JP2003050128A - Instrument for measuring distance and angle - Google Patents

Instrument for measuring distance and angle

Info

Publication number
JP2003050128A
JP2003050128A JP2001238677A JP2001238677A JP2003050128A JP 2003050128 A JP2003050128 A JP 2003050128A JP 2001238677 A JP2001238677 A JP 2001238677A JP 2001238677 A JP2001238677 A JP 2001238677A JP 2003050128 A JP2003050128 A JP 2003050128A
Authority
JP
Japan
Prior art keywords
light
objective lens
receiving
optical system
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001238677A
Other languages
Japanese (ja)
Inventor
Yuichi Ohashi
祐一 大橋
Haruo Tani
晴夫 谷
Masamitsu Endo
正光 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkia Co Ltd
Original Assignee
Sokkia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkia Co Ltd filed Critical Sokkia Co Ltd
Priority to JP2001238677A priority Critical patent/JP2003050128A/en
Publication of JP2003050128A publication Critical patent/JP2003050128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To widen measurable distance range, and to facilitate collimation by decreasing the quantity of measuring light shielded by an optical path change means, in a distance and angle measuring instrument which is composed by providing a light- transmitting optical system for transmitting measuring light from a light source to a substance to be measured through a light-transmitting objective lens, a light-receiving optical system for condensing the measuring light, reflected by the substance to be measured into a light-receiving sensor through a light-receiving objective lens, and a collimation telescope which uses the light-receiving objective lens as an objective lens, has the light-transmitting objective lens outside the light-receiving optical system, and has an optical-path changing means which is attached to the light-transmitting optical system, and causes the optical axis of the measuring light transmitted from the light-transmitting objective lens to coincide with that of the light-receiving objective lens. SOLUTION: As a component of the optical path changing means arranged in front of the light-receiving objective lens 3, a triangular prism 11 or a pentagonal prism is used. Also, the triangular prism 11 or pentagonal prism is glued to the rear of a dust-tight glass 10, and so as to distance with separate by provide a fixing member for the prism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光源からの測定光
を送光対物レンズを介して測定物に送光する送光光学系
と、測定物で反射された測定光を受光対物レンズを介し
て受光センサに集光する受光光学系と、前記受光対物レ
ンズを対物レンズとする視準望遠鏡とを備える距離計部
を水平角方向と鉛直角方向とに回動自在に支持して成る
測距測角儀、特に、送光対物レンズを受光光学系の外方
に配置した測距測角儀に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light transmitting optical system for transmitting measurement light from a light source to a measurement object through a light transmission objective lens, and a measurement light reflected by the measurement object through a light reception objective lens. Distance measuring unit comprising a light receiving optical system for collecting light on a light receiving sensor and a collimating telescope using the light receiving objective lens as an objective lens so as to be rotatable in a horizontal angle direction and a vertical direction. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rangefinder, particularly to a rangefinder having a light-transmitting objective lens arranged outside a light-receiving optical system.

【0002】[0002]

【従来の技術】従来、光源からの測定光を送光対物レン
ズを介して測定物に送光する送光光学系と、測定物で反
射された測定光を受光対物レンズを介して受光センサに
集光する受光光学系とを備える光波距離計において、送
光対物レンズを受光光学系の外方に配置したものが知ら
れている。このような光波距離計では、送光対物レンズ
の光軸と受光対物レンズの光軸とが離間するため、測定
物で反射された測定光が受光対物レンズの光軸に対し傾
いて受光され、その結果、測定光の往復距離が光波距離
計と測定物との距離の2倍より若干長くなる、所謂タン
ジェントエラーを生ずる。
2. Description of the Related Art Conventionally, a light-sending optical system for sending measurement light from a light source to a measurement object through a light-sending objective lens, and a measurement light reflected by the measurement object to a light-receiving sensor through a light-receiving objective lens. A known lightwave rangefinder including a light-receiving optical system for condensing light is provided with a light-transmitting objective lens outside the light-receiving optical system. In such a light wave range finder, since the optical axis of the light-sending objective lens and the optical axis of the light-receiving objective lens are separated from each other, the measurement light reflected by the object to be measured is received while being inclined with respect to the optical axis of the light-receiving objective lens, As a result, a so-called tangent error occurs, in which the round-trip distance of the measuring light is slightly longer than twice the distance between the optical distance meter and the object to be measured.

