JPH0911355A - Manufacture of fiber reinforced thermoplastic resin composite tube - Google Patents
Manufacture of fiber reinforced thermoplastic resin composite tubeInfo
- Publication number
- JPH0911355A JPH0911355A JP7165686A JP16568695A JPH0911355A JP H0911355 A JPH0911355 A JP H0911355A JP 7165686 A JP7165686 A JP 7165686A JP 16568695 A JP16568695 A JP 16568695A JP H0911355 A JPH0911355 A JP H0911355A
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- core material
- fiber
- layer
- inner layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Rigid Pipes And Flexible Pipes (AREA)
- Laminated Bodies (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、熱可塑性樹脂と強化繊
維からなる繊維強化熱可塑性樹脂複合管の製造方法に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber-reinforced thermoplastic resin composite pipe comprising a thermoplastic resin and reinforcing fibers.
【0002】[0002]
【従来の技術】繊維強化樹脂複合管であって、内面に熱
可塑性樹脂よりなる層を有する繊維強化樹脂複合管は、
錆びることがなく、強度的にも優れ、水やガス等の流体
を輸送する配管、電気配線用に用いられる配管、構造用
部材等として広く用いられている。2. Description of the Related Art A fiber-reinforced resin composite pipe having a layer made of a thermoplastic resin on its inner surface is
It is not rusted and has excellent strength, and is widely used as pipes for transporting fluids such as water and gas, pipes used for electric wiring, structural members and the like.
【0003】従来、繊維強化複合管は、内層である熱可
塑性樹脂管の外面に液状の熱硬化性樹脂を含浸させた強
化繊維をマンドレル上に巻き付け、熱硬化性樹脂を硬化
させた後マンドレルを抜き取る方法(フィラメントワイ
ンディング法)により製造されている(例えば、特公昭
62─773号公報参照)。Conventionally, in a fiber-reinforced composite pipe, a reinforcing fiber impregnated with a liquid thermosetting resin is wound around a mandrel on the outer surface of a thermoplastic resin pipe as an inner layer, and the mandrel is cured after the thermosetting resin is cured. It is manufactured by a drawing method (filament winding method) (for example, see Japanese Patent Publication No. 62-773).
【0004】この種の繊維強化樹脂複合管は、界面の接
着力が弱く、繊維強化樹脂複合管を冷熱繰り返し条件下
等で使用すると、内層と繊維強化樹脂層との熱膨張率の
差により、界面剥離するという問題点がある。This type of fiber-reinforced resin composite pipe has a weak adhesive force at the interface, and when the fiber-reinforced resin composite pipe is used under conditions of repeated heat and cold, due to the difference in thermal expansion coefficient between the inner layer and the fiber-reinforced resin layer, There is a problem of interfacial peeling.
【0005】この問題点を解決するため、例えば、特開
平6─218841号公報に記載の如く、繊維強化樹脂
層を形成する樹脂として熱可塑性樹脂を用い、更に内層
の熱可塑性樹脂層と繊維強化樹脂層との融着力を強固に
した繊維強化樹脂複合管の製造方法が知られている。In order to solve this problem, for example, as described in JP-A-6-218841, a thermoplastic resin is used as a resin for forming a fiber reinforced resin layer, and a thermoplastic resin layer as an inner layer and a fiber reinforced resin are used. A method for producing a fiber-reinforced resin composite pipe having a strong fusion force with a resin layer is known.
【0006】この方法では、内層である熱可塑性樹脂よ
りなる管の外面に繊維強化樹脂複合体よりなる強化層を
巻き付けて積層して多層管状体となし、その多層管状体
を融着する際に、多層管状体の内側雰囲気の加圧もしく
は外側雰囲気の減圧のいずれか、又はその両方雰囲気下
に多層管状体を曝して加熱し、熱可塑性樹脂よりなる管
と繊維強化樹脂複合体とを強固に融着一体化する方法が
提案されている。According to this method, a reinforcing layer made of a fiber reinforced resin composite is wound around the outer surface of a pipe made of a thermoplastic resin as an inner layer and laminated to form a multilayer tubular body, and the multilayer tubular body is fused. , The inner atmosphere of the multi-layer tubular body, the depressurization of the outer atmosphere, or both, the multi-layer tubular body is exposed to the atmosphere and heated to strengthen the tube made of the thermoplastic resin and the fiber-reinforced resin composite. A method of fusion bonding and integration has been proposed.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、この方
法の場合には、多層管状体を加圧もしくは減圧状態にて
融着する部分を、押出機側より延設された支承材等に支
持されたゴム栓等で連続的に密閉する必要があるため、
連続製造の立ち上げ時にトラブルの原因になったり、
又、多層管状体の僅かな内径変化によりゴム栓による密
閉度が変動するために、融着力のばらつきが生ずること
があり、特に、この現象は長時間連続運転したときに、
ゴム栓が劣化し易いために助長されるという問題点があ
った。However, in the case of this method, the portion where the multilayer tubular body is fused under pressure or reduced pressure is supported by a support member extending from the extruder side. Since it is necessary to continuously seal with a rubber stopper etc.,
It may cause troubles when starting up continuous production,
Further, since the sealing degree due to the rubber plug varies due to a slight change in the inner diameter of the multilayer tubular body, the fusion force may vary.
There is a problem that the rubber plug is easily deteriorated and is promoted.
【0008】本発明は、上記の如き従来の問題点を解消
し、多層管状体の融着力が安定し、品質にばらつきのな
い繊維強化熱可塑性樹脂複合管の製造方法を提供するこ
とを目的としてなされたものである。An object of the present invention is to solve the above-mentioned conventional problems, and to provide a method for producing a fiber-reinforced thermoplastic resin composite pipe in which the fusion bonding force of the multilayer tubular body is stable and the quality is uniform. It was made.
【0009】[0009]
【課題を解決するための手段】本発明は、押出成形した
熱可塑性樹脂管を一旦冷却固化して芯材を形成する工程
と、芯材の外面に、芯材の熱可塑性樹脂よりも熱膨張率
が小さく且つその熱可塑性樹脂と相溶性のない熱可塑性
樹脂を押出被覆して内層を形成する工程と、内層の外面
に、長手方向に配された連続繊維に芯材の熱可塑性樹脂
よりも熱膨張率が小さく内層の熱可塑性樹脂と相溶性の
ある熱可塑性樹脂が保持された帯状体を略周方向に巻き
付けて繊維強化熱可塑性樹脂層を形成して多層管状体と
する工程と、多層管状体を、芯材の熱可塑性樹脂の熱膨
張温度〜熱分解温度の温度であって、繊維強化熱可塑性
樹脂層の熱可塑性樹脂のビカット軟化点〜熱分解温度の
温度に加熱した後、冷却固化する工程と、固化した多層
管状体内から芯材を抜き取る工程とからなる繊維強化熱
可塑性樹脂複合管の製造方法である。According to the present invention, there is provided a step of forming a core material by once cooling and solidifying an extruded thermoplastic resin tube, and a thermal expansion on the outer surface of the core material as compared with the thermoplastic resin of the core material. A step of forming an inner layer by extrusion-coating a thermoplastic resin that has a low rate and is incompatible with the thermoplastic resin, and a continuous fiber arranged in the longitudinal direction on the outer surface of the inner layer than the thermoplastic resin of the core material. A step of forming a fiber-reinforced thermoplastic resin layer into a multilayer tubular body by winding a belt-shaped body having a thermoplastic resin having a small thermal expansion coefficient and compatibility with a thermoplastic resin of an inner layer and winding the belt-shaped body in a substantially circumferential direction, The tubular body is heated to a temperature from the thermal expansion temperature of the thermoplastic resin of the core material to the thermal decomposition temperature and the Vicat softening point of the thermoplastic resin of the fiber-reinforced thermoplastic resin layer to the thermal decomposition temperature, and then cooled. The process of solidification and the core material from the solidified multilayer tubular body A method for producing a fiber-reinforced thermoplastic resin composite pipe comprising the step of withdrawing.
【0010】本発明において、内層の熱可塑性樹脂とし
ては、芯材の熱可塑性樹脂よりも熱膨張率が小さく且つ
その熱可塑性樹脂と相溶性のないものが用いられる。内
層の熱可塑性樹脂の熱膨張率は、芯材の熱可塑性樹脂の
熱膨張率の0.9倍以下が好ましく、0.7倍以下が更
に好ましい。尚、ここでいう内層の熱可塑性樹脂が芯材
の熱可塑性樹脂と相溶性がないとは、双方の熱可塑性樹
脂を加熱密着させても、冷却後に界面が簡単に剥離する
ことをいう。芯材は、剥離後、再利用することが考えら
れ、リサイクルし易い熱可塑性樹脂を用いるのが好まし
い。In the present invention, as the thermoplastic resin of the inner layer, one having a smaller coefficient of thermal expansion than the thermoplastic resin of the core material and being incompatible with the thermoplastic resin is used. The coefficient of thermal expansion of the thermoplastic resin of the inner layer is preferably 0.9 times or less, and more preferably 0.7 times or less the coefficient of thermal expansion of the thermoplastic resin of the core material. In addition, that the thermoplastic resin of the inner layer is not compatible with the thermoplastic resin of the core material as used herein means that the interface is easily peeled off after cooling even when both thermoplastic resins are brought into close contact with each other by heating. The core material is considered to be reused after peeling, and it is preferable to use a thermoplastic resin that is easy to recycle.
