JP2007155660A - Light wave range finder - Google Patents

Light wave range finder Download PDF

Info

Publication number
JP2007155660A
JP2007155660A JP2005354856A JP2005354856A JP2007155660A JP 2007155660 A JP2007155660 A JP 2007155660A JP 2005354856 A JP2005354856 A JP 2005354856A JP 2005354856 A JP2005354856 A JP 2005354856A JP 2007155660 A JP2007155660 A JP 2007155660A
Authority
JP
Japan
Prior art keywords
signal
signals
reference signal
local
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005354856A
Other languages
Japanese (ja)
Inventor
Yasutoshi Aoki
康俊 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkia Co Ltd
Original Assignee
Sokkia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkia Co Ltd filed Critical Sokkia Co Ltd
Priority to JP2005354856A priority Critical patent/JP2007155660A/en
Publication of JP2007155660A publication Critical patent/JP2007155660A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve precision without changing modulation signals. <P>SOLUTION: When a distance measuring light, modulated by modulation signals F1, F2, F3 from a light-emitting element 10A, is emitted and then the reflection light is received by a light receiving element 18, distance measuring signals f1, f2, f3 and a distance measuring signal f1×n are outputted from the light-receiving element 18. When respective distance measuring signals are mixed with local signals L1×n, L1, L2, L3 by mixers 20-26; a distance measuring signal (IF signal) Δf at an intermediate frequency is outputted from respective mixers 20-26; each distance measuring signal is compared with a reference signal Δf by a computing unit 36, and the distance to a measuring point is computed, based on the phase difference among them. In this case, since the distance measuring signal (IF signal) is generated from the distance measuring signals f1, f2, f3, and the distance measuring signal (IF signal) is generated from the distance measuring signal f1×n that is a harmonic component of the distance measuring signal f1, accuracy accompanying increase in the measuring information can be improved without changing the modulation signals. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、測距信号と参照信号との位相差を基に測点までの距離を求めるに好適な光波距離計に関する。   The present invention relates to a light wave distance meter suitable for obtaining a distance to a measurement point based on a phase difference between a distance measurement signal and a reference signal.

従来、位相差方式の光波距離計においては、光を数種類、例えば、75MHz、3.75MHz、250kHzの3種類の変調信号を用いて変調し、変調された光を、測点に置かれた反射鏡(コーナプリズムまたは反射シート)に向けて順次出射し、反射鏡で反射された反射光を受光素子で受光し、受光されて光信号を電気信号に変換し、この電気信号を混合器(ミキサー)で中間周波数の測距信号(IF信号)に変換し、このIF信号と基準信号との位相差を計測することが行なわれている。又、参照信号により機械内部の距離誤差を補正して、正確な値を求めていた。   Conventionally, in a phase-difference optical distance meter, light is modulated using three types of modulation signals, for example, 75 MHz, 3.75 MHz, and 250 kHz, and the modulated light is reflected at a measuring point. Light is emitted sequentially toward the mirror (corner prism or reflecting sheet), and the reflected light reflected by the reflecting mirror is received by the light receiving element. The light is received and converted into an electrical signal. ) Is converted into an intermediate frequency ranging signal (IF signal), and the phase difference between the IF signal and the reference signal is measured. In addition, an accurate value is obtained by correcting a distance error inside the machine by using a reference signal.

この場合、変調信号として75MHzを用いたときには精測定として、25,000回位相差の計測が行なわれ、変調信号として、3.75MHzの信号が用いられたときには、中間測定として5、000回位相差の計測が行なわれ、変調信号として、250kHzが用いられたときには、粗測定として、2、500回位相差の計測が行なわれるようになっている。実際には、キャリブレーション測定があるので、各測定とも約2倍位相差の計測が行なわれる。   In this case, when 75 MHz is used as the modulation signal, the phase difference is measured 25,000 times as a precise measurement, and when a 3.75 MHz signal is used as the modulation signal, it is 5,000 times as an intermediate measurement. When the phase difference is measured and 250 kHz is used as the modulation signal, the phase difference is measured 2500 times as a rough measurement. Actually, since there is a calibration measurement, each measurement measures a phase difference of about twice.

位相差方式による光波距離計を用いて測点までの距離を求めるに際しては、近年、高精度化および測定時間の高速化が求められている。このような要求に対処するに際して、従来技術では、数mmの精度を出すために、変調信号として、75MHzの信号を用い、この変調信号をパルス信号として、レーザダイオード(LD)から送光する構成が採用されている。この場合、送光された光が反射物で反射して反射光として受光素子に受光され、測距信号としての電気信号に変換されたときには、光の実際の伝送距離(L)の2倍に相当する位相遅延(θ)が生じる。一方、受光素子の出力による測距信号を混合器で中間周波数の6.25kHzに変換すると、位相遅延(θ)は、6.25kHzに対しての位相遅延となる。このため、遅延時間は、75MHz/6.25kHz=12、000倍され、分解能も12、000倍になり、数mmの精度を実現することができる。   In order to obtain the distance to a measuring point using an optical wave distance meter by a phase difference method, in recent years, high accuracy and high measurement time have been demanded. In order to cope with such a request, the conventional technique uses a 75 MHz signal as a modulation signal in order to obtain an accuracy of several millimeters, and transmits the modulation signal as a pulse signal from a laser diode (LD). Is adopted. In this case, when the transmitted light is reflected by the reflector and received by the light receiving element as reflected light, and converted into an electric signal as a distance measuring signal, it is twice the actual transmission distance (L) of the light. A corresponding phase delay (θ) occurs. On the other hand, when the ranging signal output from the light receiving element is converted to an intermediate frequency of 6.25 kHz by a mixer, the phase delay (θ) becomes a phase delay with respect to 6.25 kHz. Therefore, the delay time is 75 MHz / 6.25 kHz = 12,000 times, the resolution is also 12,000 times, and an accuracy of several mm can be realized.

