JPH02184788A - Range-finding sensor - Google Patents

Range-finding sensor

Info

Publication number
JPH02184788A
JPH02184788A JP1004056A JP405689A JPH02184788A JP H02184788 A JPH02184788 A JP H02184788A JP 1004056 A JP1004056 A JP 1004056A JP 405689 A JP405689 A JP 405689A JP H02184788 A JPH02184788 A JP H02184788A
Authority
JP
Japan
Prior art keywords
light
optical path
light emitting
light receiving
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1004056A
Other languages
Japanese (ja)
Other versions
JP2731565B2 (en
Inventor
Yuji Takada
裕司 高田
Motoo Igari
素生 井狩
Hiroshi Matsuda
啓史 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1004056A priority Critical patent/JP2731565B2/en
Publication of JPH02184788A publication Critical patent/JPH02184788A/en
Application granted granted Critical
Publication of JP2731565B2 publication Critical patent/JP2731565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To accomplish stable range-finding by switching a 1st optical path that light from a light emitting part is reflected by a reflecting body and made incident on a light receiving part and a 2nd optical path that the light from the light emitting part is directly made incident on the light receiving part time sequentially and obtaining a phase difference. CONSTITUTION:An optical path switching mirror 31 disposed in front of the light emitting part 1 is controlled to be turned under the control of a timing circuit 6. By setting the mirror 31 in a direction A nearly in parallel with the light from the light emitting part 1, the light from the light emitting part 1 is projected to the reflecting object 8 and the reflected light therefrom passes through a half mirror 32 and is made incident on the light receiving part 2, thereby obtaining the 1st optical path. By setting the mirror 31 in a direction B at the angle of about 45 deg., the light from the light emitting part 1 is reflected by the mirror 31 and made incident on the light receiving part 2 by reflecting all the light as reference light without projecting the light to the outside, thereby obtaining the 2nd optical path. The range- finding light and the reference light are thus received in the same light receiving part 2 time sequentially. An output from the circuit 6 is inputted in a distance arithmetic operation part 5, which discriminates whether the output from a phase comparison part 4 is caused by the range-finding light or by the reference light and outputs the range-finding signal in accordance with the difference of the output from the comparison part 4.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、投光手段から検知エリアに投光される光ビー
ムの被検知物体による反射光を、受光手段にて受光し、
受光手段出力に基づいて検知エリア内の被検知物体まで
の距離を測定するようにした測距センサーに関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a light receiving means for receiving reflected light from a detected object of a light beam projected from a light projecting means onto a detection area;
The present invention relates to a distance measuring sensor that measures the distance to a detected object within a detection area based on the output of a light receiving means.

[従来の技術] 第5図はこの種の測距センサーの従来例を示すブロック
図である0発光部1からの出力光を周波数10にて輝度
変調して、投光光学系により反射物体8へ投光する。そ
して、反射物体8からの反射光を受光光学系により受光
部2a上に入射させる。
[Prior Art] FIG. 5 is a block diagram showing a conventional example of this type of distance measuring sensor. The output light from the light emitting unit 1 is intensity-modulated at a frequency of 10, and the light emitted from the light emitting unit 1 is illuminated by a reflecting object 8 using a light projection optical system. Emits light to. Then, the reflected light from the reflective object 8 is made incident on the light receiving section 2a by the light receiving optical system.