【0011】内層の熱可塑性樹脂と、芯材の熱可塑性樹
脂の組み合わせとしては、例えば、内層の熱可塑性樹脂
では、ポリ塩化ビニル、塩素化ポリ塩化ビニル等に対し
て、芯材の熱可塑性樹脂では、ポリエチレン、ポリプロ
ピレン、ポリテトラフルオロエチレン等が挙げられる。As a combination of the thermoplastic resin of the inner layer and the thermoplastic resin of the core material, for example, in the thermoplastic resin of the inner layer, polyvinyl chloride, chlorinated polyvinyl chloride, etc. Examples include polyethylene, polypropylene, polytetrafluoroethylene, and the like.
【0012】本発明において、繊維強化熱可塑性樹脂層
の熱可塑性樹脂としては、芯材の熱可塑性樹脂よりも熱
膨張率が小さく、且つ内層の熱可塑性樹脂と相溶性のあ
るものが使用される。繊維強化熱可塑性樹脂層の熱可塑
性樹脂の熱膨張率は、内層の熱可塑性樹脂と同様に、芯
材の熱可塑性樹脂の熱膨張率の0.9倍以下が好まし
く、0.7倍以下が更に好ましい。In the present invention, as the thermoplastic resin of the fiber reinforced thermoplastic resin layer, one having a smaller coefficient of thermal expansion than the thermoplastic resin of the core material and having compatibility with the thermoplastic resin of the inner layer is used. . The thermal expansion coefficient of the thermoplastic resin of the fiber-reinforced thermoplastic resin layer is, like the thermoplastic resin of the inner layer, preferably 0.9 times or less of the thermal expansion coefficient of the thermoplastic resin of the core material, and 0.7 times or less. More preferable.
【0013】繊維強化熱可塑性樹脂層の熱可塑性樹脂と
しては、内層の熱可塑性樹脂と熱融着可能なものが使用
され、例えば、ポリ塩化ビニル、ポリエチレン、ポリプ
ロピレン、ポリアミド、ポリカボネート、ポリフェニレ
ンサルファイド、ポリスルホン、ポリエーテルエーテル
ケトン等が挙げられるが、内層の熱可塑性樹脂と同種の
ものが特に好適に使用される。As the thermoplastic resin of the fiber reinforced thermoplastic resin layer, one that can be heat-sealed with the thermoplastic resin of the inner layer is used, and examples thereof include polyvinyl chloride, polyethylene, polypropylene, polyamide, polycarbonate, polyphenylene sulfide, polysulfone , Polyether ether ketone, etc., but the same kind as the thermoplastic resin of the inner layer is particularly preferably used.
【0014】尚、ここでいう熱融着可能とは、双方の熱
可塑性樹脂を溶融状態になるまで加熱した上で圧着し、
冷却後、融着した界面が容易に破断しないことをいう。
各熱可塑性樹脂中には、必要に応じて、熱安定剤、可塑
剤、滑剤、酸化防止剤、紫外線吸収剤、顔料、無機充填
剤、加工助剤、改質剤等が添加されてもよい。The term "heat-meltable" means that both thermoplastic resins are heated to a molten state and then pressure-bonded.
It means that the fused interface is not easily broken after cooling.
If necessary, a thermal stabilizer, a plasticizer, a lubricant, an antioxidant, an ultraviolet absorber, a pigment, an inorganic filler, a processing aid, a modifier, etc. may be added to each thermoplastic resin. .
【0015】本発明において、帯状体の形態としては、
テープ状、紐状が通常巻き付け易いので好ましい。本発
明において、帯状体を形成する連続繊維の材質として
は、例えば、ガラス繊維、カーボン繊維等の無機繊維、
アラミド繊維、ビニロン繊維、ポリエステル繊維等の有
機繊維などが挙げられる。連続繊維の形態としては、例
えば、モノフィラメント、ロービング状、ストランド
状、クロス状、網状、ネット状等が挙げられる。In the present invention, the form of the strip is as follows.
A tape shape or a string shape is preferable because it is usually easy to wind. In the present invention, as the material of the continuous fibers forming the strip, for example, glass fibers, inorganic fibers such as carbon fibers,
Examples include organic fibers such as aramid fiber, vinylon fiber, and polyester fiber. Examples of the form of continuous fibers include monofilaments, rovings, strands, crosses, nets, and nets.
【0016】帯状体の巻付け時の形態としては、例え
ば、テープ状、紐状等が挙げられ、その幅、厚み、直径
等は成形すべき複合管の大きさや、要求される性能等に
よって異なる。テープ状の場合には、その幅が成形すべ
き複合管の内径の1/30〜1倍程度であるのが好まし
く、1/10〜2/3程度が更に好ましく、その厚みも
特に限定されないが1〜5mm程度が好ましい。紐状の
場合には、直径が1〜10mm程度が好ましい。Examples of the form of winding the strip-like body include a tape-like form and a string-like form. The width, thickness, diameter and the like of the strip-like form vary depending on the size of the composite pipe to be formed, the required performance and the like. . In the case of a tape, its width is preferably about 1/30 to 1 times the inner diameter of the composite pipe to be molded, more preferably about 1/10 to 2/3, and its thickness is not particularly limited. It is preferably about 1 to 5 mm. In the case of a string, the diameter is preferably about 1 to 10 mm.
【0017】連続繊維を構成する単繊維の太さは、太す
ぎると繊維間に熱可塑性樹脂が保持されない部分が発生
し、細すぎると切断することがあるので、1〜100μ
mが好ましく、3〜50μmが更に好ましい。The thickness of the monofilament constituting the continuous fiber is 1 to 100 μm because if the fiber is too thick, a part where the thermoplastic resin is not held is generated, and if it is too thin, it may be cut.
m is preferable, and 3 to 50 μm is more preferable.
【0018】帯状体中の連続繊維の量は、多すぎると繊
維間に保持する熱可塑性樹脂の量が少なくなり、少なす
ぎると補強効果が生じないので、3〜70重量%が好ま
しく、10〜50重量%が更に好ましい。If the amount of continuous fibers in the strip is too large, the amount of the thermoplastic resin held between the fibers will be small, and if it is too small, the reinforcing effect will not occur, so 3 to 70% by weight is preferable, and 10 to 10% by weight is preferable. 50% by weight is more preferable.
【0019】帯状体の製造方法としては、例えば、次の
方法を採用することができる。 多数のフィラメントよりなるロービング状、ストラ
ンド状、クロス状、ネット状、網状等の連続繊維を、粉
体状熱可塑性樹脂の流動床中を順次通過させ、繊維間に
粉体状熱可塑性樹脂を付着させた後、加熱して連続繊維
と熱可塑性樹脂を一体化する方法。As a method for manufacturing the strip, for example, the following method can be adopted. Continuous fibers such as roving, strand, cloth, net and net made up of many filaments are sequentially passed through a fluidized bed of powdered thermoplastic resin, and the powdered thermoplastic resin is adhered between the fibers. After that, heating is performed to integrate the continuous fiber and the thermoplastic resin.
【0020】 上記同様の連続繊維を熱可塑性樹脂の
エマルジョン中を通過させて、繊維間にエマルジョンを
含浸させ、次いで、熱可塑性樹脂の溶融温度以上に加熱
して、連続繊維と熱可塑性樹脂を一体化する方法。Continuous fibers similar to the above are passed through an emulsion of a thermoplastic resin to impregnate the emulsion with the fibers, and then heated to a temperature equal to or higher than the melting temperature of the thermoplastic resin to integrate the continuous fibers and the thermoplastic resin. How to make.
【0021】 溶融粘度が低い熱可塑性樹脂の場合に
は、溶融熱可塑性樹脂を満たした槽中を上記同様の連続
繊維を浸漬するようにして通過させることにより、繊維
間に熱可塑性樹脂を付着固化さる方法。 上記同様の連続繊維上に熱可塑性樹脂フィルム積層
し、加熱圧着する方法。In the case of a thermoplastic resin having a low melt viscosity, the same continuous fibers as described above are dipped and passed through a tank filled with the molten thermoplastic resin so that the thermoplastic resin is adhered and solidified between the fibers. How to find a monkey. A method of laminating a thermoplastic resin film on the same continuous fibers as above and thermocompression bonding.