【0003】かかる不具合を解消するため、従来、特開
2000−147121号公報により、図5に示す如
く、送光光学系に、受光光学系の外方に配置した送光対
物レンズaから送光された測定光の光軸を受光対物レン
ズbの光軸に一致するように光路変更する光路変更手段
を介設した光波距離計が知られている。このもので光路
変更手段は、受光対物レンズbの前方に配置した菱形プ
リズムcで構成されている。尚、図中dは光源、eは受
光センサ、fは防塵ガラスである。
In order to solve such a problem, conventionally, according to Japanese Patent Laid-Open No. 2000-147121, as shown in FIG. 5, a light-sending optical system sends light from a light-sending objective lens a arranged outside the light-receiving optical system. There is known a lightwave distance meter provided with an optical path changing means for changing the optical path of the measured light so that the optical axis of the measured light coincides with the optical axis of the light receiving objective lens b. With this, the optical path changing means is composed of a rhombus prism c arranged in front of the light receiving objective lens b. In the figure, d is a light source, e is a light receiving sensor, and f is dustproof glass.

【0004】[0004]

【発明が解決しようとする課題】上記従来例のもので
は、菱形プリズムcが受光対物レンズbを横切って該レ
ンズbの中心まで延びており、測定物から受光対物レン
ズbに向かう測定光の一部が菱形プリズムcで遮光され
て、受光センサeでの受光光量が減少する。そのため、
遠距離測定が光量不足で困難になり、また、近距離測定
では、測定光が受光対物レンズbの中心近傍を通るた
め、菱形プリズムcで遮光される光量の割合が増加し
て、近距離測定も困難になり、測定可能な距離範囲が限
定されてしまう。また、光波距離計に受光対物レンズb
を対物レンズとする視準望遠鏡を付設して測距測角儀を
構成する場合、菱形プリズムcによる遮光で視野が暗く
なり、その分視準し難くなる。
In the above-mentioned conventional example, the rhombic prism c extends across the light receiving objective lens b to the center of the lens b, and one of the measuring light beams from the object to be measured toward the light receiving objective lens b. The portion is shielded by the rhombus prism c, and the amount of light received by the light receiving sensor e is reduced. for that reason,
It becomes difficult to measure a long distance due to insufficient light quantity, and in short distance measurement, since the measurement light passes near the center of the light receiving objective lens b, the ratio of the light quantity shielded by the rhomboid prism c increases, and the short distance measurement is performed. Becomes difficult and the measurable distance range is limited. In addition, a light-receiving objective lens b
When a collimating telescope having an objective lens as an objective lens is attached to construct a rangefinder gonio, the field of view is darkened by light blocking by the rhombus prism c, and collimation becomes difficult accordingly.

【0005】そこで本発明は、上記の問題点に鑑み、光
路変更手段による遮光量を減少させて、測定可能な距離
範囲を広げ、且つ、視準望遠鏡による視準を行い易くし
得るようにした測距測角儀を提供することを課題として
いる。
In view of the above problems, the present invention reduces the amount of light shielded by the optical path changing means, widens the measurable distance range, and facilitates collimation by the collimation telescope. The challenge is to provide a rangefinder.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明は、光源からの測定光を送光対物レンズを介し
て測定物に送光する送光光学系と、測定物で反射された
測定光を受光対物レンズを介して受光センサに集光する
受光光学系と、前記受光対物レンズを対物レンズとする
視準望遠鏡とを備える距離計部を水平角方向と鉛直角方
向とに回動自在に支持して成る測距測角儀であって、前
記送光対物レンズを前記受光光学系の外方に配置し、前
記送光光学系に、前記送光対物レンズから送光された測
定光の光軸を前記受光対物レンズの光軸に一致するよう
に光路変更する光路変更手段を介設するものにおいて、
前記受光対物レンズの前方に配置する前記光路変更手段
の構成部材として三角プリズムまたはペンタゴナルプリ
ズムを用いている。
In order to solve the above problems, the present invention provides a light-transmitting optical system for transmitting measurement light from a light source to an object to be measured via a light-transmitting objective lens, and a light-reflecting optical system. A rangefinder unit having a light receiving optical system that collects the measured light on a light receiving sensor through a light receiving objective lens and a collimating telescope having the light receiving objective lens as an objective lens is rotated in a horizontal angle direction and a vertical direction. A distance measuring and angle measuring device movably supported, wherein the light-sending objective lens is arranged outside the light-receiving optical system, and light is sent from the light-sending objective lens to the light-sending optical system. In an optical path changing means for changing the optical path of the measurement light so that the optical axis of the measurement light coincides with the optical axis of the light receiving objective lens,
A triangular prism or a pentagonal prism is used as a constituent member of the optical path changing unit arranged in front of the light receiving objective lens.

