JPH08323882A - Manufacture of fiber-reinforced thermosetting resin composite pipe - Google Patents

Manufacture of fiber-reinforced thermosetting resin composite pipe

Info

Publication number
JPH08323882A
JPH08323882A JP7131847A JP13184795A JPH08323882A JP H08323882 A JPH08323882 A JP H08323882A JP 7131847 A JP7131847 A JP 7131847A JP 13184795 A JP13184795 A JP 13184795A JP H08323882 A JPH08323882 A JP H08323882A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
thermosetting resin
tubular body
composite pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7131847A
Other languages
Japanese (ja)
Inventor
Mitsuo Sasakura
満雄 笹倉
Koichi Adachi
浩一 足立
Hisao Ikeda
尚夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP7131847A priority Critical patent/JPH08323882A/en
Publication of JPH08323882A publication Critical patent/JPH08323882A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a manufacturing method for a fiber-reinforced thermosetting resin composite pipe, hardly rolling a void into an interface and never generating the separation of interface even when the pipe is used for a long period of time while excellent in the dimensional accuracy of the inner and outer diameters as well as the thickness thereof. CONSTITUTION: A multi-layer tube type body is formed by winding a belt type body A2, in which thermosetting resin is retained by continuous fibers arranged lengthwisely, around an extrusion molded thermosetting resin tube B2 in the circumferential direction substantially to laminate fiber-reinforced thermosetting resin layers while the multi-layer tubular body is heated under the atmospheric conditions of pressurization of inside atmosphere or evacuation of outside atmosphere or both of them to weld the thermosetting resin tube to the fiber reinforced thermosetting resin layers by fusion and, thereafter, they are integrated and fixed. The extrusion molded thermosetting resin tube B2 is cooled and solidified once, then, the belt type body A2 is wound around the thermosetting resin tube B2 under a condition that the tension of 100-5,000gr/cm<2> is retained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性樹脂と強化繊
維からなる繊維強化熱可塑性樹脂複合管の製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber-reinforced thermoplastic resin composite pipe comprising a thermoplastic resin and reinforcing fibers.

【0002】[0002]

【従来の技術】繊維強化樹脂複合管であって、内面に熱
可塑性樹脂よりなる層を有する繊維強化樹脂複合管は、
錆びることがなく、強度的にも優れ、水やガス等の流体
を輸送する配管、電気配線用に用いられる配管、構造用
部材等として広く用いられている。
2. Description of the Related Art A fiber-reinforced resin composite pipe having a layer made of a thermoplastic resin on its inner surface is
It is not rusted and has excellent strength, and is widely used as piping for transporting fluids such as water and gas, piping used for electrical wiring, structural members, and the like.

【0003】繊維強化複合管は、例えば、内層である熱
可塑性樹脂管の周りに液状の熱硬化性樹脂を含浸させた
強化繊維をマンドレル上に巻き付け、熱硬化性樹脂を硬
化させた後マンドレルを抜き取る方法(フィラメントワ
インディング法)により製造されている(例えば、特公
昭62─773号公報参照)。
In the fiber-reinforced composite pipe, for example, a reinforcing fiber in which a liquid thermosetting resin is impregnated around a thermoplastic resin pipe as an inner layer is wound around a mandrel, the thermosetting resin is hardened, and then the mandrel is set. It is manufactured by a drawing method (filament winding method) (for example, see Japanese Patent Publication No. 62-773).

【0004】この種の繊維強化樹脂複合管は、界面の接
着力が弱く、繊維強化樹脂複合管を冷熱繰り返し条件下
等で使用すると、内層と繊維強化樹脂層との熱膨張率の
差により、界面剥離するという問題点がある。
This type of fiber-reinforced resin composite pipe has a weak adhesive force at the interface, and when the fiber-reinforced resin composite pipe is used under conditions of repeated heat and cold, due to the difference in thermal expansion coefficient between the inner layer and the fiber-reinforced resin layer, There is a problem of interfacial peeling.

【0005】この問題点を解決するため、例えば、特開
平6─218841号公報に記載の如く、繊維強化樹脂
層を形成する樹脂として熱可塑性樹脂を用い、更に内層
の熱可塑性樹脂層と繊維強化樹脂層との融着力を強固に
した繊維強化樹脂複合管の製造方法が知られている。
In order to solve this problem, for example, as described in JP-A-6-218841, a thermoplastic resin is used as a resin for forming a fiber reinforced resin layer, and a thermoplastic resin layer as an inner layer and a fiber reinforced resin are used. A method for producing a fiber-reinforced resin composite pipe having a strong fusion force with a resin layer is known.

【0006】この方法では、内層である熱可塑性樹脂よ
りなる管の周りに繊維強化樹脂複合体よりなる強化層を
巻き付けて積層して多層管状体となし、その多層管状体
を融着する際に、多層管状体の内側雰囲気の加圧もしく
は外側雰囲気の減圧のいずれか、又はその両方の雰囲気
条件下に多層管状体を曝して加熱し、熱可塑性樹脂より
なる管と繊維強化樹脂複合体とを強固に融着一体化する
方法が提案されている。この場合、内層の熱可塑性樹脂
よりなる管の周りに繊維強化複合体を巻き付けた後、加
圧や減圧により界面融着の積層圧力を付加して融着する
もので加熱のみの方法より融着性が向上している。
According to this method, a reinforcing layer made of a fiber reinforced resin composite is wound around a pipe made of a thermoplastic resin as an inner layer and laminated to form a multilayer tubular body, and the multilayer tubular body is fused. , The multilayer tubular body is exposed to pressure under the atmosphere inside the multilayer tubular body or depressurized under the outside atmosphere, or both, and the multilayer tubular body is heated to form a tube made of a thermoplastic resin and a fiber-reinforced resin composite. A method of firmly fusing and integrating has been proposed. In this case, after wrapping the fiber reinforced composite material around the tube made of the thermoplastic resin of the inner layer, the lamination pressure of the interfacial fusion is applied by pressurization or depressurization and the fusion is performed by only the heating method. The nature is improving.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、この方
法の場合には、得られる繊維強化熱可塑性樹脂複合管
は、巻き付け時にエアー(ボイド)を巻き込んでしま
い、長期の冷却や、過酷な条件下で長期にわたって使用
したときに、内層である熱可塑性樹脂管とその周りに巻
き付けた繊維強化樹脂複合体の界面が剥離したり、融着
時に、内層の熱可塑性樹脂管の内面に巻付けの筋が浮き
出て管の内外径や肉厚精度に問題がある。
However, in the case of this method, the resulting fiber-reinforced thermoplastic resin composite pipe entraps air (voids) during winding, which may result in long-term cooling or under severe conditions. When used for a long period of time, the interface between the thermoplastic resin tube that is the inner layer and the fiber-reinforced resin composite wound around it peels off, or when fusing, there is a line of winding on the inner surface of the thermoplastic resin tube of the inner layer. There is a problem with the inner and outer diameters of the pipe and the accuracy of the wall thickness.