しかし、より高精度な測距が要求されたときには、変調信号を75MHzよりも高い周波数にしなければならない。ところが、変調信号をさらに高くするにも、送光用LDを発振するための回路が複雑になり、困難となる。   However, when more accurate distance measurement is required, the modulation signal must be set to a frequency higher than 75 MHz. However, in order to further increase the modulation signal, the circuit for oscillating the light transmission LD becomes complicated and difficult.

本発明は、前記従来技術の課題に鑑みて為されたものであり、その目的は、変調信号を変更することなく、高精度化を図ることができる光波距離計を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide an optical rangefinder that can achieve high accuracy without changing a modulation signal.

前記目的を達成するために、請求項1に係る光波距離計では、基準信号から生成される周波数の相異なる複数種類の変調信号のうちいずれかの変調信号によって変調された測距光を発光する発光手段と、前記測距光を受光したときに光電変換を行なって測距信号を出力する受光手段と、参照信号を発生する参照信号発生手段と、前記複数種類の変調信号に対してそれぞれ前記参照信号の信号成分だけ周波数が異なるローカル信号を発生する複数のローカル信号発生手段と、前記受光手段の出力による測距信号と前記複数のローカル信号発生手段の発生による各ローカル信号とをそれぞれ混合して中間周波数の測距信号を出力する複数の混合手段と、前記参照信号発生手段の発生による参照信号と前記複数の混合手段の出力による中間周波数の測距信号との位相差をそれぞれ求め、各位相差を基に測点までの距離を演算する演算手段とを備えた光波距離計において、前記変調信号のうちいずれかの変調信号のn倍(nは2以上の整数)の変調信号に対して前記参照信号の信号成分だけ周波数が異なる補助ローカル信号を発生する補助ローカル信号発生手段と、前記受光手段の出力による測距信号と前記補助ローカル信号発生手段の発生による補助ローカル信号とを混合して中間周波数の測距信号を出力する補助混合手段とを備え、前記演算手段は、前記参照信号発生手段の発生による参照信号と前記補助混合手段の出力による中間周波数の測距信号との位相差を求め、この位相差を基に前記測点までの距離を補正してなる構成とした。   In order to achieve the object, the optical distance meter according to claim 1 emits ranging light modulated by any one of a plurality of types of modulation signals having different frequencies generated from a reference signal. A light emitting means; a light receiving means for performing photoelectric conversion upon receiving the distance measuring light and outputting a distance measuring signal; a reference signal generating means for generating a reference signal; and the plurality of types of modulation signals, respectively. A plurality of local signal generating means for generating local signals having different frequencies by the signal component of the reference signal, a distance measuring signal output from the light receiving means, and a local signal generated by the plurality of local signal generating means are mixed. A plurality of mixing means for outputting intermediate frequency ranging signals, a reference signal generated by the reference signal generating means, and an intermediate frequency output by the plurality of mixing means In a lightwave range finder comprising a calculation means for calculating a phase difference from a distance signal and calculating a distance to a measurement point based on each phase difference, n times the modulation signal among the modulation signals (n is An auxiliary local signal generating means for generating an auxiliary local signal having a frequency different from that of the reference signal with respect to a modulation signal of an integer of 2 or more, a distance measurement signal by the output of the light receiving means, and the auxiliary local signal generating means And an auxiliary mixing unit that mixes the auxiliary local signal generated by the generation of the signal and outputs a ranging signal having an intermediate frequency, and the calculation unit is configured to output the reference signal generated by the reference signal generating unit and the output of the auxiliary mixing unit. A phase difference with the intermediate frequency ranging signal is obtained, and the distance to the measuring point is corrected based on this phase difference.

(作用)測距光を測点に向けて発光(送光)するときに、変調信号を矩形波にすると、測距光には変調信号のn倍の高調波成分が重畳し、高調波成分も変調信号とともに伝送されるので、受光手段の出力による測距信号と補助ローカル信号発生手段の発生による補助ローカル信号とを補助混合手段で混合して中間周波数の測距信号を生成することで、中間周波数の測距信号として、変調信号とその高調波成分を含む測距信号をそれぞれ抽出することができ、変調信号を変更しなくても、計測情報の増加に伴って高精度化を図ることが可能になる。   (Operation) When the ranging light is emitted (transmitted) toward the measuring point, if the modulation signal is a rectangular wave, a harmonic component of n times the modulation signal is superimposed on the ranging light, and the harmonic component Is also transmitted together with the modulation signal, and by mixing the distance measurement signal by the output of the light receiving means and the auxiliary local signal by the generation of the auxiliary local signal generation means by the auxiliary mixing means to generate the intermediate frequency distance measurement signal, A ranging signal including the modulation signal and its harmonic components can be extracted as the ranging signal of the intermediate frequency, and the accuracy can be improved as the measurement information increases without changing the modulation signal. Is possible.