【0022】本発明において、押出成形した熱可塑性樹
脂管を一旦冷却固化して芯材を形成する方法としては、
従来公知の押出成形方法が適宜採用できる。本発明にお
いて、芯材の外面に、熱可塑性樹脂を押出被覆して内層
を形成する方法としては、従来公知のクロスヘッドダイ
を用いた被覆方法等が適宜採用できる。In the present invention, as a method for forming the core material by once cooling and solidifying the extruded thermoplastic resin tube,
A conventionally known extrusion molding method can be appropriately adopted. In the present invention, as a method of forming the inner layer by extrusion coating the outer surface of the core material with a thermoplastic resin, a conventionally known coating method using a crosshead die or the like can be appropriately adopted.
【0023】本発明において、内層の外面に、長手方向
に配された連続繊維に熱可塑性樹脂が保持された帯状体
を略周方向に巻き付けて繊維強化熱可塑性樹脂層を形成
する方法としては、従来公知のフィラメントワインディ
ング法や編組機による方法等が適宜採用できる。In the present invention, a method for forming a fiber-reinforced thermoplastic resin layer by winding a strip-shaped body in which continuous fibers arranged in the longitudinal direction and a thermoplastic resin are held on the outer surface of the inner layer is wound in a substantially circumferential direction. A conventionally known filament winding method, a method using a braiding machine, or the like can be appropriately adopted.
【0024】本発明において、多層管状体の加熱方法と
しては、熱風、加熱炉、赤外線等の従来公知の加熱手段
が適宜採用できる。多層管状体の加熱温度としては、芯
材の熱可塑性樹脂の熱膨張温度〜熱分解温度の温度であ
って、繊維強化熱可塑性樹脂層の熱可塑性樹脂のビカッ
ト軟化点〜熱分解温度の温度である。In the present invention, as a method for heating the multilayer tubular body, conventionally known heating means such as hot air, a heating furnace and infrared rays can be appropriately adopted. The heating temperature of the multilayer tubular body is a temperature of the thermal expansion temperature to the thermal decomposition temperature of the thermoplastic resin of the core material, and the Vicat softening point of the thermoplastic resin of the fiber-reinforced thermoplastic resin layer to the thermal decomposition temperature. is there.
【0025】芯材の熱可塑性樹脂の加熱温度が熱分解温
度を超えると、その上に被覆される内層樹脂等に影響
し、その性能を損なうことがあり、熱膨張温度より低い
と、芯材を熱膨張させることができず、複層管状体の融
着させることができない。この加熱温度は芯材の熱可塑
性樹脂のビカット軟化点−50℃〜ビカット軟化点+5
0℃の範囲の温度が好ましい。When the heating temperature of the thermoplastic resin of the core material exceeds the thermal decomposition temperature, it may affect the inner layer resin and the like coated thereon and impair its performance. If it is lower than the thermal expansion temperature, the core material Cannot be thermally expanded, and the multi-layer tubular body cannot be fused. This heating temperature is from the Vicat softening point of the thermoplastic resin of the core material −50 ° C. to the Vicat softening point +5.
Temperatures in the range of 0 ° C are preferred.
【0026】ここに、ビカット軟化点とは、JIS K
7206に準じて測定したものをいう。繊維強化熱可
塑性樹脂層の熱可塑性樹脂のビカット軟化温度は、例え
ば、ポリ塩化ビニルでは約65〜85℃、塩素化ポリ塩
化ビニルでは約95〜120℃である。Here, the Vicat softening point is JIS K
It is measured according to 7206. The Vicat softening temperature of the thermoplastic resin of the fiber-reinforced thermoplastic resin layer is, for example, about 65 to 85 ° C. for polyvinyl chloride and about 95 to 120 ° C. for chlorinated polyvinyl chloride.
【0027】この多層管状体の上記温度での加熱によ
り、芯材の熱可塑性樹脂の熱膨張温度〜熱分解温度の温
度に加熱されるとともに、繊維強化熱可塑性樹脂層の熱
可塑性樹脂のビカット軟化点〜熱分解温度の温度に加熱
される。By heating the multilayer tubular body at the above temperature, the thermoplastic resin of the core material is heated to the temperature of the thermal expansion temperature to the thermal decomposition temperature, and the Vicat softening of the thermoplastic resin of the fiber reinforced thermoplastic resin layer is performed. It is heated to a temperature between point and thermal decomposition temperature.
【0028】そして、内層及び繊維強化熱可塑性樹脂層
の熱可塑性樹脂の熱膨張率は、芯材の熱可塑性樹脂の熱
膨張率よりも小さいので、内層及び繊維強化熱可塑性樹
脂層の熱膨張に比べて芯材の熱膨張の方が大きく、芯材
の熱膨張により、内層が繊維強化熱可塑性樹脂層に圧着
される。Since the coefficient of thermal expansion of the thermoplastic resin of the inner layer and the fiber-reinforced thermoplastic resin layer is smaller than the coefficient of thermal expansion of the thermoplastic resin of the core material, the thermal expansion of the inner layer and the fiber-reinforced thermoplastic resin layer The thermal expansion of the core material is larger than that of the core material, and the thermal expansion of the core material presses the inner layer onto the fiber-reinforced thermoplastic resin layer.
【0029】これにより、内層と繊維強化熱可塑性樹脂
層との界面は、双方の熱可塑性樹脂に相溶性があるの
で、冷却後、融着した界面が容易に破断しないように熱
融着される。しかし、芯材と内層との界面は、双方の熱
可塑性樹脂に相溶性がなく、且つ芯材の熱可塑性樹脂の
熱膨張率は内層及び繊維強化熱可塑性樹脂層の熱可塑性
樹脂の熱膨張率より大きいので、冷却後に、芯材が熱収
縮により縮径し簡単に剥離するため、多層管状体から芯
材を容易に抜き取って、繊維強化熱可塑性樹脂複合管を
得ることができる。As a result, the interface between the inner layer and the fiber-reinforced thermoplastic resin layer is compatible with both thermoplastic resins, so that after cooling it is heat-fused so that the fused interface does not break easily. . However, the interface between the core material and the inner layer is not compatible with both thermoplastic resins, and the coefficient of thermal expansion of the thermoplastic resin of the core material is the coefficient of thermal expansion of the thermoplastic resin of the inner layer and the fiber-reinforced thermoplastic resin layer. Since it is larger, the core material is reduced in diameter by heat shrinkage and easily peeled off after cooling. Therefore, the core material can be easily extracted from the multilayer tubular body to obtain a fiber-reinforced thermoplastic resin composite pipe.
【0030】以下、本発明の例を図面を参照して説明す
る。図1は、本発明の一例の工程を製造装置とともに説
明する正面図、図2は中間的に得られる多層管状体を示
す斜視図、図3は最終的に得られる繊維強化熱可塑性樹
脂複合管を示す斜視図である。An example of the present invention will be described below with reference to the drawings. FIG. 1 is a front view for explaining a process of an example of the present invention together with a manufacturing apparatus, FIG. 2 is a perspective view showing an intermediately obtained multilayer tubular body, and FIG. 3 is a finally obtained fiber-reinforced thermoplastic resin composite pipe. FIG.
【0031】まず、製造装置について説明する。製造装
置は、芯材となる熱可塑樹脂を押し出す押出機11と、
押出機11の先端に装着された押出金型12と、第1サ
イジング装置13と、内層となる熱可塑性樹脂を押出機
14より押し出し、芯材の外面に被覆するクロスヘッド
ダイ15と、クロスヘッドダイ15の下流側の上下に配
設されたシート状帯状体A1又はA2が装着された巻戻
しロール16,17と、テープ状帯状体B1又はB2が
巻かれた巻回装置18,19と、加熱炉20と、第2サ
イジング装置21と、引取機22と、切断機23とが順
次配列されたものである。First, the manufacturing apparatus will be described. The manufacturing apparatus includes an extruder 11 for extruding a thermoplastic resin as a core material,
An extrusion die 12 attached to the tip of the extruder 11, a first sizing device 13, a crosshead die 15 for extruding an inner layer thermoplastic resin from the extruder 14 and covering the outer surface of the core material, and a crosshead. Rewinding rolls 16 and 17 to which the sheet-shaped strips A1 or A2 arranged above and below the die 15 are mounted, and winding devices 18 and 19 around which the tape-shaped strips B1 or B2 are wound, The heating furnace 20, the second sizing device 21, the take-up machine 22, and the cutting machine 23 are sequentially arranged.
