炭素酸化物
の水素化について種々研究を重ねた結果、水素吸蔵合金
を用い、水素をこれに吸蔵させたのち、炭素酸化物と接
触させた状態で放出させると、活性な原子状水素により
炭素酸化物が水素化され、穏和な条件下においても迅速
かつ効率的に目的物質が得られることを見出し、この知
見に基づいて本発明をなすに至った。
【0006】すなわち、本発明は、炭素酸化物を水素化
して他の化合物に変換するに当り、水素吸蔵合金に炭素
酸化物を接触させ、水素吸蔵合金から水素を放出させて
水素化を行う方法及び一酸化炭素又は二酸化炭素或いは
その両方と、水素とを含有するガス混合物を、水素吸蔵
合金に接触させて気体燃料を製造する方法を提供するも
のである。
【0007】水素吸蔵合金は、比較的低温下で可逆的に
多量の水素を吸収、放出する能力を有する合金である。
この水素吸蔵合金が水素を吸収する際には、水素ガス分
子が合金表面に吸着され、まず原子状水素に分解して合
金内部に固溶し、固溶体を形成し、これがさらに分子状
水素と反応して水素化物を生成する。そして、このよう
にして水素化された水素吸蔵合金を加熱すると、上記と
反対の経過をたどって合金表面に原子状水素が生成す
る。したがって、この合金表面に炭素酸化物が存在する
と活性のある原子状水素がこれに反応して、迅速な水素
化が行われることになる。
【0008】ところで、一般に水素吸蔵合金は水素を吸
収する際には体積膨張を、水素を放出する際には体積収
縮を伴うので、水素ガスの吸収、放出を繰り返すと内部
ひずみにより破壊するし、また合金の構成元素によって
は水素の吸収、放出により分解することがあるため、連
続使用すると急速に水素吸蔵能力を失う傾向がある。ま
た、水素吸蔵合金は、空気、水分、一酸化炭素、二酸化
炭素と接触すると、表面が被覆され、水素吸蔵能力を失
うことも知られている。しかしながら、あらかじめ、フ
ッ化水素処理を施して合金表面にフッ化物層を形成させ
ておくと、このような水素吸蔵能力の低下を防止するこ
とができる。
【0009】
【発明の実施の形態】本発明方法において用いる水素吸
蔵合金は、これまで水素吸蔵合金として知られているも
のの中から任意に選ぶことができる。このような水素吸
蔵合金の例としては、LaNi5やそのNiがAl,C
o,Mn,Fe,Crによって置き換えられたもの、あ
るいはそのLaがCa,Ce,Sm,ミッシュメタル
(Mm)によって置き換えられたもの、TiMn2を母
合金とするラベス相合金(AB2型合金)においては、
A側をZrに、またB側をNi,Cr,Vなどの金属元
素によって一部置き換えて二元素以上の多元素合金とし
たもの例えば一般式FexyTi(ただしMはCo,C
r,Cu,Mn,Mo,Ni,Ni又はV)で表わされ
るものやFe0.8Mn0.2Zr0.05Ti、Fe0.8Mn
0.18Al0.02Zr0.05Tiなどを挙げることができる。
また、TiMn2を母合金とするラベス相合金において
は、A側にLa,Ca,Mmのような希土類金属元素を
添加してAB2型合金相中に島状に分散させたものも用
いることができる。
【0010】そのほか、Mg,Mg2Niなどやこれら
の共晶体、MgとMg2Niの共晶体にLa,Ce,C
aなどの金属元素を添加してフッ化合金としたもの、L
a又はCe,Sm,Caなどを含むMg−Ni系の非晶
質合金をフッ化したものなども用いられる。
【0011】これらの水素吸蔵合金は、粒状化したもの
をそのまま用いてもよいが、水素吸蔵能力を長期間にわ
たって維持させるために、あらかじめフッ化水素処理し
て、その表面にフッ化物層を形成させておくのが好まし
い。
【0012】このフッ化水素処理は、例えばK3Al
3,K2TiF6,K2SiF6,Na3AlF6のような
フッ化金属化合物の過飽和水溶液あるいはKFとHFを
適当に混合してpH4.0〜6.0の範囲に調整した水
溶液に、水素吸蔵合金を粒状又は粉末状で浸せきし、1
0〜40℃において1〜60分間かきまぜることによっ
て行うことができる。
【0013】本発明方法により水素化される炭素酸化物
としては、一酸化炭素、二酸化炭素、亜酸化炭素があ
る。一酸化炭素は水素化すると、次の反応を起して、メ
タン、さらに高位の炭化水素又はメタノールを生成する
ことが知られている。 CO+3H2 → CH4+H2O nCO+(2n+1)H2 → Cn2n+2+nH2O CO+2H2 → CH3OH
【0014】また、二酸化炭素を水素化すると、次の反
応を起してメタン、メタノール、ホルムアルデヒドを生
成することが知られている。 CO2+4H2 → CH4+2H2O CO2+3H2 → CH3OH+H2O CO2+2H2 → HCHO+H2O したがって、本発明方法は、メタン、メタノール、各種
炭化水素、ホルムアルデヒドの製造に利用することがで
きる。
【0015】さらに、本発明方法によれば、コークスと
水とを反応させて得られる一酸化炭素と水素との混合ガ
スすなわち水性ガスを原料とし、可燃性の含炭素化合物
を生成分とする気体燃料を製造することもできる。その