また、請求項2に係る光波距離計では、基準信号から生成される周波数の相異なる複数種類の変調信号のうちいずれかの変調信号によって変調された測距光を発光する発光手段と、前記測距光を受光したときに光電変換を行なって測距信号を出力する受光手段と、参照信号を発生する参照信号発生手段と、前記複数種類の変調信号に対してそれぞれ前記参照信号の信号成分だけ周波数が異なるローカル信号を発生する複数のローカル信号発生手段と、前記受光手段の出力による測距信号と前記複数のローカル信号発生手段の発生による各ローカル信号とをそれぞれ混合して中間周波数の測距信号を出力する複数の混合手段と、前記参照信号発生手段の発生による参照信号と前記複数の混合手段の出力による中間周波数の測距信号との位相差をそれぞれ求め、各位相差を基に測点までの距離を演算する演算手段とを備えた光波距離計において、前記変調信号のうち最も周波数の高い変調信号のn倍(nは2以上の整数)の変調信号に対して前記参照信号の信号成分だけ周波数が異なる補助ローカル信号を発生する補助ローカル信号発生手段と、前記受光手段の出力による測距信号と前記補助ローカル信号発生手段の発生による補助ローカル信号とを混合して中間周波数の測距信号を出力する補助混合手段とを備え、前記演算手段は、前記参照信号発生手段の発生による参照信号と前記補助混合手段の出力による中間周波数の測距信号との位相差を求め、この位相差を基に前記測点までの距離を補正する構成とした。   According to a second aspect of the present invention, there is provided a light wave distance meter that emits distance measuring light modulated by any one of a plurality of types of modulation signals having different frequencies generated from a reference signal, and the measurement signal. A light receiving means for performing photoelectric conversion when receiving distance light and outputting a distance measurement signal, a reference signal generating means for generating a reference signal, and only a signal component of the reference signal for each of the plurality of types of modulation signals A plurality of local signal generating means for generating local signals having different frequencies, a distance measuring signal output from the light receiving means, and a local signal generated by the plurality of local signal generating means to mix each of the intermediate signals. A plurality of mixing means for outputting a signal, and a phase difference between a reference signal generated by the reference signal generating means and an intermediate frequency ranging signal output by the plurality of mixing means. And an optical distance meter provided with a calculation means for calculating a distance to a measuring point based on each phase difference, and n times the modulation signal having the highest frequency among the modulation signals (n is an integer of 2 or more) ) Auxiliary local signal generating means for generating an auxiliary local signal having a frequency different from the modulation signal by the signal component of the reference signal, and a distance measurement signal generated by the output of the light receiving means and auxiliary by the generation of the auxiliary local signal generating means An auxiliary mixing unit that mixes a local signal and outputs a ranging signal of an intermediate frequency, and the calculating unit measures the intermediate frequency by the reference signal generated by the reference signal generating unit and the output of the auxiliary mixing unit. The phase difference with the distance signal is obtained, and the distance to the measurement point is corrected based on this phase difference.

(作用)測距光を測点に向けて発光(送光)するときに、変調信号を矩形波にすると、測距光には、変調信号のn倍の高調波成分が重畳し、高調波成分も変調信号とともに伝送されるので、受光手段の出力による測距信号と補助ローカル信号発生手段の発生による補助ローカル信号とを補助混合手段で混合して中間周波数の測距信号を生成することで、中間周波数の測距信号として、変調信号のうち最も周波数の高い変調信号とその高調波成分を含む測距信号をそれぞれ抽出することができ、変調信号を変更しなくても、計測情報の増加に伴って高精度化を図ることが可能になる。   (Operation) When the distance measuring light is emitted (transmitted) toward the measuring point, if the modulation signal is a rectangular wave, a harmonic component of n times the modulation signal is superimposed on the distance measuring light, and the harmonic wave Since the component is also transmitted along with the modulation signal, the distance measurement signal generated by the light receiving means and the auxiliary local signal generated by the auxiliary local signal generating means are mixed by the auxiliary mixing means to generate the intermediate frequency distance measurement signal. As the intermediate frequency ranging signal, the modulation signal having the highest frequency among the modulation signals and the ranging signal including the harmonic components thereof can be extracted, and the measurement information can be increased without changing the modulation signal. As a result, higher accuracy can be achieved.

以上説明したように、請求項1に係る発明によれば、変調信号とその高調波成分を含む測距信号をそれぞれ抽出することができ、変調信号を変更しなくても、計測情報の増加に伴って高精度化を図ることが可能になる。   As described above, according to the first aspect of the present invention, the ranging signal including the modulation signal and its harmonic component can be extracted, and the measurement information can be increased without changing the modulation signal. Accordingly, it becomes possible to achieve high accuracy.

また、請求項2に係る発明によれば、変調信号のうち最も周波数の高い変調信号とその高調波成分を含む測距信号をそれぞれ抽出することができ、変調信号を変更しなくても、計測情報の増加に伴って高精度化を図ることが可能になる。   According to the second aspect of the present invention, the modulation signal having the highest frequency among the modulation signals and the ranging signal including the harmonic component thereof can be extracted, and the measurement can be performed without changing the modulation signal. As the information increases, higher accuracy can be achieved.

以下、本発明の実施形態を実施例に基づいて説明する。図1は、本発明の一実施例を示す光波距離計のブロック構成図である。図1において、位相差方式の光波距離計は、発光器10、分周器12、14、基準信号発生器16、受光素子18、混合器20、22、24、26、増幅器28、30、32、34、演算器36、信号発生器38、40、42、44を備えて構成されている。   Hereinafter, embodiments of the present invention will be described based on examples. FIG. 1 is a block diagram of a light wave distance meter showing an embodiment of the present invention. In FIG. 1, a phase difference type lightwave distance meter includes a light emitter 10, a frequency divider 12, 14, a reference signal generator 16, a light receiving element 18, a mixer 20, 22, 24, 26, and amplifiers 28, 30, 32. , 34, an arithmetic unit 36, and signal generators 38, 40, 42, 44.

