JP2000206244A - Distance-measuring apparatus - Google Patents

Distance-measuring apparatus

Info

Publication number
JP2000206244A
JP2000206244A JP11011922A JP1192299A JP2000206244A JP 2000206244 A JP2000206244 A JP 2000206244A JP 11011922 A JP11011922 A JP 11011922A JP 1192299 A JP1192299 A JP 1192299A JP 2000206244 A JP2000206244 A JP 2000206244A
Authority
JP
Japan
Prior art keywords
light
distance
light receiving
receiving element
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11011922A
Other languages
Japanese (ja)
Inventor
Tadashi Adachi
正 足立
Hajime Hiratsuka
哉 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP11011922A priority Critical patent/JP2000206244A/en
Publication of JP2000206244A publication Critical patent/JP2000206244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly accurately measure a distance with reducing influences of noises of light- receiving elements by providing a light-receiving means with two kinds of light-receiving elements one of which responds slower than the other and has a higher sensitivity than the other. SOLUTION: A light-projecting means 10 projects to an object to be measured a projection light F which is modulated by a modulation signal of a mixture of a pulse signal and a reference signal. A reflecting light R of the projection light F reflected by the object to be measured is received by a first light-receiving element 22 and a second light-receiving element 23 of a light-receiving means 11 independently and concurrently. A first measuring part 12 detects a time difference between a pulse signal component of a first receive signal of the reflecting light R detected by the first light-receiving element 22 and a pulse signal component of the projected light. A distance to the object to be measured is schematically calculated from the time difference. A second measuring part 13 detects a phase difference between a reference signal component of the second receive signal of the reflecting light R detected by the second light-receiving element 23 and a reference signal component of the projected light. Then, information on a distance within one phase difference to the object to be measured is calculated from the phase difference. A distance-calculating part 14 calculates a distance to the object 2 to be measured on the basis of the schematic calculation result of the first measuring part 12 and the distance information of the second calculating part 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光波を利用した測距
装置の改良技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for improving a distance measuring apparatus using light waves.

【0002】[0002]

【従来の技術】光波を利用した測距装置としては、パル
ス状の光波を測距対象に向けて投射し、測距対象からの
反射光を検出して、その反射時間と光速から測距対象ま
での距離を算出する方式(以下、時間差方式と略称す
る)によるものと、一定周期の基準信号で変調された光
波を測距対象に向けて投射し、測距対象からの反射光を
検出して、投射光と反射光間の位相差から測距対象まで
の距離を算出する方式(以下、位相差方式と略称する)
によるものとがある。
2. Description of the Related Art As a distance measuring apparatus using a light wave, a pulse-like light wave is projected toward a distance measuring object, reflected light from the distance measuring object is detected, and the distance measuring object is determined from the reflection time and the light speed. And a method of calculating the distance to the target (hereinafter, abbreviated as a time difference method), and a method in which a light wave modulated by a reference signal having a constant period is projected toward a distance measurement target, and reflected light from the distance measurement target is detected. Calculating the distance to the object to be measured from the phase difference between the projected light and the reflected light (hereinafter, abbreviated as a phase difference method)
There are things.

【0003】上記時間差方式の場合、測距分解能は反射
時間を計測する際の時間分解能で律速され、測距分解能
として1cmの精度を得るには、100psの時間分解
能が要求され、高精度化が極めて困難であるという問題
がある。一方、上記位相差方式の場合は、位相差が0〜
2π(1周期)の範囲でしか検出できないことから、原
則として測定対象までの往復距離が上記一定周期の基準
信号の1周期に対応する距離以内に制限される。つま
り、前記基準信号の波長をλ、検出した位相差に対応す
る距離をφとすると、測距対象までの距離Dは、数1に
示すように一般的に表現できるが、単純な位相差方式で
は、上式の位相差に対応する距離φが計測されるに止ま
り、測距範囲はn=0として最大λ/2に制限される。
In the case of the above time difference method, the distance measurement resolution is limited by the time resolution at the time of measuring the reflection time. In order to obtain an accuracy of 1 cm as the distance measurement resolution, a time resolution of 100 ps is required. There is a problem that it is extremely difficult. On the other hand, in the case of the above phase difference method, the phase difference is 0 to
Since the detection can be performed only in the range of 2π (one cycle), the reciprocating distance to the measurement target is limited in principle to a distance corresponding to one cycle of the reference signal having the constant cycle. That is, assuming that the wavelength of the reference signal is λ and the distance corresponding to the detected phase difference is φ, the distance D to the distance measurement target can be generally expressed as shown in Expression 1, but the simple phase difference method Then, only the distance φ corresponding to the phase difference in the above equation is measured, and the distance measurement range is limited to a maximum of λ / 2 with n = 0.

【0004】[0004]

【数1】 D=(n×λ+φ)/2 (nは0以上の整数)D = (n × λ + φ) / 2 (n is an integer of 0 or more)

【0005】従って、上記測距範囲を超えて測距する場
合は、異なる周期の基準信号を使用して波長を複数に変
化させて、夫々の距離φを測定し、その測定結果から整
数nを特定して、距離Dを求めていた。
Therefore, when the distance is measured beyond the above range, the wavelengths are changed to a plurality by using reference signals of different periods, the respective distances φ are measured, and the integer n is determined from the measurement result. Specifically, the distance D was determined.