【0032】次に、この製造装置を用いた本発明の一例
の工程を説明する。芯材の熱可塑性樹脂を押出機11に
て混練し溶融状態にて押出金型12より管状に押し出
し、これを第1サイジング装置13を通過させ、冷却水
を第1サイジング装置13内部に通水して冷却を行いな
がら、冷却、固化させにようにして、管状の芯材Pを連
続的に形成する。この芯材Pをクロスヘッドダイ15内
に導き、芯材Pの外面に、内層の熱可塑性樹脂を押出機
14にて混練し溶融状態にて押出し被覆して内層Qを形
成する。Next, the steps of an example of the present invention using this manufacturing apparatus will be described. The thermoplastic resin of the core material is kneaded in the extruder 11 and extruded in a molten state into a tubular shape from the extrusion die 12, and this is passed through the first sizing device 13, and the cooling water is passed inside the first sizing device 13. While performing cooling, the tubular core material P is continuously formed by cooling and solidifying. This core material P is introduced into the crosshead die 15, and the outer surface of the core material P is kneaded with the thermoplastic resin of the inner layer in the extruder 14 and extruded in a molten state to cover the inner layer Q.
【0033】引き続いて、クロスヘッドダイ15の下流
側にて、芯材Pの外面に被覆した内層Qの外面の上下よ
り、2枚のシート状帯状体A1,A2にて連続繊維が軸
方向に沿うようにして内層Qの外面に積層して中間層R
を形成し、更にその外面に長手方向に配された連続繊維
に熱可塑性樹脂が保持されたテープ状帯状体B1,B2
を巻回装置18,19により張力を与えながら略周方向
に巻き付けて外層Sを形成し、内層Qの外面に中間層R
と外層Sからなる繊維強化熱可塑性樹脂層を形成した多
層管状体Tとする。Subsequently, on the downstream side of the crosshead die 15, continuous fibers are axially formed in two sheet-shaped strips A1 and A2 from above and below the outer surface of the inner layer Q covering the outer surface of the core material P. Along the outer surface of the inner layer Q, the intermediate layer R
Tape-shaped strips B1 and B2 in which the thermoplastic resin is held by continuous fibers arranged on the outer surface in the longitudinal direction.
Is wound in a substantially circumferential direction while applying tension by the winding devices 18 and 19 to form the outer layer S, and the intermediate layer R is formed on the outer surface of the inner layer Q.
A multi-layer tubular body T having a fiber-reinforced thermoplastic resin layer composed of the outer layer S and the outer layer S is formed.
【0034】この多層管状体Tを加熱炉20に導き、芯
材Pの熱可塑性樹脂の熱膨張温度〜熱分解温度の温度で
あって、繊維強化熱可塑性樹脂層の熱可塑性樹脂のビカ
ット軟化点〜熱分解温度の温度に加熱する。This multilayer tubular body T is introduced into the heating furnace 20, and the temperature of the thermoplastic resin of the core material P is from the thermal expansion temperature to the thermal decomposition temperature, and the Vicat softening point of the thermoplastic resin of the fiber reinforced thermoplastic resin layer. ~ Heat to pyrolysis temperature.
【0035】この多層管状体Tを第2サイジング装置2
1内を通過させて冷却を行う。上記のような上記一連の
工程を引取機22にて引き取りつつ行い、切断機23に
て適宜長さに切断し、芯材Pを抜き出して、図3に示す
ような繊維強化熱可塑性樹脂複合管Fを連続的に製造す
る。又、本発明の繊維強化熱可塑性樹脂複合管の製造方
法は、上記のような連続製造だけでなく、バッチ式の製
造方法としてもよい。This multilayer tubular body T is attached to the second sizing device 2
Cooling is carried out by passing the inside of 1. The above-mentioned series of steps is carried out while being taken by the take-up machine 22, cut to an appropriate length by the cutting machine 23, the core material P is extracted, and the fiber-reinforced thermoplastic resin composite pipe as shown in FIG. F is produced continuously. Further, the method for producing the fiber-reinforced thermoplastic resin composite pipe of the present invention may be not only the above continuous production but also a batch type production method.
【0036】図4は、本発明の別の例の工程を説明する
正面図である。この場合は、芯材Pの外面に被覆した内
層Qの外面に、シート状帯状体A1,A2を積層するこ
となく、長手方向に配された連続繊維に熱可塑性樹脂が
保持されたテープ状帯状体B3,B4を巻回装置18,
19により張力を与えながら相互の傾斜角度が逆方向と
なるなるように略周方向に巻き付けて繊維強化熱可塑性
樹脂層を形成した多層管状体とすること以外は、図1を
参照して説明した工程と同様にして、繊維強化熱可塑性
樹脂複合管を製造する。FIG. 4 is a front view for explaining a process of another example of the present invention. In this case, a tape-shaped strip in which the thermoplastic resin is held by continuous fibers arranged in the longitudinal direction without laminating the sheet-shaped strips A1 and A2 on the outer surface of the inner layer Q covering the outer surface of the core material P A winding device 18 for winding bodies B3 and B4
With reference to FIG. 1, a multilayer tubular body having a fiber-reinforced thermoplastic resin layer formed by winding the fiber-reinforced thermoplastic resin layer in a substantially circumferential direction so that mutual inclination angles are opposite to each other while applying tension by 19. A fiber reinforced thermoplastic resin composite pipe is manufactured in the same manner as the process.
【0037】[0037]
【作用】本発明の繊維強化熱可塑性樹脂複合管の製造方
法は、押出成形した熱可塑性樹脂管を一旦冷却固化して
芯材を形成する工程と、芯材の外面に、芯材の熱可塑性
樹脂よりも熱膨張率が小さく且つその熱可塑性樹脂と相
溶性のない熱可塑性樹脂を押出被覆して内層を形成する
工程と、内層の外面に、長手方向に配された連続繊維に
芯材の熱可塑性樹脂よりも熱膨張率が小さく内層の熱可
塑性樹脂と相溶性のある熱可塑性樹脂が保持された帯状
体を略周方向に巻き付けて繊維強化熱可塑性樹脂層を形
成して多層管状体とする工程と、多層管状体を、芯材の
熱可塑性樹脂の熱膨張温度〜熱分解温度の温度であっ
て、繊維強化熱可塑性樹脂層の熱可塑性樹脂のビカット
軟化点〜熱分解温度の温度に加熱することにより、内層
及び繊維強化熱可塑性樹脂層の熱可塑性樹脂の熱膨張率
は、芯材の熱可塑性樹脂の熱膨張率よりも小さいので、
内層及び繊維強化熱可塑性樹脂層の熱膨張に比べて芯材
の熱膨張の方が大きく、芯材の熱膨張により、内層が繊
維強化熱可塑性樹脂層に圧着される。それにより、内層
と繊維強化熱可塑性樹脂層との界面は、双方の熱可塑性
樹脂に相溶性があるので、冷却後、融着した界面が容易
に破断しないように熱融着される。しかし、芯材と内層
との界面は、双方の熱可塑性樹脂に相溶性がなく、且つ
芯材の熱可塑性樹脂の熱膨張率は内層及び繊維強化熱可
塑性樹脂層の熱可塑性樹脂の熱膨張率より大きいので、
冷却後に、芯材が熱収縮により縮径し簡単に剥離するた
め、多層管状体から芯材を容易に抜き取って、繊維強化
熱可塑性樹脂複合管を得ることができる。The method for producing a fiber-reinforced thermoplastic resin composite pipe of the present invention comprises a step of once forming a core material by cooling and solidifying an extruded thermoplastic resin tube, and a step of forming a core material on the outer surface of the core material with a thermoplastic material. A step of forming an inner layer by extrusion-coating a thermoplastic resin having a smaller coefficient of thermal expansion than the resin and incompatible with the thermoplastic resin; and a continuous fiber arranged in the longitudinal direction on the outer surface of the inner layer. A belt-shaped body having a smaller coefficient of thermal expansion than the thermoplastic resin and having a thermoplastic resin compatible with the inner layer thermoplastic resin is wound in a substantially circumferential direction to form a fiber reinforced thermoplastic resin layer to form a multilayer tubular body. And the multilayer tubular body, the temperature of the thermal expansion temperature of the thermoplastic resin of the core material ~ the thermal decomposition temperature, the Vicat softening point of the thermoplastic resin of the fiber-reinforced thermoplastic resin layer ~ the temperature of the thermal decomposition temperature. By heating, the inner layer and fiber reinforced thermoplastic Since the thermal expansion coefficient of the thermoplastic resin of the resin layer is smaller than the coefficient of thermal expansion of the thermoplastic resin core material,
The thermal expansion of the core material is larger than the thermal expansion of the inner layer and the fiber-reinforced thermoplastic resin layer, and the thermal expansion of the core material presses the inner layer onto the fiber-reinforced thermoplastic resin layer. As a result, the interface between the inner layer and the fiber-reinforced thermoplastic resin layer is compatible with both thermoplastic resins, so that after cooling, the interface is fused by heat so that the fused interface is not easily broken. However, the interface between the core material and the inner layer is not compatible with both thermoplastic resins, and the coefficient of thermal expansion of the thermoplastic resin of the core material is the coefficient of thermal expansion of the thermoplastic resin of the inner layer and the fiber-reinforced thermoplastic resin layer. Because it is larger
After cooling, the core material shrinks in diameter due to heat shrinkage and is easily peeled off. Therefore, the core material can be easily extracted from the multilayer tubular body to obtain a fiber-reinforced thermoplastic resin composite pipe.
