JPH0716904A - Manufacture of fiber reinforced thermoplastic resin composite tube - Google Patents

Manufacture of fiber reinforced thermoplastic resin composite tube

Info

Publication number
JPH0716904A
JPH0716904A JP5160758A JP16075893A JPH0716904A JP H0716904 A JPH0716904 A JP H0716904A JP 5160758 A JP5160758 A JP 5160758A JP 16075893 A JP16075893 A JP 16075893A JP H0716904 A JPH0716904 A JP H0716904A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin
fiber
composite
tubular body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5160758A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugawara
宏 菅原
Koichi Adachi
浩一 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP5160758A priority Critical patent/JPH0716904A/en
Publication of JPH0716904A publication Critical patent/JPH0716904A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a uniform sufficient fusion weld strength of a thermoplastic resin- coated layer by a method wherein an atmosphere near a contact interface between a resin-coated surface of a tubular material and extruded y' resin is made to be in a pressure-reduced state when thermoplastic resin is extrusion coated. CONSTITUTION:A sheet from which pressure is reduced is inserted into a U-shaped gap of a metal mold 29. The sheet is formed into a tubular material from the U-shape inside the metal mold 29. Molten resin 13 is extruded inside a formed fiber reinforced thermo-plastic resin tubular material 24 to be laminated inside that, which is introduced to a heating part. An interface between a fiber-reinforced layer and a resin layer is heated to a melting temperature or higher. Besides, an inside of the tube is pressurized from an air vent 31, which is pushed against the inner face of the metal mold. A two-layers tube which is integrated by fusion weld is introduced into a cooling metal mold 34 of a specific inner diameter provided via a thermal insulating material 33, stuck fast to each other, and cooled to at most a softening temperature of the resin to obtain a composite tube 25 wherein a thermoplastic resin-coated layer 22 is formed on the inner surface of the fiber reinforced thermoplastic resin tubular material 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、繊維強化熱可塑性樹脂
管状体とこれの内面に形成された熱可塑性樹脂被覆層と
からなる繊維強化熱可塑性樹脂複合管の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber-reinforced thermoplastic resin composite pipe comprising a fiber-reinforced thermoplastic resin tubular body and a thermoplastic resin coating layer formed on the inner surface thereof.

【0002】[0002]

【従来の技術】一般に、繊維強化樹脂管(FRP管)
は、金属管に比べて軽量で錆びず、また合成樹脂管に比
べて高強度であるため、配管用部材や構造部材として広
く用いられている。
2. Description of the Related Art Generally, a fiber reinforced resin pipe (FRP pipe)
Is lighter than a metal pipe, does not rust, and has higher strength than a synthetic resin pipe, and is therefore widely used as a pipe member or a structural member.

【0003】従来の繊維強化樹脂管の製造方法は、液状
の熱硬化性樹脂原料配合物を含浸させた連続強化繊維を
マンドレルに巻き付け、そのまま加熱炉で加熱して樹脂
配合物を硬化させて、繊維強化樹脂管を形成した後、繊
維強化樹脂管からマンドレルを抜き取るいわゆるフィラ
メントワインディング法により製造されていた。
In the conventional method for producing a fiber-reinforced resin pipe, continuous reinforcing fibers impregnated with a liquid thermosetting resin raw material composition are wound around a mandrel and heated in a heating furnace as it is to cure the resin composition. After the fiber-reinforced resin pipe was formed, the mandrel was extracted from the fiber-reinforced resin pipe by the so-called filament winding method.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の繊維強化樹脂管の製造方法では、熱硬化性樹
脂配合物を加熱硬化させるために長時間を要し、生産性
に劣るという問題があった。
However, in such a conventional method for producing a fiber-reinforced resin pipe, there is a problem that it takes a long time to heat-harden the thermosetting resin compound, resulting in poor productivity. there were.

【0005】そこで、この問題を解決するため、本出願
人は先に、繊維強化熱可塑性樹脂複合体(繊維複合体)
の管状体の内面および外面に熱可塑性樹脂被覆層を設け
た複合管の製造方法を提案した(特開平3−15821
9号参照)。この提案による複合管の製造方法は、長手
方向に配された連続繊維に熱可塑性樹脂が保持されてな
るシート状繊維複合体から管状体を連続成形する工程
と、管状体を前進させつつ、その内面および外面に沿っ
て、溶融熱可塑性樹脂を押出しにより積層する工程とに
より、強化繊維が軸方向に配された強化層と熱可塑性樹
脂による被覆層とを形成して、積層管とするというもの
であった。
Therefore, in order to solve this problem, the present applicant has previously proposed a fiber-reinforced thermoplastic resin composite (fiber composite).
Has proposed a method for manufacturing a composite pipe in which a thermoplastic resin coating layer is provided on the inner surface and the outer surface of the tubular body of JP-A-3-15821.
(See No. 9). The method for producing a composite pipe according to this proposal is a step of continuously forming a tubular body from a sheet-shaped fiber composite in which a thermoplastic resin is held in continuous fibers arranged in the longitudinal direction, and while advancing the tubular body, A process in which a molten thermoplastic resin is laminated by extrusion along the inner surface and the outer surface to form a reinforcing layer in which reinforcing fibers are arranged in the axial direction and a coating layer made of the thermoplastic resin to form a laminated pipe. Met.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記先
提案による複合管の製造方法では、管状体の内面および
外面に、溶融熱可塑性樹脂を押出しにより積層する際
に、積層界面すなわち管状体の樹脂被覆面と、押出し溶
融樹脂との接触界面にエアーが混入し、このため、熱可
塑性樹脂被覆層の均一かつ充分な融着強度が得られず、
従って得られた複合管内に例えば温水を流通させた場
合、あるいは複合管を高温下で使用した場合には、層間
剥離あるいは融着強度の劣化が著しい部位が生じるとい
う問題があった。
However, in the method of manufacturing the composite pipe according to the above-mentioned proposal, when the molten thermoplastic resin is laminated on the inner surface and the outer surface of the tubular body by extrusion, the lamination interface, that is, the resin coating of the tubular body. Air is mixed in the surface and the contact interface between the extruded molten resin, and therefore the uniform and sufficient fusion bonding strength of the thermoplastic resin coating layer cannot be obtained,
Therefore, when hot water is circulated in the obtained composite pipe, or when the composite pipe is used at a high temperature, there is a problem that a portion where delamination or fusion strength is significantly deteriorated.