【0006】このように、時間差方式では測距精度に問
題があり、位相差方式では測距範囲に制限があるため、
時間差方式で求められた距離に基づいて、数1の整数n
を特定し、距離Dを求める混合方式が提案されている。
例えば、特開平10−96778号公報では、本願発明
者等が、パルス信号とそのパルスの繰り返し周波数より
高い周波数の正弦波信号を加算混合した信号で変調され
た光波を測距対象に向けて投射し、測距対象からの反射
光を検出して、投射光と反射光間の時間差を、パルス信
号成分から検出し、投射光と反射光間の位相差を正弦波
信号成分から検出し、時間差より算出される概算距離と
位相差に対応する距離φと数1から必要な補正を施し
て、整数nを特定し、距離Dを求める方式を提案してい
る。従って、測距分解能は位相差方式により確保できる
ことから、時間差方式の測距分解能を下げて測距範囲を
長くすることで、測距範囲を改善できるという特徴があ
る。
As described above, the time difference method has a problem in the distance measurement accuracy, and the phase difference method has a limitation in the distance measurement range.
Based on the distance determined by the time difference method, an integer n
And a mixing method for determining the distance D has been proposed.
For example, in Japanese Patent Application Laid-Open No. H10-96778, the present inventors project a light wave modulated by a signal obtained by adding and mixing a pulse signal and a sine wave signal having a frequency higher than the repetition frequency of the pulse toward a distance measurement target. Then, the reflected light from the object to be measured is detected, the time difference between the projected light and the reflected light is detected from the pulse signal component, the phase difference between the projected light and the reflected light is detected from the sine wave signal component, and the time difference is detected. A method has been proposed in which the necessary correction is performed from the distance φ corresponding to the approximate distance and the phase difference calculated from Equation (1), and the integer n is specified to obtain the distance D. Therefore, since the distance measurement resolution can be ensured by the phase difference method, there is a feature that the distance measurement range can be improved by lowering the distance measurement resolution of the time difference method and extending the distance measurement range.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記混
合方式の場合、反射光を受光する受光素子としては、周
波数の高い信号成分を的確に検出できるように、遮断周
波数の高い素子や出力信号の立ち上がりの急峻な動作速
度の速い素子を使用する必要がある。しかしながら、一
般に、動作速度の速い受光素子は動作速度の遅い受光素
子より受光感度が低いためSN比が悪く、また、環境光
の変化等による特有のノイズの影響が無視できない場合
がある。特に、パルス信号の投射光と反射光間の時間差
を求める場合に、上記した受光素子のノイズが直接的に
影響する。例えば、反射光を受光する前に当該ノイズが
発生した場合に、そのノイズを反射光と誤って認識して
測距対象までの距離に大きな誤差が生じる虞があった。
また、単一の動作速度の速い受光素子で反射光を受光す
る場合は、受光信号を分割して一方を概算距離検出用に
信号処理し、他方を位相差検出用に信号処理する必要が
あるが、受光信号を分割することにより各信号処理にか
かる信号強度が半減してSN比を劣化させることにな
り、反射光強度が弱い場合に特に問題となっていた。
However, in the case of the above-mentioned mixed system, the light-receiving element for receiving the reflected light has a high cut-off frequency or a rising edge of the output signal so as to accurately detect a high-frequency signal component. It is necessary to use an element with a high operating speed. However, in general, a light-receiving element having a high operation speed has a lower light-receiving sensitivity than a light-receiving element having a low operation speed, and thus has a poor SN ratio. In addition, the influence of specific noise due to a change in environmental light or the like may not be ignored. In particular, when determining the time difference between the projected light and the reflected light of the pulse signal, the above-described noise of the light receiving element directly affects. For example, when the noise occurs before receiving the reflected light, the noise may be erroneously recognized as the reflected light, and a large error may occur in the distance to the distance measurement target.
When a single light-receiving element with a high operating speed receives reflected light, it is necessary to divide the light-receiving signal and process one for signal processing for approximate distance detection and the other for signal processing for phase difference detection. However, by dividing the light receiving signal, the signal intensity required for each signal processing is reduced by half, thereby deteriorating the SN ratio, and this is a problem particularly when the reflected light intensity is weak.

【0008】本発明は、このような実情に鑑みてなされ
たものであり、その目的は、上述の問題点を解消し、投
射光と反射光間の時間差と位相差から測距対象までの距
離を測定する測距方式において、受光素子のノイズの影
響を低減して高精度な測距が可能な測距装置を提供する
点にある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has as its object to solve the above-described problems and to determine the distance from a time difference and a phase difference between projected light and reflected light to a distance measurement target. Another object of the present invention is to provide a distance measuring apparatus capable of performing high-accuracy distance measurement by reducing the influence of noise of a light receiving element in a distance measuring method for measuring the distance.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
の本発明に係る測距装置の第一の特徴構成は、特許請求
の範囲の欄の請求項1に記載した通り、一定周期のパル
ス信号とそのパルス信号より周波数の高い基準信号を混
合してなる変調信号で強度変調された光波を測距対象に
向けて投射する投光手段と、前記測距対象からの反射光
を受光する受光手段と、前記投光手段から投射された投
射光と前記反射光の時間差から前記測距対象までの距離
を概算する第1計測部と、前記投射光と前記反射光の位
相差から前記測距対象までの所定の距離情報を算出する
第2計測部と、前記第1計測部の概算結果と前記第2計
測部の距離情報から前記測距対象までの距離を算出する
距離算出部とを備えてなる測距装置であって、前記受光
手段が一方が他方より応答は遅いが受光感度の高い2種
類の受光素子を備えてなり、応答は遅いが受光感度の高
い方の第1受光素子で検出された第1受光信号が前記第
1計測部で使用され、前記他方の受光素子である第2受
光素子で検出された第2受光信号が前記第2計測部で使
用される点にある。尚、上記のパルス信号と基準信号を
混合して変調信号を生成する方法としては、パルス信号
に基準信号を重畳する加算混合と、パルス信号の所定レ
ベルを出力期間中のみ基準信号を出力する乗算混合との
両方を含む。また、測距対象までの所定の距離情報と
は、光波の当該位相差に相当する伝搬距離またはその半
分の距離を意味し、具体的には、従来技術の説明中の数
1における距離φまたはその半分の値が相当する。な
お、光波が1位相変化するまでに反射光を受光した場合
は、前記半分の距離が測距対象までの距離に相当する。
According to a first aspect of the present invention, there is provided a distance measuring apparatus according to the present invention. A light projecting means for projecting a light wave intensity-modulated by a modulation signal formed by mixing a signal and a reference signal having a higher frequency than the pulse signal toward a distance measuring object, and a light receiving means for receiving reflected light from the distance measuring object Means, a first measuring unit for estimating a distance to the object to be measured from a time difference between the projected light projected from the light projecting means and the reflected light, and the distance measurement based on a phase difference between the projected light and the reflected light. A second measurement unit that calculates predetermined distance information to the target; and a distance calculation unit that calculates a distance to the distance measurement target from the approximate result of the first measurement unit and the distance information of the second measurement unit. A distance measuring device, wherein one of the light receiving means is the other The first light receiving signal detected by the first light receiving element having a slow response but having a high light receiving sensitivity is used by the first measuring section. The second light receiving signal detected by the second light receiving element, which is the other light receiving element, is used in the second measuring section. As a method of generating the modulation signal by mixing the pulse signal and the reference signal, addition and mixing in which the reference signal is superimposed on the pulse signal and multiplication in which the predetermined level of the pulse signal is output only during the output period are performed. Including both mixed. In addition, the predetermined distance information to the distance measurement target means a propagation distance corresponding to the phase difference of the light wave or a half distance thereof, and specifically, the distance φ or the distance in Expression 1 in the description of the related art. Half the value is equivalent. If the reflected light is received before the light wave changes by one phase, the half distance corresponds to the distance to the object to be measured.

【0010】同第二の特徴構成は、特許請求の範囲の欄
の請求項2に記載した通り、前述の第一の特徴構成に加
えて、前記第1受光素子と前記第2受光素子の内の一方
が他方の周囲に配置されている点にある。
[0010] The second characteristic configuration is, as described in claim 2 of the claims, in addition to the first characteristic configuration described above, of the first light receiving element and the second light receiving element. Are located around the other.

【0011】同第三の特徴構成は、特許請求の範囲の欄
の請求項3に記載した通り、前述の第二の特徴構成に加
えて、前記第1受光素子が前記第2受光素子の周囲に配
置されている点にある。
[0011] The third characteristic configuration is, as described in claim 3 of the claims, in addition to the above-mentioned second characteristic configuration, wherein the first light receiving element is provided around the second light receiving element. It is located at the point.