【0007】本発明によれば、受光対物レンズの前方に
配置するのは三角プリズムまたはペンタゴナルプリズム
であり、従来の菱形プリズムに比し小型であるため、測
定物から受光対物レンズに向かう測定光の遮光量が減少
し、測定可能な距離範囲が広がる。また、遮光量の減少
により視準望遠鏡の視野が明るくなり、視準し易くな
る。
According to the present invention, the triangular prism or the pentagonal prism is arranged in front of the light-receiving objective lens, which is smaller than the conventional rhomboid prism, so that the measurement light traveling from the object to be measured to the light-receiving objective lens is measured. The amount of shading is reduced and the measurable distance range is expanded. Further, the field of view of the collimating telescope becomes brighter due to the reduction in the amount of light shielding, and it becomes easier to collimate.

【0008】ところで、距離計部は受光対物レンズの前
方に配置した防塵ガラスを備えており、この防塵ガラス
の裏面に三角プリズムまたはペンタゴナルプリズムを接
着固定しておけば、プリズム用の固定部材を別途設ける
必要がなく、部品点数を削減してコストダウンを図れ
る。
By the way, the rangefinder unit is provided with a dustproof glass arranged in front of the light receiving objective lens. If a triangular prism or a pentagonal prism is adhered and fixed to the rear surface of the dustproof glass, a fixing member for the prism will be provided. Since it is not necessary to separately provide it, the number of parts can be reduced and the cost can be reduced.

【0009】[0009]

【発明の実施の形態】図1は、上下方向の軸線回りに旋
回自在な柱部Aと、柱部Aに水平軸線回りに傾動自在に
軸支した距離計部Bと、表示部Cとを備える測距測角儀
を示しており、距離計部Bは柱部Aに対する傾動と柱部
Aの旋回とで鉛直角方向と水平角方向とに回動自在であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a column portion A which is rotatable about an axis in the vertical direction, a distance measuring portion B which is pivotally supported on the column portion A so as to be tiltable around a horizontal axis, and a display portion C. 1 shows a rangefinder and anglefinder provided, in which the rangefinder unit B is rotatable in a vertical direction and a horizontal angular direction by tilting with respect to the column unit A and turning the column unit A.