【0007】本発明は、上記の問題を解決するためにな
されたもので、その目的とするところは、繊維強化熱可
塑性樹脂管状体の内面に溶融熱可塑性樹脂を押出しによ
り被覆する際に、管状体の樹脂被覆面と、押出し溶融樹
脂との接触界面にエアーが混入せず、従って熱可塑性樹
脂被覆層の均一かつ充分な融着強度を得ることができ
て、例えば複合管内に温水を流通させた場合や、複合管
を高温下で使用した場合にも、層剥離あるいは融着強度
の劣化が生じない繊維強化熱可塑性樹脂複合管の製造方
法を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a tubular body when a molten thermoplastic resin is coated on the inner surface of a fiber-reinforced thermoplastic resin tubular body by extrusion. Air is not mixed in the contact surface between the resin-coated surface of the body and the extruded molten resin, and therefore a uniform and sufficient fusion-bonding strength of the thermoplastic resin-coated layer can be obtained, and for example, hot water is circulated in the composite pipe. It is an object of the present invention to provide a method for producing a fiber-reinforced thermoplastic resin composite pipe which does not cause delamination or deterioration in fusion strength even when the composite pipe is used at high temperature.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明における繊維強化熱可塑性樹脂複合管の製
造方法は、繊維強化熱可塑性樹脂管状体の内面に、溶融
熱可塑性樹脂を押出しにより被覆して、熱可塑性樹脂被
覆層を連続的に形成する複合管の製造方法であって、上
記溶融熱可塑性樹脂の押出し被覆の際に、管状体の樹脂
被覆面と、押出し溶融樹脂との接触界面付近の雰囲気を
減圧状態とすることを特徴としている。
In order to achieve the above object, a method for producing a fiber-reinforced thermoplastic resin composite pipe according to the present invention is to extrude a molten thermoplastic resin onto an inner surface of a fiber-reinforced thermoplastic resin tubular body. A method for producing a composite pipe in which a thermoplastic resin coating layer is continuously formed by coating with a resin coating surface of a tubular body and an extruded molten resin during extrusion coating of the molten thermoplastic resin. It is characterized in that the atmosphere near the contact interface is depressurized.

【0009】上記において、繊維強化熱可塑性樹脂管状
体は、長手方向に配された連続強化繊維と熱可塑性樹脂
が一体化されてなるシート状繊維複合体を連続的に管状
に賦形したものを用いる場合があり、この場合には、長
手方向に配された連続強化繊維と熱可塑性樹脂とよりな
る繊維強化熱可塑性樹脂シートを連続的に管状に賦形し
て、繊維強化熱可塑性樹脂管状体を形成し、この管状体
を前進させつつ管状体の内面に、溶融熱可塑性樹脂を押
出しにより被覆して、熱可塑性樹脂被覆層を連続的に形
成する複合管の製造方法であって、上記溶融熱可塑性樹
脂の押出し被覆の際に、管状体の樹脂被覆面と、押出し
溶融樹脂との接触界面付近の雰囲気を減圧状態とするも
のである。
In the above description, the fiber-reinforced thermoplastic resin tubular body is formed by continuously shaping the sheet-shaped fiber composite in which continuous reinforcing fibers arranged in the longitudinal direction and the thermoplastic resin are integrated into a tubular shape. In some cases, a fiber-reinforced thermoplastic resin sheet composed of a continuous reinforcing fiber and a thermoplastic resin arranged in the longitudinal direction is continuously formed into a tubular shape to form a fiber-reinforced thermoplastic resin tubular body. And a method for producing a composite pipe in which the inner surface of the tubular body is coated by extrusion of a molten thermoplastic resin while advancing the tubular body to continuously form a thermoplastic resin coating layer, wherein During extrusion coating of the thermoplastic resin, the atmosphere in the vicinity of the contact interface between the resin coating surface of the tubular body and the extruded molten resin is depressurized.

【0010】本発明の方法において用いる熱可塑性樹脂
は、特に限定されず、得られる複合管の使用目的に適し
た熱可塑性樹脂であって、例えば、ポリ塩化ビニル、塩
素化ポリ塩化ビニル、ポリエチレン、ポリプロピレン、
ポリスチレン、ポリアミド、ポリカーボネート、ポリフ
ェニレンサルファイド、ポリスルホン、ポリエーテルエ
ーテルケトン等が挙げられる。
The thermoplastic resin used in the method of the present invention is not particularly limited, and is a thermoplastic resin suitable for the purpose of use of the obtained composite pipe, and examples thereof include polyvinyl chloride, chlorinated polyvinyl chloride, polyethylene, polypropylene,
Examples thereof include polystyrene, polyamide, polycarbonate, polyphenylene sulfide, polysulfone, and polyether ether ketone.

【0011】これらの熱可塑性樹脂は、単独で用いても
よいし、あるいは複数の樹脂を混合して用いても良い。
またこれらの熱可塑性樹脂には、熱安定剤、可塑剤、滑
剤、酸化防止剤、紫外線吸収剤、顔料、無機充填材、強
化繊維などの添加剤、充填材、加工助剤、改質剤等を加
えてもよい。
These thermoplastic resins may be used alone or as a mixture of a plurality of resins.
In addition, these thermoplastic resins include heat stabilizers, plasticizers, lubricants, antioxidants, ultraviolet absorbers, pigments, inorganic fillers, additives such as reinforcing fibers, fillers, processing aids, modifiers, etc. May be added.