【0038】[0038]
【実施例】以下、本発明を実施例により説明する。実施例1 (1)シート状帯状体及びテープ状帯状体の製造 直径23μmのフィラメントより構成されるロービング
状のガラス繊維束(4,400tex)を、粉体状のポ
リ塩化ビニル(徳山積水社製、商品名「TS−1000
R」、線膨張率(ASTM696に準拠、以下同様):
約7〜8×10 -5/℃、ビカット軟化点:約80℃)の
流動床中を通過させて、繊維間に粉体状のポリ塩化ビニ
ルを付着させ、これを約200℃に加熱された一対の加
熱ロールにより加熱圧着することにより、長手方向に配
された連続繊維に熱可塑性樹脂が保持された、シート状
帯状体A1,A2(厚み:約0.7mm、幅:約88m
m)と、テープ状帯状体B1,B2(厚み:約0.7m
m、幅:約20mm)を作製した。それらの繊維含有率
はいずれも25重量%であった。The present invention will be described below with reference to examples.Example 1 (1) Production of sheet-shaped strips and tape-shaped strips Roving composed of filaments with a diameter of 23 μm
A glass fiber bundle (4,400 tex) in powder form
Polyvinyl chloride (manufactured by Tokuyama Sekisuisha, trade name "TS-1000"
R ", coefficient of linear expansion (according to ASTM 696, the same applies hereinafter):
About 7-8 x 10 -Five/ ° C, Vicat softening point: about 80 ° C)
It is passed through a fluidized bed to form powdery polyvinyl chloride between the fibers.
And then apply this to a pair of heating elements heated to about 200 ° C.
Distribute in the longitudinal direction by heating and pressure bonding with a heat roll.
Sheet-shaped, in which thermoplastic resin is retained in the continuous fibers
Band A1, A2 (thickness: about 0.7 mm, width: about 88 m
m) and tape-shaped strips B1, B2 (thickness: about 0.7 m
m, width: about 20 mm). Their fiber content
Was 25% by weight in each case.
【0039】(2)繊維強化熱可塑性樹脂複合管の製造 図1を参照して説明した製造工程に準じて繊維強化熱可
塑性樹脂複合管の製造を行った。巻戻しロール16,1
7にシート状帯状体A1又はA2を装着し、巻回装置1
8,19にテープ状帯状体B1又はB2を装着した。 (2) Production of Fiber Reinforced Thermoplastic Resin Composite Pipe A fiber reinforced thermoplastic resin composite pipe was produced according to the production process described with reference to FIG. Rewinding roll 16,1
The sheet-shaped strip A1 or A2 is attached to 7 and the winding device 1
The tape-shaped strips B1 or B2 were attached to Nos. 8 and 19.
【0040】まず、ポリエチレン(三井石油化学社製、
商品名「ハイゼックス」、線膨張率:約10〜13×1
0-5/℃、ビカット軟化点:約110℃)を押出機11
にて混練し溶融状態にて押出金型12より管状に押し出
し、第1サイジング装置13内を水冷しつつ通過させ
て、外径50.2mmの管状の芯材Pを連続的に形成し
た。First, polyethylene (manufactured by Mitsui Petrochemical Co.,
Product name "Hi-Zex", coefficient of linear expansion: about 10 to 13 x 1
0 -5 / ° C., Vicat softening point: about 110 ° C.) the extruder 11
Was extruded in a tubular shape from the extrusion die 12 in a kneaded state and a molten state, and passed through the first sizing device 13 while being water-cooled to continuously form a tubular core material P having an outer diameter of 50.2 mm.
【0041】次に、この芯材Pをクロスヘッドダイ15
内に導き、芯材Pの外面に、ポリ塩化ビニル(徳山積水
社製、商品名「TS−1000R」、線膨張率:約7〜
8×10-5/℃、ビカット軟化点:約80℃)を押出機
14にて混練し溶融状態にて押出し被覆して、肉厚約
2.4mmの内層Qを形成した。Next, the core material P is applied to the crosshead die 15
Guided inward, polyvinyl chloride (made by Tokuyama Sekisui company, product name "TS-1000R", coefficient of linear expansion: about 7-
(8 × 10 −5 / ° C., Vicat softening point: about 80 ° C.) was kneaded in the extruder 14 and extruded in a molten state to coat the inner layer Q having a thickness of about 2.4 mm.
【0042】引き続いて、クロスヘッドダイ15の下流
側にて、芯材Pの外面に被覆した内層Qの外面の上下よ
り、2枚のシート状帯状体A1,A2(厚み:0.7m
m、幅:80mm)にて連続繊維が軸方向に沿うように
して内層Qの外面に積層して中間層Rを形成し、更に、
その中間層Rの外面に、長手方向に配された連続繊維に
熱可塑性樹脂が保持されたテープ状帯状体B1,B2
(厚み:0.7mm、幅:20mm)を巻回装置18,
19により張力を与えながら相互の傾斜角度が反対とな
るように略周方向に巻き付けて、内層Qの外面に中間層
Rと外層Sからなる繊維強化熱可塑性樹脂層を形成した
多層管状体Tとした。Subsequently, on the downstream side of the crosshead die 15, two sheet-shaped strips A1 and A2 (thickness: 0.7 m) are formed from above and below the outer surface of the inner layer Q covering the outer surface of the core material P.
m, width: 80 mm) continuous fibers are laminated on the outer surface of the inner layer Q so as to be along the axial direction to form the intermediate layer R, and
On the outer surface of the intermediate layer R, tape-shaped strips B1 and B2 in which a thermoplastic resin is held by continuous fibers arranged in the longitudinal direction.
(Thickness: 0.7 mm, width: 20 mm) winding device 18,
A multilayer tubular body T in which a fiber-reinforced thermoplastic resin layer composed of an intermediate layer R and an outer layer S is formed on the outer surface of an inner layer Q by being wound in a substantially circumferential direction while giving tension to each other by 19 so as to have mutually opposite inclination angles. did.
【0043】この多層管状体Tを加熱炉20に導き、1
30℃に加熱した後、第2サイジング装置21内を通過
させて水冷し、これら一連の工程を引取機22にて引き
取りつつ行い、切断機23にて3mの長さに切断して、
図2に示すような固化した多層管状体Tを得た。次に、
多層管状体Tより、芯材Pを抜き出して、図3に示すよ
うな内径約51mm、外径約60mmの繊維強化熱可塑
性樹脂複合管Fを得た。This multi-layer tubular body T is introduced into the heating furnace 20, and 1
After heating to 30 ° C., it is passed through the inside of the second sizing device 21 and cooled with water, and these series of steps are carried out while being taken by the take-off machine 22, and cut by the cutting machine 23 to a length of 3 m,
A solidified multilayer tubular body T as shown in FIG. 2 was obtained. next,
The core material P was extracted from the multilayer tubular body T to obtain a fiber-reinforced thermoplastic resin composite tube F having an inner diameter of about 51 mm and an outer diameter of about 60 mm as shown in FIG.
【0044】実施例2 (1)テープ状帯状体の製造 熱可塑性樹脂として塩素化ポリ塩化ビニル(徳山積水社
製、商品名「HA−52K」、線膨張率:7〜8×10
-5/℃、ビカット軟化点:約115℃)を用いたこと以
外は実施例1と同様にして、厚み:0.7mm、幅:1
5mm、ガラス含有率:25重量%のテープ状帯状体B
3,B4を作製した。 Example 2 (1) Production of tape-shaped strip Chlorinated polyvinyl chloride as a thermoplastic resin (trade name "HA-52K" manufactured by Tokuyama Sekisui Co., Ltd., linear expansion coefficient: 7 to 8 x 10)
-5 / ° C., Vicat softening point: about 115 ° C.) The same as in Example 1 except that the thickness was 0.7 mm and the width was 1
5 mm, tape-shaped band B having a glass content of 25% by weight
3 and B4 were produced.
【0045】(2)繊維強化熱可塑性樹脂複合管の製造 図4を参照して説明した製造工程に準じて繊維強化熱可
塑性樹脂複合管の製造を行った。巻回装置18,19に
テープ状帯状体B3又はB4を装着した。 (2) Manufacture of Fiber Reinforced Thermoplastic Resin Composite Pipe A fiber reinforced thermoplastic resin composite pipe was manufactured according to the manufacturing process described with reference to FIG. The tape-shaped strips B3 or B4 were attached to the winding devices 18 and 19.
