JPH0911354A - Manufacture of fiber reinforced thermoplastic resin composite tube - Google Patents

Manufacture of fiber reinforced thermoplastic resin composite tube

Info

Publication number
JPH0911354A
JPH0911354A JP7163595A JP16359595A JPH0911354A JP H0911354 A JPH0911354 A JP H0911354A JP 7163595 A JP7163595 A JP 7163595A JP 16359595 A JP16359595 A JP 16359595A JP H0911354 A JPH0911354 A JP H0911354A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
tubular body
layer
fiber
reinforced thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7163595A
Other languages
Japanese (ja)
Inventor
Hisao Ikeda
尚夫 池田
Koichi Adachi
浩一 足立
Mitsuo Sasakura
満雄 笹倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP7163595A priority Critical patent/JPH0911354A/en
Publication of JPH0911354A publication Critical patent/JPH0911354A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a manufacturing method for a fiber reinforced thermoplastic resin composite tube in which bonding force on interfaces is kept strong without lowering productivity and no interface releases nor cracks are generated even when used under the severe conditions or used for a long time. CONSTITUTION: A manufacturing method comprises the processes of forming a multilayer tubular body of two layers or more by laminating a fiber reinforced thermoplastic resin layer B composed of fiber reinforced resin belts on the outer peripheral face of a thermoplastic resin tube A, and then guiding the multilayer tubular body into a heating oven, and exposing the multilayer tubular body under the condition of either heating the inner side atmosphere of the multilayer tubular body or reducing the pressure of the outer side atmosphere, or under the condition of both atmospheres and heating and fusion bonding and integrating the thermoplastic resin tube A with the fiber reinforced thermoplastic resin layer B. As for the fiber reinforced thermoplastic layer resin belts, the belts with a number of through-holes are used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性樹脂管を内層
とし、その外周面に繊維強化熱可塑性樹脂層を積層して
2層以上の多層とされた繊維強化熱可塑性樹脂複合管の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of a fiber-reinforced thermoplastic resin composite tube having a thermoplastic resin tube as an inner layer and a fiber-reinforced thermoplastic resin layer laminated on the outer peripheral surface thereof to form a multilayer of two or more layers. It is about the method.

【0002】[0002]

【従来の技術】繊維強化樹脂複合管であって、内面に熱
可塑性樹脂よりなる層を有する繊維強化樹脂複合管は、
錆びることがなく、強度的にも優れ、水やガス等の流体
を輸送する配管、電気配線用に用いられる配管、構造用
部材等として広く用いられている。
2. Description of the Related Art A fiber-reinforced resin composite pipe having a layer made of a thermoplastic resin on its inner surface is
It is not rusted and has excellent strength, and is widely used as pipes for transporting fluids such as water and gas, pipes used for electric wiring, structural members and the like.

【0003】従来、繊維強化複合管は、内層である熱可
塑性樹脂管の外面に液状の熱硬化性樹脂を含浸させた強
化繊維をマンドレル上に巻き付け、熱硬化性樹脂を硬化
させた後マンドレルを抜き取る方法(フィラメントワイ
ンディング法)により製造されている(例えば、特公昭
62─773号公報参照)。
Conventionally, in a fiber-reinforced composite pipe, a reinforcing fiber impregnated with a liquid thermosetting resin is wound around a mandrel on the outer surface of a thermoplastic resin pipe as an inner layer, and the mandrel is cured after the thermosetting resin is cured. It is manufactured by a drawing method (filament winding method) (for example, see Japanese Patent Publication No. 62-773).

【0004】この種の繊維強化樹脂複合管は、界面の接
着力が弱く、繊維強化樹脂複合管を冷熱繰り返し条件下
等で使用すると、内層と繊維強化樹脂層との線膨張率の
差により、界面剥離を引き起こすという問題点がある。
This type of fiber-reinforced resin composite pipe has a weak adhesive force at the interface, and when the fiber-reinforced resin composite pipe is used under conditions of repeated heat and cold, due to the difference in linear expansion coefficient between the inner layer and the fiber-reinforced resin layer, There is a problem of causing interfacial peeling.

【0005】この問題点を解決するため、例えば、特開
平6─218841号公報には、内層である熱可塑性樹
脂よりなる管の外面に繊維強化樹脂複合体よりなる強化
層を巻き付けて積層して多層管状体となし、その多層管
状体を融着する際に、多層管状体の内側雰囲気の加圧も
しくは外側雰囲気の減圧のいずれか、又はその両方雰囲
気下に多層管状体を曝して加熱し、熱可塑性樹脂よりな
る管と繊維強化樹脂複合体とを強固に融着一体化する方
法が提案されている。
To solve this problem, for example, in Japanese Unexamined Patent Publication No. 6-218841, a reinforcing layer made of a fiber-reinforced resin composite is wound and laminated on the outer surface of a pipe made of a thermoplastic resin as an inner layer. To form a multilayer tubular body, when fusing the multilayer tubular body, either pressurize the inner atmosphere of the multilayer tubular body or depressurize the outer atmosphere, or both, and heat the multilayer tubular body by exposing it to the atmosphere, A method has been proposed in which a tube made of a thermoplastic resin and a fiber-reinforced resin composite are firmly fused and integrated.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この方
法の場合には、その多層管状体を熱融着する際に、多層
管状体の各層の積層時の積層圧力はかなり改善され、熱
可塑性樹脂管と繊維強化熱可塑性樹脂層との界面、強化
繊維同士の界面の空気の巻き込みもかなり改善される
が、過酷な条件下で使用したり長期間使用しても界面剥
離や亀裂発生のない繊維強化熱可塑性樹脂複合管を得る
ためには、加熱炉の長さを長くするとか生産速度を下げ
る必要があり、加熱炉の長さを長くすると、生産ライン
が長くなり、設備投資が多くなり、生産性が低下すると
いう問題点がある。
However, in the case of this method, when the multilayer tubular body is heat-sealed, the laminating pressure at the time of laminating each layer of the multilayer tubular body is considerably improved, and the thermoplastic resin pipe is The air entrainment at the interface between the fiber and the fiber-reinforced thermoplastic resin layer and the interface between the reinforcing fibers is significantly improved, but the fiber reinforcement does not cause interfacial peeling or cracking even under severe conditions or long-term use. In order to obtain a thermoplastic resin composite pipe, it is necessary to lengthen the heating furnace or reduce the production rate.If the heating furnace is lengthened, the production line will become longer, the capital investment will increase, and the production will increase. However, there is a problem in that

【0007】本発明は、上記の如き従来の問題点を解消
し、生産性を低下させることなく、界面における接着力
が強固であり、過酷な条件下で使用したり長期間使用し
ても界面剥離や亀裂発生のない繊維強化熱可塑性樹脂複
合管の製造方法を提供することを目的としてなされたも
のである。
The present invention solves the above-mentioned conventional problems, has a strong adhesive force at the interface without lowering the productivity, and can be used even under severe conditions or for a long period of time. The object of the present invention is to provide a method for producing a fiber-reinforced thermoplastic resin composite pipe without peeling or cracking.