【0012】また、上記繊維強化熱可塑性樹脂管状体に
用いられる樹脂と、管状体の内面の熱可塑性樹脂被覆層
を構成する熱可塑性樹脂は、相互に同一であるのが好ま
しいが、同一である必要はとくになく、管状体と樹脂被
覆層との融着界面が容易に破断しない程度に融着性を有
する樹脂であれば、両者は互いに異なるものであっても
よい。
Further, the resin used for the fiber-reinforced thermoplastic resin tubular body and the thermoplastic resin forming the thermoplastic resin coating layer on the inner surface of the tubular body are preferably the same, but the same. There is no particular need, and the two may be different from each other as long as the resin has a fusion property such that the fusion interface between the tubular body and the resin coating layer is not easily broken.

【0013】さらに、上記繊維強化熱可塑性樹脂管状体
に用いられる繊維は、直径1〜数十μmの連続フィラメ
ントよりなるロービング状またはストランド状のものが
挙げられる。この繊維としては、ガラス繊維、炭素繊
維、金属繊維、アラミド繊維、ビニロン等の合成もしく
は天然の有機繊維などであって、熱可塑性樹脂の補強繊
維として使用可能な繊維のすべてが好適に使用される。
Further, the fibers used for the above-mentioned fiber-reinforced thermoplastic resin tubular body include roving-like or strand-like ones composed of continuous filaments having a diameter of 1 to several tens of μm. This fiber is a synthetic or natural organic fiber such as glass fiber, carbon fiber, metal fiber, aramid fiber, or vinylon, and all of the fibers that can be used as the reinforcing fiber of the thermoplastic resin are preferably used. .

【0014】なお、上記繊維強化熱可塑性樹脂管状体は
2層以上の積層構成となされる場合もあり、その際に各
層に使用される繊維は、同じ種類の繊維であってもよい
し、また異なる種類の繊維であってもよい。
In some cases, the fiber-reinforced thermoplastic resin tubular body may have a laminated structure of two or more layers, and the fibers used in each layer at that time may be the same type of fibers, or Different types of fibers may be used.

【0015】また、シート状繊維複合体はそのフィラメ
ント一本一本の間に熱可塑性樹脂が充分に含浸し、保持
した状態の複合体が好ましく、このような連続繊維が補
強していることが管の水密姓などを高める点で好まし
い。
Further, the sheet-shaped fiber composite is preferably a composite in which the thermoplastic resin is sufficiently impregnated between the filaments and held, and such a continuous fiber is reinforced. It is preferable because it improves the watertightness of the pipe.

【0016】請求項2におけるシート状繊維複合体の
幅、厚みは特に限定されないが、幅はこれより形成され
る管状体の外周長さとほゞ等しく、また厚みは、通常
は、0.1〜3mmである。シート状繊維複合体中の繊
維量は、通常5〜70容量%である。5容量%未満では
充分な補強効果が得られず、70容量%を超えると充分
に熱可塑性樹脂が含浸せず融着が困難になりかえって補
強効果が小さくなる。
The width and thickness of the sheet-shaped fiber composite in claim 2 are not particularly limited, but the width is approximately equal to the outer peripheral length of the tubular body formed therefrom, and the thickness is usually 0.1 to 0.1. It is 3 mm. The amount of fibers in the sheet-shaped fiber composite is usually 5 to 70% by volume. If it is less than 5% by volume, a sufficient reinforcing effect cannot be obtained, and if it exceeds 70% by volume, the thermoplastic resin is not sufficiently impregnated and fusion bonding becomes difficult, and the reinforcing effect becomes small.

【0017】またシート状繊維複合体は、その内部にネ
ット状補強繊維が一体化されたものであっても良く、短
繊維がランダム配向したマット状物が熱可塑性樹脂フィ
ルムによって融着一体化されたものであってもよい。
The sheet-like fiber composite may be one in which net-like reinforcing fibers are integrated inside, and a mat-like material in which short fibers are randomly oriented is fused and integrated by a thermoplastic resin film. It may be

【0018】シート状繊維複合体を得るには、例えばま
ず連続繊維間に熱可塑性樹脂を付着、捕捉させた後、樹
脂を加熱・加圧溶融して連続繊維中に含浸させたのち、
冷却・賦形するが、具体的には、多数のフィラメントよ
り構成されるロービング状もしくはストランド状の連続
繊維材を、(i) 粉体状熱可塑性樹脂の流動床中を通過さ
せ、あるいは(ii)粉体状熱可塑性樹脂を分散した液体の
槽中を通過させることにより、粉体状熱可塑性樹脂をフ
ィラメント間に含浸させ、続いて溶融温度以上に加熱し
て繊維と樹脂を一体化せしめるか、または含浸させて一
旦乾燥させた後に、溶融温度以上に加熱して繊維と樹脂
を一体化せしめる。また溶融粘度が低い樹脂の場合に
は、上記連続繊維材を溶融樹脂の槽中に浸漬する方法で
含浸させることも可能である。
To obtain a sheet-shaped fiber composite, for example, a thermoplastic resin is first adhered to and trapped between continuous fibers, and then the resin is heated and pressure-melted to impregnate the continuous fibers,
Although it is cooled and shaped, specifically, a roving-shaped or strand-shaped continuous fiber material composed of a large number of filaments is passed through (i) a fluidized bed of powdered thermoplastic resin, or (ii) ) Is it possible to impregnate the powdery thermoplastic resin between the filaments by passing through a bath of a liquid in which the powdery thermoplastic resin is dispersed, and then to heat it above the melting temperature to integrate the fiber and resin? Or, after impregnation and once drying, the fibers and the resin are integrated by heating above the melting temperature. Further, in the case of a resin having a low melt viscosity, the continuous fiber material can be impregnated by a method of immersing the continuous fiber material in a bath of the molten resin.

