JPH09113624A - Range finder using light wave - Google Patents

Range finder using light wave

Info

Publication number
JPH09113624A
JPH09113624A JP7273255A JP27325595A JPH09113624A JP H09113624 A JPH09113624 A JP H09113624A JP 7273255 A JP7273255 A JP 7273255A JP 27325595 A JP27325595 A JP 27325595A JP H09113624 A JPH09113624 A JP H09113624A
Authority
JP
Japan
Prior art keywords
distance
measurement
light
phase
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7273255A
Other languages
Japanese (ja)
Inventor
Satoshi Suzuki
聡 鈴木
Kimitake Tsujimoto
公毅 辻元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7273255A priority Critical patent/JPH09113624A/en
Publication of JPH09113624A publication Critical patent/JPH09113624A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the range finding accuracy of a range finder using light wave by eliminating the range finding error of the range finder which is caused by multipath reflection expressed by the function of the range to be found. SOLUTION: A range finder using light wave is provided with a light emitting means (2) which emits an intensity-modulated signal toward a reflecting mirror (4) set at a measuring point, a light receiving means (5) which receives the modulated light reflected by the mirror (4), and a phase measuring means (6) which measures the phase difference between the modulated signal emitted from the means (2) and that received by the means (5). A correcting arithmetic means (7),which stores the range finding error expressed by the function of the range to be found performs correcting calculation for removing an error component from the range to the measuring point found as a result of the phase difference measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、光波測距装置に
関するものである。さらに詳しくは、この発明は、強度
変調信号を被測定物まで往復させるときに発生する位相
差を測定して測距するのに有用な新しい光波測距装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightwave distance measuring device. More specifically, the present invention relates to a new optical distance measuring device useful for measuring and measuring a phase difference generated when an intensity-modulated signal is reciprocated to an object to be measured.

【0002】[0002]

【従来の技術とその課題】従来から、強度変調信号を被
測定物まで往復させるときに発生する位相差を測定する
光波測距装置が知られている。この光測距装置では、た
とえば図6に示したように、変調信号作成手段(1)で
生成され、そして、発光手段(2)から出力された変調
光は、対物レンズ(3)によって平行光とされて、測定
点に置かれたコーナキューブ/レフシートなどの反射鏡
(4)に向けて出射される。そして、反射鏡(4)は変
調光を反射し、この反射光は再び対物レンズ(3)を通
り、受光手段(5)に集光される。
2. Description of the Related Art Conventionally, there has been known an optical distance measuring device for measuring a phase difference generated when an intensity modulated signal is reciprocated to an object to be measured. In this optical distance measuring device, for example, as shown in FIG. 6, the modulated light generated by the modulation signal creating means (1) and output from the light emitting means (2) is collimated by the objective lens (3). Then, the light is emitted toward a reflecting mirror (4) such as a corner cube / ref sheet placed at the measurement point. Then, the reflecting mirror (4) reflects the modulated light, and the reflected light passes through the objective lens (3) again and is condensed on the light receiving means (5).