このとき、発光部1から発光される参照光波形と受光部
2aにて受光される測距光波形との間には、第6図に示
すように、反射物体8までの距離lに応じて、位相のず
れθdを生ずる。この関係を式で表せば、 It−cθd/4 yr to     (m)   
  −■ただし、1:反射物体までの距離〔曽〕C:光
速(+e/5ec) となり、位相差θd(set)が測定されれば、反射物
体までの距離lを求めることができる。第5図の構成に
おいては、発光部1や受光部2楓、及び回路系の経時変
化や温度・湿度変化に対する位相変動を補正するために
、発光部1の光の一部をハーフミラ−32,33を介し
て受光部2bに参照光として取り込み、測距光に対する
受光回路系と同一の回路系をもって信号処理を行う、つ
まり、参照光と測距光の相対的な位相比較を行うことで
、発光部1や受光部2a、回路系の絶対的位相変動を打
ち消すように構成している。
At this time, as shown in FIG. 6, there is a difference between the reference light waveform emitted from the light emitter 1 and the ranging light waveform received by the light receiver 2a, depending on the distance l to the reflecting object 8. , resulting in a phase shift θd. Expressing this relationship as a formula, It-cθd/4 yr to (m)
-■ However, 1: Distance to the reflecting object [Zeng] C: Speed of light (+e/5ec) If the phase difference θd (set) is measured, the distance l to the reflecting object can be determined. In the configuration shown in FIG. 5, in order to correct phase fluctuations due to changes in the light emitting part 1, the light receiving part 2, and the circuit system over time and changes in temperature and humidity, a part of the light from the light emitting part 1 is transferred to a half mirror 32, 33 to the light receiving section 2b, and signal processing is performed using the same circuit system as the light receiving circuit system for the ranging light, that is, by comparing the relative phases of the reference light and the ranging light, It is configured to cancel absolute phase fluctuations in the light emitting section 1, the light receiving section 2a, and the circuit system.

一方、変調周波数f0は測距分解能に大きく左右される
。今、位相分解能Δθd=2π/1000において、測
距分解能Δl1=10 (n+m)を達成するためには
、式■より、 r o =CΔθd/4πΔl     ・・・■To
= 15   (MHz) でなければならないことが分かる。このような高い周波
数の位相比較を精度良く行うために、第5図の構成では
、受光回路21a、21bにより得られた受光13号を
混合器22a、22bに導いて、発振器23で発生させ
た局部発振周波数と混合し、周波数変換により低い周波
数に変換してから位相比較を行っている。そして、位相
比較部4による位相比較の結果を積分器7により所定の
時定数で積分し、距離lに応じた電圧を出力している。
On the other hand, the modulation frequency f0 is greatly influenced by the ranging resolution. Now, in order to achieve the distance measurement resolution Δl1=10 (n+m) at the phase resolution Δθd=2π/1000, from the formula ■, r o =CΔθd/4πΔl...■To
= 15 (MHz). In order to accurately perform phase comparison of such high frequencies, in the configuration shown in FIG. It is mixed with the local oscillation frequency, converted to a lower frequency by frequency conversion, and then phase comparison is performed. Then, the result of the phase comparison by the phase comparator 4 is integrated by an integrator 7 with a predetermined time constant, and a voltage corresponding to the distance l is output.

[発明が解決しようとする課題] 上述のように、従来の測距センサーにおいては、発光部
や受光部、回路系の絶対的位相変動を打ち消ずために、
参照光系の受光回路系を設けている。
[Problems to be Solved by the Invention] As mentioned above, in conventional distance measuring sensors, in order to avoid canceling the absolute phase fluctuations of the light emitting part, the light receiving part, and the circuit system,
A light receiving circuit system for the reference light system is provided.

参照光系の受光回路系は、測距光系の受光回路系と同一
の回路素子で構成された同一の回路としており、理想的
には全く同一の絶対位相変動を生じることが期待される
ものである。しかしながら、現実には個々の回路素子の
ばらつきや回路の配線、配置等に起因する種々のばらつ
きが有り、それに伴う相対的位相誤差が発生するという
問題があった。
The light receiving circuit system of the reference light system is the same circuit composed of the same circuit elements as the light receiving circuit system of the ranging light system, and ideally it is expected to produce exactly the same absolute phase fluctuation. It is. However, in reality, there are various variations due to variations in individual circuit elements, circuit wiring, arrangement, etc., and there is a problem in that relative phase errors occur due to these variations.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、個々の回路素子や回路ブロック
の絶対的な位相変動特性にばらつきがあったとしても、
安定な測距が可能な測距センサーを提供することにある
The present invention has been made in view of these points, and its purpose is to eliminate variations in the absolute phase fluctuation characteristics of individual circuit elements and circuit blocks.
The object of the present invention is to provide a distance measurement sensor capable of stable distance measurement.