【0010】距離計部Bには、図2に示す如く、レーザ
ーダイオード等の光源1からの測定光を送光対物レンズ
2を介して平行光として測定物に送光する送光光学系
と、測定物で反射された測定光を受光対物レンズ3とプ
リズム4とを介して受光センサ5に集光する受光光学系
とが設けられており、受光センサ5からの信号に基づい
て距離計部Bの鉛直角方向と水平角方向の共通回転中心
Oから測定物までの距離を測定し、表示部Cにデジタル
表示する。前記プリズム4は、測定光の波長を含む所定
波長域の光は反射するが、可視光の特定波長の光は透過
するダイクロイック(dichroic)プリズムで構成されてい
る。プリズム4の受光センサ5に対する出射面にはバン
ドパスフィルタ4aが設けられ、測定光より長波長の光
はバンドパスフィルタ4aのコーティングで反射し、測
定光より短波長の光はバンドパスフィルタ4aで吸収す
るようにしている。また、プリズム4の後方に合焦レン
ズ6と正立プリズム7と焦点板8と接眼レンズ9とを設
け、受光対物レンズ3とこれら合焦レンズ6と正立プリ
ズム7と焦点板8と接眼レンズ9とで視準望遠鏡を構成
し、合焦レンズ6を前後に動かして焦点を合わせられる
ようにしている。焦点板8には、視準軸を示す十字線
(図示せず)が設けられ、測定物を視準したときの柱部A
に対する距離計部Bの傾動角度と柱部Aの旋回角度、即
ち、測定物の鉛直角と水平角を柱部Aに内蔵する各エン
コーダ(図示せず)で測定し、表示部Cにデジタル表示
する。また、受光対物レンズ3の前方には防塵ガラス1
0が設けられている。
As shown in FIG. 2, the rangefinder unit B has a light-sending optical system for sending the measurement light from the light source 1 such as a laser diode to the object to be measured as parallel light through the light-sending objective lens 2. A light receiving optical system that collects the measurement light reflected by the object to be measured on the light receiving sensor 5 via the light receiving objective lens 3 and the prism 4 is provided, and the distance measuring unit B is based on the signal from the light receiving sensor 5. The distance from the common rotation center O in the vertical direction and the horizontal angle direction to the object to be measured is measured and digitally displayed on the display unit C. The prism 4 is a dichroic prism that reflects light in a predetermined wavelength range including the wavelength of the measurement light but transmits visible light of a specific wavelength. A bandpass filter 4a is provided on the exit surface of the prism 4 with respect to the light receiving sensor 5. Light having a longer wavelength than the measuring light is reflected by the coating of the bandpass filter 4a, and light having a shorter wavelength than the measuring light is reflected by the bandpass filter 4a. I try to absorb it. Further, a focusing lens 6, an erecting prism 7, a focusing plate 8 and an eyepiece lens 9 are provided behind the prism 4, and the light receiving objective lens 3, the focusing lens 6, the erecting prism 7, the focusing plate 8 and the eyepiece lens 3 are provided. A collimating telescope is constituted by 9 and the focusing lens 6 is moved back and forth so that focusing can be performed. On the focusing screen 8, a cross line indicating the collimation axis
(Not shown) is provided and the pillar portion A when the object is collimated
The tilt angle of the range finder B and the turning angle of the column A, that is, the vertical and horizontal angles of the object to be measured are measured by each encoder (not shown) built in the column A and digitally displayed on the display C. To do. Further, a dustproof glass 1 is provided in front of the light receiving objective lens 3.
0 is provided.

【0011】送光対物レンズ2は、受光光学系の外方に
光軸L2が受光対物レンズ3の光軸L1と平行になるよ
うに配置されている。そして、送光光学系に光路変更手
段を介設し、送光対物レンズ2から送光された測定光
を、光路変更手段により受光対物レンズ3の光軸L1に
測定光の光軸を一致させた状態で測定物に送光し、タン
ジェントエラーを生じないようにしている。
The light-sending objective lens 2 is arranged outside the light-receiving optical system so that the optical axis L2 is parallel to the optical axis L1 of the light-receiving objective lens 3. Then, an optical path changing means is provided in the light sending optical system, and the measuring light sent from the light sending objective lens 2 is caused to coincide with the optical axis L1 of the light receiving objective lens 3 by the optical path changing means. In this state, the light is sent to the measured object to prevent tangent error.

【0012】光路変更手段は、受光対物レンズ3の前方
に配置した三角プリズム11と、ミラー12とで構成さ
れている。ミラー12はその反射面が三角プリズム11
の裏面反射面と平行になるように配置されており、ミラ
ー12を介して出射された測定光は三角プリズム11で
受光対物レンズ3の光軸L1に一致するように屈曲され
て前方に送光される。三角プリズム11は、三角プリズ
ム11用の固定部材を別途設けずに済むように、防塵ガ
ラス10の裏面に接着固定されている。
The optical path changing means comprises a triangular prism 11 arranged in front of the light receiving objective lens 3 and a mirror 12. The reflecting surface of the mirror 12 is a triangular prism 11.
The measurement light emitted through the mirror 12 is bent by the triangular prism 11 so as to coincide with the optical axis L1 of the light-receiving objective lens 3, and is sent forward. To be done. The triangular prism 11 is bonded and fixed to the back surface of the dustproof glass 10 so that a fixing member for the triangular prism 11 does not have to be separately provided.