【0003】そしてこの反射光は受光手段(5)で光電
変換され、位相測定手段(6)にて測定点までの往復距
離に比例した位相を測定し、この位相測定結果をもとに
被測定物までの距離を演算することによって、その測定
点までの距離を求めている。この装置では、たとえば、
強度変調信号の周波数を15MHzとすると、その波長
はλ=20mとなる。この周波数で変調されて発光手段
(2)から送信される光信号は、反射鏡(4)が10m
の距離にあるときには、受光手段(5)に約1サイクル
の位相遅れとなって受信される。そして一般的に、この
λ/2=10m=2π(rad)を単位距離と呼ばれ
る。仮に反射鏡(4)の位置が10mよりも遠くにずれ
ていると、受光手段(5)には1サイクル(2π(ra
d))をオーバーして光信号が受信される。反射鏡
(4)の位置が10mよりも近くにずれていると、受光
手段(5)には、1サイクル(2π(rad))に満た
ない光信号が受信される。つまり、この反射鏡(4)の
位置に比例した光信号の伝播時間の遅れを測定すること
によって、測定点の位置を計測することが可能となる。
The reflected light is photoelectrically converted by the light receiving means (5), the phase proportional to the round trip distance to the measurement point is measured by the phase measuring means (6), and the measured object is measured based on the phase measurement result. The distance to the measurement point is obtained by calculating the distance to the object. With this device, for example,
If the frequency of the intensity-modulated signal is 15 MHz, its wavelength is λ = 20 m. The optical signal modulated by this frequency and transmitted from the light emitting means (2) is transmitted by the reflecting mirror (4) at a distance of 10 m.
When the distance is, the light receiving means (5) receives the signal with a phase delay of about 1 cycle. And generally, this λ / 2 = 10 m = 2π (rad) is called a unit distance. If the position of the reflecting mirror (4) is displaced further than 10 m, one cycle (2π (ra
d)) is exceeded and the optical signal is received. When the position of the reflecting mirror (4) is displaced closer than 10 m, the light receiving means (5) receives an optical signal of less than one cycle (2π (rad)). That is, the position of the measurement point can be measured by measuring the delay of the propagation time of the optical signal that is proportional to the position of the reflecting mirror (4).

【0004】なお、一般的な光波測距装置では、発光手
段(2)と受光手段(5)との間に内部光路(発光手段
(2)からの送信光が直接にまたはミラーを介して間接
的に受信手段(5)に達する一定路長の参照光路)と外
部光路(発光手段(2)からの送信光が測定点に置かれ
た反射鏡(4)で反射し測定距離間を往復する測定光
路)が形成され、その外部光路からの光信号と内部光路
からの光信号とを選択的に受光手段(5)に入射させ、
各々位相測定することによって、電気系の位相変動など
を除去している。
In a general optical distance measuring device, an internal optical path (transmitted light from the light emitting means (2) is directly or indirectly via a mirror between the light emitting means (2) and the light receiving means (5). A reference optical path of a fixed path length that reaches the receiving means (5) and an external optical path (transmitted light from the light emitting means (2) is reflected by a reflecting mirror (4) placed at the measurement point and reciprocates between measurement distances. A measurement optical path) is formed, and an optical signal from the external optical path and an optical signal from the internal optical path are selectively incident on the light receiving means (5),
Each phase measurement removes phase fluctuations in the electrical system.

【0005】しかしながら、このような従来の光波測距
装置においては、発光手段(2)や受光手段(5)で測
定光が反射して、二往復以上の光が生じたりすることが
あり、これらの正規の測定光以外の光が測定誤差の原因
となることがあった。すなわち、たとえば、発光手段
(2)または受光手段(5)に大きな反射があると、反
射鏡(4)から返って来て、受光手段(5)または発光
手段(2)に達する光が再び反射鏡(4)に向けて送出
されるために、反射鏡(4)との間で往復する二往復光
となり、これが外部光路を一度だけ通る正規の測定光と
重ね合わさせる結果、測定光の位相が変化して測定誤差
が生じてしまう。このため、高い精度の光波測距装置を
構成するためには、この誤差要因(多重反射:反射鏡を
二回以上往復するために発生する誤差)を極力小さくし
なければならない。そこで従来では、発光手段や受光
手段を斜設し、反射率を低減させるか、光学的フィルタ
ーやシャッターコーティングを配置し、多重反射光を遮
断することや、あらかじめ計測した誤差量を機器内部
に記憶し、補正演算を行うなどの対策が必要とされてい
た。
However, in such a conventional lightwave distance measuring device, the measuring light may be reflected by the light emitting means (2) and the light receiving means (5), and light of two or more round trips may be generated. The light other than the regular measurement light of may cause the measurement error. That is, for example, when the light emitting means (2) or the light receiving means (5) has a large reflection, the light returning from the reflecting mirror (4) and reaching the light receiving means (5) or the light emitting means (2) is reflected again. Since it is sent out to the mirror (4), it becomes two reciprocating lights that reciprocate with the reflecting mirror (4), and as a result of superimposing this with the regular measuring light that passes through the external optical path only once, the phase of the measuring light is changed. It changes and causes a measurement error. For this reason, in order to construct a highly accurate lightwave distance measuring device, this error factor (multiple reflection: an error caused by reciprocating the reflecting mirror twice or more) must be minimized. Therefore, conventionally, the light emitting means and the light receiving means are installed obliquely to reduce the reflectance, or an optical filter or shutter coating is arranged to block the multiple reflected light, and the amount of error measured in advance is stored inside the device. However, measures such as performing correction calculation were needed.