ほか、生成物の表面吸着性が低下する現象を利用して反
応混合物の水素と生成物の分離、精製を容易にすること
もできる。
【0016】本発明方法を行うには、反応器中に水素吸
蔵合金を好ましくは顆粒の形で充てんし、気相状態にお
いて、低温、低圧下で水素を通して水素を吸蔵させたの
ち、これに炭素酸化物を接触させ、次いで加熱して高
温、高圧状態にもたらす。このようにして処理すること
により、低温、低圧状態から高温、高圧への状態変化が
起ると、内部で合金と結合していた活性を有する原子状
水素が水素吸蔵合金の表面に向って移動し、合金表面に
吸着している炭素酸化物と急速に反応して水素化物を生
成する。この反応は、反応条件を制御することによっ
て、吸着物質の飽和化、高炭素化もしくは脱酸化を伴う
ことがある。いずれの場合も水素化反応による生成物
は、水素吸蔵合金表面上での吸着力が低下するため容易
に脱着し、気相中に分散する。そして、過剰量の水素が
存在しても、この水素は合金結晶格子間隔中に単原子と
して吸蔵されているため生成物中に混入してくることが
ないので、この生成物は純粋な形で回収される。
【0017】
【発明の効果】これまでの水素化反応は、特殊な触媒を
用い、反応の促進と収率向上のために高温、高圧を必要
としたのに対し、本発明においては、室温、常圧付近の
条件下で水素を吸蔵させ30〜150℃、数気圧ないし
数10気圧という比較的穏やかな条件下で水素を放出し
て反応させることができるので工業的に実施するのに非
常に有利である。
【0018】
【実施例】次に、本発明を実施例によりさらに詳細に説
明するが、本発明は、これらの例によってなんら限定さ
れるものではない。
【0019】参考例1 六フッ化アルミニウムカリウムを重量/容積比(W/
V)で0.025になるように水に溶解して得られた過
飽和水溶液400mlをビーカーに仕込み、この中に水
素吸蔵合金として粒径0.1〜0.2mmのLaNi
4.7Al0.3合金粒子10gを投入し、スターラーによっ
て十分にかきまぜたのち、上澄液を取り除き、底部に沈
殿した粒子を回収し、フッ化処理によって表面にフッ化
ランタン(LaF3)をもつ合金粒子を得た。この際、
処理液のpHは5.0から8.0近傍まで変化した。
【0020】参考例2 耐圧反応容器(直径10mm、長さ100mm)に、L
aNi4.7Al0.3合金粒子(粒径0.1〜0.2mm)
10gを充てんし、反応容器内を真空ポンプで約20分
間排気したのち、二酸化炭素1000ppmを含む水素
を、80℃、10気圧の条件下で通し、10分間接触さ
せ、合金粒子単位原子量当りの水素吸蔵量(H/M)の
経時的変化を調べた。その結果を図1に曲線Aとして示
す。
【0021】次に、真空ポンプにより吸蔵水素を完全に
排気し、上記と同じ条件下で二酸化炭素1000ppm
を含む水素を10分間接触させることを1サイクルとす
る操作を合計10回繰り返したのち、水素吸蔵量の経時
的変化を調べた。その結果を図1に曲線Bとして示す。
この図から、操作を繰り返すことによって若干水素吸蔵
量が低下することが分る。
【0022】参考例3 LaNi4.7Al0.3の代りに参考例1で得たフッ化処理
によって表面にLaF3を形成させた合金粒子10gを
用い、参考例2と同様の操作を10回繰り返し、各回ご
との水素吸蔵量の経時的変化を調べた。このようにして
得た第1回目の結果と第10回目の結果を、図2に曲線
A及びBとして示す。この図から明らかなように、フッ
化処理した合金粒子を用いると、水素の吸蔵−放出を繰
り返してもほとんど水素吸蔵量の変化は認められない。
【0023】参考例4 参考例2において、二酸化炭素1000ppmを含む水
素の代りに一酸化炭素1000ppmを含む水素を用
い、同様の操作を3回繰り返した。その際の水素吸蔵量
の経時的変化を測定し、図3に第1回目を曲線A、第2
回目を曲線B、第3回目を曲線Cとして示す。この図か
ら明らかなように、フッ化処理しないLaNi4.7Al
0.3合金粒子を用いた場合は、水素吸蔵量は、吸蔵−放
出を繰り返すことにより大幅に低下する。
【0024】参考例5 参考例3において、二酸化炭素1000ppmを含む水
素の代りに一酸化炭素1000ppmを含む水素を用
い、同様の操作を5回繰り返した。その際の第1回目と
第5回目の水素吸蔵量の経時的変化を調べ図4に曲線A
及び曲線Bとして示す。この図から明らかなように第1
回目と第5回目の水素吸蔵量の経時的変化は全く同じで
あった。
【0025】また、この際用いたフッ化により表面にL
aF3を形成させた合金粒子について、一酸化炭素10
00ppmを含む水素と接触させる前後の走査電子顕微
鏡(SEM)を撮影し、電子線マイクロアナライザーに
よるフッ素の面分析を行った。その結果、フッ化により
合金粒子表面に水素透過性をもち、耐被毒性を有するフ
ッ化物被膜が形成され、これは一酸化炭素1000pp
mを含む水素と接触させた後でも保持されていることが
確認された。
【0026】参考例6 Ca0.4La0.6Ni4.8Al0.1Co0.1の組成をもつ合
金粒子10gを、K3AlF6の過飽和水溶液50ml中