【0019】また上記複合管の製造方法において、溶融
熱可塑性樹脂の押出し被覆の際に、管状体の樹脂被覆面
と、押出し溶融樹脂との接触界面付近の雰囲気を減圧状
態とするが、このときの圧力の好適な範囲は、700〜
750mmHg、好ましくは720〜730mmHgで
ある。
Further, in the above method for producing a composite pipe, when the molten thermoplastic resin is extrusion-coated, the atmosphere in the vicinity of the contact interface between the resin-coated surface of the tubular body and the extruded molten resin is depressurized. The preferred range of pressure is 700 to
750 mmHg, preferably 720-730 mmHg.

【0020】[0020]

【作用】上記において、繊維で強化された熱可塑性樹脂
複合体を加熱すると、複合体の表面に繊維の浮き出し
や、複合体表面に凹凸が発生する。このような複合体の
内面に熱可塑性樹脂を押し出し被覆すると、複合体凹部
にエアーを巻き込み、界面の接触面積が小さくなり、積
層界面の融着性が悪くなる。
In the above, when the thermoplastic resin composite reinforced with fibers is heated, the fibers stand out on the surface of the composite or the surface of the composite becomes uneven. When a thermoplastic resin is extruded and coated on the inner surface of such a composite, air is entrapped in the recess of the composite, the contact area of the interface becomes small, and the fusion property of the laminated interface becomes poor.

【0021】本発明の方法によれば、繊維強化熱可塑性
樹脂管状体の内面または外面に、溶融熱可塑性樹脂を押
出しにより被覆して、熱可塑性樹脂被覆層を連続的に形
成する際に、管状体の樹脂被覆面と、押出し溶融樹脂と
の接触界面付近の雰囲気を減圧状態としているから、複
合体表面に凹凸が発生しても、複合体凹部にエアーの巻
き込みを生じることなく押し出し積層できるため、積層
界面の融着が均一でより強固になり、熱可塑性樹脂被覆
層の均一かつ充分な融着強度を得ることができる。従っ
て例えば複合管内に温水を流通させた場合や、複合管を
高温下で使用した場合にも、層剥離あるいは融着強度の
劣化が生じない。
According to the method of the present invention, the inner surface or the outer surface of the fiber-reinforced thermoplastic resin tubular body is coated with the molten thermoplastic resin by extrusion to form a thermoplastic resin coating layer continuously, Since the atmosphere in the vicinity of the contact interface between the resin-coated surface of the body and the extruded molten resin is in a reduced pressure state, even if irregularities occur on the surface of the composite, extrusion lamination can be performed without air entrapment in the recesses of the composite. Further, the fusion of the lamination interface becomes uniform and stronger, and the thermoplastic resin coating layer can have uniform and sufficient fusion strength. Therefore, for example, when hot water is circulated in the composite pipe or when the composite pipe is used at a high temperature, delamination or deterioration in fusion strength does not occur.

【0022】また、上記繊維強化熱可塑性樹脂管状体と
しては、長手方向に配された連続強化繊維と熱可塑性樹
脂が一体化されてなるシート状繊維複合体を連続的に管
状に賦形したものを用いる場合がある。この場合には、
長手方向に配された連続強化繊維と熱可塑性樹脂とより
なる繊維強化熱可塑性樹脂シートより連続的に賦形した
管状体を前進させながら、これの内面または外面に、同
様に減圧状態を保持しつつ、溶融熱可塑性樹脂を押出し
により被覆して、熱可塑性樹脂被覆層を連続的に形成す
ればよく、これによっても同様に押出し溶融樹脂との接
触界面にエアーが混入せず、熱可塑性樹脂被覆層の均一
かつ充分な融着強度を得ることができる。
The fiber-reinforced thermoplastic resin tubular body is formed by continuously shaping a sheet-shaped fiber composite in which continuous reinforcing fibers arranged in the longitudinal direction and a thermoplastic resin are integrated into a tubular shape. May be used. In this case,
While continuously advancing a tubular body shaped continuously from a fiber reinforced thermoplastic resin sheet composed of continuous reinforcing fibers and a thermoplastic resin arranged in the longitudinal direction, similarly hold a depressurized state on its inner surface or outer surface. Meanwhile, the molten thermoplastic resin may be coated by extrusion to form a thermoplastic resin coating layer continuously, and this also similarly prevents air from being mixed into the contact interface with the extruded molten resin, and the thermoplastic resin coating A uniform and sufficient fusion bonding strength of the layer can be obtained.

【0023】なお、本発明の繊維強化熱可塑性樹脂複合
管の製造方法では、管状体の内面および外面の両方に、
熱可塑性樹脂被覆層を形成してもよい。
In the method for producing a fiber-reinforced thermoplastic resin composite pipe of the present invention, both the inner surface and the outer surface of the tubular body are
You may form a thermoplastic resin coating layer.

【0024】[0024]

【実施例】つぎに、この発明の実施例を図面に基づいて
説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0025】実施例1 〔シート状繊維複合体の製造方法〕本実施例で用いるシ
ート状繊維複合体は、前記(i) の方法を用いて以下のよ
うに製造した。
Example 1 [Method for producing sheet-shaped fiber composite] The sheet-shaped fiber composite used in this example was produced as follows using the method (i).

【0026】熱可塑性樹脂には下記の樹脂組成物(A)
を使用した。
For the thermoplastic resin, the following resin composition (A) is used.
It was used.