【0008】[0008]

【課題を解決するための手段】本発明は、熱可塑性樹脂
管の外周面に、繊維強化熱可塑性樹脂帯状体からなる繊
維強化熱可塑性樹脂層を積層して2層以上の多層管状体
を形成した後、その多層管状体を加熱炉内に導いて多層
管状体の内側雰囲気の加圧もしくは外側雰囲気の減圧の
いずれか、又はその両方の雰囲気条件下に多層管状体を
曝して加熱し、熱可塑性樹脂管と繊維強化熱可塑性樹脂
層とを融着一体化する工程を包含する繊維強化熱可塑性
樹脂複合管の製造方法であって、繊維強化熱可塑層樹脂
帯状体として、多数の貫通孔が設けられたものを使用す
る繊維強化熱可塑性樹脂複合管の製造方法である。
SUMMARY OF THE INVENTION According to the present invention, a fiber reinforced thermoplastic resin layer made of a fiber reinforced thermoplastic resin strip is laminated on the outer peripheral surface of a thermoplastic resin tube to form a multilayer tubular body having two or more layers. After that, the multi-layer tubular body is introduced into a heating furnace, and the multi-layer tubular body is heated by exposing it to the inner atmosphere of the multi-layer tubular body, the depressurization of the outer atmosphere, or both. A method for producing a fiber-reinforced thermoplastic resin composite tube including a step of fusion-bonding a plastic resin tube and a fiber-reinforced thermoplastic resin layer, wherein a plurality of through-holes are provided as a fiber-reinforced thermoplastic layer resin strip. A method for producing a fiber-reinforced thermoplastic resin composite pipe using the provided one.

【0009】本発明において、熱可塑性樹脂管を構成す
る熱可塑性樹脂としては、得られる複合管の使用目的に
適したものを適宜選択すればよいが、例えば、ポリ塩化
ビニル、塩素化ポリ塩化ビニル、ポリエチレン、ポリプ
ロピレン、ポリスチレン、ポリアミド、ポリカーボネー
ト、ポリフェニレンサルファイド、ポリスルフォン、ポ
リエーテルエーテルケトン等が挙げられる。これらの熱
可塑性樹脂は、単独で使用されてもよいし、複数種併用
されてもよい。
In the present invention, as the thermoplastic resin constituting the thermoplastic resin tube, one suitable for the purpose of use of the obtained composite tube may be appropriately selected. For example, polyvinyl chloride, chlorinated polyvinyl chloride. , Polyethylene, polypropylene, polystyrene, polyamide, polycarbonate, polyphenylene sulfide, polysulfone, polyether ether ketone, and the like. These thermoplastic resins may be used alone or in combination of two or more.

【0010】熱可塑性樹脂中には、必要に応じて、熱安
定剤、可塑剤、滑剤、酸化防止剤、着色剤、紫外線吸収
剤、加工助剤、無機充填剤等が適宜添加される。
If necessary, a heat stabilizer, a plasticizer, a lubricant, an antioxidant, a colorant, an ultraviolet absorber, a processing aid, an inorganic filler and the like are appropriately added to the thermoplastic resin.

【0011】本発明において、繊維強化熱可塑性樹脂帯
状体(以下、帯状体という)を構成するマトリックス樹
脂としての熱可塑性樹脂としては、上記の熱可塑性樹脂
管を構成する熱可塑性樹脂と同様のものが使用できる。
これらの熱可塑性樹脂は、通常は単独で使用されるが、
複数種併用されてもよい。繊維強化熱可塑性樹脂層が2
層以上からなる場合には、各層のマトリック樹脂は必ず
しも同一種の熱可塑性樹脂である必要はないが、相互に
相溶性に優れた熱もの同士を選択する必要がある。
In the present invention, the thermoplastic resin as the matrix resin forming the fiber-reinforced thermoplastic resin strip (hereinafter referred to as the strip) is the same as the thermoplastic resin forming the thermoplastic resin tube. Can be used.
These thermoplastic resins are usually used alone,
You may use together multiple types. 2 fiber reinforced thermoplastic resin layers
In the case of more than one layer, the matric resins in each layer do not necessarily have to be the same kind of thermoplastic resin, but it is necessary to select heat materials having excellent mutual compatibility.

【0012】帯状体を構成する強化繊維としては、例え
ば、ガラス繊維、カーボン繊維等の無機繊維、ステンレ
ス繊維、銅繊維等の金属繊維、アラミド繊維、ビニロン
繊維、レーヨン繊維、ポリエステル繊維、麻繊維等の有
機繊維などからなり、直径1〜数十μmの連続フィラメ
ントよりなるロービング又はストランドなどの連続繊維
が使用される。
Examples of the reinforcing fibers constituting the belt-like body are inorganic fibers such as glass fibers and carbon fibers, metal fibers such as stainless fibers and copper fibers, aramid fibers, vinylon fibers, rayon fibers, polyester fibers and hemp fibers. Continuous fibers such as rovings or strands made of continuous filaments having a diameter of 1 to several tens of μm are used.

【0013】帯状体中の繊維の量は、多すぎると繊維間
に保持する熱可塑性樹脂の量が少なくなり、少なすぎる
と補強効果が生じないので、3〜70重量%が好まし
く、10〜50重量%が更に好ましい。
If the amount of the fibers in the strip is too large, the amount of the thermoplastic resin held between the fibers will be small, and if it is too small, the reinforcing effect will not occur, so 3 to 70% by weight is preferable, and 10 to 50% by weight. Weight% is more preferred.

【0014】帯状体として、多数の貫通孔が設けられた
ものが使用されるが、その製造方法としては、連続的に
製造する関係上、冷却ロールに放射状に複数の針状の突
起物が設けられたものの上を帯状体を通過させる方法が
好ましい。このときの突起状物の間隔は、適宜選択して
決めることができるが、例えば5〜50mmとされる。
As the band-shaped body, one having a large number of through holes is used. As a method of manufacturing the band-shaped body, a plurality of needle-shaped protrusions are provided radially on the cooling roll in view of continuous manufacturing. A method in which the strip is passed over the obtained product is preferable. The interval of the protrusions at this time can be appropriately selected and determined, but is, for example, 5 to 50 mm.

【0015】突起状物は比熱が小さい場合は、溶融状態
にある熱可塑性樹脂を固化させることなく貫通孔を設け
ることができるが、比熱が大きい場合は、熱可塑性樹脂
が突起状物に接触したときに固化し、強化繊維を移動さ
せることができなくなるので、突起状物を加熱しながら
貫通孔を設けるのが好ましい。
When the specific heat of the projection is small, the through hole can be provided without solidifying the thermoplastic resin in a molten state, but when the specific heat is high, the thermoplastic resin comes into contact with the projection. It is preferable to form the through holes while heating the protrusions, because they sometimes solidify and the reinforcing fibers cannot be moved.