に投入し、30℃において2時間かきまぜたのち、取り
出し、水洗し、乾燥した。このようにして表面がCaF
2及びLaF3で被覆された水素吸蔵合金粒子が得られ
た。
【0027】実施例1 参考例1で得たフッ化により表面にLaF3を形成した
LaNi4.7Al0.3合金粒子10gを耐圧反応容器に充
てんし、反応容器内を真空にしたのち、30℃において
二酸化炭素1000ppmを含む水素を10気圧で導入
し、合金粒子と十分に接触させたのち、反応容器を15
0℃まで加熱し、吸蔵されていた水素を放出させ、二酸
化炭素との反応を行わせ、メタンを生成させたのち、3
0℃に冷却した。
【0028】このメタンの生成量放出ガス中の二酸化炭
素残存量に基づいて計算することができる。この反応容
器の加熱冷却を5回繰り返し、各回ごとのガス中の二酸
化炭素濃度を測定し、その結果を図5に示す。この図か
ら明らかなように、1回の操作でガス中の二酸化炭素量
は1000ppmから8ppmに低下し、4回の操作で
1ppm以下になる。このことから、水素ガス中の二酸
化炭素濃度が高い場合は、低温低圧で水素を吸蔵させ、
高温高圧で水素を放出させる過程を繰り返すことにより
メタンを効率よく製造しうることが分る。
【0029】実施例2 耐圧反応容器に参考例1で得たフッ化により表面にLa
3を形成したLaNi4.7Al0.3合金粒子10gを充
てんしたのち、反応容器内を真空掃気し、60℃の条件
下において、一酸化炭素1000ppmを含む水素と接
触させ、完全に水素を吸蔵させた。次いで、反応容器を
80℃に加熱して吸蔵水素を放出させ、放出ガス中のメ
タン濃度をガスクロマトグラフィー及び重量分析計によ
り測定した。放出水素量とメタン濃度との関係を図6に
グラフで示す。
【0030】この図から分かるように、放出初期には、
合金粒子表面に吸着した一酸化炭素と合金中に吸蔵され
た活性水素とが合金表面で反応し、高濃度のメタンが発
生する。この放出初期の高濃度のメタンの生成から、水
素の放出初期に、ほとんどすべての一酸化炭素はメタン
に転換されることが分かる。したがって、放出量が増加
しても、すでに合金表面上に一酸化炭素は存在せず、水
素放出の初期以降の発生メタン量は急激に低下する。
【0031】実施例3 耐圧反応容器に、参考例1で得たフッ化処理により表面
にLaF3を形成したLaNi4.7Al0.3合金粒子10
gを充てんし、反応容器内を真空ポンプで約20分間真
空にしたのち、30℃の一定条件下において、二酸化炭
素1000ppmを含む水素と反応させ、完全に水素を
吸蔵させた。次いで、反応容器を80℃に加熱して吸蔵
水素を放出させ、放出ガス中のメタン濃度を測定した。
放出水素量とメタン濃度との関係を図7にグラフで示
す。
【0032】この図から分かるように、放出初期には、
合金粒子表面に吸着した二酸化炭素と合金中に吸蔵され
た活性水素とが合金表面で反応し、高濃度のメタンが発
生する。この放出初期の高濃度のメタンの生成から、水
素の放出初期に、ほとんどすべての二酸化炭素はメタン
に転換されることが分かる。したがって、放出量が増加
しても、すでに合金表面上に二酸化炭素は存在せず、水
素放出の初期以降の発生メタン量は急激に低下する。
【0033】実施例4 実施例2におけるフッ化処理したLaNi4.7Al0.3
金粒子の代りに、Ti 0.5Zr0.50.75Ni1.25合金粒
子10gを用い、これに一酸化炭素1000ppmを含
む水素を実施例2と同じ条件下で反応させた。反応容器
からの放出ガスについて、核磁気共鳴スペクトルにより
分析したところ、メタンの存在が確認された。
【0034】実施例5 実施例2におけるフッ化処理したLaNi4.7Al0.3
金粒子の代りに参考例6で得たフッ化処理したCa0.4
La0.6Ni4.8Al0.1Co0.1合金粒子10gを用い、
これに一酸化炭素1000ppmを含む水素を実施例2
と同じ条件下で反応させた。反応容器からの放出ガスに
ついて、核磁気共鳴スペクトルにより分析したところ、
メタンの存在が確認された。
【図面の簡単な説明】
【図1】 水素吸蔵合金に対する二酸化炭素含有水素の
水素吸蔵量の経時的変化を示すグラフ。
【図2】 フッ化処理した水素吸蔵合金に対する二酸化
炭素含有水素の水素吸蔵量の経時的変化を示すグラフ。
【図3】 水素吸蔵合金に対して繰り返し一酸化炭素含
有水素を吸蔵−放出させたときの各回ごとの水素吸蔵量
の変化を示すグラフ。
【図4】 フッ化処理した水素吸蔵合金に対して繰り返
し一酸化炭素含有水素を吸蔵−放出させたときの各回ご
との水素吸蔵量の経時的変化を示すグラフ。
【図5】 フッ化処理した水素吸蔵合金に対して繰り返
し二酸化炭素含有水素を吸蔵−放出させたときの繰り返
し回数とガス中の二酸化炭素濃度との関係を示すグラ
フ。
【図6】 フッ化処理した水素吸蔵合金に対する一酸化
炭素含有水素の放出水素量とメタン濃度との関係を示す
グラフ。
【図7】 フッ化処理した水素吸蔵合金に対する二酸化
炭素含有水素の放出水素量とメタン濃度との関係を示す
グラフ。