【0006】しかし、上記の手段によって改良された
光波測距装置においては、発光手段や受光手段の反射率
の低いものを選択しなければならないという制約を受け
たり、光軸に対して発光手段や受光手段を斜設するため
に発光/受光効率が低下し、最大測定距離が限定された
り、さらには、光学部品を追加することにより、装置が
高価になり、また、装置が巨大化するといった問題点が
あった。
However, in the optical distance measuring device improved by the above means, there is a restriction that the light emitting means or the light receiving means having a low reflectance must be selected, or the light emitting means or the light emitting means with respect to the optical axis must be selected. Since the light receiving means is obliquely installed, the light emitting / light receiving efficiency is lowered, the maximum measurement distance is limited, and the addition of optical parts makes the device expensive and enormous. There was a point.

【0007】また、上記の手段によって改良された光
波測距装置においては、あらかじめ計測した誤差量を機
器内部に記憶するため、各測定点における誤差量のデー
タを算出しなければならず、作業工程の時間が非常に多
くなるといった問題点があった。そこでこの発明は、以
上の通りの事情に鑑みてなされたものであり、従来装置
の問題点を解消し、特別な多重反射対策用の部品を追加
することなく、いかなる測定距離においても精度高い測
定結果が得られる光波測距装置を提供することを目的と
している。
Further, in the lightwave distance measuring apparatus improved by the above means, since the error amount measured in advance is stored inside the device, the data of the error amount at each measurement point must be calculated, and the work process There was a problem that the amount of time in the process became very large. Therefore, the present invention has been made in view of the circumstances as described above, solves the problems of the conventional device, and accurately measures at any measurement distance without adding a special component for multiple reflection countermeasures. It is an object of the present invention to provide an optical wave distance measuring device that can obtain a result.

【0008】[0008]

【課題を解決するための手段】この発明は、上記の課題
を解決するために、測定点に置かれた反射鏡に向かって
強度変調信号を出射する発光手段と、前記反射鏡により
反射されて戻ってきた変調光を受光する受光手段と、発
光手段と受光手段の変調信号の位相差を計測する位相測
定手段とを備え、位相測定結果より測定点までの距離を
演算する光波測距装置であって、測定距離の関数で表せ
られる測距誤差を内部に格納し、位相測定結果より得ら
れた測定点までの距離から誤差成分を除去する補正演算
手段を備えてこの補正演算手段により測距補正演算を行
うことを特徴とする光波測距装置を提供する。
In order to solve the above problems, the present invention provides a light emitting means for emitting an intensity-modulated signal toward a reflecting mirror placed at a measuring point, and a reflecting means reflected by the reflecting mirror. A light wave distance measuring device that includes a light receiving unit that receives the returned modulated light and a phase measuring unit that measures the phase difference between the light emitting unit and the modulation signal of the light receiving unit, and that calculates the distance from the phase measurement result to the measurement point. Therefore, the distance measurement error, which is expressed as a function of the measured distance, is stored internally, and the correction calculation means is provided to remove the error component from the distance to the measurement point obtained from the phase measurement result. Provided is a lightwave distance measuring device characterized by performing a correction calculation.

【0009】またさらに、この発明においては、前記の
光波測距装置において、その補正演算が、次の近似式
Further, according to the present invention, in the above-described optical distance measuring device, the correction calculation is performed by the following approximate expression.