【0016】突起状物の横断面形状としては、貫通孔の
あけ易さ及び強化繊維の押しのけ易さの点から、円形、
楕円形、菱形等が挙げられる。突起状物の長さは、製造
すべき帯状体の肉厚、突起状物の強度、突起状物を設け
る冷却ロールの径等を考慮して適宜決められる。
The cross-sectional shape of the protrusions is circular in terms of easiness of opening the through holes and easiness of pushing the reinforcing fibers.
Examples include an oval shape and a diamond shape. The length of the protrusion is appropriately determined in consideration of the wall thickness of the strip to be manufactured, the strength of the protrusion, the diameter of the cooling roll on which the protrusion is provided, and the like.

【0017】貫通孔の大きさは、直径が0.3〜2mm
が好ましく、0.5〜1.5mmが更に好ましい。直径
が小さすぎると気泡の除去が充分に行われにくく、界面
の融着強度に悪影響を及ぼし、直径が大きすぎると帯状
体の強度が不充分となり、得られる複合管の強度低下に
つながる。
The size of the through hole has a diameter of 0.3 to 2 mm.
Is preferable, and 0.5-1.5 mm is more preferable. If the diameter is too small, it will be difficult to sufficiently remove bubbles, and the fusion strength at the interface will be adversely affected. If the diameter is too large, the strength of the strip will be insufficient, leading to a decrease in the strength of the resulting composite pipe.

【0018】熱可塑性樹脂管の外表面に、帯状体を巻き
付けることにより積層される繊維強化熱可塑性樹脂層
は、強化繊維が軸方向に配列される第1の強化層と、強
化繊維が略周方向に配列される第2の強化層の組合わせ
からなる2層以上設けられた繊維強化熱可塑性樹脂複合
管とすると、第1の強化層によりその管軸方向の線膨張
率が抑制されて熱伸縮が低減し、且つ第2の強化層によ
りその耐圧性が向上するので好ましい。
The fiber-reinforced thermoplastic resin layer, which is laminated by winding a strip around the outer surface of the thermoplastic resin tube, has a first reinforcing layer in which the reinforcing fibers are arranged in the axial direction and a reinforcing fiber in a substantially circumferential direction. When a fiber-reinforced thermoplastic resin composite pipe provided with two or more layers composed of a combination of second reinforcement layers arranged in the axial direction is used, the first reinforcement layer suppresses the linear expansion coefficient in the axial direction of the pipe, and heat Expansion and contraction are reduced, and the pressure resistance of the second reinforcing layer is improved, which is preferable.

【0019】第1の強化層形成用の帯状体としては、連
続繊維のフィラメント間に熱可塑性樹脂が含浸され、加
熱・加圧によりシート状にされたものが使用される。こ
のシート状帯状体は長手方向と略平行に連続繊維が配置
されている。シート状帯状体の幅は、繊維強化熱可塑性
樹脂層の周長よりもやや長くされ、厚みは所望の第1の
強化層の厚みにより決められる。
As the band-shaped body for forming the first reinforcing layer, there is used one in which a thermoplastic resin is impregnated between filaments of continuous fibers and formed into a sheet by heating and pressurizing. In this sheet-shaped strip, continuous fibers are arranged substantially parallel to the longitudinal direction. The width of the sheet-shaped strip is slightly longer than the perimeter of the fiber-reinforced thermoplastic resin layer, and the thickness is determined by the desired thickness of the first reinforcing layer.

【0020】第2の強化層形成用の帯状体としては、連
続繊維のフィラメント間に熱可塑性樹脂が含浸され、加
熱・加圧によりテープ状や紐状にされたものが使用され
る。このテープ状や紐状の帯状体は長手方向と略平行に
連続繊維が配置されている。テープ状や紐状の幅、厚み
は特に制限はないが、例えば、テープ状帯状体の場合に
は、厚みが0.1〜10mm程度のものが好ましく、
0.1〜3mm程度のものがより好ましく、紐状の帯状
体の場合には、直径が0.5〜5mmのものが好適に使
用される。
As the band-shaped body for forming the second reinforcing layer, a tape-shaped or string-shaped body in which a filament of continuous fiber is impregnated with a thermoplastic resin and which is heated and pressed to be used. In this tape-shaped or string-shaped strip, continuous fibers are arranged substantially parallel to the longitudinal direction. The width and thickness of the tape or string are not particularly limited, but for example, in the case of a tape-shaped band, the thickness is preferably about 0.1 to 10 mm,
It is more preferably about 0.1 to 3 mm, and in the case of a string-shaped strip, one having a diameter of 0.5 to 5 mm is preferably used.

【0021】帯状体の製造方法としては、例えば、次の
方法が挙げられる。 多数のフィラメントよりなるロービング状又はスト
ランド状連続繊維を、粉体状熱可塑性樹脂の流動床中を
順次通過させ、繊維間に粉体状熱可塑性樹脂を付着させ
た後、必要に応じて一旦乾燥させた後、加熱・加圧によ
り連続繊維と熱可塑性樹脂とをシート状、テープ状、紐
状等の所望の形状に一体化する方法。 溶融粘度が低い樹脂の場合には、上記連続繊維を溶
融樹脂の槽中に浸漬することで含浸させること以外は
と同様の方法。
Examples of the method for producing the band-shaped body include the following methods. A roving-like or strand-like continuous fiber composed of a large number of filaments is sequentially passed through a fluidized bed of powdery thermoplastic resin to adhere the powdery thermoplastic resin between the fibers, and then once dried if necessary. After that, the continuous fiber and the thermoplastic resin are integrated into a desired shape such as a sheet shape, a tape shape, and a string shape by heating and pressing. In the case of a resin having a low melt viscosity, the same method as that for impregnating the continuous fiber by immersing the continuous fiber in a bath of the molten resin.

【0022】多層管状体の内側雰囲気の加圧力は、得ら
れる複合管の寸法によって異なるため一概にいえない
が、通常0.01〜10kg/cm2 の範囲とするのが
好ましい。具体的には、内径25mm、肉厚3.5mm
の場合は、加圧力は0.01〜3kg/cm2 が好まし
い。加圧力が0.01kg/cm2 未満であると、充分
な積層圧力が得られず、3kg/cm2 を超えると管が
膨れて外形の精度が得られない場合があるので留意する
必要がある。
The pressure applied to the inner atmosphere of the multi-layered tubular body cannot be generally determined because it depends on the dimensions of the resulting composite tube, but it is preferably in the range of 0.01 to 10 kg / cm 2 . Specifically, inner diameter 25 mm, wall thickness 3.5 mm
In this case, the applied pressure is preferably 0.01 to 3 kg / cm 2 . When pressure is less than 0.01 kg / cm 2, not obtained sufficient lamination pressure, it is necessary to note that in some cases 3 kg / cm 2 and can not be obtained contour of accuracy blistering tube exceeds .