発光器10は、発光素子10Aとして、例えば、レーザダイオード(LD)を備えているとともに、発光素子を発振させる発振器、光を変調させるための変調器などを備え、周波数の相異なる変調信号として、周波数75MHzの変調信号F1、周波数3.75MHzの変調信号F2、周波数250kHzの変調信号F3を入力し、入力された各変調信号を指定の順序で選択し、選択した変調信号を矩形波にするとともに、そのパルス幅を狭くしてレーザダイオードをマルチモードで発振させて、光を変調信号で変調して測距光とし、この測距光を測点に向けて発光(送光)する発光手段として構成されている。この発光器10には、基準信号発生器16から周波数75MHzの変調信号F1が入力されているとともに、変調信号F1を分周器12で分周して得られた変調信号F2と変調信号F1を分周器14で分周して得られた変調信号F3が入力されている。   The light emitter 10 includes, for example, a laser diode (LD) as the light emitting element 10A, an oscillator that oscillates the light emitting element, a modulator that modulates light, and the like. A modulation signal F1 with a frequency of 75 MHz, a modulation signal F2 with a frequency of 3.75 MHz, and a modulation signal F3 with a frequency of 250 kHz are input, and each of the input modulation signals is selected in a specified order, and the selected modulation signal is made into a rectangular wave. As a light emitting means that narrows the pulse width and oscillates the laser diode in multimode, modulates the light with a modulation signal to produce distance measuring light, and emits (transmits) the distance measuring light toward the measuring point It is configured. The light emitter 10 is supplied with a modulation signal F1 having a frequency of 75 MHz from the reference signal generator 16, and a modulation signal F2 obtained by dividing the modulation signal F1 by the frequency divider 12 and the modulation signal F1. A modulation signal F3 obtained by frequency division by the frequency divider 14 is input.

受光素子18は、発光素子10Aから測点に向けて測距光が発光され、この測距光が測点の反射鏡で反射してその反射光を受光したときに、光電変換を行なって測距信号として、例えば、周波数75MHzの測距信号f1、周波数3.75MHzの測距信号f2、周波数250kHzの測距信号f3、さらに、測距信号f1のn倍(nは2以上の整数)の高調波による測距信号f1×nを出力する受光手段として構成されており、各測距信号は混合器20、22、24、26に出力されている。   The light receiving element 18 emits distance measuring light from the light emitting element 10A toward the measuring point, and when the distance measuring light is reflected by the reflecting mirror of the measuring point and receives the reflected light, the light receiving element 18 performs photoelectric conversion to measure. As the distance signal, for example, a distance measurement signal f1 having a frequency of 75 MHz, a distance measurement signal f2 having a frequency of 3.75 MHz, a distance measurement signal f3 having a frequency of 250 kHz, and n times (n is an integer of 2 or more) the distance measurement signal f1. It is configured as a light receiving means for outputting a distance measurement signal f1 × n by harmonics, and each distance measurement signal is output to the mixers 20, 22, 24, and 26.

混合器20には、信号発生器38から変調信号(基準信号)F1×n(nは2以上の整数)よりも参照信号Δfの信号成分だけ周波数が高い補助ローカル信号L1×n(=F1×n+Δf)が入力され、混合器22には、信号発生器40から変調信号F1よりも参照信号Δfの信号成分だけ周波数が高いローカル信号L1(=F1+Δf)が入力され、混合器24には、信号発生器42から変調信号F2よりも参照信号Δfの信号成分だけ周波数の高いローカル信号L2(=F2+Δf)が入力され、混合器26には、信号発生器44から変調信号F3よりも参照信号Δfの信号成分だけ周波数の高いローカル信号L3が入力されている。   The mixer 20 sends an auxiliary local signal L1 × n (= F1 ×) whose frequency is higher by the signal component of the reference signal Δf than the modulation signal (reference signal) F1 × n (n is an integer of 2 or more) from the signal generator 38. n + Δf), a local signal L1 (= F1 + Δf) having a frequency higher than that of the modulation signal F1 by the signal component of the reference signal Δf is input from the signal generator 40 to the mixer 22, and the signal is input to the mixer 24. A local signal L2 (= F2 + Δf) having a frequency higher than the modulation signal F2 by the signal component of the reference signal Δf is input from the generator 42, and the mixer 26 receives the reference signal Δf from the signal generator 44 rather than the modulation signal F3. A local signal L3 having a higher frequency than the signal component is input.