【0012】以下に上記特徴構成による作用並びに効果
を説明する。上記第一の特徴構成によれば、投光手段が
パルス信号と基準信号を混合してなる変調信号で変調さ
れた光波を測距対象に向けて投射し、その投射された投
射光が測距対象で反射した反射光を受光手段の第1受光
素子と第2受光素子が夫々独立に並行して受光し、第1
計測部が第1受光素子が検出した反射光の第1受光信号
のパルス信号成分と投射光のパルス信号成分との時間差
を検出し、その時間差から測距対象までの距離を概算
し、第2計測部が第2受光素子が検出した反射光の第2
受光信号の基準信号成分と投射光の基準信号成分との位
相差を検出し、その位相差から測距対象までの1位相差
以内の距離情報を算出し、距離算出部が第1計測部の概
算結果と第2計測部の距離情報をもとに測距対象までの
距離を高精度に算出することができるのである。ここ
で、第1受光素子の感度は第2受光素子より高いことか
ら、反射光強度が微弱でも概算距離は確実に測定するこ
とができ、また、パルス信号成分は比較的低周波である
ため、第1受光素子の動作速度を低く抑えて感度を高め
ノイズの影響を低減することができるのである。その結
果、概算距離の測定結果に大きな誤差の発生することが
回避でき、第2計測部が測定した距離情報を正確且つ有
効に利用することができるのである。つまり、第1計測
部の計測結果に1位相差以上の誤差が発生すれば、もは
や測距対象までの距離を高精度に算出することができな
くなるが、かかる状況を回避できるのである。更に、2
種類の受光素子を使用して概算距離測定用の第1受光信
号と位相差検出用の第2受光信号を別々に独立して発生
するので、単一の受光素子で受光した場合に比べて、各
受光信号の増幅回路の周波数帯域をパルス信号成分と基
準信号成分用に夫々狭帯域化できるため増幅率を大きく
できる。特に、第2受光信号の信号処理に対しても、単
一の受光素子で受光する場合と同じ高速動作の第2受光
素子が使用されるにもかかわらず、信号処理の高性能化
が図れるのである。また、感度の異なる2種類の受光素
子を使用しているため、反射光強度が微弱な場合におい
て、受光不良の程度を各受光素子の検出結果に基づいて
分析することができるのである。具体的には、感度の高
い第1受光素子が反射光を検知できない場合は、測距対
象の反射率が低い等の原因で反射光強度が極端に微弱で
反射光を全く受光できない状態あると判断でき、第2受
光素子でのみ受光できない場合は、第1受光素子で検出
した第1受光信号に基づいて概算距離のみの測定が可能
となる。
The operation and effect of the above-described configuration will be described below. According to the first characteristic configuration, the light projecting means projects the light wave modulated by the modulation signal formed by mixing the pulse signal and the reference signal toward the distance measurement target, and the projected light is used for the distance measurement. The first light-receiving element and the second light-receiving element of the light-receiving means receive the light reflected by the object independently and in parallel.
The measuring unit detects a time difference between a pulse signal component of the first light receiving signal of the reflected light detected by the first light receiving element and a pulse signal component of the projection light, estimates a distance to the distance measurement target from the time difference, and The second part of the reflected light detected by the second light receiving element by the measuring unit
The phase difference between the reference signal component of the received light signal and the reference signal component of the projection light is detected, and distance information within one phase difference from the phase difference to the object to be measured is calculated. The distance to the distance measurement target can be calculated with high accuracy based on the approximate result and the distance information of the second measurement unit. Here, since the sensitivity of the first light receiving element is higher than that of the second light receiving element, the approximate distance can be reliably measured even if the reflected light intensity is weak, and the pulse signal component has a relatively low frequency. The operating speed of the first light receiving element can be kept low, the sensitivity can be increased, and the influence of noise can be reduced. As a result, it is possible to avoid occurrence of a large error in the measurement result of the approximate distance, and to use the distance information measured by the second measuring unit accurately and effectively. That is, if an error of one phase difference or more occurs in the measurement result of the first measurement unit, the distance to the distance measurement target can no longer be calculated with high accuracy, but such a situation can be avoided. Furthermore, 2
The first light-receiving signal for measuring the approximate distance and the second light-receiving signal for detecting the phase difference are separately and independently generated using different types of light-receiving elements, so that compared to the case of receiving light with a single light-receiving element, Since the frequency band of the amplifier circuit for each light receiving signal can be narrowed for each of the pulse signal component and the reference signal component, the amplification factor can be increased. In particular, for the signal processing of the second light receiving signal, the high performance of the signal processing can be achieved even though the second light receiving element having the same high-speed operation as the case of receiving light with a single light receiving element is used. is there. In addition, since two types of light receiving elements having different sensitivities are used, when the reflected light intensity is weak, the degree of light reception failure can be analyzed based on the detection result of each light receiving element. Specifically, when the first light receiving element having high sensitivity cannot detect the reflected light, it is assumed that the reflected light intensity is extremely weak and the reflected light cannot be received at all due to a low reflectance of the object to be measured. If it can be determined and only the second light receiving element cannot receive light, it is possible to measure only the approximate distance based on the first light receiving signal detected by the first light receiving element.

【0013】同第二の特徴構成によれば、受光手段が反
射光を第1及び第2受光素子に集光させるべく構成され
ている場合に、第1及び第2受光信号の信号強度のピー
ク値或いは平均値の変化から、反射光の焦点位置と各受
光素子の受光面の位置とのズレを検出でき、その検出結
果に基づいて前記焦点位置または受光面の位置を調整す
ることで良好な受光状態を維持することができるのであ
る。
According to the second characteristic configuration, when the light receiving means is configured to focus the reflected light on the first and second light receiving elements, the peak of the signal intensity of the first and second light receiving signals is obtained. The deviation between the focal position of the reflected light and the position of the light receiving surface of each light receiving element can be detected from the change in the value or the average value, and by adjusting the focal position or the position of the light receiving surface based on the detection result, a good The light receiving state can be maintained.

【0014】同第三の特徴構成によれば、第1及び第2
受光素子の受光面上での反射光強度の分布が中央程高い
強度分布パターンを有する場合に、周辺部の低強度の反
射光を高感度の複数の第1受光素子で受光することがで
きるため、反射光からパルス信号成分と基準信号成分の
両信号成分を良好に検出できるのである。
According to the third characteristic configuration, the first and second
When the distribution of the reflected light intensity on the light receiving surface of the light receiving element has an intensity distribution pattern that is higher toward the center, low intensity reflected light at the peripheral portion can be received by the plurality of highly sensitive first light receiving elements. Thus, both the pulse signal component and the reference signal component can be satisfactorily detected from the reflected light.

【0015】[0015]

【発明の実施の形態】以下、本発明に係る測距装置の一
実施の形態を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a distance measuring apparatus according to the present invention will be described below with reference to the drawings.