【0023】一方、多層管状体の側雰囲気の減圧力は、
同じく一概にはいえないが、通常500mmHg以上が
好ましい。減圧力が500mmHg未満だと、多層管状
体に十分な積層圧力や脱気効果が与えられない。又、加
圧と減圧との両方の雰囲気状態下とすると、熱可塑性樹
脂管と繊維強化熱可塑性樹脂層との融着性により優れた
複合管が得られる。
On the other hand, the decompression force of the side atmosphere of the multilayer tubular body is
Similarly, although it cannot be generally stated, 500 mmHg or more is usually preferable. When the decompression force is less than 500 mmHg, the multilayer tubular body cannot be provided with sufficient stacking pressure and deaeration effect. Further, when both the pressurized and depressurized atmospheres are used, a composite pipe having an excellent fusion bonding property between the thermoplastic resin pipe and the fiber-reinforced thermoplastic resin layer can be obtained.

【0024】加熱炉の加熱温度としては、多層管状体の
マトリックス樹脂のビカット軟化温度〜熱分解温度が好
ましく、上記樹脂の押出、射出成形等における成形温度
付近とするのが更に好ましい。加熱温度が上記樹脂のビ
カット軟化温度未満であると、0.01〜10kg/c
2 の範囲の加圧力や、多層管状体外側を500mmH
g以上の減圧力となるような減圧下に加熱しても、多層
管状体の熱可塑性樹脂管と繊維強化熱可塑性樹脂層間が
熱融着せず、熱分解温度を超えると、得られる管の性能
が悪くなる。
The heating temperature of the heating furnace is preferably from the Vicat softening temperature to the thermal decomposition temperature of the matrix resin of the multilayer tubular body, and more preferably around the molding temperature in the extrusion, injection molding and the like of the above resin. When the heating temperature is lower than the Vicat softening temperature of the above resin, 0.01 to 10 kg / c
Pressurizing force in the range of m 2 and 500 mmH outside the multilayer tubular body
Even if the thermoplastic resin tube of the multilayer tubular body and the fiber-reinforced thermoplastic resin layer are not heat-sealed even when heated under a reduced pressure such that the decompression force is g or more, the performance of the obtained tube is higher than the thermal decomposition temperature. Becomes worse.

【0025】尚、ビカット軟化点とは、JIS K 7
206に準じて測定したものをいう。熱可塑性樹脂のビ
カット軟化温度は、例えば、ポリ塩化ビニルでは約65
〜85℃、塩素化ポリ塩化ビニルでは約95〜120℃
である。又、熱融着とは、双方の熱可塑性樹脂を溶融状
態になるまで加熱した上で圧着し、冷却後、融着した界
面が容易に破断しないことをいう。
The Vicat softening point is JIS K 7
The value measured according to 206. The Vicat softening temperature of a thermoplastic resin is, for example, about 65 for polyvinyl chloride.
~ 85 ° C, about 95-120 ° C for chlorinated polyvinyl chloride
It is. The term "heat fusion" means that both thermoplastic resins are heated to a molten state and then pressure-bonded, and after cooling, the fused interfaces do not easily break.

【0026】尚、本発明において、多層管状体の外周面
に、更に熱可塑性樹脂からなる外層を設けた方が外面保
護や外観向上のためより好ましい。外層形成用の熱可塑
性樹脂としては、特に制限されないが、多層管状体のマ
トリックス樹脂に熱融着性のよいものが好適に使用され
る。
In the present invention, it is more preferable that an outer layer made of a thermoplastic resin is further provided on the outer peripheral surface of the multilayer tubular body in order to protect the outer surface and improve the appearance. The thermoplastic resin for forming the outer layer is not particularly limited, but a resin having a good heat fusion property to the matrix resin of the multilayer tubular body is preferably used.

【0027】以下、本発明の例を図面を参照して説明す
る。図1は、本発明に用いられる帯状体の一例を示す一
部切欠き斜視図である。1は繊維強化熱可塑性樹脂から
なるシート状(又はテープ状)帯状体であって、熱可塑
性樹脂2をマトリックス樹脂として、その中に強化繊維
3が長手方向に沿うように配設されており、多数の貫通
孔4が所定間隔をあけて設けられている。貫通孔4の周
囲の強化繊維3は、突起状物による穿孔の際に押しのけ
られるようにして曲げられている。
An example of the present invention will be described below with reference to the drawings. FIG. 1 is a partially cutaway perspective view showing an example of a band-shaped body used in the present invention. Reference numeral 1 denotes a sheet-shaped (or tape-shaped) strip made of a fiber-reinforced thermoplastic resin, in which the thermoplastic resin 2 is used as a matrix resin, in which the reinforcing fibers 3 are arranged along the longitudinal direction, A large number of through holes 4 are provided at predetermined intervals. The reinforcing fibers 3 around the through-hole 4 are bent so as to be pushed away when punched by the protrusion.

【0028】図2は、本発明に用いられる帯状体の製造
工程の一例を製造装置とともに説明する正面図である。
まず、製造装置について説明する。製造装置は、上流側
から下流側に向けて、順次、複数の強化繊維巻戻しロー
ル29と、上下に配設された流動床装置28と、ガイド
バー30と、二対の加熱ロール32,33と、多数の針
状突起状物34が放射状に設けられた冷却ロール35
と、ガイドロール36と、巻取りロール37とが配列さ
れている。流動床装置28には、熱可塑性樹脂粉末Rが
充填されている。
FIG. 2 is a front view for explaining an example of the manufacturing process of the strip-shaped body used in the present invention together with the manufacturing apparatus.
First, the manufacturing apparatus will be described. The manufacturing apparatus has a plurality of reinforcing fiber rewinding rolls 29, a fluidized bed device 28 arranged above and below, a guide bar 30, and two pairs of heating rolls 32, 33 in order from the upstream side to the downstream side. And a cooling roll 35 in which a large number of needle-like protrusions 34 are radially provided.
A guide roll 36 and a winding roll 37 are arranged. The fluidized bed apparatus 28 is filled with the thermoplastic resin powder R.

【0029】次に、この製造装置を用いた、帯状体の製
造工程の例を説明する。複数の強化繊維巻戻しロール2
9から、強化繊維F1,F1を巻戻しロール37により
撚りが入らないように巻き戻しつつ、それぞれ、ガイド
ロール30により、上下の流動床装置28,28内を通
過させることにより、その中に浮遊状態にて充填された
粉末状の熱可塑性樹脂Rをフィラメント繊維間に含浸さ
せた熱可塑性樹脂含浸強化繊維束F2,F2を作製す
る。
Next, an example of a process of manufacturing a belt-shaped body using this manufacturing apparatus will be described. Multiple reinforcing fiber rewind rolls 2
9, the reinforcing fibers F1 and F1 are unwound by a rewinding roll 37 so as not to be twisted, and each is guided by a guide roll 30 to pass through the inside of the upper and lower fluidized bed devices 28, 28, thereby floating therein. A thermoplastic resin-impregnated reinforced fiber bundle F2, F2 in which the powdery thermoplastic resin R filled in the state is impregnated between filament fibers is produced.