この場合、信号発生器38は、基準信号発生器16から基準信号F1を受け、この基準信号F1をn倍(nは2以上の整数)するとともに、n倍された基準信号F1よりも参照信号Δfの信号成分だけ周波数の高い補助ローカル信号L1×n(=F1×n+Δf)を発生する補助ローカル信号発生手段として構成されている。信号発生器40は、基準信号発生器16から基準信号F1を受け、この基準信号F1よりも参照信号Δfの信号成分だで周波数の高いローカル信号L1(=F1+Δf)を発生するローカル信号発生手段として構成されている。信号発生器42は、基準信号発生器16から基準信号F1を受けて分周し、分周して得られた変調信号F2よりも参照信号Δfの信号成分だけ周波数の高いローカル信号L2(=F2+Δf)を発生するローカル信号発生手段として構成され、信号発生器44は、基準信号発生器16から基準信号F1を受けて分周し、分周して得られた変調信号F3よりも参照信号Δfの信号成分だけ周波数の高いローカル信号L3(=F3+Δf)を発生するローカル信号発生手段として構成されている。   In this case, the signal generator 38 receives the reference signal F1 from the reference signal generator 16, multiplies the reference signal F1 by n (n is an integer equal to or greater than 2), and also generates a reference signal from the n-fold multiplied reference signal F1. The auxiliary local signal generating means generates an auxiliary local signal L1 × n (= F1 × n + Δf) having a high frequency by the signal component Δf. The signal generator 40 receives a reference signal F1 from the reference signal generator 16, and generates a local signal L1 (= F1 + Δf) having a higher frequency than the reference signal F1 as a signal component of the reference signal Δf. It is configured. The signal generator 42 receives and divides the reference signal F1 from the reference signal generator 16, and the local signal L2 (= F2 + Δf) whose frequency is higher by the signal component of the reference signal Δf than the modulation signal F2 obtained by frequency division. The signal generator 44 receives and divides the reference signal F1 from the reference signal generator 16, and the signal generator 44 generates a reference signal Δf rather than the modulation signal F3 obtained by the division. It is configured as a local signal generating means for generating a local signal L3 (= F3 + Δf) having a high frequency by the signal component.

混合器20は、受光素子18の出力による測距信号f1×nと信号発生器38の出力による補助ローカル信号L1×nとを混合して中間周波数、例えば、6、25kHzの測距信号Δfを出力する補助混合手段として構成されており、中間周波数の測距信号Δfは増幅器28に入力されている。混合器22は、受光素子18の出力による測距信号f1と信号発生器40の出力によるローカル信号L1とを混合して中間周波数(6、25kHz)の測距信号Δfを出力する混合手段として構成されており、中間周波数の測距信号Δfは増幅器30に入力されている。混合器24は、受光素子18の出力による測距信号f2と信号発生器42の出力によるローカル信号L2とを混合して中間周波数(6、25kHz)の測距信号Δfを出力する混合手段として構成され、混合器26は、受光素子18の出力による測距信号f3と信号発生器44の出力によるローカル信号L3とを混合して中間周波数(6、25kHz)の測距信号Δfを出力する混合手段として構成されており、各測距信号Δfはそれぞれ増幅器32、34に入力されている。   The mixer 20 mixes the ranging signal f1 × n output from the light receiving element 18 with the auxiliary local signal L1 × n output from the signal generator 38 to generate a ranging signal Δf having an intermediate frequency, for example, 6 or 25 kHz. It is configured as an auxiliary mixing means for outputting, and the intermediate frequency ranging signal Δf is inputted to the amplifier 28. The mixer 22 is configured as a mixing unit that mixes the distance measurement signal f1 output from the light receiving element 18 and the local signal L1 output from the signal generator 40 to output a distance measurement signal Δf having an intermediate frequency (6, 25 kHz). The intermediate frequency ranging signal Δf is input to the amplifier 30. The mixer 24 is configured as a mixing unit that mixes the distance measurement signal f2 output from the light receiving element 18 and the local signal L2 output from the signal generator 42 to output a distance measurement signal Δf having an intermediate frequency (6, 25 kHz). The mixer 26 mixes the distance measurement signal f3 output from the light receiving element 18 and the local signal L3 output from the signal generator 44 to output a distance measurement signal Δf having an intermediate frequency (6, 25 kHz). Each ranging signal Δf is input to amplifiers 32 and 34, respectively.

増幅器28、30、32、34は、混合器20〜26の出力による信号のうち指定の信号成分、例えば、6.25kHzの信号成分をフィルタで抽出し、フィルタで抽出された各測距信号Δfを所定の増幅度で増幅して演算器36に出力するように構成されている。   The amplifiers 28, 30, 32, and 34 extract specified signal components, for example, 6.25 kHz signal components, from the signals output from the mixers 20 to 26 using a filter, and each ranging signal Δf extracted by the filter. Is amplified at a predetermined amplification degree and output to the computing unit 36.

演算器36は、各増幅器28〜34の出力による測距信号(IF信号)Δfを順次入力し、入力された測距信号(IF信号)Δfと参照信号Δfとの位相差を求め、各位相差を基に測点までの距離を演算する演算手段として構成されている。   The arithmetic unit 36 sequentially inputs distance measurement signals (IF signals) Δf output from the amplifiers 28 to 34, obtains a phase difference between the input distance measurement signal (IF signal) Δf and the reference signal Δf, and calculates each phase difference. Is configured as a calculation means for calculating the distance to the measuring point based on the above.

この場合、測距信号f3から得られた測距信号(IF信号)を用いることで、例えば、0〜600mまでの測距ができ、測距信号f2から得られた測距信号(IF信号)を用いることで、0〜40mまでの測距ができ、測距信号f1から得られた測距信号(IF信号)を用いることで、0〜2mまでの測距ができ、測距信号f1×nから得られた測距信号(IF信号)を用いることで、0〜0.5mまでの測距ができる。すなわち、測距信号として、f1、f2、f3を用いて中間周波数の測距信号(IF信号)を求めたときには、例えば、測点までの距離が321.53mであったとしても、321mまでしか正確には計測できない。これに対して、測距信号として、f1×n、f1、f2、f3を用いて中間周波数の測距信号(IF信号)を求めたときには、321.5mまで正確に計測することができる。   In this case, by using the distance measurement signal (IF signal) obtained from the distance measurement signal f3, for example, distance measurement from 0 to 600 m can be performed, and the distance measurement signal (IF signal) obtained from the distance measurement signal f2. Can be used for ranging from 0 to 40 m, and by using a ranging signal (IF signal) obtained from the ranging signal f 1, ranging from 0 to 2 m can be performed, and ranging signal f 1 × By using the ranging signal (IF signal) obtained from n, ranging from 0 to 0.5 m can be performed. That is, when a distance measurement signal (IF signal) having an intermediate frequency is obtained using f1, f2, and f3 as distance measurement signals, for example, even if the distance to the measurement point is 321.53 m, it is only up to 321 m. It cannot be measured accurately. On the other hand, when a distance measurement signal (IF signal) of an intermediate frequency is obtained using f1 × n, f1, f2, and f3 as distance measurement signals, it can be accurately measured up to 321.5 m.