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 炭素酸化物を水素化して他の化合物に変
    換するに当り、水素吸蔵合金に炭素酸化物を接触させ、
    水素吸蔵合金から水素を放出させることを特徴とする炭
    素酸化物の水素化方法。
  2. 【請求項2】 水素吸蔵合金があらかじめフッ化水素処
    理されて表面にフッ化物層を有する請求項1記載の水素
    化方法。
  3. 【請求項3】 炭素酸化物が一酸化炭素又は二酸化炭素
    或いはその両方である請求項1又は2記載の水素化方
    法。
  4. 【請求項4】 一酸化炭素又は二酸化炭素或いはその両
    方と、水素とを含有するガス混合物を、水素吸蔵合金に
    接触させることを特徴とする気体燃料の製造方法。
  5. 【請求項5】 水素吸蔵合金があらかじめフッ化水素処
    理されて表面にフッ化物層を有する請求項4記載の製造
    方法。
JP28757095A 1995-11-06 1995-11-06 炭素酸化物の水素化方法 Pending JPH09124515A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28757095A JPH09124515A (ja) 1995-11-06 1995-11-06 炭素酸化物の水素化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28757095A JPH09124515A (ja) 1995-11-06 1995-11-06 炭素酸化物の水素化方法

Publications (1)

Publication Number Publication Date
JPH09124515A true JPH09124515A (ja) 1997-05-13