【0030】この熱可塑性樹脂含浸強化繊維束F2,F
2を重ね合わせるようにして二対の加熱ロール32,3
3間を通過させることにより帯状体F3を作製する。引
き続いて、その帯状体F3を多数の針状突起状物34が
放射状に設けられた冷却ロール35にかけることによ
り、帯状体F3に多数の針状突起状物34に対応する多
数の貫通孔を穿孔し、これをターンロール31を経て、
巻取りロール37に巻き取る。
This thermoplastic resin-impregnated reinforced fiber bundle F2, F
Two pairs of heating rolls 32, 3 so that 2 are overlapped
A strip F3 is produced by passing between three. Subsequently, the strip F3 is applied to a cooling roll 35 provided with a large number of needle-like protrusions 34 radially, so that a large number of through holes corresponding to the plurality of needle-like protrusions 34 are formed in the strip F3. Perforate, pass through a turn roll 31,
Take up on a take-up roll 37.

【0031】図3は、本発明における複合管を製造する
工程の一例を製造装置とともに示す正面図である。ま
ず、製造装置について説明する。製造装置は、上流側か
ら下流側に向けて、順次、シート状帯状体40の巻戻し
ロール41と、第1の押出機42が連結された第1のク
ロスヘッドダイ43と、第1のクロスヘッドダイ43の
先端に装着された冷却金型45と、テープ状帯状体15
の巻回装置14と、加熱炉18と、第2の押出機47が
連結された第2のクロスヘッドダイ18と、サイジング
装置49と、引取装置19とが配列されている。
FIG. 3 is a front view showing an example of a process for manufacturing the composite pipe of the present invention together with a manufacturing apparatus. First, the manufacturing apparatus will be described. The manufacturing apparatus includes, in order from the upstream side to the downstream side, a rewinding roll 41 of the sheet-shaped strip 40, a first cross head die 43 to which the first extruder 42 is connected, and a first cross. Cooling die 45 mounted on the tip of head die 43 and tape-shaped strip 15
The winding device 14, the heating furnace 18, the second crosshead die 18 to which the second extruder 47 is connected, the sizing device 49, and the take-up device 19 are arranged.

【0032】第1のクロスヘッドダイ43は、2段に膨
出部441,441を備えた内コア44を備え、シート
状帯状体40を円筒状に賦形して第1の強化層を形成す
るとともに、その内面に内層用の熱可塑性樹脂管を成形
することができるようにされている。
The first crosshead die 43 includes an inner core 44 having bulged portions 441 and 441 in two stages, and the sheet-shaped strip 40 is formed into a cylindrical shape to form a first reinforcing layer. In addition, a thermoplastic resin pipe for the inner layer can be molded on the inner surface thereof.

【0033】内コア44から引取機19の手前までワイ
ヤーからなる支承具12が延設され、支承具12の先端
に多層管状体の内部をシールするシール板13が取着さ
れている。内コア44には貫通孔が設けられ、コンプレ
ッサー16により、気体流路17、貫通孔を通して、多
層管状体の内側雰囲気を加圧状態とすることができるよ
うにされている。
A support 12 made of wire is extended from the inner core 44 to the front of the take-up machine 19, and a seal plate 13 for sealing the inside of the multilayer tubular body is attached to the tip of the support 12. A through hole is provided in the inner core 44, and the compressor 16 can pressurize the inner atmosphere of the multilayer tubular body through the gas flow path 17 and the through hole.

【0034】加熱炉18は、その中を通過する多層管状
体を図示しない加熱装置により加熱するとともに、吸引
装置10により、多層管状体の外側雰囲気を減圧状態と
することができるようにされている。
In the heating furnace 18, the multilayer tubular body passing through the heating furnace 18 is heated by a heating device (not shown), and the atmosphere outside the multilayer tubular body can be depressurized by the suction device 10. .

【0035】以下、本発明の繊維強化熱可塑性樹脂複合
管の製造方法の例を説明する。巻戻しロール41にシー
ト状帯状体40をセットし、巻回装置14にテープ状帯
状体15をセットする。
An example of the method for producing the fiber-reinforced thermoplastic resin composite pipe of the present invention will be described below. The sheet-shaped strip 40 is set on the rewinding roll 41, and the tape-shaped strip 15 is set on the winding device 14.

【0036】まず、第1のクロスヘッドダイ43内に、
巻戻しロール41よりシート状帯状体40に巻き戻しつ
つ導いて円筒状に賦形し強化繊維を軸方向に配列させた
第1の強化層B1を形成するとともに、第1の押出機4
2にて混練した内層用の熱可塑性樹脂を供給して、第1
の強化層B内に内層用の熱可塑性樹脂管Aを積層し、こ
れを冷却金型45にて冷却して2層管状体を形成する。
First, in the first crosshead die 43,
The unwinding roll 41 guides the sheet-like strip 40 while unwinding it to form a cylindrical shape to form a first reinforcing layer B1 in which reinforcing fibers are arranged in the axial direction, and at the same time, the first extruder 4
The thermoplastic resin for the inner layer kneaded in 2 is supplied to the first
The thermoplastic resin pipe A for the inner layer is laminated in the reinforced layer B, and is cooled by the cooling mold 45 to form a two-layer tubular body.

【0037】この2層管状体の外周面に、巻回装置14
によりテープ状帯状体15を熱風発生装置46により加
熱しつつ巻き付けて強化繊維を周方向に配列させた第2
の強化層B2を積層して、熱可塑性樹脂管Aの外周面に
第1の強化層B1と第2の強化層B2からなる繊維強化
熱可塑性樹脂層Bを積層した3層管状体を形成する。
The winding device 14 is provided on the outer peripheral surface of the two-layer tubular body.
The tape-shaped strip 15 is wound by being heated by the hot air generator 46 by means of which the reinforcing fibers are arranged in the circumferential direction.
The reinforcing layer B2 is laminated to form a three-layer tubular body in which the fiber-reinforced thermoplastic resin layer B including the first reinforcing layer B1 and the second reinforcing layer B2 is laminated on the outer peripheral surface of the thermoplastic resin tube A. .

【0038】この3層管状体を加熱炉18内に導き、吸
引装置10により3層管状体の外側雰囲気を減圧状態と
なすとともに、コンプレーサー16により3層管状体の
内側雰囲気を加圧状態となしつつ加熱する。これによ
り、3層管状体には膨張圧が作用し、各層はその熱可塑
性樹脂が溶融状態となって密接する。尚、3層管状体の
内側雰囲気の加圧又は外側雰囲気の減圧のいずれか一方
だけでも何ら構わない。
The three-layer tubular body is introduced into the heating furnace 18, the outside atmosphere of the three-layer tubular body is depressurized by the suction device 10, and the inside atmosphere of the three-layer tubular body is pressurized by the compressor 16. Heat while doing. As a result, an expansion pressure acts on the three-layer tubular body, and the thermoplastic resin of each layer is brought into close contact in a molten state. It should be noted that either the pressurization of the inner atmosphere or the depressurization of the outer atmosphere of the three-layer tubular body may be used.