これは、3種類の変調信号のうちの1つの変調信号として75MHzを用いるとともに、この変調信号を矩形波として用い、この矩形波のパルス幅を狭くして光を変調すると、測距光は広帯域なスペクトラムになり、75MHzのn倍(nは2以上の整数)の高調波も伝送され、この高調波成分を情報として利用することで、高精度化が可能になるためである。   This is because when 75 MHz is used as one of the three types of modulation signals and this modulation signal is used as a rectangular wave, and the light is modulated by narrowing the pulse width of the rectangular wave, the ranging light is broadband. This is because harmonics of n times (n is an integer of 2 or more) of 75 MHz are also transmitted, and using this harmonic component as information makes it possible to achieve high accuracy.

上記構成において、発光器10では変調信号F1、F2、F3のうちいずれかの変調信号が順次選択され、選択された変調信号で変調された測距光が発光素子10Aから測点に向けて照射され、その反射光が受光素子18で受光されると、受光素子18からは測距信号f1、f2、f3とともに、測距信号f1×nが出力され、各測距信号は、混合器20〜26でローカル信号L1×n、L1、L2、L3と混合される。この結果、各混合器20〜26から中間周波数の測距信号(IF信号)Δfが出力され、演算器36で各測距信号(IF信号)と参照信号Δfとが比較され、両者の位相差を基に測点までの距離が演算される。このとき、測距信号f1、f2、f3から測距信号(IF信号)が生成される他に、測距信号f1の高調波成分である測距信号f1×nから測距信号(IF信号)が生成されるので、変調信号を変更することなく、計測情報の増加に伴って高精度化を図ることが可能になる。   In the above configuration, the light emitter 10 sequentially selects any one of the modulation signals F1, F2, and F3, and the ranging light modulated by the selected modulation signal is emitted from the light emitting element 10A toward the measurement point. When the reflected light is received by the light receiving element 18, the distance measuring signal f1 × n is output from the light receiving element 18 together with the distance measuring signals f1, f2, and f3. 26 is mixed with the local signals L1 × n, L1, L2, L3. As a result, each of the mixers 20 to 26 outputs an intermediate frequency ranging signal (IF signal) Δf, and the computing unit 36 compares each ranging signal (IF signal) with the reference signal Δf, and the phase difference between them. Based on, the distance to the station is calculated. At this time, in addition to generating a ranging signal (IF signal) from the ranging signals f1, f2, and f3, a ranging signal (IF signal) from the ranging signal f1 × n that is a harmonic component of the ranging signal f1. Therefore, it is possible to increase the accuracy as the measurement information increases without changing the modulation signal.

前記実施例においては、変調信号の高調波成分を利用するものとして、混合器20、増幅器28、信号発生器38をそれぞれ一台ずつ用いたものについて述べたが、これらのものをそれぞれ複数台にすることで、より高精度化を図ることができる。この場合、各混合器は、それぞれ扱う周波数が異なり、測距信号f1のn倍(nは2以上の整数)に対応したもので構成し、各信号発生器は、それぞれ扱う周波数が異なり、ローカル信号L1のn倍(nは2以上の整数)に対応したもので構成する必要がある。   In the above-described embodiment, the case where each of the mixer 20, the amplifier 28, and the signal generator 38 is used as one that uses the harmonic component of the modulation signal has been described. By doing so, higher accuracy can be achieved. In this case, each mixer has a different frequency and is configured to correspond to n times the distance measurement signal f1 (n is an integer of 2 or more), and each signal generator has a different frequency and a local frequency. It is necessary to configure the signal corresponding to n times the signal L1 (n is an integer of 2 or more).

本実施例によれば、75MHzの変調信号のn倍(nは2以上の整数)の高調波成分を計測の情報に利用するようにしたため、変調信号を変更することなく、高精度化が可能になる。   According to the present embodiment, since the harmonic component of n times (n is an integer of 2 or more) of the 75 MHz modulation signal is used for measurement information, high accuracy can be achieved without changing the modulation signal. become.

本発明の一実施例の光波距離計のブロック構成図である。It is a block block diagram of the light wave distance meter of one Example of this invention.