【0008】本発明は、上記の如き従来の問題点を解消
し、界面にボイドを巻き込みにくく、長期にわたって使
用しても界面剥離がなく、内外径及び肉厚の寸法精度に
優れた繊維強化熱可塑性樹脂複合管の製造方法を提供す
ることを目的としてなされたものである。
The present invention solves the above-mentioned problems of the prior art, prevents the inclusion of voids in the interface, does not cause interfacial peeling even after long-term use, and is excellent in dimensional accuracy of inner and outer diameters and wall thicknesses. The purpose of the present invention is to provide a method for producing a plastic resin composite pipe.

【0009】[0009]

【課題を解決するための手段】本発明は、押出成形した
熱可塑性樹脂管の周りに、長手方向に配された連続繊維
に熱可塑性樹脂が保持された帯状体を略周方向に巻き付
けて繊維強化熱可塑性樹脂層を積層して多層管状体を形
成し、その多層管状体の内側雰囲気の加圧もしくは外側
雰囲気の減圧のいずれか又はその両方の雰囲気条件下に
て多層管状体を加熱し、熱可塑性樹脂管と繊維強化熱可
塑性樹脂層とを融着後一体固化する繊維強化熱可塑性樹
脂複合管の製造方法において、押出成形した熱可塑性樹
脂管を一旦冷却固化し、その熱可塑性樹脂管の周りに1
00〜5,000gf/cm2 の張力を保持した状態で
前記帯状体を巻き付ける繊維強化熱可塑性樹脂複合管の
製造方法である。
DISCLOSURE OF THE INVENTION According to the present invention, a strip-shaped body in which a thermoplastic resin is held by continuous fibers arranged in the longitudinal direction is wound around an extruded thermoplastic resin tube in a substantially circumferential direction to form a fiber. A multilayered tubular body is formed by laminating a reinforced thermoplastic resin layer, and the multilayered tubular body is heated under atmospheric conditions of either pressurization of the inner atmosphere of the multilayered tubular body or depressurization of the outer atmosphere, or both, In a method for producing a fiber-reinforced thermoplastic resin composite pipe in which a thermoplastic resin pipe and a fiber-reinforced thermoplastic resin layer are fused and then integrally solidified, the extruded thermoplastic resin pipe is once cooled and solidified, and the thermoplastic resin pipe Around 1
It is a method for producing a fiber-reinforced thermoplastic resin composite pipe in which the band-shaped body is wound while maintaining a tension of 00 to 5,000 gf / cm 2 .

【0010】本発明において、帯状体の形態としては、
テープ状が巻き付け易いので一般的であるが、場合によ
っては紐状のものも使用可能である。冷却固化状態の熱
可塑性樹脂管の周りに巻き付ける帯状体の張力は、10
0〜5,000gf/cmである必要があり、300〜
3,000gf/cmであるのが好ましい。張力が10
0gf/cm未満であると、熱可塑性樹脂管の周りに帯
状体を巻き付けるときに、熱可塑性樹脂管の周りに帯状
体を隙間なく密着させて巻き付けることができず、緩み
が生じてボイトが入り込み易く、界面剥離の原因を十分
なくすることができず、5,000gf/cmを越える
と、巻き付け力が大きくなりすぎ、熱可塑性樹脂管が変
形してしまい、成形そのものができなくなる。
In the present invention, the form of the strip is as follows.
A tape shape is generally used because it can be easily wound, but a string shape can be used depending on the case. The tension of the strip wound around the thermoplastic resin tube in the cooled and solidified state is 10
Must be 0-5,000 gf / cm, 300-
It is preferably 3,000 gf / cm. Tension is 10
When it is less than 0 gf / cm, when the strip-shaped body is wound around the thermoplastic resin tube, the strip-shaped body cannot be tightly adhered to the periphery of the thermoplastic resin tube without a gap, and loosening occurs and the vite enters. It is not easy to eliminate the cause of interfacial peeling, and when it exceeds 5,000 gf / cm, the winding force becomes too large, the thermoplastic resin tube is deformed, and molding itself becomes impossible.

【0011】尚、上記張力の単位:gf/1cmは、帯
状体がテープ状の場合にはそのテープの幅1cm当りの
張力を示し、紐状の場合にはその直径幅1cm幅当りの
張力を示す。例えば、熱可塑性樹脂管の周りにテープ幅
2cmのテープ状の帯状体を4,000gfで巻きつけ
る場合の張力は2,000gf/cmである。又、その
他の形態の帯状体を巻き付ける場合、巻き付ける帯状体
の横断面の最も長い距離(幅)を基準とした張力とす
る。
The unit of tension: gf / 1 cm indicates the tension per 1 cm width of the tape when the strip is tape-like, and the tension per diameter 1 cm width when it is string-like. Show. For example, when a tape-shaped strip having a tape width of 2 cm is wound around a thermoplastic resin tube at 4,000 gf, the tension is 2,000 gf / cm. Further, in the case of winding a strip-shaped body of another form, the tension is based on the longest distance (width) of the cross section of the strip-shaped body to be wound.

【0012】又、帯状体に張力をかける方法としては、
機械的なブレーキや、電磁ブレーキ等の公知の方法を適
宜採用するすることができる。
As a method of applying tension to the strip,
A known method such as a mechanical brake or an electromagnetic brake can be appropriately adopted.