【0039】次に、第2のクロスヘッドダイ48内に、
この3層管状体を導くとともに、第2の押出機により外
層用の熱可塑性樹脂を溶融状態にて供給して、3層管状
体の外周面に外層Cを積層した4層管状体を形成し、こ
れをサイジング装置49内を通過させることにより冷却
すると、各層間の界面が融着状態となる。これら一連の
操作を引取装置19にて引き取りつつ行い、図示しない
切断装置により切断して、図4に示す如き繊維強化熱可
塑性樹脂複合管51を得る。
Next, in the second crosshead die 48,
While guiding the three-layer tubular body, a thermoplastic resin for the outer layer is supplied in a molten state by the second extruder to form a four-layer tubular body in which the outer layer C is laminated on the outer peripheral surface of the three-layer tubular body. When this is cooled by passing it through the sizing device 49, the interfaces between the layers are fused. These series of operations are carried out while being taken by the take-up device 19, and cut by a not-shown cutting device to obtain the fiber-reinforced thermoplastic resin composite pipe 51 as shown in FIG.

【0040】[0040]

【作用】本発明の繊維強化熱可塑性樹脂複合管の製造方
法は、熱可塑性樹脂管の外周面に、繊維強化熱可塑性樹
脂帯状体からなる繊維強化熱可塑性樹脂層を積層して2
層以上の多層管状体を形成した後、その多層管状体を加
熱炉内に導いて多層管状体の内側雰囲気の加圧もしくは
外側雰囲気の減圧のいずれか、又はその両方の雰囲気条
件下に多層管状体を曝して加熱することにより、多層管
状体に膨張圧を作用させることができるが、この際に、
繊維強化熱可塑層樹脂帯状体として多数の貫通孔が設け
られたものを使用することにより、短時間にその界面に
巻き込んでいる気泡を確実に追い出すようにして、界面
を密着させることができるので、界面の熱融着をより確
実に行うことができる。
According to the method for producing a fiber-reinforced thermoplastic resin composite pipe of the present invention, a fiber-reinforced thermoplastic resin layer composed of a fiber-reinforced thermoplastic resin strip is laminated on the outer peripheral surface of the thermoplastic resin pipe.
After forming a multi-layered tubular body having more than one layer, the multi-layered tubular body is introduced into a heating furnace and pressurized under the inner atmosphere of the multi-layered tubular body or under reduced pressure of the outer atmosphere, or under the multi-layered tubular body under both atmosphere conditions. By exposing and heating the body, an expansion pressure can be applied to the multilayer tubular body, but at this time,
By using a fiber-reinforced thermoplastic layer resin strip provided with a large number of through holes, it is possible to reliably expel the air bubbles entrained in the interface in a short time, so that the interface can be adhered. The heat fusion of the interface can be performed more reliably.

【0041】[0041]

【実施例】以下、本発明を実施例により説明する。実施例 (1)帯状体の製造 図2を参照して説明した製造工程により図1に示す如き
帯状体を製造した。熱可塑性樹脂粉末Rとして、粉体状
の塩素化ポリ塩化ビニル(塩素化度:67%、重合度:
1000)100重量部に対して、錫系安定剤4重量部
と、ステアリルアルコール2重量部と、ポリエチレンワ
ックス0.5重量部とを添加した塩素化ポリ塩化ビニル
組成物を用いた。上下に配置された流動床装置28に、
熱可塑性樹脂粉末Rを充填した。
The present invention will be described below with reference to examples. Example (1) Manufacture of band-shaped body A band-shaped body as shown in FIG. 1 was manufactured by the manufacturing process described with reference to FIG. As the thermoplastic resin powder R, powdered chlorinated polyvinyl chloride (chlorination degree: 67%, polymerization degree:
1000) 100 parts by weight of a chlorinated polyvinyl chloride composition containing 4 parts by weight of a tin stabilizer, 2 parts by weight of stearyl alcohol, and 0.5 parts by weight of polyethylene wax was used. In the fluidized bed device 28 arranged above and below,
The thermoplastic resin powder R was filled.

【0042】冷却ロール35として、直径が225mm
であり、多数の直径が1mm、高さが10mmの円錐形
の針状突起物34が、周方向の角度が45°をなし、軸
方向の間隔が10mmとなるように放射状に設けられた
ものを用いた。
The cooling roll 35 has a diameter of 225 mm.
A plurality of conical needle-like projections 34 having a diameter of 1 mm and a height of 10 mm, which are radially provided so that the circumferential angle is 45 ° and the axial distance is 10 mm. Was used.

【0043】直径23μmのフィラメントより構成され
るロービング状のガラス繊維束(4,400tex)F
1,F1を巻き戻しつつ、上下の流動床装置28,28
内を通過させることにより、熱可塑性樹脂Rをフィラメ
ント繊維間に含浸させた熱可塑性樹脂含浸強化繊維束F
2,F2を作製し、これを表面温度200℃とされた2
対の加熱ロール32,32を通過させ、これを多数の針
状突起物34が設けられた冷却ロール35をとおして、
針状突起物34に対応する直径0.9mmの貫通孔が多
数穿設された、シート状帯状体(厚み0.8mm、幅1
70mm)と、テープ状帯状体(厚み:約0.5mm、
幅:約20mm)とを作製した。それらの繊維含有率は
いずれも25重量%であった。
Roving glass fiber bundle (4,400 tex) F composed of filaments having a diameter of 23 μm
While rewinding 1, F1, upper and lower fluidized bed devices 28, 28
A thermoplastic resin-impregnated reinforced fiber bundle F in which a thermoplastic resin R is impregnated between filament fibers by passing through the inside.
2, F2 was prepared, and the surface temperature was set to 200 ° C. 2
It passes through a pair of heating rolls 32, 32 and passes through a cooling roll 35 provided with a large number of needle-shaped projections 34,
A sheet-shaped strip (thickness: 0.8 mm, width: 1) having a large number of through holes with a diameter of 0.9 mm corresponding to the needle-shaped protrusions 34.
70 mm) and a tape-shaped strip (thickness: about 0.5 mm,
Width: about 20 mm). The fiber content of each of them was 25% by weight.

【0044】(2)繊維強化熱可塑性樹脂複合管の製造 図3を参照して説明した製造工程に準じて、図4に示す
如き繊維強化熱可塑性樹脂複合管の製造を行った。巻戻
しロール41シート状帯状体を装着し、巻回装置14に
テープ状帯状体を装着した。
(2) Production of Fiber Reinforced Thermoplastic Resin Composite Pipe According to the production process described with reference to FIG. 3, the fiber reinforced thermoplastic resin composite pipe as shown in FIG. 4 was produced. The rewind roll 41 was fitted with a sheet-shaped strip, and the winding device 14 was fitted with a tape-shaped strip.