符号の説明Explanation of symbols

10 発光器
10A 発光素子
12、14 分周器
16 基準信号発生器
18 受光素子
20、22、24、26 混合器
28、30、32、34 増幅器
36 演算器
38、40、42、44 信号発生器
DESCRIPTION OF SYMBOLS 10 Light emitter 10A Light emitting element 12, 14 Frequency divider 16 Reference signal generator 18 Light receiving element 20, 22, 24, 26 Mixer 28, 30, 32, 34 Amplifier 36 Operation unit 38, 40, 42, 44 Signal generator

Claims (2)

基準信号から生成される周波数の相異なる複数種類の変調信号のうちいずれかの変調信号によって変調された測距光を発光する発光手段と、前記測距光を受光したときに光電変換を行なって測距信号を出力する受光手段と、参照信号を発生する参照信号発生手段と、前記複数種類の変調信号に対してそれぞれ前記参照信号の信号成分だけ周波数が異なるローカル信号を発生する複数のローカル信号発生手段と、前記受光手段の出力による測距信号と前記複数のローカル信号発生手段の発生による各ローカル信号とをそれぞれ混合して中間周波数の測距信号を出力する複数の混合手段と、前記参照信号発生手段の発生による参照信号と前記複数の混合手段の出力による中間周波数の測距信号との位相差をそれぞれ求め、各位相差を基に測点までの距離を演算する演算手段とを備えた光波距離計において、前記変調信号のうちいずれかの変調信号のn倍(nは2以上の整数)の変調信号に対して前記参照信号の信号成分だけ周波数が異なる補助ローカル信号を発生する補助ローカル信号発生手段と、前記受光手段の出力による測距信号と前記補助ローカル信号発生手段の発生による補助ローカル信号とを混合して中間周波数の測距信号を出力する補助混合手段とを備え、前記演算手段は、前記参照信号発生手段の発生による参照信号と前記補助混合手段の出力による中間周波数の測距信号との位相差を求め、この位相差を基に前記測点までの距離を補正してなることを特徴とする光波距離計。   Light emitting means for emitting distance measuring light modulated by any one of a plurality of types of modulation signals having different frequencies generated from a reference signal, and photoelectric conversion when receiving the distance measuring light. A light receiving means for outputting a ranging signal, a reference signal generating means for generating a reference signal, and a plurality of local signals for generating local signals having different frequencies corresponding to the signal components of the reference signal for the plurality of types of modulation signals, respectively. Generating means; and a plurality of mixing means for mixing each of the ranging signals output from the light receiving means and the local signals generated by the plurality of local signal generating means to output intermediate frequency ranging signals; and the reference Obtain the phase difference between the reference signal generated by the signal generating means and the intermediate frequency ranging signal output from the plurality of mixing means, and obtain the measuring point based on each phase difference. An optical distance meter comprising a computing means for computing a distance, wherein the frequency of the signal component of the reference signal is n times the modulation signal of any one of the modulation signals (n is an integer of 2 or more). Auxiliary local signal generating means for generating different auxiliary local signals, and a distance measuring signal output from the light receiving means and an auxiliary local signal generated by the auxiliary local signal generating means are mixed to output an intermediate frequency ranging signal. And an auxiliary mixing means for calculating a phase difference between a reference signal generated by the reference signal generating means and an intermediate frequency ranging signal output by the auxiliary mixing means, and based on the phase difference. A light wave distance meter obtained by correcting a distance to the measuring point. 基準信号から生成される周波数の相異なる複数種類の変調信号のうちいずれかの変調信号によって変調された測距光を発光する発光手段と、前記測距光を受光したときに光電変換を行なって測距信号を出力する受光手段と、参照信号を発生する参照信号発生手段と、前記複数種類の変調信号に対してそれぞれ前記参照信号の信号成分だけ周波数が異なるローカル信号を発生する複数のローカル信号発生手段と、前記受光手段の出力による測距信号と前記複数のローカル信号発生手段の発生による各ローカル信号とをそれぞれ混合して中間周波数の測距信号を出力する複数の混合手段と、前記参照信号発生手段の発生による参照信号と前記複数の混合手段の出力による中間周波数の測距信号との位相差をそれぞれ求め、各位相差を基に測点までの距離を演算する演算手段とを備えた光波距離計において、前記変調信号のうち最も周波数の高い変調信号のn倍(nは2以上の整数)の変調信号に対して前記参照信号の信号成分だけ周波数が異なる補助ローカル信号を発生する補助ローカル信号発生手段と、前記受光手段の出力による測距信号と前記補助ローカル信号発生手段の発生による補助ローカル信号とを混合して中間周波数の測距信号を出力する補助混合手段とを備え、前記演算手段は、前記参照信号発生手段の発生による参照信号と前記補助混合手段の出力による中間周波数の測距信号との位相差を求め、この位相差を基に前記測点までの距離を補正してなることを特徴とする光波距離計。   Light emitting means for emitting distance measuring light modulated by any one of a plurality of types of modulation signals having different frequencies generated from a reference signal, and photoelectric conversion when receiving the distance measuring light. A light receiving means for outputting a ranging signal, a reference signal generating means for generating a reference signal, and a plurality of local signals for generating local signals having different frequencies corresponding to the signal components of the reference signal for the plurality of types of modulation signals, respectively. Generating means; and a plurality of mixing means for mixing each of the ranging signals output from the light receiving means and the local signals generated by the plurality of local signal generating means to output intermediate frequency ranging signals; and the reference Obtain the phase difference between the reference signal generated by the signal generating means and the intermediate frequency ranging signal output from the plurality of mixing means, and obtain the measuring point based on each phase difference. In a lightwave distance meter comprising a computing means for computing a distance, only the signal component of the reference signal with respect to a modulation signal n times (n is an integer of 2 or more) of the modulation signal having the highest frequency among the modulation signals. Auxiliary local signal generating means for generating auxiliary local signals having different frequencies, and a distance measuring signal output from the light receiving means and an auxiliary local signal generated by the auxiliary local signal generating means are mixed to obtain a distance measuring signal having an intermediate frequency. An auxiliary mixing means for outputting, and the calculating means obtains a phase difference between the reference signal generated by the reference signal generating means and the intermediate frequency ranging signal output by the auxiliary mixing means, and based on the phase difference. A light wave distance meter obtained by correcting the distance to the measuring point.
JP2005354856A 2005-12-08 2005-12-08 Light wave range finder Pending JP2007155660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005354856A JP2007155660A (en) 2005-12-08 2005-12-08 Light wave range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005354856A JP2007155660A (en) 2005-12-08 2005-12-08 Light wave range finder