【0013】本発明において使用される、熱可塑性樹脂
管を形成する熱可塑性樹脂の材質としては、管状に押出
可能なものであれば特に限定されることなく使用するこ
とができ、例えば、ポリ塩化ビニル、塩素化ポリ塩化ビ
ニル、ポリエチレン、ポリプロピレン、ポリスチレン、
ポリアミド、ポリカーボネート、ポリフェニレンサルフ
ァイド、ポリエーテルエーテルケトン等が挙げられる。
これらの熱可塑性樹脂は単独で使用されてもよいし、2
種以上併用されてもよい。
The material of the thermoplastic resin forming the thermoplastic resin tube used in the present invention is not particularly limited as long as it can be extruded into a tubular shape. Vinyl, chlorinated polyvinyl chloride, polyethylene, polypropylene, polystyrene,
Examples thereof include polyamide, polycarbonate, polyphenylene sulfide, polyether ether ketone, and the like.
These thermoplastic resins may be used alone or 2
You may use together 1 or more types.

【0014】熱可塑性樹脂中には、必要に応じて、熱安
定剤、可塑剤、滑剤、酸化防止剤、紫外線吸収剤、顔
料、無機充填剤、加工助剤、改質剤等が添加されてもよ
い。
If necessary, a heat stabilizer, a plasticizer, a lubricant, an antioxidant, an ultraviolet absorber, a pigment, an inorganic filler, a processing aid, a modifier, etc. are added to the thermoplastic resin. Good.

【0015】本発明において、帯状体を形成する連続繊
維の材質としては、例えば、ガラス繊維、カーボン繊維
等の無機繊維、アラミド繊維、ビニロン繊維、ポリエス
テル繊維等の有機繊維などが挙げられる。連続繊維の形
態としては、例えば、モノフィラメント、ロービング
状、ストランド状、クロス状、網状、ネット状等が挙げ
られる。
In the present invention, examples of the material of the continuous fibers forming the strip include inorganic fibers such as glass fibers and carbon fibers, organic fibers such as aramid fibers, vinylon fibers and polyester fibers. Examples of the form of continuous fibers include monofilaments, rovings, strands, crosses, nets, and nets.

【0016】帯状体の巻付け時の形態としては、例え
ば、テープ状、紐状等が挙げられ、その幅、厚み、直径
等は成形すべき複合管の大きさや、要求される性能等に
よって異なる。テープ状の場合には、その幅が成形すべ
き複合管の内径の1/30〜1倍程度であるのが好まし
く、1/10〜2/3程度が更に好ましく、その厚みも
特に限定されないが1〜5mm程度が好ましい。紐状の
場合には、直径が1〜10mm程度が好ましい。
Examples of the form of winding the strip-like body include a tape-like form and a string-like form. The width, thickness, diameter and the like of the strip-like form vary depending on the size of the composite pipe to be formed, the required performance and the like. . In the case of a tape, its width is preferably about 1/30 to 1 times the inner diameter of the composite pipe to be molded, more preferably about 1/10 to 2/3, and its thickness is not particularly limited. It is preferably about 1 to 5 mm. In the case of a string, the diameter is preferably about 1 to 10 mm.

【0017】連続繊維を構成する単繊維の太さは、太す
ぎると繊維間に熱可塑性樹脂が保持されない部分が発生
し、細すぎると切断することがあるので、1〜100μ
mが好ましく、3〜50μmが更に好ましい。
The thickness of the monofilament constituting the continuous fiber is 1 to 100 μm because if the fiber is too thick, a part where the thermoplastic resin is not held is generated, and if it is too thin, it may be cut.
m is preferable, and 3 to 50 μm is more preferable.

【0018】帯状体を形成する熱可塑性樹脂としては、
熱可塑性樹脂管を形成する熱可塑性樹脂と融着性のよい
ものであれば特に限定されることなく使用することがで
き、上記の熱可塑性樹脂管を形成する熱可塑性樹脂と同
種の熱可塑性樹脂が好適に使用される。
As the thermoplastic resin forming the strip,
It can be used without particular limitation as long as it has a good fusion property with the thermoplastic resin forming the thermoplastic resin tube, and the same thermoplastic resin as the thermoplastic resin forming the thermoplastic resin tube. Is preferably used.

【0019】尚、ここでいう融着性とは、双方の熱可塑
性樹脂を溶融状態になるまで加熱した上で圧着し、冷却
後、融着した界面が容易に破断しないことをいう。
The term "fusing property" as used herein means that both thermoplastic resins are heated to a molten state and then pressure-bonded, and after cooling, the fused interface is not easily broken.

【0020】帯状体中の連続繊維の量は、多すぎると繊
維間に保持する熱可塑性樹脂の量が少なくなり、少なす
ぎると補強効果が生じないので、3〜70重量%が好ま
しく、10〜50重量%が更に好ましい。
If the amount of continuous fibers in the strip is too large, the amount of the thermoplastic resin held between the fibers will be small, and if it is too small, the reinforcing effect will not occur, so 3 to 70% by weight is preferable, and 10 to 10% by weight is preferable. 50% by weight is more preferable.

【0021】帯状体の製造方法としては、例えば、次の
方法を採用することができる。 多数のフィラメントよりなるロービング状、ストラ
ンド状、クロス状、ネット状、網状等の連続繊維を、粉
体状熱可塑性樹脂の流動床中を順次通過させ、繊維間に
粉体状熱可塑性樹脂を付着させた後、加熱して連続繊維
と熱可塑性樹脂を一体化する方法。
As a method for manufacturing the strip, for example, the following method can be adopted. Continuous fibers such as roving, strand, cloth, net and net made up of many filaments are sequentially passed through a fluidized bed of powdered thermoplastic resin, and the powdered thermoplastic resin is adhered between the fibers. After that, heating is performed to integrate the continuous fiber and the thermoplastic resin.

【0022】 上記同様の連続繊維を熱可塑性樹脂の
エマルジョン中を通過させて、繊維間にエマルジョンを
含浸させ、次いで、熱可塑性樹脂の溶融温度以上に加熱
して、連続繊維と熱可塑性樹脂を一体化する方法。
A continuous fiber similar to the above is passed through an emulsion of a thermoplastic resin to impregnate the emulsion with the fibers, and then heated to a temperature equal to or higher than the melting temperature of the thermoplastic resin to integrate the continuous fiber and the thermoplastic resin. How to make.