【0045】第1のクロスヘッドダイ43内に、シート
状帯状体40を導いて外径56.6mm、肉厚0.8m
mの円筒状に賦形して第1の強化層Bを形成するとも
に、第1の押出機42にて、熱可塑性樹脂粉末Rとして
用いたの同様の塩素化ポリ塩化ビニル樹脂組成物からな
る内層用の熱可塑性樹脂を混練して供給して、第1の強
化層B1内に内層用の熱可塑性樹脂管Aを積層し、これ
を冷却金型45にて冷却して、外径56.6mm、肉厚
2.8mmの2層管状体を形成した。
The sheet-shaped strip 40 is guided into the first crosshead die 43 to have an outer diameter of 56.6 mm and a wall thickness of 0.8 m.
The same chlorinated polyvinyl chloride resin composition used as the thermoplastic resin powder R in the first extruder 42 while forming the first reinforcing layer B by shaping it into a cylindrical shape of m The thermoplastic resin for the inner layer is kneaded and supplied, the thermoplastic resin pipe A for the inner layer is laminated in the first reinforcing layer B1, and this is cooled by the cooling die 45 to have an outer diameter of 56. A two-layer tubular body having a thickness of 6 mm and a wall thickness of 2.8 mm was formed.

【0046】この2層管状体の外周面に、巻回装置14
によりテープ状帯状体15を熱風発生装置46にて加熱
しつつ軸方向に対して75°の角度でスパイラル状に巻
き付けて第2の強化層B2を積層して3層管状体を形成
した。
The winding device 14 is provided on the outer peripheral surface of the two-layer tubular body.
The tape-shaped strip 15 was heated by the hot air generator 46 while being spirally wound at an angle of 75 ° with respect to the axial direction, and the second reinforcing layer B2 was laminated to form a three-layer tubular body.

【0047】この3層管状体を300℃に保たれた減圧
加熱炉18内に導き、吸引装置10により3層管状体の
外側雰囲気を550mmHgの減圧状態に維持するとと
もに、コンプレッサー16により3層管状体の内側雰囲
気を0.4Kg/cm2 の圧力にて加圧し、3層管状体
に膨張圧を作用させて、各層の熱可塑性樹脂を融着状態
にて密接させた。
This three-layer tubular body is introduced into a reduced-pressure heating furnace 18 kept at 300 ° C., the outside atmosphere of the three-layer tubular body is maintained at a reduced pressure of 550 mmHg by a suction device 10, and the three-layer tubular body is compressed by a compressor 16. The atmosphere inside the body was pressurized at a pressure of 0.4 Kg / cm 2 , and an expansion pressure was applied to the three-layer tubular body to bring the thermoplastic resins of the respective layers into close contact in a fused state.

【0048】次に、この3層管状体を、第2のクロスヘ
ッドダイ48内に導くとともに、第2の押出機47にて
熱可塑性樹脂粉末Rとして用いたの同様の塩素化ポリ塩
化ビニル樹脂組成物からなる外層用の熱可塑性樹脂を混
練して供給して、3層管状体の外周面に外層Cを積層し
た4層管状体を形成し、これをサイジング装置49内を
通過させることにより冷却し、各層間の界面を融着さ
せ、これらの一連の操作を引取装置19にて引き取りつ
つ行い、切断機にて切断し、図4に示すような外径60
mm、内径51mm、肉厚4.5mmの繊維強化熱可塑
性樹脂管を得た。
Next, this three-layer tubular body was introduced into the second crosshead die 48, and the same chlorinated polyvinyl chloride resin used as the thermoplastic resin powder R in the second extruder 47 was used. By kneading and supplying the thermoplastic resin for the outer layer comprising the composition to form a four-layer tubular body in which the outer layer C is laminated on the outer peripheral surface of the three-layer tubular body, and passing this through the sizing device 49. After cooling, the interfaces between the layers are fused, and a series of these operations is carried out while being taken by the take-up device 19, and cut by a cutting machine to obtain an outer diameter 60 as shown in FIG.
A fiber-reinforced thermoplastic resin tube having a diameter of 51 mm, an inner diameter of 51 mm, and a wall thickness of 4.5 mm was obtained.

【0049】(3)繊維強化熱可塑性樹脂管の冷熱通水
繰り返し試験 得られた繊維強化熱可塑性樹脂管を500mmに切断し
たものを10本接続した。その管内に95℃の熱水を5
分間通水し、その後25℃の冷水を5分間通水する操作
を10,000サイクル繰り返す冷熱通水繰り返し試験
を行った。試験終了後、サンプル数10本、即ち20端
面の表面状態を観察した結果、各層間の剥離や亀裂発生
等の異常は認められなかった。
(3) Cold and hot water flow through the fiber reinforced thermoplastic resin pipe
Repeated test Ten pieces of the fiber-reinforced thermoplastic resin tube obtained by cutting to 500 mm were connected. 5 tubes of hot water at 95 ° C
A cold and hot water repetitive test was conducted in which the operation of passing water for 25 minutes and then passing cold water at 25 ° C. for 5 minutes was repeated 10,000 cycles. After the test was completed, the number of samples, that is, the surface state of 20 end faces was observed. As a result, no abnormality such as delamination or cracking between the layers was observed.

【0050】比較例 貫通孔を設けていない、シート状帯状体及びテープ状帯
状体を用いたこと以外は実施例と同様にして、実施例と
略同様の繊維強化熱可塑性樹脂管を得た。得られた繊維
強化熱可塑性樹脂管について、実施例と同様の冷熱通水
繰り返し試験を行ったところ、5,000サイクル終了
の時点で、20端面のうち2端面にそれぞれ第1の強化
層Bと第2の強化層Cの界面に約5mmの亀裂が発生し
ており、10,000サイクル終了の時点で、5端面に
それぞれ第1の強化層Bと第2の強化層Cの界面に5〜
10mmの亀裂が発生しているのが観察された。
Comparative Example A fiber-reinforced thermoplastic resin tube similar to that of the example was obtained in the same manner as in the example except that a sheet-like strip and a tape-like strip having no through holes were used. With respect to the obtained fiber reinforced thermoplastic resin pipe, a cold water flow test was conducted in the same manner as in the example. At the end of 5,000 cycles, the first reinforcing layer B was formed on each of two end faces of the 20 end faces. A crack of about 5 mm is generated at the interface of the second reinforcing layer C, and at the end of 10,000 cycles, 5 to 5 interfaces are formed at the interface between the first reinforcing layer B and the second reinforcing layer C, respectively.
It was observed that a 10 mm crack had occurred.

【0051】[0051]

【発明の効果】本発明の繊維強化熱可塑性樹脂複合管の
製造方法は、上記の如き構成とされているので、生産性
を低下させることなく、界面における接着力が強固であ
り、過酷な条件下で使用したり長期間使用しても界面剥
離や亀裂発生のない繊維強化熱可塑性樹脂複合管を得る
ことができる。
EFFECTS OF THE INVENTION The method for producing a fiber-reinforced thermoplastic resin composite pipe of the present invention is configured as described above, and therefore the adhesive strength at the interface is strong and the harsh conditions are maintained without lowering the productivity. It is possible to obtain a fiber-reinforced thermoplastic resin composite pipe that does not cause interfacial peeling or cracking even when used below or for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられる帯状体の一例を示す一部切
欠き拡大斜視図である。
FIG. 1 is a partially cutaway enlarged perspective view showing an example of a band-shaped body used in the present invention.