【0046】まず、ポリプロピレン(三井石油化学社
製、商品名「ハイポール」、線膨張率:約11〜13×
10-5/℃、ビカット軟化点:約120℃)を押出機1
1にて混練し溶融状態にて押出金型12より管状に押し
出し、第1サイジング装置13内を水冷しつつ通過させ
て、外径50.2mmの管状の芯材Pを連続的に形成し
た。First, polypropylene (manufactured by Mitsui Petrochemical Co., Ltd., trade name "Hipol", linear expansion coefficient: about 11 to 13 ×)
Extruder 1 at 10 −5 / ° C., Vicat softening point: about 120 ° C.)
The mixture was kneaded in No. 1 and extruded in a molten state into a tubular shape from the extrusion die 12 and passed through the first sizing device 13 while being water-cooled to continuously form a tubular core material P having an outer diameter of 50.2 mm.
【0047】次に、この芯材Pをクロスヘッドダイ15
内に導き、芯材Pの外面に、塩素化ポリ塩化ビニル(徳
山積水社製、商品名「HA−52K」、線膨張率:約7
〜8×10-5、ビカット軟化点:約115℃)を押出機
14にて混練し溶融状態にて押出し被覆して、肉厚約
3.1mmの内層Qを形成した。Next, the core material P is applied to the crosshead die 15
Guided inside, and on the outer surface of the core material P, chlorinated polyvinyl chloride (manufactured by Tokuyama Sekisui Co., Ltd., trade name "HA-52K", linear expansion coefficient: about 7
˜8 × 10 −5 , Vicat softening point: about 115 ° C.) was kneaded in the extruder 14 and extruded in a molten state to coat the inner layer Q having a thickness of about 3.1 mm.
【0048】引き続いて、クロスヘッドダイ15の下流
側にて、芯材Pの外面に被覆した内層Qの外面に、長手
方向に配された連続繊維に熱可塑性樹脂が保持されたテ
ープ状帯状体B3,B4(厚み:0.7mm、幅:15
mm)を巻回装置18,19により張力を与えながら相
互の傾斜角度が反対となるように略周方向に巻き付け
て、内層Qの外面に繊維強化熱可塑性樹脂層を形成した
多層管状体とした。Subsequently, on the downstream side of the crosshead die 15, on the outer surface of the inner layer Q covering the outer surface of the core material P, a tape-shaped strip in which a thermoplastic resin is held by continuous fibers arranged in the longitudinal direction. B3, B4 (thickness: 0.7 mm, width: 15
mm) is wound in a substantially circumferential direction while applying tension by winding devices 18 and 19 so that the inclination angles thereof are opposite to each other to form a multilayer tubular body in which a fiber-reinforced thermoplastic resin layer is formed on the outer surface of the inner layer Q. .
【0049】この多層管状体を加熱炉20に導き、15
0℃に加熱した後、第2サイジング装置21内を通過さ
せて水冷し、これら一連の工程を引取機22にて引き取
りつつ行い、切断機23にて3mの長さに切断して、固
化した多層管状体を得た。次に、得られた多層管状体よ
り、芯材Pを抜き出して、内径約51mm、外径約60
mmの繊維強化熱可塑性樹脂複合管を得た。This multi-layer tubular body is introduced into the heating furnace 20 and
After heating to 0 ° C., it is passed through the second sizing device 21 and cooled with water, and a series of these steps is carried out while being taken by the take-up machine 22 and cut by the cutting machine 23 into a length of 3 m to be solidified. A multilayer tubular body was obtained. Next, the core material P is extracted from the obtained multilayer tubular body to have an inner diameter of about 51 mm and an outer diameter of about 60 mm.
A mm fiber reinforced thermoplastic resin composite tube was obtained.
【0050】比較例1 シート状帯状体A1,A2及びテープ状帯状体B1,B
2として、実施例1と同様のものを用いて、図5に示す
従来の製造工程に準じて繊維強化熱可塑性樹脂複合管の
製造を行った。 Comparative Example 1 Sheet-shaped strips A1 and A2 and tape-shaped strips B1 and B
As 2, a fiber-reinforced thermoplastic resin composite pipe was manufactured by using the same one as in Example 1 according to the conventional manufacturing process shown in FIG.
【0051】巻戻しロール16′,17′にシート状帯
状体A1又はA2を装着し、巻回装置18′,19′に
テープ状帯状体B1又はB2を装着した。The sheet-shaped strips A1 or A2 were mounted on the rewinding rolls 16 ', 17', and the tape-shaped strips B1 or B2 were mounted on the winding devices 18 ', 19'.
【0052】まず、ポリ塩化ビニル(徳山積水社製、商
品名「TS−1000R」、線膨張率:約7〜8×10
-5/℃、ビカット軟化点:約80℃)を押出機11′に
て混練し溶融状態にて押出金型12′より管状に押し出
し、第1サイジング装置13′内を水冷しつつ通過させ
て、外径50.2mmの管状の肉厚約2.4mmの内層
を連続的に形成した。First, polyvinyl chloride (manufactured by Tokuyama Sekisui Co., Ltd., trade name "TS-1000R", linear expansion coefficient: approximately 7 to 8 × 10)
-5 / ° C., Vicat softening point: about 80 ° C.) is kneaded in an extruder 11 ′ and extruded in a molten state into a tubular shape from an extrusion die 12 ′, and passed through a first sizing device 13 ′ while being water-cooled. A tubular inner layer having an outer diameter of 50.2 mm and a wall thickness of about 2.4 mm was continuously formed.
【0053】引き続いて、内層の外面の上下より、2枚
のシート状帯状体A1,A2(厚み:0.7mm、幅:
80mm)にて連続繊維が軸方向に沿うようにして内層
の外面に積層して中間層を形成し、更に、その中間層の
外面に、長手方向に配された連続繊維に熱可塑性樹脂が
保持されたテープ状帯状体B1,B2(厚み:0.7m
m、幅:20mm)を巻回装置18′,19′により張
力を与えながら相互の傾斜角度が反対となるように略周
方向に巻き付けて、内層の外面に中間層と外層からなる
繊維強化熱可塑性樹脂層を形成した多層管状体とした。Subsequently, two sheet-like strips A1 and A2 (thickness: 0.7 mm, width: from the top and bottom of the outer surface of the inner layer).
At 80 mm), continuous fibers are laminated on the outer surface of the inner layer so as to be along the axial direction to form an intermediate layer, and further, on the outer surface of the intermediate layer, continuous fibers arranged in the longitudinal direction hold a thermoplastic resin. Tape-shaped strips B1 and B2 (thickness: 0.7 m
m, width: 20 mm) is wound in a substantially circumferential direction while applying tension by winding devices 18 'and 19' so that their inclination angles are opposite to each other, and a fiber-reinforced heat composed of an intermediate layer and an outer layer is formed on the outer surface of the inner layer. A multi-layer tubular body having a plastic resin layer was formed.
【0054】この多層管状体を加熱炉20′に導き、多
層管状体の先端側の内部を支承材24′とゴム栓25′
にて密閉状態となし、内部を圧縮空気発生装置26′に
より0.5kg/cm2 で加圧しながら、180℃に加
熱した後、第2サイジング装置21′内を通過させて水
冷し、これら一連の工程を引取機22′にて引き取りつ
つ行い、切断機23′にて3mの長さに切断して、内径
約51mm、外径約60mmの繊維強化熱可塑性樹脂複
合管を得た。This multi-layer tubular body is introduced into a heating furnace 20 ', and the inside of the front end side of the multi-layer tubular body is supported by a support member 24' and a rubber plug 25 '.
The inside of the container is sealed, and the inside is pressurized at 0.5 kg / cm 2 by the compressed air generator 26 ′, heated to 180 ° C., passed through the second sizing device 21 ′ and cooled with water. The above process was carried out while being taken up by the take-up machine 22 ', and cut into a length of 3 m by the cutting machine 23' to obtain a fiber-reinforced thermoplastic resin composite tube having an inner diameter of about 51 mm and an outer diameter of about 60 mm.
【0055】比較例2 テープ状帯状体B3,B4として、実施例2と同様のも
のを用いて、図6に示す従来の製造工程に準じて繊維強
化熱可塑性樹脂複合管の製造を行った。巻回装置1
8′,19′にテープ状帯状体B3,B4を装着した。 Comparative Example 2 Using the same tape-like strips B3 and B4 as in Example 2, a fiber-reinforced thermoplastic resin composite pipe was manufactured according to the conventional manufacturing process shown in FIG. Winding device 1
Tape-shaped strips B3 and B4 were attached to 8'and 19 '.