【0010】[0010]

【数2】 (Equation 2)

【0011】で表されることを特徴とする光波測距装置
をも提供する。つまり、この発明においては、補正演算
手段に、測定距離の関数で表せられる補正演算式を格納
し、この補正演算手段によって、位相測定手段で得られ
た測定値の補正演算を行うことに大きな特徴がある。こ
のとき、測定距離に適切な補正演算を行うことにより、
多量反射光による測定誤差を完全に除去することができ
る。
There is also provided a lightwave distance measuring device characterized by: That is, according to the present invention, the correction calculation means stores the correction calculation expression represented by the function of the measurement distance, and the correction calculation means performs the correction calculation of the measurement value obtained by the phase measurement means. There is. At this time, by performing an appropriate correction calculation for the measured distance,
A measurement error due to a large amount of reflected light can be completely eliminated.

【0012】[0012]

【発明の実施の形態】以下、実施例を示しつつ、さらに
詳しくこの発明の実施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in more detail below with reference to examples.

【0013】[0013]

【実施例】図1はこの発明の光波測距装置の基本構成を
示すブロック図である。この図において、変調信号作成
手段(1)は、一般的に水晶発振器などを用いた原発振
器、または、原発振器出力を分周器/PLL(Phas
e Locked Loop)回路などで作製する構成
としている。この場合の変調信号作成手段(1)は、L
EDやレーザなどの発光素子を含む発光手段(2)に、
光源変調信号を入力する。発光手段(2)に入力された
光電変換された変調信号は、内部光路、または、対物レ
ンズ(3)を経由して外部光路を選択され、受光手段
(5)に入力される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing the basic construction of a lightwave distance measuring apparatus according to the present invention. In this figure, a modulation signal generating means (1) is generally an original oscillator using a crystal oscillator or the like, or an original oscillator output is a frequency divider / PLL (Phas).
e Locked Loop) circuit or the like. The modulation signal creating means (1) in this case is L
In the light emitting means (2) including a light emitting element such as ED and laser,
Input the light source modulation signal. The photoelectrically converted modulated signal input to the light emitting means (2) is selected in the internal optical path or the external optical path via the objective lens (3) and is input to the light receiving means (5).

【0014】受光手段(5)にて光電変換された受信信
号は、反射鏡(4)の設置によって決定される測定点ま
での距離に比例した位相情報を持った信号である。従っ
て、変調信号作成手段(1)から得られる変調信号と受
光手段(5)から得られる受信信号とを、位相測定手段
(6)で位相比較することによって、距離演算を行うこ
とが可能となる。
The received signal photoelectrically converted by the light receiving means (5) is a signal having phase information proportional to the distance to the measurement point determined by the installation of the reflecting mirror (4). Therefore, the phase calculation means (6) compares the phase of the modulated signal obtained from the modulated signal generating means (1) with the received signal obtained from the light receiving means (5), whereby the distance calculation can be performed. .

【0015】一般的に、外部光路測定時、変調信号と受
信信号との位相角θeは、測定距離に追従して変化す
る。一方内部光路測定時は、変調信号と受信信号との位
相角θiはほぼ一定値をとる。外部光路測定時の位相角
と内部光路測定時との位相角を引き算することにより、
反射鏡(4)までの測定距離に比例した位相角θl=θ
e−θiを求めることができる。
Generally, when measuring the external optical path, the phase angle θe between the modulated signal and the received signal changes following the measurement distance. On the other hand, when measuring the internal optical path, the phase angle θi between the modulated signal and the received signal has a substantially constant value. By subtracting the phase angle between the external optical path measurement and the internal optical path measurement,
Phase angle θl = θ proportional to the measurement distance to the reflector (4)
e-θi can be obtained.