【図2】本発明に用いられる帯状体の製造工程の一例を
製造装置とともに説明する正面図である。
FIG. 2 is a front view illustrating an example of a manufacturing process of the strip-shaped body used in the present invention together with a manufacturing apparatus.

【図3】本発明における繊維強化熱可塑性樹脂複合管の
製造工程の一例を製造装置とともに説明する正面図であ
る。
FIG. 3 is a front view for explaining an example of a manufacturing process of the fiber-reinforced thermoplastic resin composite pipe according to the present invention together with a manufacturing apparatus.

【図4】本発明により得られた繊維強化熱可塑性樹脂複
合管の一例を示す一部切欠き斜視図である。
FIG. 4 is a partially cutaway perspective view showing an example of a fiber-reinforced thermoplastic resin composite pipe obtained by the present invention.

【符号の説明】[Explanation of symbols]

A 熱可塑性樹脂管 B 繊維強化熱可塑性樹脂層 4 貫通孔 15,40 帯状体 18 加熱炉 A thermoplastic resin tube B fiber reinforced thermoplastic resin layer 4 through hole 15,40 strip 18 heating furnace

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 101:12 105:08 B29L 9:00 23:00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // B29K 101: 12 105: 08 B29L 9:00 23:00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂管の外周面に、繊維強化熱
可塑性樹脂帯状体からなる繊維強化熱可塑性樹脂層を積
層して2層以上の多層管状体を形成した後、その多層管
状体を加熱炉内に導いて多層管状体の内側雰囲気の加圧
もしくは外側雰囲気の減圧のいずれか、又はその両方の
雰囲気条件下に多層管状体を曝して加熱し、熱可塑性樹
脂管と繊維強化熱可塑性樹脂層とを融着一体化する工程
を包含する繊維強化熱可塑性樹脂複合管の製造方法であ
って、繊維強化熱可塑層樹脂帯状体として、多数の貫通
孔が設けられたものを使用することを特徴とする繊維強
化熱可塑性樹脂複合管の製造方法。
1. A multilayer tubular body is formed by laminating a fiber-reinforced thermoplastic resin layer made of a fiber-reinforced thermoplastic resin strip on the outer peripheral surface of a thermoplastic resin tube to form two or more layers of the multilayer tubular body. The multi-layer tubular body is heated by exposing it to the heating furnace by exposing it to the inner atmosphere of the multi-layer tubular body and / or the depressurization of the outer atmosphere, or both atmosphere conditions. A method for producing a fiber-reinforced thermoplastic resin composite pipe including a step of fusion-bonding and integrating a resin layer, wherein a fiber-reinforced thermoplastic layer resin strip provided with a large number of through holes is used. A method for producing a fiber-reinforced thermoplastic resin composite pipe, comprising:
JP7163595A 1995-06-29 1995-06-29 Manufacture of fiber reinforced thermoplastic resin composite tube Pending JPH0911354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7163595A JPH0911354A (en) 1995-06-29 1995-06-29 Manufacture of fiber reinforced thermoplastic resin composite tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7163595A JPH0911354A (en) 1995-06-29 1995-06-29 Manufacture of fiber reinforced thermoplastic resin composite tube

Publications (1)

Publication Number Publication Date
JPH0911354A true JPH0911354A (en) 1997-01-14

Family

ID=15776913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7163595A Pending JPH0911354A (en) 1995-06-29 1995-06-29 Manufacture of fiber reinforced thermoplastic resin composite tube

Country Status (1)

Country Link
JP (1) JPH0911354A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142819A (en) * 2004-10-22 2006-06-08 Toray Ind Inc Fiber reinforced laminated body, preform, frp, manufacturing method of fiber reinforced laminated body and its manufacturing device
KR100878179B1 (en) * 2007-03-16 2009-01-12 윤순종 Fiber Reinforced Plastic Pipe for water supply and drainage
KR100878178B1 (en) * 2007-03-16 2009-01-12 윤순종 Fiber reinforced plastic pipe and manufacturing method of the same
JP2010144882A (en) * 2008-12-19 2010-07-01 Kurabe Ind Co Ltd Hose and method for manufacturing of hose
JP2017044345A (en) * 2016-09-07 2017-03-02 ロング・パイプス・プロプライエタリー・リミテッド Pipe construction
JP2018192799A (en) * 2018-05-29 2018-12-06 ロング・パイプス・プロプライエタリー・リミテッド Construction of pipe
JP2020169656A (en) * 2019-04-01 2020-10-15 トヨタ自動車株式会社 High pressure tank and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142819A (en) * 2004-10-22 2006-06-08 Toray Ind Inc Fiber reinforced laminated body, preform, frp, manufacturing method of fiber reinforced laminated body and its manufacturing device
KR100878179B1 (en) * 2007-03-16 2009-01-12 윤순종 Fiber Reinforced Plastic Pipe for water supply and drainage
KR100878178B1 (en) * 2007-03-16 2009-01-12 윤순종 Fiber reinforced plastic pipe and manufacturing method of the same
JP2010144882A (en) * 2008-12-19 2010-07-01 Kurabe Ind Co Ltd Hose and method for manufacturing of hose
JP2017044345A (en) * 2016-09-07 2017-03-02 ロング・パイプス・プロプライエタリー・リミテッド Pipe construction
JP2018192799A (en) * 2018-05-29 2018-12-06 ロング・パイプス・プロプライエタリー・リミテッド Construction of pipe
JP2020169656A (en) * 2019-04-01 2020-10-15 トヨタ自動車株式会社 High pressure tank and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4341578A (en) Method of hose production
US20080079193A1 (en) Tube induced deformity elimination proccess
JPH0911355A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH0911354A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
CA1145274A (en) Method of hose production and product
JP3117492B2 (en) Method for producing fiber reinforced thermoplastic resin tube
JP2659110B2 (en) Fiber reinforced resin composite pipe and method for producing the same
JPH08323882A (en) Manufacture of fiber-reinforced thermosetting resin composite pipe
JPH0584847A (en) Production of fiber reinforced thermoplastic resin pipe
JPH07256779A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
CN113858661A (en) Preparation method and equipment of composite material spiral spring
JPH06344444A (en) Thermoplastic resin lined metallic pipe
JPH0911353A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH0531782A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH07132565A (en) Preparation of fiber-reinforced thermoplastic resin composite pipe
JP2674844B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH07117178B2 (en) Composite pipe
JPH044132A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH08174704A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH074877B2 (en) Method for manufacturing fiber-reinforced resin pipe
JP3214892B2 (en) Method for producing hollow cross-section shaped body
JPH07290591A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH086847B2 (en) Composite pipe and manufacturing method thereof
JPH0692127B2 (en) Method for producing fiber reinforced thermoplastic resin pipe
JPH06340004A (en) Production of fiber-reinforced complex tube

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040218

Free format text: JAPANESE INTERMEDIATE CODE: A02