【0013】ここで、三角プリズム11は図5に示す従
来の菱形プリズムcに比し小型であり、測定物で反射さ
れて受光対物レンズ3に向かう測定光の一部が三角プリ
ズム11で遮光されるとしても、その遮光量は菱形プリ
ズムcを用いる場合より減少し、そのため受光対物レン
ズ3を介して受光センサ5に到達する測定光の光量が増
し、測定可能な距離範囲が広がる。また、遮光量の減少
により視準望遠鏡の視野も明るくなり、視準し易くな
る。
Here, the triangular prism 11 is smaller than the conventional rhombus prism c shown in FIG. 5, and a part of the measuring light reflected by the object to be measured and traveling toward the light receiving objective lens 3 is shielded by the triangular prism 11. Even so, the amount of light shielding is reduced as compared with the case where the rhombic prism c is used, so that the amount of measuring light reaching the light receiving sensor 5 via the light receiving objective lens 3 is increased and the measurable distance range is widened. In addition, the field of view of the collimating telescope becomes brighter due to the reduction of the light shielding amount, and it becomes easier to collimate.

【0014】ところで、三角プリズム11から送光され
る測定光の光軸を受光対物レンズ3の光軸に正確に一致
させるには、ミラー12を介して三角プリズム11に入
射される測定光の入射角度及び位置を正確に調整する必
要がある。そこで、光源1及び送光対物レンズ2から成
る送光ユニットをその光軸L2に直交する2方向に位置
調整自在とすると共に、ミラー12を任意の方向に傾動
調整自在とし、ミラー12の傾動で三角プリズム11に
対する測定光の入射角度の調整、送光ユニットの位置調
整で三角プリズム11に対する測定光の入射位置の調整
を行えるようにしている。尚、図5に示す従来例では、
菱形プリズムcに対する測定光の入射角度及び位置を調
整可能とするため、光源dと送光レンズaとから成る送
光ユニットを位置調整及び傾動調整自在に支持する必要
がある。そのため、大きさが制限される送光ユニットの
支持部に位置調整機構に加えて傾動調整機構も組込まざ
るを得ず、これら調整機構が小型複雑になって調整作業
が面倒になる。一方、本実施形態では、ミラー12の傾
動と送光ユニットの位置調整とで測定光の入射角度と入
射位置とを個別に調整できるため、調整作業が容易にな
る。
By the way, in order to exactly match the optical axis of the measurement light sent from the triangular prism 11 with the optical axis of the light receiving objective lens 3, the measurement light incident on the triangular prism 11 via the mirror 12 is made incident. The angle and position must be adjusted accurately. Therefore, the position of the light-sending unit including the light source 1 and the light-sending objective lens 2 can be adjusted in two directions orthogonal to the optical axis L2, and the tilt of the mirror 12 can be adjusted in any direction. The incident angle of the measuring light on the triangular prism 11 is adjusted, and the incident position of the measuring light on the triangular prism 11 is adjusted by adjusting the position of the light sending unit. Incidentally, in the conventional example shown in FIG.
In order to adjust the incident angle and the position of the measuring light with respect to the rhombus prism c, it is necessary to support the light sending unit including the light source d and the light sending lens a so that the position and tilt can be adjusted freely. Therefore, in addition to the position adjusting mechanism, the tilt adjusting mechanism has to be incorporated in the supporting portion of the light transmitting unit whose size is limited, and the adjusting mechanism becomes small and complicated, and the adjusting work becomes troublesome. On the other hand, in the present embodiment, the incident angle and the incident position of the measurement light can be individually adjusted by the tilting of the mirror 12 and the position adjustment of the light sending unit, which facilitates the adjustment work.

【0015】以上、光路変更手段を三角プリズム11と
ミラー12とで構成した実施形態について説明したが、
図3に示すように、送光対物レンズ2を受光光学系の外
方に光軸L2が受光対物レンズ3の光軸L1に直交する
ように配置し、送光対物レンズ2から三角プリズム11
に測定光を直接入射して、ミラー12を省略することも
可能である。このものでは、送光ユニットの位置調整
と、三角プリズム11を接着固定した防塵ガラス10の
回転による送光方向の調整とで測定光の光軸を受光対物
レンズ3の光軸L1に一致させる。
The embodiment in which the optical path changing means is composed of the triangular prism 11 and the mirror 12 has been described above.
As shown in FIG. 3, the light-sending objective lens 2 is arranged outside the light-receiving optical system so that the optical axis L2 is orthogonal to the optical axis L1 of the light-receiving objective lens 3, and the light-sending objective lens 2 to the triangular prism 11 are arranged.
It is also possible to directly inject the measuring light into and to omit the mirror 12. In this device, the optical axis of the measurement light is aligned with the optical axis L1 of the light receiving objective lens 3 by adjusting the position of the light sending unit and adjusting the light sending direction by rotating the dust-proof glass 10 to which the triangular prism 11 is adhesively fixed.