【0016】たとえば、図2に示すように、距離情報を
保持した受信信号をベクトルSIF、前述の多重反射光
による正確な距離情報を持たない誤差信号をベクトルN
IFと定義した場合、極座標に示されるベクトルSIF
は、前述の理由により、距離に比例して位相角θlが変
化する。一方、ベクトルNIFは距離情報を持たないた
め、ベクトルSIFと別の位相角を維持する。
For example, as shown in FIG. 2, a received signal holding distance information is a vector SIF, and an error signal not having accurate distance information due to the multiple reflected light is a vector NIF.
If defined as IF, the vector SIF shown in polar coordinates
For the above reason, the phase angle θl changes in proportion to the distance. On the other hand, since the vector NIF has no distance information, it maintains a phase angle different from that of the vector SIF.

【0017】誤差信号NIFが存在する場合、図1の位
相測定手段(6)に入力される受信信号は、ベクトルS
IFとベクトルNIFのベクトル和になるため、図2に
示すように、実際の距離情報、すなわち、位相角θlか
らΔφの相互差を生じる。この位相差は最大、次式
When the error signal NIF is present, the received signal input to the phase measuring means (6) of FIG.
Since it is the vector sum of IF and vector NIF, as shown in FIG. 2, a mutual difference of Δφ from the actual distance information, that is, the phase angle θl occurs. This phase difference is maximum,

【0018】[0018]

【数3】 (Equation 3)

【0019】の通りとなる。このように、図2は多重反
射により、ベクトルSIFに誤差ベクトルNIFが重畳
されて、Δφの位相誤差が発生した場合であり、この図
2の場合、測定誤差はベクトルSIFとベクトルNIF
の光量比、および、位相角の関係によって決定されるこ
とになる。
It becomes as follows. As described above, FIG. 2 shows the case where the error vector NIF is superimposed on the vector SIF due to the multiple reflection, and a phase error of Δφ occurs. In the case of FIG. 2, the measurement error is the vector SIF and the vector NIF.
Will be determined by the relationship between the light amount ratio of ## EQU1 ## and the phase angle.

【0020】そこで、この発明では、図3の測定距離の
関数で表される理論に基づいた測距誤差の算出を表した
フローチャートに従って、まずはじめに、図4のような
光学系において、多重反射の原因となっている箇所につ
いて、発光手段(2)を基準に正規の光路を経由して受
光手段(5)に達する信号と、多重反射によって誤った
光路を経由して受光手段(5)に達する信号との比を算
出する(図3ステップ1)。このステップ1の信号比か
ら、図2における位相誤差の最大値Δφを算出し、Δφ
を強度変調信号の波長λに相当する測距誤差に変換する
(ステップ2)。次に測定距離の関数で表される理論関
数に基づいた測距誤差を算出する。例えば、図4におい
て多重反射の原因箇所が発光部であると仮定すると、発
光手段(2)から反射鏡(4)を介して受光手段(5)
に到るまでの変調光の正規の光路長(8a)と、多重反
射による誤った光路長(8b)とを算出する。これらの
光路長差{(8a)−(8b)}が、強度変調信号の波
長λの整数倍であるとき、図2に示したベクトルSIF
と誤差ベクトルNIFの位相角が一致するため、多重反
射による測距誤差は発生しない。このため、多重反射に
よる測距誤差は、この整数倍の測定点を基準にした強度
変調信号の波長λの1/2を1周期とした測定距離の関
数と、図3のステップ2で求めた位相誤差の最大値Δφ
を測距誤差に換算した値との積で表される(図3ステッ
プ3)。
Therefore, according to the present invention, first, according to the flowchart showing the calculation of the distance measurement error based on the theory represented by the function of the measured distance in FIG. 3, first, in the optical system as shown in FIG. With respect to the location of the cause, a signal reaching the light receiving means (5) via the regular optical path with the light emitting means (2) as a reference, and a signal reaching the light receiving means (5) via the incorrect optical path due to multiple reflection. The ratio with the signal is calculated (step 1 in FIG. 3). The maximum value Δφ of the phase error in FIG. 2 is calculated from the signal ratio in step 1, and Δφ
Is converted into a distance measurement error corresponding to the wavelength λ of the intensity modulated signal (step 2). Next, the distance measurement error based on the theoretical function represented by the function of the measurement distance is calculated. For example, assuming that the cause of multiple reflection is the light emitting portion in FIG. 4, the light receiving means (5) is transmitted from the light emitting means (2) through the reflecting mirror (4).
The normal optical path length (8a) of the modulated light up to and the erroneous optical path length (8b) due to multiple reflection are calculated. When the optical path length difference {(8a)-(8b)} is an integral multiple of the wavelength λ of the intensity modulation signal, the vector SIF shown in FIG.
Since the phase angle of the error vector NIF coincides with that of the error vector NIF, a ranging error due to multiple reflection does not occur. Therefore, the distance measurement error due to multiple reflection is obtained in step 2 of FIG. 3 and a function of the measurement distance with 1/2 of the wavelength λ of the intensity-modulated signal as one cycle with reference to the integral multiple measurement point. Maximum phase error Δφ
Is expressed as the product of the distance measurement error and the converted value (step 3 in FIG. 3).