【0056】まず、塩素化ポリ塩化ビニル(徳山積水社
製、商品名「HA−52K」、線膨張率:約7〜8×1
0-5/℃、ビカット軟化点:約115℃)を押出機1
1′にて混練し溶融状態にて押出金型12′より管状に
押し出し、第1サイジング装置13′内を水冷しつつ通
過させて、外径50.2mmの管状の内層を連続的に形
成した。First, chlorinated polyvinyl chloride (manufactured by Tokuyama Sekisui Co., Ltd., trade name "HA-52K", linear expansion coefficient: about 7 to 8 x 1)
0 -5 / ° C., Vicat softening point: about 115 ° C.) the extruder 1
The mixture was kneaded in 1'and extruded in a molten state into a tubular form from an extrusion die 12 'and passed through the first sizing device 13' while being water-cooled to continuously form a tubular inner layer having an outer diameter of 50.2 mm. .
【0057】引き続いて、内層の外面に、長手方向に配
された連続繊維に熱可塑性樹脂が保持されたテープ状帯
状体B3,B4(厚み:0.7mm、幅:15mm)を
巻回装置18′,19′により張力を与えながら相互の
傾斜角度が反対となるように略周方向に巻き付けて、内
層の外面に繊維強化熱可塑性樹脂層を形成した多層管状
体とした。Subsequently, on the outer surface of the inner layer, tape-shaped strips B3 and B4 (thickness: 0.7 mm, width: 15 mm) in which thermoplastic resin is held by continuous fibers arranged in the longitudinal direction are wound around the winding device 18. ′, 19 ′ were applied in tension while being wound substantially in the circumferential direction so that their inclination angles were opposite to each other, and a fiber-reinforced thermoplastic resin layer was formed on the outer surface of the inner layer to obtain a multilayer tubular body.
【0058】この多層管状体を加熱炉20′に導き、多
層管状体の先端側の内部を支承材24′とゴム栓25′
にて密閉状態となし、内部を圧縮空気発生装置26′に
より0.5kg/cm2 で加圧しながら、200℃に加
熱した後、第2サイジング装置21′内を通過させて水
冷し、これら一連の工程を引取機22′にて引き取りつ
つ行い、切断機23′にて3mの長さに切断して、内径
約51mm、外径約60mmの繊維強化熱可塑性樹脂複
合管を得た。This multi-layer tubular body is introduced into a heating furnace 20 ', and the inside of the front end side of the multi-layer tubular body is supported by a support member 24' and a rubber plug 25 '.
The inside of the container is sealed and the inside is pressurized at 0.5 kg / cm 2 by the compressed air generator 26 ′, heated to 200 ° C., passed through the second sizing device 21 ′ and cooled with water. The above process was carried out while being taken up by the take-up machine 22 ', and cut into a length of 3 m by the cutting machine 23' to obtain a fiber-reinforced thermoplastic resin composite tube having an inner diameter of about 51 mm and an outer diameter of about 60 mm.
【0059】実施例1,2及び比較例1,2において、
a製造初期(製造開始から約1時間経過後)と、b長時
間連続運転後(製造開始から約40時間経過後)に得ら
れた繊維強化熱可塑性樹脂複合管の5本ずつについて、
冷熱繰り返し試験を行って、両端部の界面の剥離状況を
観察した。その結果を表1に示した。尚、冷熱条件とし
ては、85℃/25℃=5分/5分を1サイクルとし、
水圧1.5Kg/cm2 にて、2,000サイクル、
5,000サイクル、10,000サイクルとした。In Examples 1 and 2 and Comparative Examples 1 and 2,
For each of the five fiber-reinforced thermoplastic resin composite pipes obtained at the initial stage of production (about 1 hour after the start of production) and b after continuous operation for a long time (after about 40 hours from the start of production),
A repeated cooling and heating test was performed to observe the peeling condition of the interfaces at both ends. The results are shown in Table 1. As the cold heat condition, 85 ° C./25° C. = 5 minutes / 5 minutes was set as one cycle,
2,000 cycles at a water pressure of 1.5 Kg / cm 2 ,
It was set to 5,000 cycles and 10,000 cycles.
【0060】評価基準としては、下記の通りとした。 ○:界面に剥離なし。 △:界面に幅5mm以下の剥離(亀裂)が1箇所見られ
た。 ×:界面に幅5mm以上の剥離(亀裂)が1箇所、又は
幅5mm以下の剥離(亀裂)が2箇所以上見られた。The evaluation criteria are as follows. ◯: No peeling at the interface. Δ: One peeling (crack) having a width of 5 mm or less was found at the interface. X: Peeling (crack) with a width of 5 mm or more was observed at one place on the interface, or peeling (crack) with a width of 5 mm or less was seen at two or more places.
【0061】[0061]
【表1】 [Table 1]
【0062】上記の如く、本発明の実施例により得られ
た繊維強化熱可塑性樹脂複合管は、長期間連続運転後の
ものであっても、界面が剥離せず、その寸法精度に優れ
ている。As described above, the fiber-reinforced thermoplastic resin composite pipes obtained according to the examples of the present invention are excellent in dimensional accuracy without peeling of the interface even after continuous operation for a long period of time. .
【0063】[0063]
【発明の効果】本発明の繊維強化熱可塑性樹脂複合管の
製造方法は、上記の如き構成とされているので、多層管
状体の各界面における融着が安定化し、品質にばらつき
のない繊維強化熱可塑性樹脂複合管を得ることができ
る。EFFECT OF THE INVENTION Since the method for producing a fiber-reinforced thermoplastic resin composite pipe of the present invention is constructed as described above, the fusion at each interface of the multilayer tubular body is stabilized, and the fiber reinforced without quality variations. A thermoplastic resin composite pipe can be obtained.
【図1】本発明の一例の工程を製造装置とともに説明す
る正面図である。FIG. 1 is a front view illustrating a process of an example of the present invention together with a manufacturing apparatus.
【図2】本発明により中間的に得られる多層管状体を示
す斜視図である。FIG. 2 is a perspective view showing a multilayer tubular body intermediately obtained by the present invention.
【図3】本発明により得られた繊維強化熱可塑性樹脂複
合管の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of a fiber-reinforced thermoplastic resin composite tube obtained by the present invention.
【図4】本発明の別の例の工程を製造装置とともに説明
する正面図である。FIG. 4 is a front view for explaining a process of another example of the present invention together with a manufacturing apparatus.
【図5】従来の一例の工程を製造装置とともに説明する
正面図である。FIG. 5 is a front view illustrating a conventional example of a process along with a manufacturing apparatus.
【図6】従来の別の例の工程を製造装置とともに説明す
る正面図である。FIG. 6 is a front view for explaining another conventional process along with a manufacturing apparatus.