[課題を解決するための手段] 本発明にあっては、上記の課題を解決するために、第1
図に示すように、発光部1からの光を反射物体8にて反
射させて受光部2に入射させる第1の光路と、発光部1
からの光を受光部2に直接入射させる第2の光路とを時
系列的に切り換える光路切換器3と、発光部1の発光位
相と受光部2の受光位相との位相差を求める位相比較部
4と、第1の光路選択時と第2の光路選択時における位
相比較部4の出力差に応じて距離信号を発生する距離演
算部5とを有して成ることを特徴とするものである。
[Means for Solving the Problems] In the present invention, in order to solve the above problems, the first
As shown in the figure, a first optical path in which light from the light emitting unit 1 is reflected by a reflective object 8 and incident on the light receiving unit 2;
an optical path switching device 3 for time-sequential switching between a second optical path and a second optical path for directing the light from the light source to the light receiving section 2; and a phase comparator section for determining the phase difference between the light emission phase of the light emitting section 1 and the light reception phase of the light receiving section 2. 4, and a distance calculation section 5 that generates a distance signal according to the difference in the output of the phase comparison section 4 when selecting the first optical path and when selecting the second optical path. .

なお、光路切換器3としては、第1図に示すようなミラ
ー31のほか、第3図に示すような光シャッター34.
35、第4図に示すような光スキヤナ−37などを用い
ることができる。
In addition to the mirror 31 as shown in FIG. 1, the optical path switch 3 may include an optical shutter 34 as shown in FIG.
35, an optical scanner 37 as shown in FIG. 4, etc. can be used.

[作用] 本発明にあっては、このように、光路切換器3により発
光部1からの光を反射物体8にて反射させて受光部2に
入射させる第1の光路と、発光部1からの光を受光部2
に直接入射させる第2の光路とを時系列的に切り換える
ようにしたので、測距光の受光回路系と参照光の受光回
路系のばらつきを解消することができ、安定な測距が可
能となるものである。
[Function] In the present invention, as described above, the optical path switcher 3 allows the light from the light emitting unit 1 to be reflected by the reflective object 8 and enters the light receiving unit 2, and the first optical path to reflect the light from the light emitting unit 1. light receiving section 2
Since the second optical path that is directly incident on the sensor is switched in time series, it is possible to eliminate variations in the light receiving circuit system for the distance measuring light and the light receiving circuit system for the reference light, making it possible to perform stable distance measurement. It is what it is.

[実施例1] 第1図は本発明の第1実施例のブロック図である0発光
部1は発光ダイオードや半導体レーザーのような発光素
子よりなり、発光回路11により供給される駆動信号に
応じて光信号を発生ずる。
[Embodiment 1] FIG. 1 is a block diagram of a first embodiment of the present invention. A light emitting unit 1 is composed of a light emitting element such as a light emitting diode or a semiconductor laser, and the light emitting unit 1 is composed of a light emitting element such as a light emitting diode or a semiconductor laser. generates an optical signal.

発振器12は、発光部1から出力される光信号の変調周
波数10を発振し、発光回路11に供給すると共に、混
合器22には局部発振周波数(「。−fc)を供給する
0局部発振周波数(f・−re)は変調周波数f0とは
僅かに周波数の異なる信号であり、re<foである。
The oscillator 12 oscillates the modulation frequency 10 of the optical signal output from the light emitting unit 1 and supplies it to the light emitting circuit 11, and also supplies the mixer 22 with a local oscillation frequency (“.-fc”) of 0 local oscillation frequency. (f·-re) is a signal whose frequency is slightly different from the modulation frequency f0, and re<fo.