【0027】 樹脂組成物(A) 塩素化ポリ塩化ビニル樹脂 (塩素化度67%、重合度1000、粒径約80μm) 100重量部 錫系熱安定剤 4重量部 ステアリルアルコール 2重量部 ポリエチレンワックス 0.5重量部 図1に示すように、直径23μmのフィラメントより構
成される連結強化繊維としてのガラス繊維ロービング
(4400tex)(1) の10本をシート状に上下2段
に並べ、上記樹脂組成物(A)からなる粉体状熱可塑性
樹脂組成物(2) が、矢印の方向より圧送されるエアー
(3) により流動化されて形成されている流動床(4) 中を
通過させて、ガラス繊維ロービング(1) のフィラメント
に組成物(2)を付着させた後、上下のガラス繊維ロービ
ング(1)(1)の間にネット状のガラス繊維材(6) を挾み込
むとともに、約220℃に加熱された一対の加熱ロール
(5) により加熱・加圧し組成物(2) を溶融含浸させてシ
ート状ガラス繊維複合体(7) を得た。ここで、ガラス繊
維複合体(7) の樹脂とガラス繊維との重量割合は、樹
脂:ガラス繊維=70:30であった。
Resin composition (A) Chlorinated polyvinyl chloride resin (chlorination degree 67%, polymerization degree 1000, particle size about 80 μm) 100 parts by weight Tin-based heat stabilizer 4 parts by weight stearyl alcohol 2 parts by weight Polyethylene wax 0 0.5 parts by weight As shown in FIG. 1, ten glass fiber rovings (4400 tex) (1) as connecting reinforcing fibers composed of filaments having a diameter of 23 μm were arranged in a sheet shape in two layers, and the resin composition Air in which the powdery thermoplastic resin composition (2) comprising (A) is pressure-fed in the direction of the arrow.
After passing through the fluidized bed (4) fluidized by (3) to attach the composition (2) to the filaments of the glass fiber roving (1), the upper and lower glass fiber roving (1) ) A pair of heating rolls, which are heated to approximately 220 ° C, with a net-shaped glass fiber material (6) sandwiched between (1)
The composition (2) was melted and impregnated by heating and pressurizing with (5) to obtain a sheet-shaped glass fiber composite (7). Here, the weight ratio of the resin to the glass fiber of the glass fiber composite (7) was resin: glass fiber = 70: 30.

【0028】〔繊維強化熱可塑性樹脂管状体の製造方
法〕次にまず、この発明の実施に使用する装置につき、
図面を参照して説明する。以下の説明において、前とは
図2の右方向をいうものとする。
[Manufacturing Method of Fiber Reinforced Thermoplastic Resin Tubular Body] Next, an apparatus used for carrying out the present invention will be described.
A description will be given with reference to the drawings. In the following description, the term “front” means the right direction in FIG. 2.

【0029】図2に示す繊維複合管の製造装置は、シー
ト状繊維複合体(7) (幅=90mm、厚み=0.5m
m)が巻回されている巻戻しロール(26)と、内層熱可塑
性樹脂押出し用押出し機(28)と、図3〜図5に示すよう
に、その前方に配置され、先端部が前向き直角に折曲げ
られ且つその前方に円形のスリット部が設けられた、シ
ートを円形に賦形することのできる外金型(29)および内
金型(29') と、金型後方に取り付けられた減圧金型(9)
と、減圧金型に連結された真空ポンプ(10)を配置する。
The apparatus for producing a fiber composite tube shown in FIG. 2 has a sheet-like fiber composite (7) (width = 90 mm, thickness = 0.5 m).
m) is wound around the rewinding roll (26), the inner layer thermoplastic resin extruding machine (28), and as shown in FIG. 3 to FIG. The outer mold (29) and the inner mold (29 '), which can be formed into a circular shape, are attached to the rear of the mold, which is bent to the front and has a circular slit part in front of it. Vacuum mold (9)
And a vacuum pump (10) connected to the depressurization mold.

【0030】また、図6に示すようなU字形に間隙(8a)
を設けたシール用ゴム板(8) が減圧金型(9) の後部にボ
ルト(11)等によって固定されている。さらに、金型(29)
の後端部に固定され、前方に突き出した中心に通気孔(3
1)のある管形状の内コア(30)と、この通気孔(31)を通じ
て複合管内部を加圧するための空気圧発生装置(32)を配
置する。さらに、金型の前方に設けられた断熱材(33)と
冷却金型(34)と、内コア(30)先端に取り付けられたワイ
ヤー(20)と、ワイヤー(20)の先端に取り付けられ、管の
内側の空気を密閉することのできるシール板(21)と、そ
の前方に配置された引取機(23)(図11において例示)
とを備えているものである。
A U-shaped gap (8a) is formed as shown in FIG.
A rubber plate for sealing (8) provided with is fixed to the rear part of the pressure reducing mold (9) with bolts (11) and the like. Furthermore, the mold (29)
It is fixed to the rear end of the
1) A tube-shaped inner core (30) and an air pressure generator (32) for pressurizing the inside of the composite pipe through the vent hole (31) are arranged. Furthermore, the heat insulating material (33) provided in front of the mold, the cooling mold (34), the wire (20) attached to the tip of the inner core (30), and the tip of the wire (20), A seal plate (21) capable of sealing the air inside the pipe, and a take-up machine (23) arranged in front of it (illustrated in FIG. 11)
It is equipped with and.

【0031】金型(29)の後方および、減圧金型(9) の後
方にはシート状繊維複合体(7) の挿入できるU字形の隙
間(9a)が設けられており、隙間よりシート状繊維複合体
(7)を挿入し減圧金型(9) 内でシートがU字状態にある
うちに減圧金型内でシート内部、外部を減圧ポンプ(10)
を用いて720mmHgに減圧する。
A U-shaped gap (9a) into which the sheet-shaped fiber composite (7) can be inserted is provided behind the mold (29) and behind the decompression mold (9). Fiber composite
(7) is inserted and while the seat is in U-shape in the decompression die (9), the decompression pump (10) is installed inside and outside the seat in the decompression die.
Is used to reduce the pressure to 720 mmHg.