A1,A2 シート状帯状体 B1,B2,B3,B4 テープ状帯状体 P 芯材 Q 内層 R 中間層 S 外層 T 多層管状体 F 繊維強化熱可塑性樹脂複合管 A1, A2 Sheet-shaped strips B1, B2, B3, B4 Tape-shaped strips P Core material Q Inner layer R Intermediate layer S Outer layer T Multi-layer tubular body F Fiber reinforced thermoplastic resin composite pipe
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F16L 9/16 F16L 9/16 // B29K 101:12 105:08 B29L 9:00 23:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area F16L 9/16 F16L 9/16 // B29K 101: 12 105: 08 B29L 9:00 23:00
Claims (1)
固化して芯材を形成する工程と、芯材の外面に、芯材の
熱可塑性樹脂よりも熱膨張率が小さく且つその熱可塑性
樹脂と相溶性のない熱可塑性樹脂を押出被覆して内層を
形成する工程と、内層の外面に、長手方向に配された連
続繊維に芯材の熱可塑性樹脂よりも熱膨張率が小さく内
層の熱可塑性樹脂と相溶性のある熱可塑性樹脂が保持さ
れた帯状体を略周方向に巻き付けて繊維強化熱可塑性樹
脂層を形成して多層管状体とする工程と、多層管状体
を、芯材の熱可塑性樹脂の熱膨張温度〜熱分解温度の温
度であって、繊維強化熱可塑性樹脂層の熱可塑性樹脂の
ビカット軟化点〜熱分解温度の温度に加熱した後、冷却
固化する工程と、固化した多層管状体内から芯材を抜き
取る工程とからなることを特徴とする繊維強化熱可塑性
樹脂複合管の製造方法。1. A step of forming a core material by once cooling and solidifying an extruded thermoplastic resin tube, and a thermoplastic resin having a smaller coefficient of thermal expansion than the thermoplastic resin of the core material on the outer surface of the core material. A step of forming an inner layer by extrusion-coating a thermoplastic resin that is not compatible with the inner layer, and a continuous fiber that is arranged in the longitudinal direction on the outer surface of the inner layer and has a thermal expansion coefficient smaller than that of the thermoplastic resin of the core material. A step of forming a multi-layer tubular body by forming a fiber-reinforced thermoplastic resin layer by winding a belt-shaped body holding a thermoplastic resin compatible with the thermoplastic resin in a substantially circumferential direction, The temperature of the thermal expansion temperature to the thermal decomposition temperature of the plastic resin, the Vicat softening point of the thermoplastic resin of the fiber reinforced thermoplastic resin layer to the temperature of the thermal decomposition temperature, and then the step of cooling and solidifying, and the solidified multilayer The process consists of removing the core material from the tubular body. And a method for producing a fiber-reinforced thermoplastic resin composite pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7165686A JPH0911355A (en) | 1995-06-30 | 1995-06-30 | Manufacture of fiber reinforced thermoplastic resin composite tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7165686A JPH0911355A (en) | 1995-06-30 | 1995-06-30 | Manufacture of fiber reinforced thermoplastic resin composite tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0911355A true JPH0911355A (en) | 1997-01-14 |
Family
ID=15817120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7165686A Pending JPH0911355A (en) | 1995-06-30 | 1995-06-30 | Manufacture of fiber reinforced thermoplastic resin composite tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0911355A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007534525A (en) * | 2004-04-27 | 2007-11-29 | エーゲプラスト ヴェルナー シュトルマン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンデイトゲゼルシャフト | Reinforcement of polymer bodies by oriented strips |
GB2446506A (en) * | 2007-02-06 | 2008-08-13 | Fibres De Carbone Soc D | Fabricating elongate reinforced elements |
CN100441929C (en) * | 2006-05-24 | 2008-12-10 | 上海意耐玻璃钢有限公司 | Glass fiber reinforced plastic pipeline and its production process |
JP2009505866A (en) * | 2005-08-24 | 2009-02-12 | ウォルター ダブリュー. クセック | Method for producing reinforced PVC plastisol resin and product prepared thereby |
JP2009030687A (en) * | 2007-07-26 | 2009-02-12 | Furukawa Electric Co Ltd:The | Fiber reinforced pipe and method for connecting and forming internal pressure-reinforced layer of fiber reinforced pipe |
WO2012021958A1 (en) * | 2010-08-17 | 2012-02-23 | Marco Antonio Rodrigues Souza | Method for producing a composite structure using filamentary winding with thermoplastic resins |
US8147937B2 (en) | 2004-08-06 | 2012-04-03 | Societe Des Fibres De Carbone | Reinforced elongated elements, such as tubes, method and device for producing same and use thereof |
WO2012128815A1 (en) * | 2010-12-21 | 2012-09-27 | Lockheed Martin Corporation | On-site fabricated fiber-composite floating platforms for offshore applications |
WO2012159520A1 (en) * | 2011-05-23 | 2012-11-29 | 文登鸿通管材有限公司 | Non-adhesive pultruded composite tube |
CN104421536A (en) * | 2013-08-20 | 2015-03-18 | 吴耕田 | Pressure pipe formed by thermal winding of composite wrapping belt and forming method |
KR101684232B1 (en) * | 2016-02-01 | 2016-12-08 | 케이유피피(주) | Reinforced pipe of fluid transportation and manufacturing method thereof |
KR101684231B1 (en) * | 2016-02-01 | 2016-12-08 | 케이유피피(주) | Pipe of fluid transportation and manufacturing method thereof |
CN107355599A (en) * | 2017-08-03 | 2017-11-17 | 曹如锋 | A kind of RTP road and its manufacture method |
CN111688174A (en) * | 2020-06-17 | 2020-09-22 | 姜冲 | HDPE double-plastic double-composite winding reinforced pipe processing technology and product thereof |
-
1995
- 1995-06-30 JP JP7165686A patent/JPH0911355A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007534525A (en) * | 2004-04-27 | 2007-11-29 | エーゲプラスト ヴェルナー シュトルマン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンデイトゲゼルシャフト | Reinforcement of polymer bodies by oriented strips |
US8147937B2 (en) | 2004-08-06 | 2012-04-03 | Societe Des Fibres De Carbone | Reinforced elongated elements, such as tubes, method and device for producing same and use thereof |
JP2009505866A (en) * | 2005-08-24 | 2009-02-12 | ウォルター ダブリュー. クセック | Method for producing reinforced PVC plastisol resin and product prepared thereby |
CN100441929C (en) * | 2006-05-24 | 2008-12-10 | 上海意耐玻璃钢有限公司 | Glass fiber reinforced plastic pipeline and its production process |
GB2446506A (en) * | 2007-02-06 | 2008-08-13 | Fibres De Carbone Soc D | Fabricating elongate reinforced elements |
GB2446506B (en) * | 2007-02-06 | 2010-03-24 | Fibres De Carbone Soc D | Reinforced elongate elements such as tubes, a fabrication method and apparatus |
JP2009030687A (en) * | 2007-07-26 | 2009-02-12 | Furukawa Electric Co Ltd:The | Fiber reinforced pipe and method for connecting and forming internal pressure-reinforced layer of fiber reinforced pipe |
WO2012021958A1 (en) * | 2010-08-17 | 2012-02-23 | Marco Antonio Rodrigues Souza | Method for producing a composite structure using filamentary winding with thermoplastic resins |
WO2012128815A1 (en) * | 2010-12-21 | 2012-09-27 | Lockheed Martin Corporation | On-site fabricated fiber-composite floating platforms for offshore applications |
US9457873B2 (en) | 2010-12-21 | 2016-10-04 | Lockheed Martin Corporation | On-site fabricated fiber-composite floating platforms for offshore applications |
WO2012159520A1 (en) * | 2011-05-23 | 2012-11-29 | 文登鸿通管材有限公司 | Non-adhesive pultruded composite tube |
CN104421536A (en) * | 2013-08-20 | 2015-03-18 | 吴耕田 | Pressure pipe formed by thermal winding of composite wrapping belt and forming method |
KR101684232B1 (en) * | 2016-02-01 | 2016-12-08 | 케이유피피(주) | Reinforced pipe of fluid transportation and manufacturing method thereof |
KR101684231B1 (en) * | 2016-02-01 | 2016-12-08 | 케이유피피(주) | Pipe of fluid transportation and manufacturing method thereof |
CN107355599A (en) * | 2017-08-03 | 2017-11-17 | 曹如锋 | A kind of RTP road and its manufacture method |
CN111688174A (en) * | 2020-06-17 | 2020-09-22 | 姜冲 | HDPE double-plastic double-composite winding reinforced pipe processing technology and product thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0911355A (en) | Manufacture of fiber reinforced thermoplastic resin composite tube | |
WO1996000145A1 (en) | Tackified fabric material and process for manufacture | |
EP0291639A1 (en) | Thermoplastic composite pipe tube with resin rich inner portion and method of manufacturing the same | |
JP3117492B2 (en) | Method for producing fiber reinforced thermoplastic resin tube | |
JPH07117178B2 (en) | Composite pipe | |
JPH07256779A (en) | Manufacture of fiber reinforced thermoplastic resin composite tube | |
JPH0911354A (en) | Manufacture of fiber reinforced thermoplastic resin composite tube | |
JPH074875B2 (en) | Method for producing fiber reinforced thermoplastic resin pipe | |
JPH0531782A (en) | Manufacture of fiber reinforced thermoplastic resin composite tube | |
JP2674844B2 (en) | Manufacturing method of fiber reinforced resin pipe | |
JPH08323882A (en) | Manufacture of fiber-reinforced thermosetting resin composite pipe | |
JPH0584847A (en) | Production of fiber reinforced thermoplastic resin pipe | |
JPH02165930A (en) | Manufacture of fiber reinforced thermoplastic resin pipe | |
JPH044132A (en) | Manufacture of fiber-reinforced thermoplastic resin pipe | |
JPH0911353A (en) | Manufacture of fiber reinforced thermoplastic resin composite tube | |
JPH0460292A (en) | Manufacture of fiber reinforced resin pipe | |
JPH086847B2 (en) | Composite pipe and manufacturing method thereof | |
JP3214892B2 (en) | Method for producing hollow cross-section shaped body | |
JP2726123B2 (en) | Manufacturing method of fiber reinforced resin pipe | |
JPH07290591A (en) | Manufacture of fiber reinforced thermoplastic resin composite tube | |
JPH07232394A (en) | Manufacture of fiber reinforced thermoplastic resin composite pipe | |
JPH07132565A (en) | Preparation of fiber-reinforced thermoplastic resin composite pipe | |
JPH04201547A (en) | Manufacture of fiber reinforced resin pipe | |
JPH06340004A (en) | Production of fiber-reinforced complex tube | |
JPH07144372A (en) | Manufacture of fiber reinforced thermoplastic resin composite pipe |