受光部1はシリコンフォトダイオードのような受光素子
よりなり、受光された光信号の強度に応じた光電流を発
生する。受光回路21は電流−電圧変換回路を含み、受
光部1にて得られた光電流を電圧信号に変換する。受光
回路21の出力は、混合器22にて局部発振周波数(f
−−re)と周波数混合され、低周波のビート信号に変
換されて、位相比較部4に入力される0位相比較部4は
発振器12から出力される周波数reの信号と、混合器
22から得られた低周波のビート信号との位相差を比較
する。
The light receiving section 1 is composed of a light receiving element such as a silicon photodiode, and generates a photocurrent depending on the intensity of the received optical signal. The light receiving circuit 21 includes a current-voltage conversion circuit, and converts the photocurrent obtained by the light receiving section 1 into a voltage signal. The output of the light receiving circuit 21 is converted to a local oscillation frequency (f
--re), converted into a low frequency beat signal, and inputted to the phase comparison section 4. Compare the phase difference with the low frequency beat signal.

本実施例にあっては、発光部1の前方に光路切換器3と
して、光路切換ミラー31を配している。
In this embodiment, an optical path switching mirror 31 is arranged in front of the light emitting section 1 as an optical path switching device 3.

この光路切換ミラー31はタイミング回路6の制御下に
て回動制御される。光路切換ミラー31が発光部1から
の光と略平行な方向Aに設定されると、発光部1からの
光は反射物体8へ投光される。
The optical path switching mirror 31 is rotationally controlled under the control of the timing circuit 6. When the optical path switching mirror 31 is set in a direction A that is substantially parallel to the light from the light emitting section 1, the light from the light emitting section 1 is projected onto the reflecting object 8.

反射物体8からの反射光は、ハーフミラ−32を通過し
て受光部2に入射する。また、光路切換ミラー31が発
光部1゛からの光に対して約45度の方向Bに設定され
ると、発光部1からの光は光路切換ミラー31にて反射
され、ハーフミラ−32にて再度反射されて、受光部2
に入射する。このように、本実施例の測距センサーでは
、発光部1からの光をそのまま反射物体8へ投光して、
その反射光を受光部2に受光させる第1の光路と、発光
部1からの光を外部へは出さずに全てを参照光として反
射して受光部2へ直接受光させる第2の光路を選択する
ことができる。これによって、時系列的に測距光と参照
光を同一の受光部2に受光させることができるわけであ
る。タイミング回路6の出力rKは、距離演算部5にも
入力されており、距離演算部5は位相比較部4の出力が
測距光によるものか、参照光によるものかを区別するこ
とができ、測距光受光時と参照光受光時の位相比較部4
の出力の差分に応じて距離信号を出力する。このように
構成することによ、って、従来、2系統必要であった受
光部と受光回路を1系統化することができ、絶対位相変
動特性のばらつきによる測距誤差を回避することができ
る。
The reflected light from the reflective object 8 passes through the half mirror 32 and enters the light receiving section 2 . Furthermore, when the optical path switching mirror 31 is set in direction B at approximately 45 degrees with respect to the light from the light emitting section 1, the light from the light emitting section 1 is reflected by the optical path switching mirror 31, and then reflected by the half mirror 32. It is reflected again and the light receiving part 2
incident on . In this way, in the distance measuring sensor of this embodiment, the light from the light emitting unit 1 is directly projected onto the reflecting object 8, and
Select a first optical path in which the reflected light is received by the light receiving unit 2, and a second optical path in which the light from the light emitting unit 1 is reflected as reference light and directly received by the light receiving unit 2 without emitting the light to the outside. can do. This allows the same light receiving section 2 to receive the ranging light and the reference light in time series. The output rK of the timing circuit 6 is also input to the distance calculation section 5, and the distance calculation section 5 can distinguish whether the output of the phase comparison section 4 is from the distance measurement light or the reference light. Phase comparison unit 4 when receiving distance measuring light and when receiving reference light
A distance signal is output according to the difference between the outputs. With this configuration, the light receiving section and the light receiving circuit, which conventionally required two systems, can be integrated into one system, and it is possible to avoid ranging errors due to variations in absolute phase fluctuation characteristics. .

次に、時系列的に入射される測距光と参照光の信号処理
について、第2図を用いて説明する。第。
Next, signal processing of the ranging light and the reference light that are incident in time series will be explained using FIG. 2. No.