Publications (1)

Publication Number Publication Date
JP2007155660A true JP2007155660A (en) 2007-06-21

Family

ID=38240215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354856A Pending JP2007155660A (en) 2005-12-08 2005-12-08 Light wave range finder

Country Status (1)

Country Link
JP (1) JP2007155660A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122878A (en) * 2010-12-09 2012-06-28 Sokkia Topcon Co Ltd Electronic distance meter
JPWO2010100846A1 (en) * 2009-03-05 2012-09-06 パナソニック株式会社 Distance measuring device, distance measuring method, program, and integrated circuit
JP2013185983A (en) * 2012-03-08 2013-09-19 Topcon Corp Light-wave range finder
WO2019116980A1 (en) 2017-12-15 2019-06-20 日本電気株式会社 Range finding device and control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127685A (en) * 1985-11-28 1987-06-09 Matsushita Electric Ind Co Ltd Laser distance measuring instrument
JPH0448289A (en) * 1990-06-18 1992-02-18 Sokkia Co Ltd Light wave range finder
JPH04131787A (en) * 1990-09-21 1992-05-06 Topcon Corp Distance measuring device
JPH05302977A (en) * 1992-04-24 1993-11-16 Agency Of Ind Science & Technol Distance measuring apparatus
JPH06123774A (en) * 1992-09-11 1994-05-06 Agency Of Ind Science & Technol Distance measuring equipment
JPH08220233A (en) * 1995-02-13 1996-08-30 Nec Corp Light wave range finding device
JPH09222479A (en) * 1996-02-19 1997-08-26 Nec Corp Relative distance and relative attitude detection sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127685A (en) * 1985-11-28 1987-06-09 Matsushita Electric Ind Co Ltd Laser distance measuring instrument
JPH0448289A (en) * 1990-06-18 1992-02-18 Sokkia Co Ltd Light wave range finder
JPH04131787A (en) * 1990-09-21 1992-05-06 Topcon Corp Distance measuring device
JPH05302977A (en) * 1992-04-24 1993-11-16 Agency Of Ind Science & Technol Distance measuring apparatus
JPH06123774A (en) * 1992-09-11 1994-05-06 Agency Of Ind Science & Technol Distance measuring equipment
JPH08220233A (en) * 1995-02-13 1996-08-30 Nec Corp Light wave range finding device
JPH09222479A (en) * 1996-02-19 1997-08-26 Nec Corp Relative distance and relative attitude detection sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010100846A1 (en) * 2009-03-05 2012-09-06 パナソニック株式会社 Distance measuring device, distance measuring method, program, and integrated circuit
JP5584196B2 (en) * 2009-03-05 2014-09-03 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Distance measuring device, distance measuring method, program, and integrated circuit
JP2012122878A (en) * 2010-12-09 2012-06-28 Sokkia Topcon Co Ltd Electronic distance meter
JP2013185983A (en) * 2012-03-08 2013-09-19 Topcon Corp Light-wave range finder
WO2019116980A1 (en) 2017-12-15 2019-06-20 日本電気株式会社 Range finding device and control method
JP2022009987A (en) * 2017-12-15 2022-01-14 日本電気株式会社 Distance measuring device and distance measuring method
JP7276404B2 (en) 2017-12-15 2023-05-18 日本電気株式会社 Ranging device and ranging method
US11754713B2 (en) 2017-12-15 2023-09-12 Nec Corporation Range finding apparatus and control method

Similar Documents

Publication Publication Date Title
JP5590771B2 (en) Electronic measurement method
JPH11352227A (en) Circuit device for forming frequency signal
US20120092644A1 (en) Evaluation device, measuring arrangement and method for path length measurement
JP4828245B2 (en) Light wave distance meter
JP2008524562A5 (en)
JP3583906B2 (en) Optical rangefinder
CN104635237A (en) Synthetic wave laser ranging sensors and methods
JP2007155660A (en) Light wave range finder
US11105926B2 (en) Phase difference frequency generating method, phase difference frequency generating device and electronic distance meter
WO2010146906A1 (en) Electro-optical distance meter
JPH04131787A (en) Distance measuring device
JP2000206244A (en) Distance-measuring apparatus
JP6902902B2 (en) Light wave rangefinder
JP2019078531A (en) Light wave range finder and method of determining modulation frequency of feedback signal
JP3989470B2 (en) Optical frequency measurement system
JPH06186337A (en) Laser distance measuring equipment
JP2004264116A (en) Optical wave range finder
JP5730094B2 (en) Light wave distance meter
JP3089376B2 (en) Distance measuring device
JP5234653B2 (en) Light wave distance meter
JPH05323029A (en) Distance measuring method by light wave range finder
JP2952698B2 (en) Distance measuring device
JP5475349B2 (en) Light wave distance meter
JP2007328044A (en) Optical frequency measuring system, and method for determining frequency component of optical frequency comb
JP2006138702A (en) Light wave range finder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906