【0023】 溶融粘度が低い熱可塑性樹脂の場合に
は、溶融熱可塑性樹脂を満たした槽中を上記同様の連続
繊維を浸漬するようにして通過させることにより、繊維
間に熱可塑性樹脂を付着固化さる方法。 上記同様の連続繊維上に熱可塑性樹脂フィルム積層
し、加熱圧着する方法。
In the case of a thermoplastic resin having a low melt viscosity, the same continuous fibers as described above are dipped and passed through a tank filled with the molten thermoplastic resin to adhere and solidify the thermoplastic resin between the fibers. How to find a monkey. A method of laminating a thermoplastic resin film on the same continuous fibers as above and thermocompression bonding.

【0024】本発明において、押出成形した熱可塑性樹
脂管を一旦冷却固化する温度は、必ずしも室温レベルま
で冷却する必要はなく、熱可塑性樹脂の軟化温度以下の
温度であってもよい。
In the present invention, the temperature at which the extruded thermoplastic resin tube is once cooled and solidified does not necessarily have to be cooled to the room temperature level, and may be a temperature not higher than the softening temperature of the thermoplastic resin.

【0025】本発明において、多層管状体を加熱する温
度としては、熱可塑性樹脂管を形成する熱可塑性樹脂、
及び帯状体を形成する熱可塑性樹脂のビカット軟化温度
〜熱分解温度の範囲であり、特に熱可塑性樹脂管の押出
成形時の成形温度付近が好ましい。
In the present invention, the temperature at which the multilayer tubular body is heated is set to the thermoplastic resin forming the thermoplastic resin tube,
And the range from the Vicat softening temperature to the thermal decomposition temperature of the thermoplastic resin forming the strip, and particularly preferably around the molding temperature during extrusion molding of the thermoplastic resin pipe.

【0026】多層管状体の内側雰囲気の加圧力は、多層
管状体の外径や肉厚によって適宜設定されるのが好まし
が、その範囲としては、通常0.01〜10kg/cm
2 が好ましい。加圧力が0.01kg/cm2 未満であ
ると十分な積層圧力が得られず、加圧の効果が少なく、
101kg/cm2 を超えると、得られる多層管状体が
歪み易く、寸法精度が悪くなる。例えば、多層管状体の
内径が25mm、肉厚が3.5mmの場合には、加圧力
は0.01〜3kg/cm2 が好ましい。
The pressure of the inner atmosphere of the multilayer tubular body is preferably set appropriately depending on the outer diameter and the wall thickness of the multilayer tubular body, but the range is usually 0.01 to 10 kg / cm.
2 is preferred. If the applied pressure is less than 0.01 kg / cm 2 , a sufficient lamination pressure cannot be obtained, and the effect of pressurization is small,
When it exceeds 101 kg / cm 2 , the obtained multilayer tubular body is easily distorted and the dimensional accuracy is deteriorated. For example, when the inner diameter of the multilayer tubular body is 25 mm and the wall thickness is 3.5 mm, the applied pressure is preferably 0.01 to 3 kg / cm 2 .

【0027】多層管状体の外側雰囲気の減圧力は、50
0mmHg以上が好ましい。減圧力が500mmHg未
満の場合には、十分な積層圧力を得られない。又、多層
管状体の内側雰囲気の加圧と外側雰囲気の減圧の両方を
行いながら加熱を行うと、更に多層管状体の層間の融着
性が向上する。
The depressurizing force of the outer atmosphere of the multilayer tubular body is 50.
0 mmHg or more is preferable. If the decompression force is less than 500 mmHg, a sufficient lamination pressure cannot be obtained. Further, when heating is performed while both pressurizing the inner atmosphere and depressurizing the outer atmosphere of the multilayer tubular body, the fusion property between the layers of the multilayer tubular body is further improved.

【0028】以下、本発明の例を図面を参照して説明す
る。図1は、本発明の一例の工程を製造装置とともに説
明する正面図である。まず、製造装置について説明す
る。製造装置は、熱可塑性樹脂管を押し出す押出機1
と、押出機1の先端に装着された押出金型2と、第1サ
イジング装置3と、それに用いられる減圧ポンプ4と、
第1サイジング装置3の下流側の上下に配設されたシー
ト状帯状体A1が装着された巻戻しロール5,5と、筒
状金型6と、テープ状帯状体A2を巻回する為の巻回装
置7と、減圧加熱炉8と、加熱炉内を減圧吸引するため
の減圧ポンプ10と、第2サイジング装置11と、引取
機12とが順次配列されたものである。
An example of the present invention will be described below with reference to the drawings. FIG. 1 is a front view for explaining a process of an example of the present invention together with a manufacturing apparatus. First, the manufacturing apparatus will be described. The manufacturing apparatus is an extruder 1 for extruding a thermoplastic resin tube.
An extrusion die 2 attached to the tip of the extruder 1, a first sizing device 3, and a decompression pump 4 used therefor,
For winding the rewinding rolls 5 and 5 on which the sheet-shaped strips A1 arranged above and below the downstream side of the first sizing device 3 are mounted, the cylindrical mold 6, and the tape-shaped strip A2. A winding device 7, a decompression heating furnace 8, a decompression pump 10 for sucking a reduced pressure in the heating furnace, a second sizing device 11, and a take-up machine 12 are sequentially arranged.

【0029】次に、この製造装置を用いた本発明の一例
の工程を説明する。熱可塑性樹脂を押出機1にて混練し
溶融状態にて押出金型2より管状に押し出し、これを減
圧機能と冷却機能の双方の機能を兼ね備えた第1サイジ
ング装置3を通過させ、その内面の吸引孔より減圧吸引
し、熱可塑性樹脂Bを第1サイジング装置3の内面に密
着させながら、冷却水を第1サイジング装置3内部に通
水して冷却を行いながら、冷却、固化させにようにし
て、熱可塑性樹脂管B1を連続的に形成する。この際、
熱可塑性樹脂管B1は、完全に冷却する必要はなく、管
の形状変形が起こらない軟化温度以下になるように冷却
すれば十分である。
Next, the steps of an example of the present invention using this manufacturing apparatus will be described. The thermoplastic resin is kneaded in the extruder 1 and extruded in a molten state into a tubular form from the extrusion die 2, and this is passed through the first sizing device 3 having both the pressure reducing function and the cooling function, and the inner surface Vacuum suction is performed through the suction holes, while the thermoplastic resin B is brought into close contact with the inner surface of the first sizing device 3, cooling water is passed through the inside of the first sizing device 3 for cooling, and is then cooled and solidified. Thus, the thermoplastic resin tube B1 is continuously formed. On this occasion,
It is not necessary to completely cool the thermoplastic resin tube B1, but it is sufficient to cool the thermoplastic resin tube B1 to a softening temperature or lower at which the shape of the tube does not deform.