2図(a)は位相比較部4の位相比軸出力と、距離演算
部5から出力される距離信号、及びタイミング回路6の
出力rにを示しており、その一部分を時間軸を拡大して
第2図(b)に示す、光路切換ミラー31をコントロー
ルするタイミング回路6の出力rKは、第2図(b)に
示すように、ある一定の周期で“Hi+th”レベルと
なり、このときに、第2の光路を選択するように光路切
換ミラー31を切り換えて、受光部2に参照光を取り込
むように動作する。一方、位相比較部4は混合器22が
ら得られる受光信号と発振器12からの低周波信号fc
の位相差を絶えず比較出力している。光路切換ミラー3
1が第1の光路を選択しているとき、っまり測距光が入
射しているときの電圧をVc、第2の光路を選択してい
るとき、つまり参照光が入射しているときの電圧をVr
とすると、これらの出力は距離演算部5に時系列的に入
力される。距離演算部6は、タイミング回路6からの信
号「Kに同期して位相比較部4の出力をサンプリングす
ることにより、電圧Vcと電圧Vrを取り込み、その差
分として距離信号Vj!=Vc−Vrを出力する。この
距離信号Vlは、個々の回路素子や回路ブロックの絶対
的位相変動を絶えず測定し、記憶しなから測距値補正を
行っていることになるので、第2図(a)に示すような
、位相変動が生じている場合においても、距離信号V1
は安定した出力となる。
Figure 2(a) shows the phase ratio axis output of the phase comparison section 4, the distance signal output from the distance calculation section 5, and the output r of the timing circuit 6, and a part of it is shown with the time axis expanded. The output rK of the timing circuit 6 that controls the optical path switching mirror 31 shown in FIG. 2(b) becomes "Hi+th" level at a certain period, as shown in FIG. 2(b), and at this time, The optical path switching mirror 31 is switched to select the second optical path, and the reference light is introduced into the light receiving section 2. On the other hand, the phase comparator 4 uses the light reception signal obtained from the mixer 22 and the low frequency signal fc from the oscillator 12.
The phase difference between the two is constantly compared and output. Optical path switching mirror 3
1 is the voltage when the first optical path is selected, the voltage when the distance measuring light is incident is Vc, and the voltage when the second optical path is selected, that is, when the reference light is incident, is Vc. voltage to Vr
Then, these outputs are input to the distance calculation unit 5 in time series. The distance calculation section 6 takes in the voltage Vc and the voltage Vr by sampling the output of the phase comparison section 4 in synchronization with the signal "K" from the timing circuit 6, and calculates the distance signal Vj!=Vc-Vr as the difference between them. This distance signal Vl is obtained by constantly measuring and storing the absolute phase fluctuations of individual circuit elements and circuit blocks, and then correcting the measured value, as shown in Figure 2 (a). Even when there is a phase fluctuation as shown, the distance signal V1
gives a stable output.

なお、参照光受光時の位相比較部4の出力電圧Vrは、
タイミング回路6からの出力rKの周期毎に順次更新さ
れているので、第2図(a)に示すような位相変動に対
してタイミング回路6の出力fにの周期は十分に小さく
設定する必要があることは言うまでもない。
Note that the output voltage Vr of the phase comparator 4 when receiving the reference light is:
Since the output rK from the timing circuit 6 is updated sequentially every cycle, it is necessary to set the cycle of the output f of the timing circuit 6 to be sufficiently small for phase fluctuations as shown in FIG. 2(a). It goes without saying that there is.