【0021】次に、図5の多重反射理論を理論解析した
補正演算を行う手順を表したフローチャートに従って、
まず、多重反射成分による測距誤差を含んだ測定距離を
算出する(ステップ1)。ステップ1で算出した測定距
離から、その測定距離に対応する測距誤差を算出し、補
正演算を行う(ステップ2)。ステップ2に算出した値
を測距値として出力する(ステップ3)。
Next, according to a flow chart showing a procedure for performing a correction calculation by theoretically analyzing the multiple reflection theory of FIG.
First, a measurement distance including a distance measurement error due to multiple reflection components is calculated (step 1). From the measurement distance calculated in step 1, a distance measurement error corresponding to the measurement distance is calculated and correction calculation is performed (step 2). The value calculated in step 2 is output as the distance measurement value (step 3).

【0022】以上のプロセスによって正確な光測距が実
現されることになる。
Accurate optical distance measurement is realized by the above process.

【0023】[0023]

【発明の効果】以上詳しく説明した通り、本発明におい
ては、補正演算手段にあらかじめ多重反射光を理論解析
した補正演算式を格納し、位相測定手段で得られた測定
値に補正演算を行うので、測定距離の関数で表される多
重反射が原因となる光波測距装置の測距誤差をなくし、
測距精度を向上することが可能となる。したがって、低
価格で高精度の長距離光波測距装置を製作することが可
能となる。
As described in detail above, in the present invention, the correction calculation formula for theoretically analyzing the multiple reflected light is stored in advance in the correction calculation means, and the correction calculation is performed on the measurement value obtained by the phase measuring means. , Eliminates the distance measurement error of the light wave distance measuring device caused by the multiple reflection expressed by the function of the measurement distance,
It is possible to improve the ranging accuracy. Therefore, it becomes possible to manufacture a long-distance optical wave distance measuring device with low cost and high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の基本構成を示したブロック図であ
る。
FIG. 1 is a block diagram showing a basic configuration of the present invention.

【図2】誤差発生の原理を示したベクトル図である。FIG. 2 is a vector diagram showing the principle of error generation.

【図3】この発明の実施例における測距誤差の理論解析
の手順を示すフローチャートである。
FIG. 3 is a flowchart showing a procedure of theoretical analysis of distance measurement error in the embodiment of the present invention.

【図4】この発明の実施例における測距誤差の理論解析
を示した概略図である。
FIG. 4 is a schematic diagram showing theoretical analysis of distance measurement error in the embodiment of the present invention.

【図5】この発明の実施例における補正演算の手順を示
すフローチャートである。
FIG. 5 is a flowchart showing a procedure of correction calculation in the embodiment of the present invention.

【図6】従来の基本構成を示したブロック図である。FIG. 6 is a block diagram showing a conventional basic configuration.