【0030】引き続いて、熱可塑性樹脂管B1の上下よ
り、2枚のシート状帯状体A1,A1にて連続繊維が軸
方向に沿うようにして熱可塑性樹脂管B1の周りに積層
して、これを筒状金型6内を通過させるることにより、
熱可塑性樹脂管B1の周りに第1の繊維強化熱可塑性樹
脂層を形成した2層管状体B2を形成する。
Subsequently, from above and below the thermoplastic resin tube B1, two continuous sheet fibers A1 and A1 are laminated around the thermoplastic resin tube B1 so that the continuous fibers are along the axial direction. By passing the inside of the cylindrical mold 6,
A two-layer tubular body B2 in which a first fiber-reinforced thermoplastic resin layer is formed around the thermoplastic resin tube B1 is formed.

【0031】次いで、その2層管状体B2の周りに、長
手方向に配された連続繊維に熱可塑性樹脂が保持された
テープ状帯状体A2を巻回装置7により張力を与えなが
ら略周方向に巻き付けて、2層管状体B1の周りに第2
の繊維強化熱可塑性樹脂層を積層した3層管B3を形成
する。
Around the two-layer tubular body B2, a tape-shaped strip A2 in which thermoplastic resin is held by continuous fibers arranged in the longitudinal direction is applied in a substantially circumferential direction while applying tension by a winding device 7. Wrap the second layer around the two-layer tubular body B1
A three-layer tube B3 in which the fiber-reinforced thermoplastic resin layer of is laminated is formed.

【0032】この3層管状体B3を減圧加熱炉8に導
き、減圧ポンプ10にて減圧吸引しつつ、外面に取り付
けられた加熱装置9により加熱すると、3層管状体B3
は軟化状態となり、減圧吸引により生ずる膨張圧力(積
層圧力)で各層界面を融着させる。
The three-layer tubular body B3 is introduced into the decompression heating furnace 8 and sucked under reduced pressure by the decompression pump 10 while being heated by the heating device 9 attached to the outer surface of the three-layer tubular body B3.
Becomes a softened state, and the interface of each layer is fused by the expansion pressure (laminating pressure) generated by vacuum suction.

【0033】この3層管状体B3を第2サイジング装置
11内を通過させて冷却を行う。第2サイジング装置1
1としては、冷却水槽を備えたサイジング装置が一般的
であるが、これに限られるものではない。上記のような
上記一連の工程を引取機12にて引き取りつつ行い、特
に図示しないが適宜長さに切断して、繊維強化熱可塑性
樹脂複合管Cを連続的に製造する。又、本発明の繊維強
化熱可塑性樹脂複合管の製造方法は、上記のような連続
製造だけでなく、バッチ式の製造方法としてもよい。
This three-layer tubular body B3 is passed through the inside of the second sizing device 11 for cooling. Second sizing device 1
As No. 1, a sizing device including a cooling water tank is generally used, but the present invention is not limited to this. The above-described series of steps is carried out while being taken by the take-up machine 12, and although not particularly shown, the fiber-reinforced thermoplastic resin composite pipe C is continuously manufactured by cutting it into an appropriate length. Further, the method for producing the fiber-reinforced thermoplastic resin composite pipe of the present invention may be not only the above continuous production but also a batch type production method.

【0034】図2は得られた繊維強化熱可塑性樹脂複合
管Cを示す一部切断斜視図である。繊維強化熱可塑性樹
脂複合管Cは、内層である熱可塑性樹脂管C1の周り
に、中間層である軸方向に沿って連続繊維が配列された
第1の繊維強化熱可塑性樹脂層C2が積層され、その周
りに外層としての略周方向に沿って連続繊維が配列され
た第2の繊維強化熱可塑性樹脂層C3が積層されて一体
化されている。
FIG. 2 is a partially cutaway perspective view showing the fiber reinforced thermoplastic resin composite pipe C thus obtained. In the fiber-reinforced thermoplastic resin composite pipe C, a first fiber-reinforced thermoplastic resin layer C2 in which continuous fibers are arranged along an axial direction which is an intermediate layer is laminated around a thermoplastic resin pipe C1 which is an inner layer. A second fiber-reinforced thermoplastic resin layer C3, in which continuous fibers are arranged as an outer layer along the substantially circumferential direction, is laminated and integrated around it.

【0035】[0035]

【作用】本発明の繊維強化熱可塑性樹脂複合管の製造方
法は、押出成形した熱可塑性樹脂管を一旦冷却固化し、
その熱可塑性樹脂管の周りに100〜5000gf/c
2 の張力を保持した状態で前記帯状体を巻き付けるこ
とにより、界面にボイドを巻き込みにくく、巻き付け力
により熱可塑性樹脂管が変形することがなく、長期にわ
たって使用しても界面剥離が殆んどなく、内外径及び肉
厚の寸法精度に優れた繊維強化熱可塑性樹脂複合管を得
ることができる。
The method for producing a fiber-reinforced thermoplastic resin composite pipe of the present invention is such that the extruded thermoplastic resin pipe is once cooled and solidified,
100-5000 gf / c around the thermoplastic tube
By winding the band-shaped body while maintaining the m 2 tension, it is difficult for voids to be caught in the interface, the thermoplastic resin tube is not deformed by the winding force, and the interfacial peeling hardly occurs even when used for a long period of time. It is possible to obtain a fiber-reinforced thermoplastic resin composite pipe excellent in dimensional accuracy of inner and outer diameters and wall thickness.