【0016】図1に示すように、本発明に係る測距装置
1は、所定の繰り返し周期のパルス信号Bとそのパルス
信号の高レベル期間中だけそのパルス信号Bより周波数
の高い正弦波の基準信号Aを出力するように両信号を乗
算混合してなる変調信号Cで強度変調された光波を測距
対象2に向けて照射する投光手段10と、前記測距対象
2からの反射光Rを受光する受光手段11と、前記投光
手段10から照射された投射光Fと前記受光手段11が
受光した反射光Rの夫々のパルス信号成分間の時間差を
計測して、その時間差から前記測距対象2までの概算距
離D’を算出する第1計測部12と、投射光Fと反射光
Rの夫々の基準信号成分の位相差を計測して、その位相
差から前記測距対象2までの1位相内の距離情報φを算
出する第2計測部13と、前記第1計測部12で算出さ
れた前記概算距離D’と、前記第2計測部13で算出さ
れた前記距離情報φから前記測距対象2までの距離Dを
算出する距離算出部14とを備えた構成となっている。
As shown in FIG. 1, a distance measuring apparatus 1 according to the present invention includes a pulse signal B having a predetermined repetition period and a sine wave having a higher frequency than the pulse signal B only during a high level period of the pulse signal. A light projecting unit 10 for irradiating a lightwave intensity-modulated by a modulation signal C obtained by multiplying and mixing the two signals so as to output a signal A toward the distance measurement target 2, and a reflected light R from the distance measurement target 2 A time difference between the respective pulse signal components of the projected light F emitted from the light projecting means 10 and the reflected light R received by the light receiving means 11, and the measurement is performed based on the time difference. A first measuring unit 12 for calculating an approximate distance D 'to the distance measurement target 2 and a phase difference between respective reference signal components of the projection light F and the reflection light R, and from the phase difference to the distance measurement target 2 Measuring unit 1 for calculating distance information φ in one phase of A distance calculation unit 14 that calculates a distance D to the distance measurement target 2 from the approximate distance D ′ calculated by the first measurement unit 12 and the distance information φ calculated by the second measurement unit 13 And a configuration including

【0017】前記投光手段10は、強度変調可能な半導
体レーザ等のレーザ光源15と、レーザ光源15から出
射される投射光Fを強度変調する変調部16と、レーザ
光源15から出射された投射光Fを平行光にするコリメ
ートレンズ17と、コリメートレンズ17を通過した投
射光Fを前記測距対象2に向けて屈曲させる反射鏡18
とを主要部として構成されている。
The light projecting means 10 includes a laser light source 15 such as a semiconductor laser capable of intensity modulation, a modulation section 16 for intensity modulating the projection light F emitted from the laser light source 15, and a projection light emitted from the laser light source 15. A collimating lens 17 for converting the light F into parallel light, and a reflecting mirror 18 for bending the projection light F passing through the collimating lens 17 toward the distance measurement target 2
And the main part.

【0018】前記変調部16は、100MHzの正弦波
の前記基準信号A(図2において「A」で示す)を発振
する第1発振回路19と、繰り返し周期が10μsの前
記パルス信号B(図2において「B」で示す)を発振す
るパルス発振器20からなり、前記基準信号Aと前記パ
ルス信号Bを乗算混合した変調信号C(図2において
「C」で示す)で前記レーザ光源15の駆動電流を変調
し、その結果、前記レーザ光源15から出射される投射
光Fは図2に示すような信号波形(図2において「C」
で示す)に強度変調される。
The modulation section 16 includes a first oscillation circuit 19 for oscillating the 100 MHz sine wave reference signal A (indicated by "A" in FIG. 2) and the pulse signal B (FIG. 2) having a repetition period of 10 .mu.s. In FIG. 2, the pulse generator 20 oscillates. The drive current of the laser light source 15 is modulated by a modulation signal C (indicated by “C” in FIG. 2) obtained by multiplying and mixing the reference signal A and the pulse signal B. Is modulated, and as a result, the projection light F emitted from the laser light source 15 has a signal waveform ("C" in FIG. 2) as shown in FIG.
) Is intensity-modulated.

【0019】前記受光手段11は、反射光Rの光強度を
電気信号に変換する2種類の第1受光素子21と第2受
光素子22と、反射光Rを前記第1及び第2受光素子2
1、22に集光させるための集光レンズ23を主要部と
して構成されている。前記第1受光素子21は前記第1
計測部12に入力する第1受光信号S1 を検出するため
のものであり、前記第2受光素子22は前記第2計測部
13に入力する第2受光信号S2 を検出するためのもの
であり、前記第1受光素子21は前記第2受光素子22
より高感度で動作速度の低いものを使用する。前記第1
及び第2受光素子21、22としてはフォトダイオー
ド、フォトコンダクタ、フォトトランジスタ等の種々の
光電変換素子が使用可能である。フォトダイオードを使
用する場合、本実施形態では、前記パルス信号Bと前記
基準信号Aの発振周波数を考慮して、前記第1受光素子
21にGaAsPフォトダイオード(NEP(Noise Eq
uivalent Power)=1.5×10-15 W/Hz1/2 、暗
電流=10pA、検出出力の上昇時間=1μ秒)を使用
し、前記第2受光素子22に、シリコン・アバランシェ
・フォトダイオード(暗電流=0.5nA、遮断周波数
=1GHz)を使用する。ところで、前記第1受光素子
21は、前記第1受光素子21の上昇時間が1μ秒と遅
く100MHzの前記基準信号Aに追従できないため、
実質的にローパスフィルタとして機能し、反射光Rから
基準信号成分が除去され、前記第1受光信号S1 にはパ
ルス信号成分のみが抽出されることになる。また、図3
に示すように、前記第1受光素子21と第2受光素子2
2は、複数の前記第1受光素子21が前記第2受光素子
22の周囲に配置して構成されている。
The light receiving means 11 includes two types of first light receiving element 21 and second light receiving element 22 for converting the light intensity of the reflected light R into an electric signal, and the first and second light receiving elements 2 for reflecting the reflected light R.
A converging lens 23 for converging light to the light sources 1 and 22 is configured as a main part. The first light receiving element 21 is the first light receiving element 21.
The second light receiving element 22 is for detecting the first light receiving signal S 1 input to the measuring unit 12, and the second light receiving element 22 is for detecting the second light receiving signal S 2 input to the second measuring unit 13. The first light receiving element 21 is provided with the second light receiving element 22
Use one with higher sensitivity and lower operating speed. The first
Various photoelectric conversion elements such as a photodiode, a photoconductor, and a phototransistor can be used as the second light receiving elements 21 and 22. In the case where a photodiode is used, in the present embodiment, a GaAsP photodiode (NEP (Noise Eq.) Is used for the first light receiving element 21 in consideration of the oscillation frequency of the pulse signal B and the reference signal A.
uivalent Power) = 1.5 × 10 −15 W / Hz 1/2 , dark current = 10 pA, rise time of detection output = 1 μsec), and a silicon avalanche photodiode is used for the second light receiving element 22. (Dark current = 0.5 nA, cutoff frequency = 1 GHz). By the way, the first light receiving element 21 has a rise time of the first light receiving element 21 as slow as 1 μsec and cannot follow the reference signal A of 100 MHz.
Substantially functions as a low pass filter, the reference signal component is removed from the reflected light R, so that only the pulse signal component is extracted in the first light receiving signal S 1. FIG.
As shown in the figure, the first light receiving element 21 and the second light receiving element 2
Reference numeral 2 denotes a configuration in which a plurality of the first light receiving elements 21 are arranged around the second light receiving element 22.