[実施例2] 第3図は本発明の第2実施例のブロック図である0本実
施例にあっては、光路切換器3として、ハーフミラ−3
2,33とシャッター34.35を用いている。シャッ
ター34.35としては、電圧印加によって光を遮断も
しくは透過できるような光シヤツターを使用する。第1
のシャッター34は参照光の光路中に配され、第2のシ
ャッター35は測距光の光路中に配される。タイミング
回路6からの出力f、は、第1のシャッター34に印加
されると共に、インバータ36を介して第2のシャッタ
ー35に印加されている。これにより、一方のシャッタ
ーは他方のシャッターとは反対の動fヤを行うものであ
り、時系列的に測距光と参照光を受光部2に交互に導く
ことができる。
[Embodiment 2] FIG. 3 is a block diagram of a second embodiment of the present invention. In this embodiment, a half mirror 3 is used as the optical path switch 3.
2, 33 and shutters 34 and 35 are used. As the shutters 34 and 35, optical shutters that can block or transmit light by applying a voltage are used. 1st
The second shutter 34 is arranged in the optical path of the reference light, and the second shutter 35 is arranged in the optical path of the ranging light. The output f from the timing circuit 6 is applied to the first shutter 34 and also to the second shutter 35 via the inverter 36. As a result, one shutter moves in the opposite direction to the other shutter, and the distance measuring light and the reference light can be alternately guided to the light receiving section 2 in a time-series manner.

本実施例の動作波形図は第2図と同様であり、受光部2
と受光回路系が1系統化されて、―々の回路素子や回路
ブロックに絶対位相変動が起こっても、その誤差を補正
することが可能となる。
The operating waveform diagram of this embodiment is the same as that shown in FIG.
The light receiving circuit system is integrated into one system, and even if absolute phase fluctuation occurs in each circuit element or circuit block, it becomes possible to correct the error.

なお、光シヤツターとしては、液晶シャッターのように
メカニカル動作の無いものを用いれば、高速動作が可能
となり、位相誤差の補正能力はさらに向上するものであ
る。
Note that if an optical shutter without mechanical operation, such as a liquid crystal shutter, is used, high-speed operation is possible and the ability to correct phase errors is further improved.

[実施例3] 第4図は本発明の第3実施例のブロック図である0本実
施例にあっては、光路切換器3として、光スキヤナ−3
7を用いている。光スキヤナ−37は、駆動回路38の
i、II御下にて投光ビームを走査し、反射物体までの
距離と方向を測定可能としたものである。そして、ある
走査角度の方向に参照光受光用の光ファイバー39の一
端を配置し、光ファイバー39の他端を受光部2に向け
て配置する。光ファイバー39に投光ビームが入射する
走査角度においては、投光ビームは測距光とはならず、
全部又は一部が参照光として受光部2へ導かれる構造と
する。タイミング回路6は駆動回路38に接続されてお
り、光ファイバー39に光が入射するような走査角度に
光スキヤナ−37が走査されたタイミングを判定し、そ
のタイミングに出力rにを”High”レベルとする。
[Embodiment 3] FIG. 4 is a block diagram of a third embodiment of the present invention. In this embodiment, an optical scanner 3 is used as the optical path switch 3.
7 is used. The optical scanner 37 scans the projected beam under the control of the drive circuits i and II, and is capable of measuring the distance and direction to a reflecting object. Then, one end of the optical fiber 39 for receiving the reference light is arranged in the direction of a certain scanning angle, and the other end of the optical fiber 39 is arranged facing the light receiving section 2 . At the scanning angle at which the projected beam enters the optical fiber 39, the projected beam does not become a distance measuring light;
The structure is such that all or part of the light is guided to the light receiving section 2 as a reference light. The timing circuit 6 is connected to the drive circuit 38, and determines the timing at which the optical scanner 37 is scanned at a scanning angle such that light enters the optical fiber 39, and sets the output r to the "High" level at that timing. do.

これによって、光スキヤナ−′37を光路切換器3とし
て使用することができる。
This allows the optical scanner '37 to be used as the optical path switch 3.

本実施例にあっては、測距光の走査に用いられる光スキ
ヤナ−37を参照光を得るための光路切換器3として兼
用するものであるから、他の実施例に比べて大幅な部品
点数の削減が期待でき、低コスト化が可能となる。
In this embodiment, since the optical scanner 37 used for scanning the distance measuring light is also used as the optical path switch 3 for obtaining the reference light, the number of parts is significantly larger than in other embodiments. This can be expected to reduce costs, making it possible to reduce costs.