【0036】[0036]

【実施例】以下、本発明を実施例により説明する。実施例1 (1)シート状帯状体及びテープ状帯状体の製造 直径23μmのフィラメントより構成されるロービング
状のガラス繊維束(4,400tex)を、粉体状のポ
リ塩化ビニル樹脂(徳山積水社製、商品名「TS−10
00R」、ビカット軟化点:約80℃)の流動床中を通
過させて、繊維間に粉体状のポリ塩化ビニル樹脂を付着
させ、これを約200℃に加熱された一対の加熱ロール
により加熱圧着することにより、長手方向に配された連
続繊維に熱可塑性樹脂が保持された、シート状帯状体A
1(幅170mm、厚み0.5mm)と、テープ状帯状
体A2(幅40mm、厚み0.5mm)を作製した。そ
れらの繊維含有率はいずれも25重量%であった。
The present invention will be described below with reference to examples. Example 1 (1) Production of a sheet-shaped strip and a tape-shaped strip A roving-shaped glass fiber bundle (4,400 tex) composed of filaments having a diameter of 23 μm was mixed with a powdered polyvinyl chloride resin (Tokuyama Sekisuisha). Product name "TS-10"
00R ", Vicat softening point: about 80 ° C) to pass a powdered polyvinyl chloride resin between the fibers and heat it with a pair of heating rolls heated to about 200 ° C. A sheet-shaped strip A in which a thermoplastic resin is held by continuous fibers arranged in the longitudinal direction by pressing.
1 (width 170 mm, thickness 0.5 mm) and tape-shaped strip A2 (width 40 mm, thickness 0.5 mm) were produced. The fiber content of each of them was 25% by weight.

【0037】(2)繊維強化熱可塑性樹脂複合管の製造 図1を参照して説明した製造工程に準じて繊維強化熱可
塑性樹脂複合管の製造を行った。巻戻しロール5,5に
シート状帯状体A1,A1を装着し、巻回装置7にテー
プ状帯状体A2を装着した。
(2) Manufacture of Fiber Reinforced Thermoplastic Resin Composite Pipe A fiber reinforced thermoplastic resin composite pipe was manufactured according to the manufacturing process described with reference to FIG. The sheet-shaped strips A1 and A1 were mounted on the rewinding rolls 5 and 5, and the tape-shaped strip A2 was mounted on the winding device 7.

【0038】まず、ポリ塩化ビニル樹脂(徳山積水社
製、商品名「TS─1000」、ビカット軟化点:約8
0℃)を押出機1にて混練し溶融状態にて押出金型2よ
り管状に押し出し、内径寸法111mmの第1サイジン
グ装置3内を減圧ポンプ4により内面の吸引孔から70
0mmHgの減圧力で吸引してその内面に密着させ水冷
しつつ通過させて、外径111.2mmの熱可塑性樹脂
管B1を連続的に形成した。
First, polyvinyl chloride resin (manufactured by Tokuyama Sekisui company, trade name "TS-1000", Vicat softening point: about 8)
(0 ° C.) is kneaded by the extruder 1 and extruded in a molten state in a tubular form from the extrusion die 2, and the inside of the first sizing device 3 having an inner diameter of 111 mm is decompressed by the decompression pump 4 from the suction hole on the inner surface to 70 ° C.
It was sucked with a decompression force of 0 mmHg, brought into close contact with the inner surface thereof, and allowed to pass while being water-cooled to continuously form a thermoplastic resin tube B1 having an outer diameter of 111.2 mm.

【0039】引き続いて、熱可塑性樹脂管B1の上下よ
り、2枚のシート状帯状体A1,A1にて連続繊維が軸
方向に沿うようにして熱可塑性樹脂管B1の周りに積層
して、これを筒状金型6内を通過させることにより、熱
可塑性樹脂管B1の周りに第1の繊維強化熱可塑性樹脂
層を形成し、外径寸法112mmの2層管状体B2を形
成した。この時に2層管状体B2の温度は約50℃であ
った。
Subsequently, from above and below the thermoplastic resin tube B1, two continuous sheet fibers A1 and A1 are laminated around the thermoplastic resin tube B1 so that the continuous fibers are along the axial direction. Was passed through the cylindrical mold 6 to form a first fiber-reinforced thermoplastic resin layer around the thermoplastic resin tube B1 to form a two-layer tubular body B2 having an outer diameter of 112 mm. At this time, the temperature of the two-layer tubular body B2 was about 50 ° C.

【0040】この2層管状体B2の周りに、テープ状帯
状体A2を巻回装置7により張力を与えながら略周方向
に巻き付けて、2層管状体B2の周りに第2の繊維強化
熱可塑性樹脂層を積層した3層管状体B3を形成した。
このときの張力を、テンションメーター(シンポ工業社
製)にて測定したところ、1,500gf/cmであっ
た。
A tape-shaped strip A2 is wound around the two-layer tubular body B2 in a substantially circumferential direction while applying tension by a winding device 7, and a second fiber-reinforced thermoplastic resin is wound around the two-layer tubular body B2. A three-layer tubular body B3 in which resin layers were laminated was formed.
When the tension at this time was measured with a tension meter (manufactured by Shinpo Kogyo KK), it was 1,500 gf / cm.

【0041】この3層管状体B3を減圧加熱炉8に導
き、減圧ポンプ10にて700mmHgの減圧力にて減
圧吸引しつつ、外面に取り付けられた加熱装置9により
350℃に加熱すると、3層管状体B3は軟化状態とな
り、減圧吸引により生ずる膨張圧力(積層圧力)で各層
界面を融着させた。このときの3層管状体B3の温度は
175℃であり、樹脂の分解は起らなかった。
This three-layer tubular body B3 is introduced into the vacuum heating furnace 8 and is vacuum-sucked by the vacuum pump 10 with a vacuum pressure of 700 mmHg, while being heated to 350 ° C. by the heating device 9 mounted on the outer surface, the three-layer tubular body B3 is heated. The tubular body B3 was in a softened state, and the interfaces of the respective layers were fused by the expansion pressure (laminating pressure) generated by vacuum suction. At this time, the temperature of the three-layer tubular body B3 was 175 ° C., and the resin did not decompose.