【0020】前記第1計測部12は、反射光Rを前記第
1受光素子22で光電変換して生成された第1受光信号
1 と前記パルス発振器20からのパルス信号Bとを入
力して両パルス間の時間差tを計時する第1タイマ24
と、その時間差tより前記測距対象2までの概算距離
D’をD’=t×c/2(c=光速)として求める第1
演算部25とで構成されている。前記第1タイマ24は
動作周波数が200MHzの8ビット2進カウンタで構
成されており、前記パルス信号Bの入力からカウントを
開始し、前記第1受光信号S1 の入力までカウントを継
続し、8ビットのカウント結果Uを出力する。尚、この
8ビットの出力値Uは前記第1演算部25内の所定のメ
モリ領域(8ビット)に記憶される。前記第1計測部1
2の測距分解能は、カウンタの時間分解能で律速され、
1ビットカウントに5nsを要するので、0.75mと
なる。従って、前記第1演算部25は前記第1タイマ2
4の出力値Uと測距分解能である0.75mを乗算して
概算距離D’を算出することができる。また、前記8ビ
ット2進カウンタの最上位ビットは測距不能状態を検出
するために使用するため、下位の7ビットを使用する。
このため、前記第1計測部12による測距限界は0.7
5m×(27 −1)=95.25mとなる。従って、例
えば、前記測距対象2までの距離が95.25mを超え
ると前記8ビット2進カウンタの最上位ビットが立ち、
測距不能状態を検出する。また、前記パルス信号Bの繰
り返し周期10μsは、前記8ビット2進カウンタの最
上位ビットが立つまでの時間(5ns×28 =1.28
μs)より長くなるように設定してある。
The first measuring unit 12 receives a first light receiving signal S 1 generated by photoelectrically converting the reflected light R by the first light receiving element 22 and a pulse signal B from the pulse oscillator 20. A first timer 24 for measuring the time difference t between the two pulses
And an approximate distance D ′ from the time difference t to the distance measurement target 2 as D ′ = t × c / 2 (c = light speed).
And an arithmetic unit 25. The first timer 24 is constituted by an 8-bit binary counter having an operating frequency of 200 MHz, starts counting from the input of the pulse signal B, and continues counting until the input of the first light receiving signal S 1. The bit count result U is output. The 8-bit output value U is stored in a predetermined memory area (8 bits) in the first arithmetic unit 25. The first measuring unit 1
The ranging resolution of 2 is limited by the time resolution of the counter,
Since it takes 5 ns to count one bit, the length is 0.75 m. Therefore, the first arithmetic unit 25 is configured to use the first timer 2
The approximate distance D 'can be calculated by multiplying the output value U of 4 by 0.75 m which is the distance measurement resolution. The most significant bit of the 8-bit binary counter uses the lower 7 bits because it is used to detect a state in which ranging is impossible.
Therefore, the distance measurement limit of the first measurement unit 12 is 0.7
5mx (2 < 7 > -1) = 95.25m. Therefore, for example, when the distance to the distance measurement target 2 exceeds 95.25 m, the most significant bit of the 8-bit binary counter is set,
Detects distance measurement disabled state. The repetition period 10 μs of the pulse signal B is equal to the time (5 ns × 2 8 = 1.28) until the most significant bit of the 8-bit binary counter rises.
μs).

【0021】前記第2計測部13は、前記第2受光信号
2 を入力して基準信号成分である正弦波信号S’を検
出するアンプ26と、発振周波数が前記第1発振回路1
9より100KHz高い100.1MHzの正弦波信号
A’を発振する第2発振回路27と、前記第1発振回路
19から出力される100MHzの基準信号Aと前記第
2発振回路27から出力される100.1MHzの正弦
波信号A’を積算して得られる信号から100KHzの
第1ビート信号A1 を抽出する第1ローパスフィルタ2
8と、前記アンプ26から出力される100MHzの正
弦波信号S’と100.1MHzの正弦波信号A’を積
算して得られる信号から100KHzの第2ビート信号
2 を抽出する第2ローパスフィルタ29と、前記第1
ビート信号A1 を波形整形して第1矩形波A3 を出力す
る第1コンパレータ30と、前記第2ビート信号A2
波形整形して第2矩形波A4 を出力する第2コンパレー
タ31と、前記第1矩形波A3 と前記第2矩形波A4
入力して両矩形波A3 ,A 4 の時間差を計時して投射光
Fの基準信号成分に相当する前記基準信号Aと反射光R
の基準信号成分に相当する前記正弦波信号S’との位相
差に相当する出力値Lを出力する第2タイマ32と、そ
の出力値Lより前記基準信号Aと前記正弦波信号S’の
1位相内における前記測距対象2までの距離情報φを算
出する第2演算部33から構成されている。
The second measuring section 13 is configured to detect the second light receiving signal.
STwo To detect a sine wave signal S ′ as a reference signal component.
And an oscillation frequency of the first oscillation circuit 1
100.1MHz sine wave signal 100KHz higher than 9
A second oscillation circuit 27 for oscillating A ', and the first oscillation circuit
19 and the 100 MHz reference signal A
2 100.1 MHz sine output from the oscillation circuit 27
From the signal obtained by integrating the wave signal A '
First beat signal A1 First low-pass filter 2 for extracting
8 and 100 MHz positive output from the amplifier 26.
The product of the sine wave signal S 'and the 100.1 MHz sine wave signal A'
Second beat signal of 100 KHz from the signal obtained by calculation
ATwo And a second low-pass filter 29 for extracting
Beat signal A1 Is shaped into a first rectangular wave AThree Output
The first comparator 30 and the second beat signal ATwo To
Waveform shaping and second rectangular wave AFour Second comparator that outputs
And the first rectangular wave AThree And the second rectangular wave AFour To
Input and both rectangular waves AThree , A Four The time difference between
The reference signal A corresponding to the reference signal component of F and the reflected light R
With the sine wave signal S 'corresponding to the reference signal component
A second timer 32 for outputting an output value L corresponding to the difference,
Of the reference signal A and the sine wave signal S ′ from the output value L of
Calculates distance information φ to the distance measurement target 2 in one phase
It is composed of a second calculating unit 33 for outputting.

【0022】前記第2計測部13は、所謂ヘテロダイン
検波回路を形成しており、前記第1ビート信号A1 には
前記基準信号Aの位相情報が含まれており、前記第2ビ
ート信号A2 には前記正弦波信号S’の前記測距対象2
までの距離に応じた位相ずれが加わった位相情報が含ま
れており、前記第2タイマ32でこれらの位相差を求め
ることができる。
The second measuring section 13 forms a so-called heterodyne detection circuit. The first beat signal A 1 contains the phase information of the reference signal A, and the second beat signal A 2 Is the distance measurement target 2 of the sine wave signal S ′.
The phase information includes phase information to which a phase shift corresponding to the distance up to is added, and the second timer 32 can calculate the phase difference.