【0032】該減圧されたシートを減圧状態を保持した
まま金型(29)のU字形の間隙に挿入し、金型(29)内部で
シートをU字形から外径28.8mm、厚み0.5mm
の管状体に連続的に賦形し、形成された繊維強化熱可塑
性樹脂管状体(24)の内側に溶融した塩素化ポリ塩化ビニ
ル樹脂(平均重合度=1000)(13)を内側に押出し積
層し、加熱装置(35)により220℃に保持された加熱部
に導入し、少なくとも繊維強化層と樹脂層の界面が溶融
温度以上に加熱すると同時に管の内側を内コアの通気孔
(31)より0.5kg/cm2 の圧力で加圧し、金型内面
に押し当てることにより強化層同士を融着一体化させ
る。該融着一体化された2層管を断熱材(33)を介して設
けられた内径一定の冷却金型(34)に導入、密着させ、樹
脂の軟化温度以下に冷却し、繊維強化熱可塑性樹脂管状
体(24)の内面に熱可塑性樹脂被覆層(22)が形成された外
径28.8、肉厚1.5mmの繊維強化熱可塑性樹脂複
合管(25)を得た。上記一連の工程を引取機(23)で連続的
に引き取りつつ行い、複合管(25)を連続的に成形した。
The depressurized sheet is inserted into the U-shaped gap of the mold (29) while maintaining the depressurized state, and inside the mold (29), the sheet is deformed from the U-shape to an outer diameter of 28.8 mm and a thickness of 0. 5 mm
Of the fiber-reinforced thermoplastic resin tubular body (24) formed by continuously shaping into a tubular body of, and chlorinated polyvinyl chloride resin (average degree of polymerization = 1000) (13) extruded and laminated inside Then, it is introduced into a heating section maintained at 220 ° C. by a heating device (35) to heat at least the interface between the fiber reinforced layer and the resin layer to a melting temperature or higher, and at the same time, the inside of the tube is vented to the inner core
From (31), a pressure of 0.5 kg / cm 2 is applied and pressed against the inner surface of the mold to fuse and integrate the reinforcing layers. The fusion-integrated two-layer pipe is introduced into a cooling mold (34) having a constant inner diameter provided through a heat insulating material (33) and brought into close contact with it, cooled to a temperature not higher than the softening temperature of the resin, and fiber-reinforced thermoplastic A fiber reinforced thermoplastic resin composite pipe (25) having an outer diameter of 28.8 and a thickness of 1.5 mm, in which the thermoplastic resin coating layer (22) was formed on the inner surface of the resin tubular body (24), was obtained. The above-mentioned series of steps was continuously carried out by the take-up machine (23) to continuously form the composite pipe (25).

【0033】実施例2 実施例1と以下の点が相違するのみで、他は実施例1と
同じ工程を経て、図9に示すような2層の繊維強化樹脂
層(26')(27')よりなる内径50mm、外径54mmの繊
維熱可塑性樹脂複合管を製造した。
Example 2 Only the following points are different from Example 1, and the other steps are the same as those of Example 1, and two fiber reinforced resin layers (26 ') and (27') as shown in FIG. 9 are obtained. ), A fibrous thermoplastic resin composite tube having an inner diameter of 50 mm and an outer diameter of 54 mm was manufactured.

【0034】(I) 内層押出用熱可塑性樹脂として、ポ
リプロピレン樹脂(MI=0.5)を用いた。
(I) A polypropylene resin (MI = 0.5) was used as the thermoplastic resin for the inner layer extrusion.

【0035】(II) シート状繊維複合体用粉体状熱可塑
性樹脂としてポリプロピレン樹脂(MI=0.5、平均
粒径=200μm)を用いた。図1に示す装置のうち、
上側の流動床(4) のみを用いて実施例1と同様の成形方
法にて(但し、ガラスネット(6) は挿入せず)、シート
状ガラス繊維複合体(27)(厚さ0.4mm)を得た。こ
のガラス繊維複合体(27)を図10に示すように、長さ5
0mm、直径7〜13μmのフィラメントより構成され
る厚み約2mmのガラスマット(ニードリング処理し
た)の上下にポリプロピレン樹脂(MI=0.5)から
なるシート(厚み=0.3mm)と共に上下無端ベルト
(38)(39)中に引き込み、加熱炉(40)にて樹脂を溶融温度
に加熱した後、プレスロール(41)にてプレス、冷却し、
シート状繊維複合体補強体(37)を得た。樹脂とガラス繊
維との重量割合は、樹脂:ガラス繊維=60:40であ
った。
(II) A polypropylene resin (MI = 0.5, average particle size = 200 μm) was used as the powdery thermoplastic resin for the sheet-shaped fiber composite. Of the devices shown in FIG.
A sheet-like glass fiber composite (27) (thickness: 0.4 mm) was prepared by using the upper fluidized bed (4) only and by the same molding method as in Example 1 (however, the glass net (6) was not inserted). ) Got. This glass fiber composite (27) has a length of 5
An upper and lower endless belt together with a sheet (thickness = 0.3 mm) made of polypropylene resin (MI = 0.5) above and below a glass mat (needling treated) having a thickness of about 2 mm, which is composed of a filament of 0 mm and a diameter of 7 to 13 µm.
(38) Pulled into (39), after heating the resin to the melting temperature in the heating furnace (40), pressed by the press roll (41), cooled,
A sheet-shaped fiber composite reinforcing body (37) was obtained. The weight ratio of the resin to the glass fiber was resin: glass fiber = 60: 40.

【0036】(III) このシート状繊維複合体補強体の
両端をトリミングし、幅151mm、厚み1.5mmの
シート状繊維複合体補強体を得た。
(III) Both ends of this sheet-shaped fiber composite reinforcement were trimmed to obtain a sheet-shaped fiber composite reinforcement having a width of 151 mm and a thickness of 1.5 mm.