【符号の説明】[Explanation of symbols]

1 変調信号作成手段 2 発光手段 3 対物レンズ 4 反射鏡 5 受光手段 6 位相測定手段 7 補正演算手段 8a 正規の光路長 8b 誤った光路長 1 Modulation Signal Creating Means 2 Light Emitting Means 3 Objective Lens 4 Reflecting Mirror 5 Light Receiving Means 6 Phase Measuring Means 7 Correction Calculating Means 8a Regular Optical Path Length 8b Incorrect Optical Path Length

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 測定点に置かれた反射鏡に向かって強度
変調信号を出射する発光手段と、前記反射鏡により反射
されて戻ってきた変調光を受光する受光手段と、発光手
段と受光手段の変調信号の位相差を計測する位相測定手
段とを備え、位相測定の結果により測定点までの距離を
演算する光波測距装置であって、測定距離の関数で表せ
られる測距誤差を内部に格納し、位相測定結果より得ら
れた測定点までの距離から誤差成分を除去する補正演算
手段を備えてこの補正演算手段により測距補正演算を行
うことを特徴とする光波測距装置。
1. A light emitting means for emitting an intensity-modulated signal toward a reflecting mirror placed at a measuring point, a light receiving means for receiving the modulated light reflected by the reflecting mirror and returning, a light emitting means and a light receiving means. A lightwave distance measuring device comprising a phase measuring means for measuring the phase difference of the modulated signal of, and calculating the distance to the measurement point based on the result of the phase measurement. An optical wave distance measuring apparatus, comprising: a correction calculation unit that stores an error component from a distance to a measurement point obtained from a phase measurement result and performs the distance measurement correction calculation by the correction calculation unit.
【請求項2】 補正演算が、次の近似式 【数1】 で表されることを特徴とする請求項1の光波測距装置。2. The correction calculation is performed by the following approximate expression: The lightwave distance measuring device according to claim 1, wherein
JP7273255A 1995-10-20 1995-10-20 Range finder using light wave Withdrawn JPH09113624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7273255A JPH09113624A (en) 1995-10-20 1995-10-20 Range finder using light wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7273255A JPH09113624A (en) 1995-10-20 1995-10-20 Range finder using light wave

Publications (1)

Publication Number Publication Date
JPH09113624A true JPH09113624A (en) 1997-05-02

Family

ID=17525289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7273255A Withdrawn JPH09113624A (en) 1995-10-20 1995-10-20 Range finder using light wave

Country Status (1)

Country Link
JP (1) JPH09113624A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020071143A (en) * 2018-10-31 2020-05-07 ファナック株式会社 Object monitoring system including ranging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020071143A (en) * 2018-10-31 2020-05-07 ファナック株式会社 Object monitoring system including ranging device
US11454721B2 (en) 2018-10-31 2022-09-27 Fanuc Corporation Object monitoring system including distance measuring device

Similar Documents

Publication Publication Date Title
JP5149486B2 (en) Interferometer, shape measurement method
US5764360A (en) Electro-optical measuring device for absolute distances
US6064472A (en) Method for speed measurement according to the laser-doppler-principle
JP2006118930A (en) Light wave range finder
JP3583906B2 (en) Optical rangefinder
US5493395A (en) Wavelength variation measuring apparatus
JPH085743A (en) Surveying apparatus
JP2000162517A (en) Mixing device and light wave range finder using the same
EP3211454B1 (en) Distance measuring device, distance measuring method, and program therefor
JPH02184788A (en) Range-finding sensor
JPH09113624A (en) Range finder using light wave
JP2000206244A (en) Distance-measuring apparatus
JPH09113623A (en) Electrooptical distance measuring system
JPH05323029A (en) Distance measuring method by light wave range finder
JP2007155660A (en) Light wave range finder
JPH06186337A (en) Laser distance measuring equipment
JPS60238776A (en) Light wave range finder
JP2004264116A (en) Optical wave range finder
JP3236941B2 (en) Distance measurement method for lightwave distance meter
JPH11160065A (en) Optical wave distance measuring instrument
KR970003746B1 (en) Automatic system of laser density
JP5234653B2 (en) Light wave distance meter
RU218489U1 (en) Device for measuring complex coupling coefficients in the ring cavity of a laser gyroscope
JP2903220B2 (en) Distance measurement method for lightwave distance meter
US20210405165A1 (en) Time-of-flight distance measuring method and related system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107