【0016】また、上記実施形態では、受光対物レンズ
3の前方に配置する光路変更手段の構成部材として三角
プリズム11を用いたが、図4に示すようにペンタゴナ
ルプリズム13を用い、これを防塵ガラス10の裏面に
接着固定しても、上記実施形態と同様の効果を得られ
る。尚、図4では光源1から送光対物レンズ2を介して
出射される測定光を図2の実施形態と同様にミラー12
を介してペンタゴナルプリズム13に入射するようにし
たが、図3の実施形態と同様に測定光をペンタゴナルプ
リズム13に直接入射しても良い。
Further, in the above embodiment, the triangular prism 11 is used as a constituent member of the optical path changing means arranged in front of the light receiving objective lens 3, but a pentagonal prism 13 is used as shown in FIG. Even if it is adhered and fixed to the back surface of the glass 10, the same effect as in the above embodiment can be obtained. In FIG. 4, the measurement light emitted from the light source 1 via the light-sending objective lens 2 is reflected by the mirror 12 as in the embodiment of FIG.
Although the incident light is made incident on the pentagonal prism 13 via the, the measuring light may be made incident on the pentagonal prism 13 directly as in the embodiment of FIG.

【0017】[0017]

【発明の効果】以上の説明から明らかなように、本発明
によれば、光路変更手段による遮光量を減少させて、受
光センサで受光される測定光の光量を増すことができ、
測定可能な距離範囲が広がると共に、遮光量の減少で視
準望遠鏡による視準もし易くなり、高品質の測距測角儀
が得られる。
As is apparent from the above description, according to the present invention, it is possible to reduce the amount of light shielded by the optical path changing means and increase the amount of measurement light received by the light receiving sensor.
As the measurable distance range is widened, the amount of light shielding is reduced, making it easier to collimate with the collimation telescope, and a high-quality rangefinder can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る測距測角儀の全体的な斜視図FIG. 1 is an overall perspective view of a range finder according to the present invention.

【図2】本発明測距測角儀の距離計部の一実施の形態の
構成を示す図
FIG. 2 is a diagram showing a configuration of an embodiment of a distance measuring section of a distance measuring and measuring instrument according to the present invention.

【図3】本発明測距測角儀の距離計部の他の実施の形態
の構成を示す図
FIG. 3 is a diagram showing the configuration of another embodiment of the rangefinder section of the rangefinder according to the present invention.

【図4】本発明測距測角儀の距離計部の更に他の実施の
形態の構成を示す図
FIG. 4 is a diagram showing the configuration of still another embodiment of the rangefinder unit of the rangefinder according to the present invention.

【図5】従来例の構成を示す図FIG. 5 is a diagram showing a configuration of a conventional example.

【符号の説明】[Explanation of symbols]

B…距離計部 1…光源 2…送光対物レンズ
3…受光対物レンズ 5…受光センサ 10…防塵ガラス 11…三角プリ
ズム 13…ペンタゴナルプリズム
B ... Distance measuring unit 1 ... Light source 2 ... Light-transmitting objective lens
3 ... Light receiving objective lens 5 ... Light receiving sensor 10 ... Dust-proof glass 11 ... Triangular prism 13 ... Pentagonal prism