【0023】前記第2タイマ32は動作周波数が25.
6MHzの8ビット2進カウンタで構成されており、前
記第1矩形波A3 の入力からカウントを開始し、前記第
2矩形波A4 の入力までカウントを継続し、8ビットの
カウント結果Lを出力する。尚、この8ビットの出力値
Lは前記第2演算部33内の所定のメモリ領域(8ビッ
ト)に記憶される。尚、100KHzの信号の位相差を
8ビット2進カウンタで256(28 )分割すると、動
作周波数は25.6MHzである必要がある。ここで、
100MHzの基準信号Aで強度変調された投射波Fが
1位相変化する間の伝搬距離である最大変位距離は、基
準信号Aの波長(λ=c/100MHz)である3mと
なり、最大変位距離の半分を8ビット2進カウンタで2
56分割して1位相中の前記測距対象2までの片道距離
を計測するため、前記第2計測部13の測距分解能は
5.86mm(3m/(2×256))となる。従っ
て、前記第2演算部33は、前記第2タイマ32の出力
値Lと測距分解能である5.86mmを乗算した値を2
倍して距離情報φを算出することができる。
The second timer 32 has an operating frequency of 25.2.
It is constituted by a 6 MHz 8-bit binary counter, starts counting from the input of the first rectangular wave A 3 , continues counting until the input of the second rectangular wave A 4 , and outputs the 8-bit count result L. Output. The 8-bit output value L is stored in a predetermined memory area (8 bits) in the second arithmetic unit 33. When the phase difference of the 100 KHz signal is divided into 256 (2 8 ) by an 8-bit binary counter, the operating frequency needs to be 25.6 MHz. here,
The maximum displacement distance, which is the propagation distance during one phase change of the projection wave F intensity-modulated by the 100 MHz reference signal A, is 3 m, which is the wavelength of the reference signal A (λ = c / 100 MHz). Half is 2 by 8-bit binary counter
Since the one-way distance to the distance measurement target 2 in one phase is measured by dividing into 56, the distance measurement resolution of the second measurement unit 13 is 5.86 mm (3 m / (2 × 256)). Accordingly, the second arithmetic unit 33 calculates a value obtained by multiplying the output value L of the second timer 32 by the distance measurement resolution of 5.86 mm by 2
And the distance information φ can be calculated.

【0024】前記距離算出部14は、以下の要領で、前
記概算距離D’と前記距離情報φから前記測距対象2ま
での距離Dを算出する。ここで、前記概算距離D’の分
解能は前述の如く0.75mであるのに対して、前記距
離情報φの最大値の半分の値、つまり、最大変位距離の
半分の値は1.5mと2倍である。このため、前記距離
情報φの半分の値が0.75m以上の場合、つまり、前
記概算距離D’を1.5mで除した余り0.75mが存
在する場合は、前記概算距離D’と前記距離情報φの半
分の値の両方で0.75m分が2重にカウントされるこ
とになる。従って、前記距離算出部14では、前記概算
距離D’の分解能を1.5mに合わせるため、前記第1
タイマ24の出力値U(8ビット)の最下位ビットを切
り捨てる計算処理を行う。具体的には前記出力値U(8
ビット)と8ビットの2進数「01111110」をビ
ット別に論理積処理した値をU’とし、数2に基づいて
前記測距対象2までの距離Dを算出する。
The distance calculator 14 calculates the distance D to the distance measurement target 2 from the approximate distance D 'and the distance information φ in the following manner. Here, while the resolution of the approximate distance D ′ is 0.75 m as described above, a half value of the maximum value of the distance information φ, that is, a half value of the maximum displacement distance is 1.5 m. It is twice. Therefore, when the half value of the distance information φ is 0.75 m or more, that is, when there is a remainder 0.75 m obtained by dividing the approximate distance D ′ by 1.5 m, the approximate distance D ′ For both the half values of the distance information φ, 0.75 m is counted twice. Therefore, the distance calculation unit 14 adjusts the resolution of the approximate distance D 'to 1.5 m, so that the first
A calculation process for truncating the least significant bit of the output value U (8 bits) of the timer 24 is performed. Specifically, the output value U (8
A value obtained by performing a logical AND operation on the binary number “01111110” and the 8-bit binary number “01111110” is defined as U ′, and the distance D to the distance measurement target 2 is calculated based on Equation 2.

【0025】[0025]

【数2】 D=U’×0.75m+L×5.86mm+ΔD = U ′ × 0.75 m + L × 5.86 mm + Δ

【0026】ここで、Δは反射光Rと投射光Fの光路差
による誤差や、前記変調部16及び前記受光素子22で
の光電変換処理に要する時間に伴う誤差を補正するため
の補正値である。また、前記出力値U(8ビット)の最
下位ビットが1で、前記距離情報φが0.75m以下の
場合は、前記補正値Δに0.75mを加算して、距離D
の補正を行う。逆に、前記最下位ビットが0で、前記距
離情報φが0.75m以上の場合は、前記補正値Δから
0.75mを減算して、距離Dの補正を行う。投射光F
と反射光Rの基準信号成分の位相差が測定誤差等により
0と2πの境界を超えて僅かにずれて、前記第2タイマ
32の出力値Lが最悪0から255または255から0
に変化する可能性が有り、前記位相差から算出した前記
距離情報φに最大1.5m近い誤差が生じる虞がある
が、上記の補正により、測定条件が悪く、前記位相差に
測定誤差が生じても、距離Dの最大誤差を0.75m以
下に抑制することができる。尚、補正値Δに対する加減
算値は0.75m〜1.5mの範囲で任意に選択すれば
よい。
Here, Δ is a correction value for correcting an error due to an optical path difference between the reflected light R and the projected light F and an error associated with the time required for the photoelectric conversion processing in the modulation section 16 and the light receiving element 22. is there. When the least significant bit of the output value U (8 bits) is 1 and the distance information φ is 0.75 m or less, 0.75 m is added to the correction value Δ to obtain the distance D.
Is corrected. Conversely, when the least significant bit is 0 and the distance information φ is 0.75 m or more, the distance D is corrected by subtracting 0.75 m from the correction value Δ. Projection light F
And the reference signal component of the reflected light R slightly deviates beyond the boundary between 0 and 2π due to a measurement error or the like, and the output value L of the second timer 32 becomes 0 to 255 or 255 to 0 at worst.
The distance information φ calculated from the phase difference may have an error of up to 1.5 m at maximum, but due to the above correction, the measurement condition is poor, and a measurement error occurs in the phase difference. However, the maximum error of the distance D can be suppressed to 0.75 m or less. The addition / subtraction value for the correction value Δ may be arbitrarily selected in the range of 0.75 m to 1.5 m.