【0042】この3層管状体B3を第2サイジング装置
11内を通過させて水冷し、これら一連の工程を引取機
12にて引き取りつつ行い、適宜長さに切断して、図2
に示す如き繊維強化熱可塑性樹脂複合管Cを得た。
This three-layer tubular body B3 is passed through the inside of the second sizing device 11 to be water-cooled, and a series of these steps is carried out while being taken by the take-up machine 12, cut into an appropriate length, and then, as shown in FIG.
A fiber reinforced thermoplastic resin composite pipe C as shown in (1) was obtained.

【0043】得られた繊維強化熱可塑性樹脂複合管Cの
断面の界面を観察したところボイドは見られず、界面が
強固に融着しており、外径は114.0±0.05m
m、内径は100.0±0.05mmと寸法のばらつき
は少なかった。
When the interface of the cross section of the obtained fiber-reinforced thermoplastic resin composite pipe C was observed, no void was observed, the interface was firmly fused, and the outer diameter was 114.0 ± 0.05 m.
m, the inner diameter was 100.0 ± 0.05 mm, and there were few dimensional variations.

【0044】実施例2 テープ状帯状体A2として、幅35mm、厚み0.7m
m、繊維含有率25重量%のものを用いたこと、テープ
状帯状体A2の巻回時の張力を700gf/cmとした
こと、減圧加熱炉の温度を340℃とし、減圧力を68
0mmHgとしたこと、このときの3層管状体B3の温
度は180℃で樹脂の分解を起らなかったこと以外は実
施例と同様にして、繊維強化熱可塑性樹脂複合管Cを得
た。
Example 2 A tape-shaped strip A2 having a width of 35 mm and a thickness of 0.7 m
m, a fiber content of 25% by weight, a winding tension of the tape-shaped strip A2 of 700 gf / cm, a decompression heating furnace temperature of 340 ° C., and a decompression force of 68.
A fiber-reinforced thermoplastic resin composite pipe C was obtained in the same manner as in the example except that the pressure was 0 mmHg, the temperature of the three-layer tubular body B3 was 180 ° C., and the resin did not decompose.

【0045】得られた繊維強化熱可塑性樹脂複合管Cの
断面の界面を観察したところボイドは見られず、界面が
強固に融着しており、外径は114.0±0.05m
m、内径は100.0±0.05mmと寸法のばらつき
は少なかった。
When the interface of the cross section of the obtained fiber reinforced thermoplastic resin composite pipe C was observed, no void was observed, the interface was firmly fused, and the outer diameter was 114.0 ± 0.05 m.
m, the inner diameter was 100.0 ± 0.05 mm, and there were few dimensional variations.

【0046】比較例1 テープ状帯状体A2の巻回時に張力をかけなかったこと
以外は実施例1と同様にして、繊維強化熱可塑性樹脂複
合管Cを得た。得られた繊維強化熱可塑性樹脂複合管C
の断面の界面を観察したところボイドが多く見うけら
れ、外径は114.0±0.4mm、内径は100.0
±0.4mmと寸法のばらつきが大きかった。
Comparative Example 1 A fiber-reinforced thermoplastic resin composite pipe C was obtained in the same manner as in Example 1 except that tension was not applied when the tape-shaped strip A2 was wound. Obtained fiber-reinforced thermoplastic resin composite pipe C
When observing the interface of the cross section, many voids were seen, the outer diameter was 114.0 ± 0.4 mm, and the inner diameter was 100.0.
There was a large variation of ± 0.4 mm.

【0047】比較例2 テープ状帯状体A2の巻回時の張力を6,000gf/
cmとしたこと以外は実施例1と同様にしたところ、張
力が強すぎで内層の熱可塑性樹脂管が変形してしまい、
繊維強化熱可塑性樹脂複合管Cを得ることができなかっ
た。
Comparative Example 2 The tension when the tape-shaped strip A2 was wound was 6,000 gf /
In the same manner as in Example 1 except that the pressure was set to cm, the tension was too strong and the thermoplastic resin tube of the inner layer was deformed,
The fiber reinforced thermoplastic resin composite pipe C could not be obtained.

【0048】実施例1,2及び比較例1で得られた繊維
強化熱可塑性樹脂複合管Cの5本ずつについて、冷熱繰
り返し試験を行って、両端部の界面の剥離状況を観察し
た。その結果を表1に示した。尚、冷熱条件としては、
85℃/25℃=5分/5分を1サイクルとし、水圧
1.5Kg/cm2 にて、2,000サイクル、5,0
00サイクル、10,000サイクルとした。
Each of the five fiber-reinforced thermoplastic resin composite pipes C obtained in Examples 1 and 2 and Comparative Example 1 was subjected to a cold heat repeating test to observe the peeling condition of the interfaces at both ends. The results are shown in Table 1. In addition, as the cold heat condition,
85 ° C / 25 ° C = 5 minutes / 5 minutes as one cycle, water pressure of 1.5 Kg / cm 2 , 2,000 cycles, 5,0
It was set to 00 cycles and 10,000 cycles.

【0049】評価基準としては、下記の通りとした。 ○:界面に剥離なし。 △:界面に幅5mm以下の剥離(亀裂)が1箇所見られ
た。 ×:界面に幅5mm以上の剥離(亀裂)が1箇所、又は
幅5mm以下の剥離(亀裂)が2箇所以上見られた。
The evaluation criteria are as follows. ◯: No peeling at the interface. Δ: One peeling (crack) having a width of 5 mm or less was found at the interface. X: Peeling (crack) with a width of 5 mm or more was observed at one place on the interface, or peeling (crack) with a width of 5 mm or less was seen at two or more places.

【0050】[0050]

【表1】 [Table 1]

【0051】上記の如く、本発明の実施例により得られ
た繊維強化熱可塑性樹脂複合管は長期間使用しても界面
が剥離せず、その寸法精度に優れている。
As described above, the fiber-reinforced thermoplastic resin composite pipes obtained according to the examples of the present invention have excellent dimensional accuracy without peeling of the interface even after long-term use.