[発明の効果] 本発明にあっては、上述のように、光路切換器により参
照光と測距光を時系列的に同一の受光部に導くようにし
たので、測距光の受光回路系と参照光の受光回路系のば
らつきを解消することができ、安定な測距が可能となり
、測距精度も改善されるという効果がある。また、受光
部や受光回路が1系統化されるので、大幅な部品点数の
削減と、低コスト化が可能になるという効果がある。特
に、請求項4記載の発明においては、既存の走査光学系
を光路切換器として兼用するため、新たな部品を追加す
る必要がなく、光学系を簡単且つ安価に構成できるとい
う利点がある。
[Effects of the Invention] As described above, in the present invention, since the reference light and the ranging light are guided to the same light receiving section in time series by the optical path switch, the light receiving circuit system for the ranging light is It is possible to eliminate variations in the light receiving circuit system of the reference light and the reference light, thereby enabling stable distance measurement and improving the distance measurement accuracy. Furthermore, since the light receiving section and the light receiving circuit are integrated into one system, it is possible to significantly reduce the number of parts and reduce costs. In particular, in the invention set forth in claim 4, since the existing scanning optical system is also used as an optical path switch, there is no need to add new parts, and there is an advantage that the optical system can be configured simply and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例のブロック図、第2図は同
上の動作波形図、第3図は本発明の第2実施例のブロッ
ク図、第4図は本発明の゛第3実施例のブロック図、第
5図は従来例のブロック図、第6図は同上の動作波形図
である。 1は発光部、2は受光部、3は光路切換器、4は位相比
較部、5は距離演算部である。
FIG. 1 is a block diagram of a first embodiment of the present invention, FIG. 2 is an operation waveform diagram of the same as above, FIG. 3 is a block diagram of a second embodiment of the present invention, and FIG. 4 is a block diagram of a third embodiment of the present invention. FIG. 5 is a block diagram of the embodiment, FIG. 5 is a block diagram of the conventional example, and FIG. 6 is an operation waveform diagram of the same. 1 is a light emitting section, 2 is a light receiving section, 3 is an optical path switch, 4 is a phase comparison section, and 5 is a distance calculation section.

Claims (4)

【特許請求の範囲】[Claims] (1)発光部からの光を反射物体にて反射させて受光部
に入射させる第1の光路と、発光部からの光を受光部に
直接入射させる第2の光路とを時系列的に切り換える光
路切換器と、発光部の発光位相と受光部の受光位相との
位相差を求める位相比較部と、第1の光路選択時と第2
の光路選択時における位相比較部の出力差に応じて距離
信号を発生する距離演算部とを有して成ることを特徴と
する測距センサー。
(1) Time-sequential switching between a first optical path in which the light from the light emitting section is reflected by a reflective object and incident on the light receiving section, and a second optical path in which the light from the light emitting section is directly incident on the light receiving section. an optical path switch; a phase comparator for determining the phase difference between the light emission phase of the light emitting section and the light reception phase of the light receiving section;
and a distance calculation section that generates a distance signal according to the output difference of the phase comparison section when selecting an optical path.
(2)光路切換器は、反射板を用いて光路を切り換える
手段であることを特徴とする請求項1記載の測距センサ
ー。
(2) The distance measuring sensor according to claim 1, wherein the optical path switch is a means for switching the optical path using a reflector.
(3)光路切換器は、シャッターを用いて光路を切り換
える手段であることを特徴とする請求項1記載の測距セ
ンサー。
(3) The distance measuring sensor according to claim 1, wherein the optical path switch is a means for switching the optical path using a shutter.
(4)光路切換器は、発光部からの光を反射物体上に走
査させる走査光学系を用いて光路を切り換える手段であ
ることを特徴とする請求項1記載の測距センサー。
(4) The distance measuring sensor according to claim 1, wherein the optical path switch is a means for switching the optical path using a scanning optical system that scans the light from the light emitting section onto a reflective object.
JP1004056A 1989-01-11 1989-01-11 Distance sensor Expired - Fee Related JP2731565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1004056A JP2731565B2 (en) 1989-01-11 1989-01-11 Distance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1004056A JP2731565B2 (en) 1989-01-11 1989-01-11 Distance sensor