【0027】更に、前記第2計測部13において、前記
第2タイマ32の出力値Lが一時的に記憶される前記第
2演算部33内の前記所定のメモリ領域は、前記第2タ
イマ32のカウント開始時に予め0(8ビット)にリセ
ットされているため、反射光Rの受光状態が悪く、反射
信号強度が前記第2受光信号S2 から基準信号成分をヘ
テロダイン検波するに十分でない場合は、前記第2タイ
マ32から有効な出力値Lが得られず、前記メモリ領域
の値は0のままである。しかし、前記第1受光素子22
の受光感度が高いため、前記第1受光信号S1が前記第
1タイマ24のカウント動作を停止させるに十分なレベ
ルに検出されていれば、前記概算距離D’は算出するこ
とができる。従って、前記メモリ領域の値が0でないこ
とを、数2を計算する前に確認する必要がある。反射光
Rの受光状態が悪く前記メモリ領域の値が0の場合は、
前記概算距離D’の分解能を1.5mに下げてしまって
いるため、そのまま数2の計算を実行すると、最大測定
誤差が1.5mとなるため、数2の計算において、U’
を使用せずに、元の出力値Uを使用する。この結果、距
離Dの最大誤差を0.75m以下に抑制することができ
るのである。
Further, in the second measuring section 13, the predetermined memory area in the second calculating section 33 in which the output value L of the second timer 32 is temporarily stored, because it is reset in advance 0 (8 bits) to the count at the start, when the light receiving state of the reflected light R is poor, not the reflected signal strength reference signal component from the second light receiving signal S 2 sufficient to heterodyne detection is A valid output value L is not obtained from the second timer 32, and the value of the memory area remains 0. However, the first light receiving element 22
, The approximate distance D ′ can be calculated if the first light receiving signal S 1 is detected at a level sufficient to stop the counting operation of the first timer 24. Therefore, it is necessary to confirm that the value of the memory area is not 0 before calculating Equation 2. When the state of receiving the reflected light R is poor and the value of the memory area is 0,
Since the resolution of the approximate distance D ′ has been reduced to 1.5 m, if the calculation of Equation 2 is performed as it is, the maximum measurement error becomes 1.5 m.
And the original output value U is used. As a result, the maximum error of the distance D can be suppressed to 0.75 m or less.

【0028】尚、前記第1計測部12、前記第2計測部
13、及び、前記距離算出部14は全体を集積回路等に
一体化して構成してもよく、或いは、一部の演算回路や
メモリのみを集約してマイコン等で構成するようにして
も構わず、具体的な回路のハードウェア構成は任意に選
択し得るものである。
The first measuring unit 12, the second measuring unit 13, and the distance calculating unit 14 may be formed integrally with an integrated circuit or the like, or a part of an arithmetic circuit or Only the memory may be integrated and configured by a microcomputer or the like, and the specific hardware configuration of the circuit may be arbitrarily selected.

【0029】次に、第2の実施の形態を説明する。 〈1〉上記実施の形態において、反射光Rのビーム径が
小さい場合は、前記受光手段11を、集光レンズ23を
使用する代わりに、前記コリメートレンズ17と前記反
射鏡18の中間にビームスプリッタ21を設け、反射光
Rを前記第1及び第2受光素子22、23に誘導するよ
うにしても構わない。
Next, a second embodiment will be described. <1> In the above embodiment, when the beam diameter of the reflected light R is small, the light receiving unit 11 is replaced by a beam splitter between the collimating lens 17 and the reflecting mirror 18 instead of using the condenser lens 23. 21 may be provided to guide the reflected light R to the first and second light receiving elements 22 and 23.

【0030】〈2〉上記の各実施形態において、光波の
変調方法及び変調周波数等も適宜変更可能である。例え
ば、前記変調信号Cは、図4に示すように、直流バイア
スを付加された波形であっても構わない。更に、図5に
示すように、前記変調信号Cは、前記変調部16におい
て、前記基準信号Aと前記パルス信号Bを加算混合して
生成されるのも好ましい。また、各手段の具体的な構成
は、上記説明以外の構成を採用しても構わない。特に、
前記第1及び第2受光素子22、23として、前記基準
信号Aと前記パルス信号Bの夫々の周波数に応じて、適
切な応答特性及び感度のものを使用すれば良く、上記実
施形態のフォトダイオードに限定されるものではない。
<2> In each of the above embodiments, the modulation method and modulation frequency of the light wave can be changed as appropriate. For example, the modulation signal C may be a waveform to which a DC bias is added as shown in FIG. Furthermore, as shown in FIG. 5, it is preferable that the modulation signal C is generated by adding and mixing the reference signal A and the pulse signal B in the modulation section 16. In addition, a specific configuration of each means may adopt a configuration other than the above description. In particular,
As the first and second light receiving elements 22 and 23, those having appropriate response characteristics and sensitivity in accordance with the respective frequencies of the reference signal A and the pulse signal B may be used. However, the present invention is not limited to this.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る測距装置の一実施形態の概略構成
を示す説明図
FIG. 1 is an explanatory diagram showing a schematic configuration of an embodiment of a distance measuring apparatus according to the present invention.

【図2】本発明に係る測距装置の一実施形態における投
射光の変調状態を示す波形図
FIG. 2 is a waveform diagram showing a modulation state of projection light in one embodiment of the distance measuring apparatus according to the present invention.

【図3】第1及び第2受光素子の配置状態を示す反射光
の入射方向から見た模式図
FIG. 3 is a schematic diagram showing an arrangement state of first and second light receiving elements as viewed from an incident direction of reflected light.

【図4】投射光の変調状態の別実施例を示す波形図FIG. 4 is a waveform chart showing another embodiment of a modulation state of projection light.

【図5】投射光の変調状態の別実施例を示す波形図FIG. 5 is a waveform chart showing another embodiment of the modulation state of the projection light.

【符号の説明】[Explanation of symbols]

1 測距装置 2 測距対象 10 投光手段 11 受光手段 12 第1計測部 13 第2計測部 14 距離算出部 22 第1受光素子 23 第2受光素子 F 投射光 R 反射光 DESCRIPTION OF SYMBOLS 1 Distance measuring device 2 Distance measuring object 10 Light projecting means 11 Light receiving means 12 First measuring unit 13 Second measuring unit 14 Distance calculating unit 22 First light receiving element 23 Second light receiving element F Projection light R Reflected light