フロントページの続き (72)発明者 遠藤 正光 神奈川県厚木市長谷260−63 株式会社ソ キア厚木工場内 Fターム(参考) 5J084 AA05 BA04 BA14 BB04 BB12 BB20 DA01 DA04 EA01 EA07 EA21 FA03 Continued front page    (72) Inventor Masamitsu Endo             260-63 Hase, Atsugi City, Kanagawa Prefecture             Kia Atsugi Factory F-term (reference) 5J084 AA05 BA04 BA14 BB04 BB12                       BB20 DA01 DA04 EA01 EA07                       EA21 FA03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光源からの測定光を送光対物レンズを
介して測定物に送光する送光光学系と、測定物で反射さ
れた測定光を受光対物レンズを介して受光センサに集光
する受光光学系と、前記受光対物レンズを対物レンズと
する視準望遠鏡とを備える距離計部を水平角方向と鉛直
角方向とに回動自在に支持して成る測距測角儀であっ
て、前記送光対物レンズを前記受光光学系の外方に配置
し、前記送光光学系に、前記送光対物レンズから送光さ
れた測定光の光軸を前記受光対物レンズの光軸に一致す
るように光路変更する光路変更手段を介設するものにお
いて、 前記受光対物レンズの前方に配置する前記光路変更手段
の構成部材として三角プリズムまたはペンタゴナルプリ
ズムを用いることを特徴とする測距測角儀。
1. A light-transmitting optical system for sending measurement light from a light source to a measurement object via a light-sending objective lens, and collecting measurement light reflected by the measurement object on a light-receiving sensor via a light-receiving objective lens. A rangefinder and anglefinder comprising a rangefinder unit rotatably in a horizontal angle direction and a vertical angle direction, the rangefinder unit including a light receiving optical system and a collimating telescope having the light receiving objective lens as an objective lens. , The light-sending objective lens is arranged outside the light-receiving optical system, and the optical axis of the measurement light sent from the light-sending objective lens to the light-sending optical system coincides with the optical axis of the light-receiving objective lens. In order to arrange the optical path changing means for changing the optical path, a triangular prism or a pentagonal prism is used as a constituent member of the optical path changing means arranged in front of the light receiving objective lens. Ceremony.
【請求項2】 前記三角プリズムまたはペンタゴナル
プリズムを前記受光対物レンズの前方に配置した防塵ガ
ラスの裏面に接着固定することを特徴とする請求項1に
記載の測距測角儀。
2. The range finder according to claim 1, wherein the triangular prism or the pentagonal prism is adhesively fixed to the back surface of the dustproof glass arranged in front of the light receiving objective lens.
JP2001238677A 2001-08-07 2001-08-07 Instrument for measuring distance and angle Pending JP2003050128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238677A JP2003050128A (en) 2001-08-07 2001-08-07 Instrument for measuring distance and angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238677A JP2003050128A (en) 2001-08-07 2001-08-07 Instrument for measuring distance and angle

Publications (1)

Publication Number Publication Date
JP2003050128A true JP2003050128A (en) 2003-02-21

Family

ID=19069554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238677A Pending JP2003050128A (en) 2001-08-07 2001-08-07 Instrument for measuring distance and angle

Country Status (1)

Country Link
JP (1) JP2003050128A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085832A (en) * 2005-09-21 2007-04-05 Omron Corp Optical radar system
JP2007298372A (en) * 2006-04-28 2007-11-15 Sokkia Co Ltd Light-wave distance meter
US7391702B2 (en) 2003-07-08 2008-06-24 Optware Corporation Holographic optical information recording and reproducing apparatus which parallel-translates light ray flux to correct tilt
CN102393189A (en) * 2011-12-12 2012-03-28 北方光电集团有限公司 Laser orientation mechanism of electronic theodolite telescope
CN102506835A (en) * 2011-12-15 2012-06-20 中国科学院西安光学精密机械研究所 Telescope and laser coaxial measuring system
JP2013508694A (en) * 2009-11-20 2013-03-07 ファロ テクノロジーズ インコーポレーテッド Equipment for optically scanning and measuring the environment
JP2013142620A (en) * 2012-01-11 2013-07-22 Topcon Corp Attachment device and total station
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
JP2017090128A (en) * 2015-11-05 2017-05-25 船井電機株式会社 Measuring apparatus
CN107025414A (en) * 2016-02-02 2017-08-08 北京特微智能科技有限公司 A kind of hardware device for realizing automatic barcode scanning out of doors
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322569A (en) * 1992-05-21 1993-12-07 Topcon Corp Surveying equipment
JPH09243747A (en) * 1996-03-11 1997-09-19 Nikon Corp Range finding device
JPH112679A (en) * 1997-06-11 1999-01-06 Nikon Corp Collimating range finding optical system
JPH11237245A (en) * 1998-02-20 1999-08-31 Sokkia Co Ltd Reticle-adjusting apparatus
JP2000206244A (en) * 1999-01-20 2000-07-28 Kubota Corp Distance-measuring apparatus
JP2001117019A (en) * 1999-08-31 2001-04-27 Leica Geosystems Ag Tachymeter telescope