【0037】(IV) (III) の工程で成形したシート状繊
維複合体補強体を管状に賦形し、管状体の外径を52m
mとした。このときシート状繊維複合体(27)を配した面
が外側になるように配置した。
(IV) The sheet-shaped fiber composite reinforcement formed in the steps (IV) and (3) is shaped into a tube, and the tubular body has an outer diameter of 52 m.
m. At this time, the sheet-shaped fiber composite (27) was placed so that the surface on which the sheet-shaped fiber composite (27) was placed was on the outside.

【0038】(V) 内コア(30)の通気孔(31)より1.0
kg/cm2 の圧力で加圧した。
(V) 1.0 from the vent hole (31) of the inner core (30)
Pressurization was performed at a pressure of kg / cm 2 .

【0039】比較例1 減圧工程を行なわないこと以外は実施例1と同様に成形
し、繊維強化熱可塑性樹脂複合管を得た。
Comparative Example 1 A fiber reinforced thermoplastic resin composite pipe was obtained by molding in the same manner as in Example 1 except that the pressure reducing step was not performed.

【0040】比較例2 減圧工程を行なわないこと以外は実施例2と同様に成形
し、繊維強化熱可塑性樹脂複合管を得た。
Comparative Example 2 A fiber-reinforced thermoplastic resin composite pipe was obtained by molding in the same manner as in Example 2 except that the pressure reducing step was not performed.

【0041】実施例及び比較例によって成形した複合管
の断面を顕微鏡によって観察した。また、上記複合管を
それぞれ長さ方向に2cmの長さに輪切りにして、積層
界面の剪断打ち抜き強度を測定した。観察結果及び剪断
強度を以下に示す。
The cross sections of the composite pipes molded according to the examples and comparative examples were observed with a microscope. Further, each of the composite pipes was cut into a length of 2 cm in a lengthwise direction, and the shear punching strength at the laminated interface was measured. The observation results and shear strength are shown below.

【0042】[0042]

【表1】 減圧工程を行なわない複合管の強化層と樹脂層界面には
100μm程度の大きさのボイドが多数観察されるのに
対して、減圧工程を実施した複合管では界面に殆どボイ
ドは観察されなかった。
[Table 1] Many voids having a size of about 100 μm were observed at the interface between the reinforcing layer and the resin layer of the composite pipe not subjected to the depressurization step, whereas almost no void was observed at the interface in the composite tube subjected to the depressurization step. .

【0043】また、減圧工程を行なわない複合管の剪断
打ち抜き強度は弱く、バラツキが大きいのに対して、本
発明による複合管は融着強度、融着の均一性に優れた複
合管であった。
Further, the shear punching strength of the composite pipe not subjected to the depressurizing step is weak and has a large variation, whereas the composite pipe according to the present invention is a composite pipe excellent in fusion strength and uniformity of fusion. .

【0044】実施例3 実施例1で用いた複合管製造用金型の同種の金型の前方
に、図10に示す樹脂被覆用金型(42)を配置し、予め実
施例1の方法で作成した2層管を、該金型に後方より挿
入し、金型内面と2層管とゴム板(8')とで形成される減
圧ゾーンを真空ポンプ(10') により730mmHgに減
圧しつつ、金型先端より205℃の下記の配合を有する
溶融状態のポリ塩化ビニル樹脂(PVC樹脂)を押出し
被覆し、サイジング金型にて外径32mm、肉厚2.1m
mの繊維強化熱可塑性樹脂複合管を得た。
Example 3 A resin coating mold (42) shown in FIG. 10 was placed in front of a mold of the same type as the mold for producing a composite pipe used in Example 1, and the method of Example 1 was used in advance. The created two-layer tube was inserted into the mold from the rear, and the decompression zone formed by the inner surface of the mold, the two-layer tube and the rubber plate (8 ') was evacuated to 730 mmHg by the vacuum pump (10'). , Extruded and coated with a molten polyvinyl chloride resin (PVC resin) having the following composition at 205 ° C. from the die tip, and using a sizing die, outer diameter 32 mm, wall thickness 2.1 m
m fiber reinforced thermoplastic resin composite tube was obtained.

【0045】 外層用樹脂組成物 ポリ塩化ビニル樹脂(重合度 700) 100重量部 錫系熱安定剤 3重量部 ステアリルアルコール 1重量部 ポリエチレンワックス 0.5重量部 このようにして減圧工程を実施した複合管では、管状体
と外部樹脂被覆層との界面にボイドは観察されなかっ
た。またこの実施例の複合管の剪断強度は、800±3
0kgf/cmであった。
Resin composition for outer layer Polyvinyl chloride resin (degree of polymerization: 700) 100 parts by weight Tin-based heat stabilizer 3 parts by weight Stearyl alcohol 1 part by weight Polyethylene wax 0.5 parts by weight In the tube, no void was observed at the interface between the tubular body and the outer resin coating layer. The shear strength of the composite pipe of this example is 800 ± 3.
It was 0 kgf / cm.

【0046】[0046]

【発明の効果】一般に、繊維で強化された熱可塑性樹脂
複合体を加熱すると、複合体の表面に繊維の浮き出し
や、複合体表面に凹凸が発生する。このような複合体の
内面に熱可塑性樹脂を押し出し被覆すると、複合体凹部
にエアーを巻き込み、界面の接触面積が小さくなり、積
層界面の融着性が悪くなる。
EFFECTS OF THE INVENTION Generally, when a fiber-reinforced thermoplastic resin composite is heated, fibers stand out on the surface of the composite or irregularities are formed on the surface of the composite. When a thermoplastic resin is extruded and coated on the inner surface of such a composite, air is entrapped in the recess of the composite, the contact area of the interface becomes small, and the fusion property of the laminated interface becomes poor.