フロントページの続き Fターム(参考) 2F065 AA06 DD03 FF31 GG04 JJ02 LL21 QQ25 5J084 AA05 AD01 AD02 BA04 BA36 BB02 BB21 CA03 CA22 CA27 CA31 CA49 DA01 DA09 EA01 EA04 Continued on the front page F term (reference) 2F065 AA06 DD03 FF31 GG04 JJ02 LL21 QQ25 5J084 AA05 AD01 AD02 BA04 BA36 BB02 BB21 CA03 CA22 CA27 CA31 CA49 DA01 DA09 EA01 EA04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一定周期のパルス信号とそのパルス信号
より周波数の高い基準信号を混合してなる変調信号で強
度変調された光波を測距対象に向けて投射する投光手段
と、前記測距対象からの反射光を受光する受光手段と、
前記投光手段から投射された投射光と前記反射光の時間
差から前記測距対象までの距離を概算する第1計測部
と、前記投射光と前記反射光の位相差から前記測距対象
までの所定の距離情報を算出する第2計測部と、前記第
1計測部の概算結果と前記第2計測部の距離情報から前
記測距対象までの距離を算出する距離算出部とを備えて
なる測距装置であって、 前記受光手段が一方が他方より応答は遅いが受光感度の
高い2種類の受光素子を備えてなり、応答は遅いが受光
感度の高い方の第1受光素子で検出された第1受光信号
が前記第1計測部で使用され、前記他方の受光素子であ
る第2受光素子で検出された第2受光信号が前記第2計
測部で使用されることを特徴とする測距装置。
1. A light projecting means for projecting a light wave intensity-modulated by a modulation signal obtained by mixing a pulse signal having a constant period and a reference signal having a higher frequency than the pulse signal toward a distance measurement target, and the distance measurement Light receiving means for receiving light reflected from the object,
A first measurement unit that estimates a distance to the distance measurement target from a time difference between the projection light projected from the light projection unit and the reflected light, and a distance measurement target to the distance measurement target based on a phase difference between the projection light and the reflected light. A second measurement unit that calculates predetermined distance information, and a distance calculation unit that calculates a distance to the distance measurement target from the estimation result of the first measurement unit and the distance information of the second measurement unit. A distance device, wherein one of the light receiving means has two types of light receiving elements having slower response but higher light receiving sensitivity than the other, and is detected by the first light receiving element having slower response but higher light receiving sensitivity. A first light receiving signal is used by the first measuring unit, and a second light receiving signal detected by a second light receiving element, which is the other light receiving element, is used by the second measuring unit. apparatus.
【請求項2】 前記第1受光素子と前記第2受光素子の
内の一方が他方の周囲に配置されている請求項1記載の
測距装置。
2. The distance measuring apparatus according to claim 1, wherein one of the first light receiving element and the second light receiving element is arranged around the other.
【請求項3】 前記第1受光素子が前記第2受光素子の
周囲に配置されている請求項2記載の測距装置。
3. The distance measuring apparatus according to claim 2, wherein said first light receiving element is arranged around said second light receiving element.
JP11011922A 1999-01-20 1999-01-20 Distance-measuring apparatus Pending JP2000206244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11011922A JP2000206244A (en) 1999-01-20 1999-01-20 Distance-measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11011922A JP2000206244A (en) 1999-01-20 1999-01-20 Distance-measuring apparatus

Publications (1)

Publication Number Publication Date
JP2000206244A true JP2000206244A (en) 2000-07-28

Family

ID=11791191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11011922A Pending JP2000206244A (en) 1999-01-20 1999-01-20 Distance-measuring apparatus

Country Status (1)

Country Link
JP (1) JP2000206244A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050128A (en) * 2001-08-07 2003-02-21 Sokkia Co Ltd Instrument for measuring distance and angle
JP2004219285A (en) * 2003-01-16 2004-08-05 Topcon Corp Optical wave range finder
JP2005221335A (en) * 2004-02-04 2005-08-18 Hokuyo Automatic Co Distance operation method of range sensor
JP2007114002A (en) * 2005-10-19 2007-05-10 Ihi Aerospace Co Ltd Laser distance measuring method
JP2007298372A (en) * 2006-04-28 2007-11-15 Sokkia Co Ltd Light-wave distance meter
US7388655B2 (en) 2006-09-20 2008-06-17 Hokuyo Automatic Co., Ltd. High-precision laser rangefinder using burst emission
JP2008241259A (en) * 2007-03-23 2008-10-09 Fujifilm Corp Distance measuring device and distance measuring method
JP2013195117A (en) * 2012-03-16 2013-09-30 Ricoh Co Ltd Distance measurement device
JP2017167120A (en) * 2016-03-10 2017-09-21 株式会社リコー Distance measurement device, moving body, robot, device and three-dimensional measurement method
JP2019090793A (en) * 2017-10-20 2019-06-13 ジック アーゲー Range-finding type photoelectric sensor and range-finding method
JP2021025986A (en) * 2019-08-05 2021-02-22 株式会社トリマティス Laser distance measuring device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050128A (en) * 2001-08-07 2003-02-21 Sokkia Co Ltd Instrument for measuring distance and angle
JP2004219285A (en) * 2003-01-16 2004-08-05 Topcon Corp Optical wave range finder
JP2005221335A (en) * 2004-02-04 2005-08-18 Hokuyo Automatic Co Distance operation method of range sensor
JP2007114002A (en) * 2005-10-19 2007-05-10 Ihi Aerospace Co Ltd Laser distance measuring method
JP2007298372A (en) * 2006-04-28 2007-11-15 Sokkia Co Ltd Light-wave distance meter
US7388655B2 (en) 2006-09-20 2008-06-17 Hokuyo Automatic Co., Ltd. High-precision laser rangefinder using burst emission
JP2008241259A (en) * 2007-03-23 2008-10-09 Fujifilm Corp Distance measuring device and distance measuring method
JP2013195117A (en) * 2012-03-16 2013-09-30 Ricoh Co Ltd Distance measurement device
JP2017167120A (en) * 2016-03-10 2017-09-21 株式会社リコー Distance measurement device, moving body, robot, device and three-dimensional measurement method
JP2019090793A (en) * 2017-10-20 2019-06-13 ジック アーゲー Range-finding type photoelectric sensor and range-finding method
JP2021025986A (en) * 2019-08-05 2021-02-22 株式会社トリマティス Laser distance measuring device
JP7445107B2 (en) 2019-08-05 2024-03-07 株式会社トリマティス Laser ranging device

Similar Documents

Publication Publication Date Title
US7283214B2 (en) Self-mixing laser range sensor
JP5590884B2 (en) Optical distance measuring method and optical distance measuring apparatus using the same
US7990521B2 (en) Distance/speed meter and distance/speed measuring method
JP2006003127A (en) Optical-wave range finder
US20090122296A1 (en) Time Difference Measuring Device, Measuring Method, Distance Measuring Device, and Distance Measuring Method
JP4771795B2 (en) Optical distance measuring device
KR20050028921A (en) Method and device for optically measuring distance
US11333760B2 (en) Frequency modulation for interference free optical time of flight system
JP2000206244A (en) Distance-measuring apparatus
JP3256859B2 (en) Lightwave rangefinder
US20060132754A1 (en) Hand-held laser distance measuring device with a pulse reflection mixing method
JPH11352226A (en) Highly accurate distance-measuring apparatus
JP3141119B2 (en) Pulse signal detector and light wave distance meter
JP2853350B2 (en) Laser distance measuring device
JP2007155660A (en) Light wave range finder
JPH06186337A (en) Laser distance measuring equipment
JPH1123710A (en) Range finder
JP2004264116A (en) Optical wave range finder
JP2000214260A (en) Distance measuring device
JPH05323029A (en) Distance measuring method by light wave range finder
JP3236941B2 (en) Distance measurement method for lightwave distance meter
JP3486223B2 (en) Distance measuring device
JPH07244160A (en) Semiconductor laser digital vibration measuring apparatus
JPH08105971A (en) Ranging method using multi-pulse and device therefor
JPS6371675A (en) Laser distance measuring instrument