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322569A (en) * 1992-05-21 1993-12-07 Topcon Corp Surveying equipment
JPH09243747A (en) * 1996-03-11 1997-09-19 Nikon Corp Range finding device
JPH112679A (en) * 1997-06-11 1999-01-06 Nikon Corp Collimating range finding optical system
JPH11237245A (en) * 1998-02-20 1999-08-31 Sokkia Co Ltd Reticle-adjusting apparatus
JP2000206244A (en) * 1999-01-20 2000-07-28 Kubota Corp Distance-measuring apparatus
JP2001117019A (en) * 1999-08-31 2001-04-27 Leica Geosystems Ag Tachymeter telescope

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391702B2 (en) 2003-07-08 2008-06-24 Optware Corporation Holographic optical information recording and reproducing apparatus which parallel-translates light ray flux to correct tilt
JP2007085832A (en) * 2005-09-21 2007-04-05 Omron Corp Optical radar system
JP2007298372A (en) * 2006-04-28 2007-11-15 Sokkia Co Ltd Light-wave distance meter
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
JP2013508694A (en) * 2009-11-20 2013-03-07 ファロ テクノロジーズ インコーポレーテッド Equipment for optically scanning and measuring the environment
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
CN102393189A (en) * 2011-12-12 2012-03-28 北方光电集团有限公司 Laser orientation mechanism of electronic theodolite telescope
CN102506835A (en) * 2011-12-15 2012-06-20 中国科学院西安光学精密机械研究所 Telescope and laser coaxial measuring system
EP2615415A3 (en) * 2012-01-11 2016-06-29 Kabushiki Kaisha Topcon Attachment device and total station
JP2013142620A (en) * 2012-01-11 2013-07-22 Topcon Corp Attachment device and total station
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10739458B2 (en) 2012-10-05 2020-08-11 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US11815600B2 (en) 2012-10-05 2023-11-14 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US11112501B2 (en) 2012-10-05 2021-09-07 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US11035955B2 (en) 2012-10-05 2021-06-15 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
JP2017090128A (en) * 2015-11-05 2017-05-25 船井電機株式会社 Measuring apparatus
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
CN107025414A (en) * 2016-02-02 2017-08-08 北京特微智能科技有限公司 A kind of hardware device for realizing automatic barcode scanning out of doors

Similar Documents

Publication Publication Date Title
JP2003050128A (en) Instrument for measuring distance and angle
JP3569426B2 (en) Reflecting member for surveying
JP4301863B2 (en) Ranging device
KR101455725B1 (en) Sighting device, in particular telescopic sight, for a geodetic measuring apparatus and optical objective unit assembly for such a sighting device
JP5433976B2 (en) Ranging device
US10634767B2 (en) Electronic distance measuring instrument
JP3151595B2 (en) Coaxial lightwave distance meter
US20210190493A1 (en) Surveying Instrument
JP4236326B2 (en) Automatic surveying machine
JP4023572B2 (en) Automatic surveying machine
WO2002005007A1 (en) Range-finding binoculars
JP2793740B2 (en) Surveying instrument
JP2000066113A (en) Binoculars
JP2000329517A (en) Distance-measuring apparatus
US6822732B2 (en) Surveying instrument having an auto-collimating function and a distance measuring function
JP3843028B2 (en) Light wave distance meter
JP3450039B2 (en) Lightwave rangefinder
JP2006226881A (en) Automatic collimator for survey equipment
JP2002340554A (en) Distance-measuring optical system for surveying instrument
JP2019023650A (en) Light wave ranging device
US20230280161A1 (en) Surveying instrument
US20230280160A1 (en) Surveying instrument
JP2639675B2 (en) Theodolite with laser
JP2688931B2 (en) Lightwave rangefinder
JPH0524166Y2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115