【0052】[0052]

【発明の効果】本発明の繊維強化熱可塑性樹脂複合管の
製造方法は、上記の如き構成とされているので、界面に
ボイドを巻き込みにくく、長期にわたって使用しても界
面剥離が殆んどなく、内外径及び肉厚の寸法精度に優れ
た繊維強化熱可塑性樹脂複合管を得ることができる。
EFFECT OF THE INVENTION Since the method for producing a fiber-reinforced thermoplastic resin composite pipe of the present invention is constructed as described above, it is difficult for voids to be caught in the interface, and there is almost no interfacial peeling even when used for a long period of time. It is possible to obtain a fiber-reinforced thermoplastic resin composite pipe having excellent dimensional accuracy of inner and outer diameters and wall thickness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例の工程を製造装置とともに説明す
る正面図である。
FIG. 1 is a front view illustrating a process of an example of the present invention together with a manufacturing apparatus.

【図2】本発明により得られた繊維強化熱可塑性樹脂複
合管の一例を示す一部切欠き斜視図である。
FIG. 2 is a partially cutaway perspective view showing an example of a fiber-reinforced thermoplastic resin composite pipe obtained by the present invention.

【符号の説明】 A1 シート状帯状体 A2 テープ状帯状体 B1 熱可塑性樹脂管 B3 3層管状体 C 繊維強化熱可塑性樹脂複合管[Explanation of reference numerals] A1 sheet-shaped strip A2 tape-shaped strip B1 thermoplastic resin tube B3 three-layer tubular body C fiber-reinforced thermoplastic resin composite tube

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 101:12 105:08 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location // B29K 101: 12 105: 08

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 押出成形した熱可塑性樹脂管の周りに、
長手方向に配された連続繊維に熱可塑性樹脂が保持され
た帯状体を略周方向に巻き付けて繊維強化熱可塑性樹脂
層を積層して多層管状体を形成し、その多層管状体の内
側雰囲気の加圧もしくは外側雰囲気の減圧のいずれか又
はその両方の雰囲気条件下にて多層管状体を加熱し、熱
可塑性樹脂管と繊維強化熱可塑性樹脂層とを融着後一体
固化する繊維強化熱可塑性樹脂複合管の製造方法におい
て、押出成形した熱可塑性樹脂管を一旦冷却固化し、そ
の熱可塑性樹脂管の周りに100〜5,000gf/c
2 の張力を保持した状態で前記帯状体を巻き付けるこ
とを特徴とする繊維強化熱可塑性樹脂複合管の製造方
法。
1. Around an extruded thermoplastic resin tube,
A belt-shaped body in which a thermoplastic resin is held is wound around the continuous fibers arranged in the longitudinal direction in a substantially circumferential direction to form a multilayer tubular body by laminating a fiber-reinforced thermoplastic resin layer, and the inner atmosphere of the multilayer tubular body is formed. A fiber reinforced thermoplastic resin that heats a multilayer tubular body under either or both of pressurized conditions and depressurized outside atmospheres to fuse the thermoplastic resin tube and the fiber reinforced thermoplastic resin layer and then solidify them integrally. In the method for producing a composite pipe, the extruded thermoplastic resin pipe is once cooled and solidified, and 100 to 5,000 gf / c around the thermoplastic resin pipe.
A method for producing a fiber-reinforced thermoplastic resin composite pipe, which comprises winding the belt-shaped body while maintaining a tension of m 2 .
JP7131847A 1995-05-30 1995-05-30 Manufacture of fiber-reinforced thermosetting resin composite pipe Pending JPH08323882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7131847A JPH08323882A (en) 1995-05-30 1995-05-30 Manufacture of fiber-reinforced thermosetting resin composite pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7131847A JPH08323882A (en) 1995-05-30 1995-05-30 Manufacture of fiber-reinforced thermosetting resin composite pipe

Publications (1)

Publication Number Publication Date
JPH08323882A true JPH08323882A (en) 1996-12-10

Family

ID=15067507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7131847A Pending JPH08323882A (en) 1995-05-30 1995-05-30 Manufacture of fiber-reinforced thermosetting resin composite pipe

Country Status (1)

Country Link
JP (1) JPH08323882A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508888B1 (en) * 2002-04-09 2005-08-18 변무원 Double lay water pipe for underground installation and manufacturing apparatus with method thereof
KR100827271B1 (en) * 2007-10-22 2008-05-07 심일웅 The apparatus for manufacturing of high press pipe
JP2009045850A (en) * 2007-08-21 2009-03-05 Bridgestone Corp Manufacturing method of pipe with heat insulating material
CN110303694A (en) * 2019-05-31 2019-10-08 北京卫星制造厂有限公司 A kind of rapid molding device and method of continuous fiber reinforced composite materials pipe fitting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508888B1 (en) * 2002-04-09 2005-08-18 변무원 Double lay water pipe for underground installation and manufacturing apparatus with method thereof
JP2009045850A (en) * 2007-08-21 2009-03-05 Bridgestone Corp Manufacturing method of pipe with heat insulating material
KR100827271B1 (en) * 2007-10-22 2008-05-07 심일웅 The apparatus for manufacturing of high press pipe
CN110303694A (en) * 2019-05-31 2019-10-08 北京卫星制造厂有限公司 A kind of rapid molding device and method of continuous fiber reinforced composite materials pipe fitting

Similar Documents

Publication Publication Date Title
JPH0911355A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JP3117492B2 (en) Method for producing fiber reinforced thermoplastic resin tube
JP3119696B2 (en) Method for producing fiber-reinforced thermoplastic composite tube
JPH08323882A (en) Manufacture of fiber-reinforced thermosetting resin composite pipe
JPH0911354A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JP2659110B2 (en) Fiber reinforced resin composite pipe and method for producing the same
JPH07256779A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH07117178B2 (en) Composite pipe
JPH0531782A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH0584847A (en) Production of fiber reinforced thermoplastic resin pipe
JP2674844B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH0911353A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH044132A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH08267565A (en) Production of fiber reinforced thermoplastic resin composite pipe
JPH06344444A (en) Thermoplastic resin lined metallic pipe
JPH07132565A (en) Preparation of fiber-reinforced thermoplastic resin composite pipe
JPH086847B2 (en) Composite pipe and manufacturing method thereof
JPH0460292A (en) Manufacture of fiber reinforced resin pipe
JPH02165930A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JP2003205544A (en) Manufacturing method and equipment for thermoplastic resin hollow molding with reinforcing material wound around it
JPH0735270A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JP2726123B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH06340004A (en) Production of fiber-reinforced complex tube
JPH0716904A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH07144372A (en) Manufacture of fiber reinforced thermoplastic resin composite pipe