Family

ID=17719050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28757095A Pending JPH09124515A (ja) 1995-11-06 1995-11-06 炭素酸化物の水素化方法

Country Status (1)

Country Link
JP (1) JPH09124515A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4598994B2 (ja) * 2000-06-30 2010-12-15 三菱重工業株式会社 二酸化炭素還元装置
WO2013108833A1 (ja) * 2012-01-20 2013-07-25 豊田合成株式会社 炭化水素の製造方法
WO2013108403A1 (ja) * 2012-01-20 2013-07-25 豊田合成株式会社 炭化水素の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4598994B2 (ja) * 2000-06-30 2010-12-15 三菱重工業株式会社 二酸化炭素還元装置
WO2013108833A1 (ja) * 2012-01-20 2013-07-25 豊田合成株式会社 炭化水素の製造方法
WO2013108403A1 (ja) * 2012-01-20 2013-07-25 豊田合成株式会社 炭化水素の製造方法
CN104066701A (zh) * 2012-01-20 2014-09-24 丰田合成株式会社 烃的制造方法
US9162936B2 (en) 2012-01-20 2015-10-20 Toyoda Gosei Co., Ltd. Method for manufacturing hydrocarbon
CN104066701B (zh) * 2012-01-20 2017-02-01 丰田合成株式会社 烃的制造方法

Similar Documents

Publication Publication Date Title
EP1209119B1 (en) Hydrogen storage using carbon-metal hybrid compositions
Imamura et al. Hydrogen absorption of Mg-Based composites prepared by mechanical milling: Factors affecting its characteristics
EP1067091A2 (en) Hydrogen-generating agent and method for generation of hydrogen using the same
Bogdanović et al. Active MgH2 Mg-systems for hydrogen storage
US4560816A (en) Catalyzed hydrogenation and dehydrogenation processes
US4695446A (en) Method of separating and purifying hydrogen
US4769225A (en) System for exchange of hydrogen between liquid and solid phases
Gérard et al. Hydride formation and decomposition kinetics
US5944876A (en) Cd-exchanged zeolite rho compositions and compositions of zeolite rho encapsulated with hydrogen made therefrom
JPH09124515A (ja) 炭素酸化物の水素化方法
Robinson Heterogeneous catalysis: can surface science contribute?
US5441715A (en) Method for the separation of hydrogen isotopes using a hydrogen absorbing alloy
Imamura et al. Hydrogen absorption in modified intermetallic compound systems
US6206952B1 (en) Method of separating and selectively removing hydrogen contaminant from process streams
Christmann Hydrogen adsorption on metal surfaces
Han et al. The effect of CO impurity on the hydrogenation properties of LaNi5, LaNi4. 7Al0. 3 and MmNi4. 5Al0. 5 during hydriding-dehydriding cycling
CA1192061A (en) Oxygen stabilized zirconium vanadium intermetallic compound
CN102307645B (zh) 通过钠沸石类沸石选择性分离氢气或氦气的方法及新型钠沸石类沸石
JP2835327B2 (ja) 水素吸蔵金属材の高活性化及び安定化処理法
Johnson et al. Behavior of hydrided and dehydrided LaNi5Hx as an hydrogenation catalyst
GB2416137A (en) Preparation of a gold catalyst
AU2011317344B2 (en) A method of generating thermal energy
Hara et al. Iron to catalyze ammonia synthesis at low temperature
JPS5877544A (ja) 水素吸蔵用合金
Matsumoto et al. Reaction mechanism of methane oxidation to synthesis gas over an activated PdY zeolite