Publications (2)

Publication Number Publication Date
JPH02184788A true JPH02184788A (en) 1990-07-19
JP2731565B2 JP2731565B2 (en) 1998-03-25

Family

ID=11574218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1004056A Expired - Fee Related JP2731565B2 (en) 1989-01-11 1989-01-11 Distance sensor

Country Status (1)

Country Link
JP (1) JP2731565B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220233A (en) * 1995-02-13 1996-08-30 Nec Corp Light wave range finding device
JPH09236662A (en) * 1996-02-29 1997-09-09 Ushikata Shokai:Kk Electronic distance meter
JP2002323565A (en) * 2001-04-27 2002-11-08 Denso Corp Obstacle recognition device
JP2011039052A (en) * 2009-08-07 2011-02-24 Faro Technologies Inc Absolute distance meter including optical switch
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US9453913B2 (en) 2008-11-17 2016-09-27 Faro Technologies, Inc. Target apparatus for three-dimensional measurement system
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US10302413B2 (en) 2011-04-15 2019-05-28 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
JP2019174247A (en) * 2018-03-28 2019-10-10 株式会社トプコン Optical wave distance meter
JP2020125924A (en) * 2019-02-01 2020-08-20 株式会社デンソーウェーブ Distance image measuring device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220233A (en) * 1995-02-13 1996-08-30 Nec Corp Light wave range finding device
JPH09236662A (en) * 1996-02-29 1997-09-09 Ushikata Shokai:Kk Electronic distance meter
JP2002323565A (en) * 2001-04-27 2002-11-08 Denso Corp Obstacle recognition device
US9453913B2 (en) 2008-11-17 2016-09-27 Faro Technologies, Inc. Target apparatus for three-dimensional measurement system
JP2011039052A (en) * 2009-08-07 2011-02-24 Faro Technologies Inc Absolute distance meter including optical switch
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US10480929B2 (en) 2010-04-21 2019-11-19 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US10209059B2 (en) 2010-04-21 2019-02-19 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US10302413B2 (en) 2011-04-15 2019-05-28 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
US10267619B2 (en) 2011-04-15 2019-04-23 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US10578423B2 (en) 2011-04-15 2020-03-03 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using projection patterns
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
JP2019174247A (en) * 2018-03-28 2019-10-10 株式会社トプコン Optical wave distance meter
JP2020125924A (en) * 2019-02-01 2020-08-20 株式会社デンソーウェーブ Distance image measuring device

Also Published As

Publication number Publication date
JP2731565B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
KR100484345B1 (en) Device for calibrating distance-measuring apparatus
US5006721A (en) Lidar scanning system
US5534992A (en) Optical measuring apparatus
US6369880B1 (en) Device for measuring distance using a semiconductor laser in the visible wavelength range according to the running time method
EP0401799B1 (en) Length measuring apparatus
US7352446B2 (en) Absolute distance meter that measures a moving retroreflector
JPH02184788A (en) Range-finding sensor
JPS5838880A (en) Light wave range finder
US5737068A (en) Electronic distance measuring device using a phase difference detection method
US5054912A (en) Optical distance-measuring device
US5493395A (en) Wavelength variation measuring apparatus
US5724123A (en) Distance measuring equipment for detecting a scanning direction
JPH0552957A (en) Distance-measuring device
US5210587A (en) Optical distance measuring apparatus
JP2000206244A (en) Distance-measuring apparatus
US20220334236A1 (en) Dispersion compensation for a frequency-modulated continuous-wave (fmcw) lidar system
JP2721575B2 (en) Optical displacement sensor
JP2721573B2 (en) Optical displacement sensor
JPS60238776A (en) Light wave range finder
JPH03264887A (en) Optical displacement sensor
JP3236941B2 (en) Distance measurement method for lightwave distance meter
JP2903220B2 (en) Distance measurement method for lightwave distance meter
JPH0357913A (en) Distance measuring sensor
KR970003746B1 (en) Automatic system of laser density
CN113495260B (en) Dispersion compensation for frequency modulated continuous wave (FMCW) radar systems

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees