JPH09222479A - Relative distance and relative attitude detection sensor - Google Patents

Relative distance and relative attitude detection sensor

Info

Publication number
JPH09222479A
JPH09222479A JP8030375A JP3037596A JPH09222479A JP H09222479 A JPH09222479 A JP H09222479A JP 8030375 A JP8030375 A JP 8030375A JP 3037596 A JP3037596 A JP 3037596A JP H09222479 A JPH09222479 A JP H09222479A
Authority
JP
Japan
Prior art keywords
relative
target object
reflected
phase difference
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8030375A
Other languages
Japanese (ja)
Other versions
JP2853640B2 (en
Inventor
Tadashi Uo
匡史 卯尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8030375A priority Critical patent/JP2853640B2/en
Publication of JPH09222479A publication Critical patent/JPH09222479A/en
Application granted granted Critical
Publication of JP2853640B2 publication Critical patent/JP2853640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve smaller size and lighter weight of the apparatus by a method wherein reflected light of a plurality of beams emitted simultaneously to an object is received and one of the reflected waves is selected sequentially in a time sharing manner to determine a relative distance and a relative attitude to the object from time and phase differences between the transmitted and received lights. SOLUTION: Laser light emitting sections 13-1 to 13-3 amplify signals of oscillators 11-1 to 11-3 simultaneously and continuously with drivers 12-1 to 12-3 and modulate the signals by frequencies f1 to f3 to emit laser lights to an object. The reflected lights of the laser lights are taken by a CCD 4 through a lens 2 and a halfmirror 3 while being reflected by the mirror 3 to be detected by a distance measuring reception detector 1. The resulting detection signals are mixed with a local oscillation signal by a mixer 6 via a preamplifier 5 and a phase difference is detected by a phase difference comparator 8 via a BPF7. As for the local oscillation signal, differences between the frequencies f1 to f3 and a reference frequency of a reference signal oscillator 10 are mixed on use one at a time by a switch 9 in a time sharing manner to determine a phase difference with a comparator 8 in a time sharing manner between the frequencies f1 to f3 and irradiation light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複数のビームを対
象物体に対して発射し、その反射光との時間差又は位相
差から対象物体との相対距離及び相対姿勢を検出する相
対距離及び相対姿勢検出センサに関し、例えば月、惑
星、彗星などの対象天体に着陸する探査機に搭載して着
陸中や着陸後の探査機の対象天体との相対距離及び姿勢
を検出する場合に好適な相対距離及び相対姿勢検出セン
サに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a relative distance and relative attitude for emitting a plurality of beams to a target object and detecting the relative distance and relative attitude with respect to the target object from the time difference or phase difference from the reflected light. Regarding the detection sensor, for example, the relative distance suitable for detecting the relative distance and attitude with respect to the target celestial body of the probe during landing or after landing on the probe landing on the target celestial body such as moon, planet, comet, etc. The present invention relates to a relative attitude detection sensor.

【0002】[0002]

【従来の技術】図4は従来の相対距離及び相対姿勢検出
センサの概略を示し、3系統の独立した距離計測系2
1、22、23を有する。また、対象物体をモニタする
必要がある場合には対象物体の画像を得るために別途、
CCD等の画像取得装置24が用いられ、更に対象物体
が太陽光を受けていない場合には対象物体を照明するた
めに投光照明灯25が用いられる。距離計測系21〜2
3の各々は同一の構成であるが、距離計測系21〜23
ではそれぞれ異なる周波数f1、f2、f3が用いられ
る。
2. Description of the Related Art FIG. 4 shows an outline of a conventional relative distance and relative attitude detection sensor.
It has 1, 22, and 23. Also, if it is necessary to monitor the target object, separately to obtain an image of the target object,
An image acquisition device 24 such as a CCD is used, and a floodlight 25 is used to illuminate the target object when the target object does not receive sunlight. Distance measurement system 21-2
3 have the same configuration, but distance measuring systems 21 to 23
In this case, different frequencies f1, f2, f3 are used.

【0003】距離計測系21〜23の各レーザ光発射部
13は、それぞれ周波数f1〜f3の変調周波数発振器
11の信号をドライバ12により増幅することにより周
波数f1〜f3で変調され、対象物体に対してレーザ光
が出射される。この場合、距離計測系21〜23の各レ
ーザ光は、図2に示すように測距検出系の視野を略3分
割した各領域に照射される。
Each of the laser beam emitting units 13 of the distance measuring systems 21 to 23 is modulated at the frequencies f1 to f3 by amplifying the signal of the modulation frequency oscillator 11 of the frequencies f1 to f3 by the driver 12, and is modulated to the target object. Laser light is emitted. In this case, each laser beam of the distance measuring systems 21 to 23 is applied to each area obtained by dividing the field of view of the distance measuring detection system into approximately three as shown in FIG.

【0004】対象物体から反射したレーザ光は、距離計
測系21〜23の各レンズ2を介して測距受信検出器1
により検出され、測距受信検出器1により検出された信
号はプリアンプ5により増幅され、次いでミキサ6によ
り変調周波数発振器11の周波数f1、f2、f3と基
準信号発振器10の基準信号Δfとの差f1−Δf、f
2−Δf、f3−Δfと混合され、周波数Δfの信号が
得られる。この周波数Δfの信号はバンドパスフィルタ
7によりノイズが低減された後、位相差比較器8により
基準信号Δfとの位相差が検出される。したがって、図
2に示す3つの領域に対する距離が検出され、また、こ
の3つの距離に基づいて姿勢が検出される。
The laser light reflected from the target object passes through each lens 2 of the distance measuring systems 21 to 23 and the distance measuring receiver 1
The signal detected by the distance measuring reception detector 1 is amplified by the preamplifier 5, and the mixer 6 then amplifies the difference f1 between the frequencies f1, f2, f3 of the modulation frequency oscillator 11 and the reference signal Δf of the reference signal oscillator 10. -Δf, f
By mixing with 2-Δf and f3-Δf, a signal of frequency Δf is obtained. The noise of the signal of the frequency Δf is reduced by the band pass filter 7, and then the phase difference with the reference signal Δf is detected by the phase difference comparator 8. Therefore, the distances to the three regions shown in FIG. 2 are detected, and the posture is detected based on these three distances.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の装置では、3系統の独立した距離計測系21、2
2、23により構成されているので、規模が大きくなる
という問題点がある。また、対象物体をモニタする必要
がある場合にはCCD等の画像取得装置24が別途必要
になるので、規模が更に大きくなるという問題点があ
る。また、受信系統が独立しているので、個々の処理回
路の特性の相違により各系統の距離バイアスが異なり、
この距離バイアスの相違により相対距離及び相対姿勢の
検出誤差が発生する。
However, in the above-mentioned conventional device, three independent distance measuring systems 21, 2 are used.
Since it is composed of 2 and 23, there is a problem that the scale becomes large. Further, when it is necessary to monitor the target object, the image acquisition device 24 such as a CCD is additionally required, which causes a problem that the scale is further increased. Also, since the receiving system is independent, the distance bias of each system is different due to the difference in the characteristics of each processing circuit,
Due to this difference in the distance bias, detection errors of the relative distance and the relative attitude occur.

【0006】また、撮像対象が太陽光を受けていない場
合には投光照明灯25が必要となるが、投光照明灯25
は一般に大型であって電力消費も大きいので、人工衛星
に搭載して対象天体を測定する場合には、重量や電力供
給能力に制限がある人工衛星には極めて不利である。
Further, the floodlight 25 is necessary when the image pickup object does not receive sunlight.
Is generally large and consumes a large amount of power, so that it is extremely disadvantageous to an artificial satellite having a limited weight and limited power supply capacity when it is mounted on an artificial satellite to measure a target celestial body.

【0007】本発明は上記従来の問題点に鑑み、小型
化、軽量化することができ、また、検出誤差を防止する
ことができる相対距離及び相対姿勢検出センサを提供す
ることを目的とする。
In view of the above conventional problems, it is an object of the present invention to provide a relative distance and relative attitude detection sensor which can be reduced in size and weight and which can prevent detection errors.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するために、複数のビームを対象物体に対して同時に発
射する複数の送信系と、対象物体により反射された複数
のビームを受信してその1つを時分割で順次選択し、送
信光と受信光の時間差又は位相差に基づいて対象物体と
の相対距離及び相対姿勢を検出する1つの受信系を有す
ることを特徴とする。
In order to achieve the above object, the present invention receives a plurality of transmitting systems which simultaneously emit a plurality of beams to a target object and a plurality of beams which are reflected by the target object. One of them is sequentially selected in a time division manner, and one reception system is provided for detecting the relative distance and relative attitude of the target object based on the time difference or phase difference between the transmitted light and the received light.

【0009】本発明はまた、複数のビームの1つを時分
割で順次選択して発射する複数の送信系と、対象物体に
より反射されたビームを受信し、送信光と受信光の時間
差又は位相差に基づいて対象物体との相対距離及び相対
姿勢を検出する1つの受信系を有することを特徴とす
る。
The present invention also receives a plurality of transmission systems that sequentially select and emit one of a plurality of beams in a time division manner, and receives a beam reflected by a target object, and obtains the time difference or position of the transmitted light and the received light. It is characterized by having one receiving system that detects a relative distance and a relative attitude with respect to the target object based on the phase difference.

【0010】また、前記受信系は、対象物体により反射
されたビームを受光する受光部と、対象物体を撮像する
撮像部が一体化されていることを特徴とする。
Further, the receiving system is characterized in that a light receiving section for receiving the beam reflected by the target object and an image pickup section for imaging the target object are integrated.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1は本発明に係る相対距離及び
相対姿勢検出センサの一実施形態を示す構成図、図2は
図1のセンサのレーザ光の照射領域を示す説明図であ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing an embodiment of a relative distance and relative attitude detection sensor according to the present invention, and FIG. 2 is an explanatory diagram showing a laser beam irradiation area of the sensor of FIG.

【0012】図1に示す送信系は、3系統の周波数f
1、f2、f3の変調周波数発振器11−1、11−
2、11−3と、ドライバ12−1、12−2、12−
3とレーザ光発射部13−1、13−2、13−3を有
する。レーザ光発射部13−1〜13−3は同時に且つ
連続して、それぞれ周波数f1〜f3の変調周波数発振
器11−1〜11−3の各信号をドライバ12−1〜1
2−3により増幅することにより周波数f1〜f3で変
調され、対象物体に対してレーザ光が出射される。この
場合、各レーザ光は図2に示すように、カメラ/距離検
出系の視野を略3分割した領域に照射される。
The transmission system shown in FIG. 1 has three frequencies f.
1, f2, f3 modulation frequency oscillators 11-1, 11-
2, 11-3 and drivers 12-1, 12-2, 12-
3 and laser light emitting units 13-1, 13-2, 13-3. The laser light emitting units 13-1 to 13-3 simultaneously and successively output the signals of the modulation frequency oscillators 11-1 to 11-3 having frequencies f1 to f3, respectively, to the drivers 12-1 to 12-1.
By being amplified by 2-3, it is modulated at frequencies f1 to f3, and laser light is emitted to the target object. In this case, each laser beam is applied to an area obtained by dividing the visual field of the camera / distance detection system into approximately three, as shown in FIG.

【0013】カメラ/距離検出系は1系統で構成され、
その光学系ではレンズ2、ハーフミラー3及びCCD4
が同軸に沿って配置され、ハーフミラー3により反射さ
れた光路には測距受信検出器1が配置されている。した
がって、対象物体により反射されたレーザ光はハーフミ
ラー3を通過してCCD4により撮像されると共に、ハ
ーフミラー3により反射されて測距受信検出器1により
検出される。測距受信検出器1により検出された信号は
プリアンプ5により増幅され、次いでミキサ6により局
部発振信号と混合されて周波数Δfの信号が得られる。
この周波数Δfの信号はバンドパスフィルタ7によりノ
イズが低減された後、位相差比較器8により基準信号Δ
fとの位相差が検出される。
The camera / distance detection system is composed of one system,
In the optical system, the lens 2, the half mirror 3 and the CCD 4
Are arranged coaxially, and the distance-measuring reception detector 1 is arranged in the optical path reflected by the half mirror 3. Therefore, the laser light reflected by the target object passes through the half mirror 3 and is imaged by the CCD 4, and is reflected by the half mirror 3 and detected by the distance measurement reception detector 1. The signal detected by the distance measurement reception detector 1 is amplified by the preamplifier 5 and then mixed with the local oscillation signal by the mixer 6 to obtain a signal of frequency Δf.
The noise of the signal of the frequency Δf is reduced by the band pass filter 7, and then the reference signal Δ is obtained by the phase difference comparator 8.
The phase difference from f is detected.

【0014】この場合、変調周波数発振器11−1〜1
1−3の各周波数f1〜f3と基準信号発振器10の基
準信号Δfとの差f1−Δf、f2−Δf、f3−Δf
の1つがスイッチ9により時分割で順次選択され、局部
発振信号としてミキサ6に印加される。したがって、ミ
キサ6では受信信号と局部発振信号f1−Δf、f2−
Δf、f3−Δfの1つが時分割で順次混合され、した
がって、位相差比較器8では周波数f1、f2、f3の
照射光との位相差が時分割で得られる。
In this case, the modulation frequency oscillators 11-1 to 11-1
Differences f1-Δf, f2-Δf, and f3-Δf between the respective frequencies f1 to f3 of 1-3 and the reference signal Δf of the reference signal oscillator 10.
One of them is sequentially selected by the switch 9 in a time division manner and applied to the mixer 6 as a local oscillation signal. Therefore, in the mixer 6, the received signal and the local oscillation signals f1-Δf, f2-
One of Δf and f3-Δf is sequentially mixed in a time division manner, and therefore the phase difference comparator 8 obtains a phase difference with the irradiation light of the frequencies f1, f2 and f3 in a time division manner.

【0015】次に、図3を参照して第2の実施形態を説
明する。図3に示す送信系は、1系統の周波数f1の変
調周波数発振器11と、スイッチ9と、3系統のドライ
バ12−1、12−2、12−3及びレーザ光発射部1
3−1、13−2、13−3を有し、発振器11の信号
がスイッチ9によりドライバ12−1、12−2、12
−3の1つに時分割で順次印加される。したがって、レ
ーザ光発射部13−1〜13−3の1つが順次周波数f
1で変調され、対象物体に対してレーザ光が出射され
る。この場合にも各レーザ光は図2に示すように、カメ
ラ/距離検出系の視野を略3分割した領域に照射され
る。
Next, a second embodiment will be described with reference to FIG. The transmission system shown in FIG. 3 includes a modulation frequency oscillator 11 having a frequency f1 of one system, a switch 9, drivers 12-1, 12-2, 12-3 of three systems, and a laser light emitting unit 1.
3-1, 13-2, 13-3, and the signal of the oscillator 11 is output to the drivers 12-1, 12-2, 12 by the switch 9.
-3 are sequentially applied in time division. Therefore, one of the laser beam emitting units 13-1 to 13-3 sequentially outputs the frequency f.
The laser light is emitted to the target object after being modulated by 1. Also in this case, each laser beam is applied to an area obtained by dividing the visual field of the camera / distance detection system into approximately three, as shown in FIG.

【0016】カメラ/距離検出系の光学系では、同様に
対象物体により反射されたレーザ光がハーフミラー3を
通過してCCD4により撮像されると共に、ハーフミラ
ー3により反射されて測距受信検出器1により検出され
る。測距受信検出器1により検出された信号はプリアン
プ5により増幅され、次いでミキサ6により変調周波数
発振器11の周波数f1と基準信号発振器10の基準信
号Δfとの差f1−Δfと混合され、周波数Δfの信号
が得られる。この周波数Δfの信号はバンドパスフィル
タ7によりノイズが低減された後、位相差比較器8によ
り基準信号Δfとの位相差が検出される。したがって、
位相差比較器8では図2に示す3つの領域に対する位相
差が時分割で得られる。
In the optical system of the camera / distance detection system, similarly, the laser light reflected by the target object passes through the half mirror 3 to be imaged by the CCD 4 and is reflected by the half mirror 3 to detect the distance measurement reception detector. Detected by 1. The signal detected by the distance measuring reception detector 1 is amplified by the preamplifier 5, and then mixed by the mixer 6 with the difference f1−Δf between the frequency f1 of the modulation frequency oscillator 11 and the reference signal Δf of the reference signal oscillator 10 to obtain the frequency Δf. Signal is obtained. The noise of the signal of the frequency Δf is reduced by the band pass filter 7, and then the phase difference with the reference signal Δf is detected by the phase difference comparator 8. Therefore,
The phase difference comparator 8 time-divisionally obtains the phase differences for the three regions shown in FIG.

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、受
信系が1系統で構成されているので、小型化、軽量化す
ることができ、また、検出誤差を防止することができ
る。
As described above, according to the present invention, since the receiving system is constituted by one system, it is possible to reduce the size and weight and prevent the detection error.

【0018】また、対象物体により反射されたビームを
受光する受光部と、対象物体を撮像する撮像部が一体化
されているので、受光光学系を小型化することができ、
また、照明系を省略しても撮像することができる。
Further, since the light receiving section for receiving the beam reflected by the target object and the image pickup section for imaging the target object are integrated, the light receiving optical system can be downsized.
Further, it is possible to take an image even if the illumination system is omitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る相対距離及び相対姿勢検出センサ
の一実施形態を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a relative distance and relative attitude detection sensor according to the present invention.

【図2】図1のセンサのレーザ光の照射領域を示す説明
図である。
2 is an explanatory diagram showing a laser light irradiation region of the sensor of FIG. 1. FIG.

【図3】第2の実施形態の相対距離及び相対姿勢検出セ
ンサを示す構成図である。
FIG. 3 is a configuration diagram showing a relative distance and relative attitude detection sensor according to a second embodiment.

【図4】従来の相対距離及び相対姿勢検出センサを示す
構成図である。
FIG. 4 is a configuration diagram showing a conventional relative distance and relative attitude detection sensor.

【符号の説明】[Explanation of symbols]

1 測距受信検出器 2 レンズ 3 ハーフミラー 4 CCD 5 プリアンプ 6 ミキサ 7 バンドパスフィルタ 8 位相差検出器 9 スイッチ 10 基準信号発振器 11,11−1,11−2,11−3 変調周波数発振
器 12−1,12−2,12−3 ドライバ 13−1,13−2,13−3 レーザ光発射部
1 distance measurement reception detector 2 lens 3 half mirror 4 CCD 5 preamplifier 6 mixer 7 bandpass filter 8 phase difference detector 9 switch 10 reference signal oscillator 11, 11-1, 11-2, 11-3 modulation frequency oscillator 12- 1, 12-2, 12-3 Driver 13-1, 13-2, 13-3 Laser light emitting unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数のビームを対象物体に対して同時に
発射する複数の送信系と、 対象物体により反射された複数のビームを受信してその
1つを時分割で順次選択し、送信光と受信光の時間差又
は位相差に基づいて対象物体との相対距離及び相対姿勢
を検出する1つの受信系を有することを特徴とする相対
距離及び相対姿勢検出センサ。
1. A plurality of transmission systems that simultaneously emit a plurality of beams to a target object, and a plurality of beams that are reflected by the target object are received, and one of them is sequentially selected in a time-division manner. A relative distance and relative attitude detection sensor having one reception system for detecting a relative distance and a relative attitude with respect to a target object based on a time difference or a phase difference of received light.
【請求項2】 複数のビームの1つを時分割で順次選択
して発射する複数の送信系と、 対象物体により反射されたビームを受信し、送信光と受
信光の時間差又は位相差に基づいて対象物体との相対距
離及び相対姿勢を検出する1つの受信系を有することを
特徴とする相対距離及び相対姿勢検出センサ。
2. A plurality of transmission systems that sequentially select and emit one of a plurality of beams in a time division manner, and receive a beam reflected by a target object, and based on the time difference or phase difference between the transmitted light and the received light. A relative distance and relative attitude detection sensor having one receiving system for detecting a relative distance and relative attitude with respect to a target object.
【請求項3】 前記受信系は、対象物体により反射され
たビームを受光する受光部と、対象物体を撮像する撮像
部が一体化されていることを特徴とする請求項1又は2
記載の相対距離及び相対姿勢検出センサ。
3. The receiving system, wherein a light receiving section for receiving a beam reflected by the target object and an image capturing section for capturing the target object are integrated with each other.
The relative distance and relative attitude detection sensor described.
JP8030375A 1996-02-19 1996-02-19 Relative distance and relative attitude detection sensor Expired - Lifetime JP2853640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8030375A JP2853640B2 (en) 1996-02-19 1996-02-19 Relative distance and relative attitude detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8030375A JP2853640B2 (en) 1996-02-19 1996-02-19 Relative distance and relative attitude detection sensor

Publications (2)

Publication Number Publication Date
JPH09222479A true JPH09222479A (en) 1997-08-26
JP2853640B2 JP2853640B2 (en) 1999-02-03

Family

ID=12302140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8030375A Expired - Lifetime JP2853640B2 (en) 1996-02-19 1996-02-19 Relative distance and relative attitude detection sensor

Country Status (1)

Country Link
JP (1) JP2853640B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233073A (en) * 2003-01-28 2004-08-19 Kazuo Machida Position recognition means and position recognition system of flying object
JP2007155660A (en) * 2005-12-08 2007-06-21 Sokkia Co Ltd Light wave range finder
JP2010085133A (en) * 2008-09-30 2010-04-15 Casio Computer Co Ltd Distance measuring apparatus, distance measuring method, and projector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233073A (en) * 2003-01-28 2004-08-19 Kazuo Machida Position recognition means and position recognition system of flying object
JP2007155660A (en) * 2005-12-08 2007-06-21 Sokkia Co Ltd Light wave range finder
JP2010085133A (en) * 2008-09-30 2010-04-15 Casio Computer Co Ltd Distance measuring apparatus, distance measuring method, and projector

Also Published As

Publication number Publication date
JP2853640B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
US8077294B1 (en) Optical autocovariance lidar
US8823938B2 (en) System, apparatus, and method for tracking atmospheric differential absorption
US8760634B2 (en) Optical synthetic aperture radar
US10439716B2 (en) Compact system for active co-boresight measurement in a laser communication system
WO2017058901A1 (en) Differential absorption lidar
JP2008542716A (en) Multi-line tunable laser system
US5933240A (en) Method and apparatus for determining the distance between a base and a specular surface by means of radiation reflected at the surface
US7006203B1 (en) Video guidance sensor system with integrated rangefinding
US9041918B2 (en) Measuring apparatus and referencing method for a digital laser distance meter, and laser distance meter
FR2884929A1 (en) Target e.g. aircraft, locating device, has link exchanging target direction information between carriers to effectuate triangulation calculation for determining target position with respect to carrier whose receiver effectuates calculation
WO2019055055A1 (en) System for active co-boresight measurement in a laser communication system
KR20230087595A (en) Techniques for Compensating for Mirror Doppler Spread in Coherent LiDAR Systems Using Matched Filtering
US20100328645A1 (en) Multimode Optical Sensor
JPH09222479A (en) Relative distance and relative attitude detection sensor
CN112444818A (en) Laser radar
US5210587A (en) Optical distance measuring apparatus
EP3457592A1 (en) System for active co-boresight measurement in a laser communication system
US5821526A (en) Star scanning method for determining the line of sight of an electro-optical instrument
JP2003507727A (en) Method and apparatus for remotely measuring vibration and properties of an object
KR101866764B1 (en) Range Image Sensor comprised of Combined Pixel
JP2009276248A (en) Laser radar device
EP1369707A2 (en) Laser doppler speed measuring apparatus
US9823355B2 (en) Method and apparatus for bistatic laser range imaging
US20220011431A1 (en) Camera sensor for lidar with doppler-sensing pixels
JP3096795B2 (en) Tracking ranging system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981020