【0047】本発明の方法によれば、繊維強化熱可塑性
樹脂管状体の内面に、溶融熱可塑性樹脂を押出しにより
被覆して、熱可塑性樹脂被覆層を連続的に形成する際
に、管状体の樹脂被覆面と、押出し溶融樹脂との接触界
面付近の雰囲気を減圧状態としているから、複合体表面
に凹凸が発生しても、複合体凹部にエアーの巻き込みを
生じることなく押出し積層できるため、積層界面の融着
が均一でより強固になり、熱可塑性樹脂被覆層の均一か
つ充分な融着強度を得ることができる。従って例えば複
合管内に温水を流通させた場合や、複合管を高温下で使
用した場合にも、層剥離あるいは融着強度の劣化が生じ
ない。
According to the method of the present invention, when the inner surface of the fiber-reinforced thermoplastic resin tubular body is coated with the molten thermoplastic resin by extrusion to form the thermoplastic resin coating layer continuously, Since the atmosphere in the vicinity of the contact interface between the resin-coated surface and the extruded molten resin is in a reduced pressure state, even if irregularities occur on the composite surface, extrusion lamination can be performed without air entrapment in the composite recesses. The fusion at the interface becomes uniform and stronger, and uniform and sufficient fusion bonding strength of the thermoplastic resin coating layer can be obtained. Therefore, for example, when hot water is circulated in the composite pipe or when the composite pipe is used at a high temperature, delamination or deterioration in fusion strength does not occur.

【0048】また、上記繊維強化熱可塑性樹脂管状体と
しては、長手方向に配された連続強化繊維と熱可塑性樹
脂が一体化されてなるシート状繊維複合体を連続的に管
状に賦形したものを用いる場合があり、この場合には、
長手方向に配された連続強化繊維と熱可塑性樹脂とより
なる繊維強化熱可塑性樹脂シートより連続的に賦形した
管状体を前進させながら、これの内面に、同様に減圧状
態を保持しつつ、溶融熱可塑性樹脂を押出しにより被覆
して、熱可塑性樹脂被覆層を連続的に形成すればよく、
これによっても同様に押出し溶融樹脂との接触界面にエ
アーが混入せず、熱可塑性樹脂被覆層の均一かつ充分な
融着強度を得ることができるという効果を奏する。
The fiber-reinforced thermoplastic resin tubular body is formed by continuously shaping a sheet-shaped fiber composite in which continuous reinforcing fibers arranged in the longitudinal direction and a thermoplastic resin are integrated into a tubular shape. May be used, in this case,
While advancing the continuously shaped tubular body from the fiber reinforced thermoplastic resin sheet consisting of continuous reinforcing fibers and thermoplastic resin arranged in the longitudinal direction, on the inner surface of this, while also maintaining a reduced pressure state, The molten thermoplastic resin may be coated by extrusion to form a thermoplastic resin coating layer continuously,
This also brings about an effect that air is not mixed in the contact interface with the extruded molten resin and uniform and sufficient fusion bonding strength of the thermoplastic resin coating layer can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】複合管の製造に用いるシート状繊維複合体を製
造する工程を示す説明図である。
FIG. 1 is an explanatory view showing a process for producing a sheet-shaped fiber composite used for producing a composite pipe.

【図2】本発明の第1実施例の複合管の製造方法の工程
の一例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of steps of the method for manufacturing the composite pipe according to the first embodiment of the present invention.

【図3】第1実施例の管状体を成形する工程を示す説明
図である。
FIG. 3 is an explanatory view showing a process of molding the tubular body of the first embodiment.

【図4】図3のIVーIV線に沿う拡大断面図である。FIG. 4 is an enlarged sectional view taken along line IV-IV in FIG.

【図5】図3のVーV線に沿う拡大断面図である。5 is an enlarged cross-sectional view taken along the line VV of FIG.

【図6】図2の複合管の製造用金型の拡大背面図であ
る。
FIG. 6 is an enlarged rear view of the mold for manufacturing the composite pipe of FIG.

【図7】図6のVIIーVII線に沿う拡大断面図であ
る。
7 is an enlarged cross-sectional view taken along the line VII-VII in FIG.

【図8】図7の複合管の製造用金型の変形例を示す拡大
断面図である。
8 is an enlarged cross-sectional view showing a modified example of the mold for manufacturing the composite pipe of FIG.

【図9】第2実施例の製造方法によりつくられた複合管
の一部切欠き要部拡大斜視図である。
FIG. 9 is a partially cutaway enlarged perspective view of a composite pipe made by the manufacturing method of the second embodiment.

【図10】第2実施例の複合管の製造に用いる繊維複合
体を製造する工程を示す説明図である。
FIG. 10 is an explanatory diagram showing a step of producing a fiber composite used for producing the composite tube of the second embodiment.

【図11】本発明の第3実施例の複合管の製造方法の工
程の一例を示す説明図である。
FIG. 11 is an explanatory diagram showing an example of steps of a method for manufacturing a composite pipe according to the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

7,27 シート状繊維複合体 9 減圧金型 10 真空ポンプ 13 押出し溶融樹脂 22 熱可塑性樹脂被覆層 24 繊維強化熱可塑性樹脂管状体 25 繊維強化熱可塑性樹脂複合管 29 外金型 29´ 内金型 7,27 Sheet-shaped fiber composite 9 Reduced pressure mold 10 Vacuum pump 13 Extruded molten resin 22 Thermoplastic resin coating layer 24 Fiber-reinforced thermoplastic resin tubular body 25 Fiber-reinforced thermoplastic resin composite pipe 29 Outer mold 29 'Inner mold

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 23:22 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B29L 23:22

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 繊維強化熱可塑性樹脂管状体の内面に、
溶融熱可塑性樹脂を押出しにより被覆して、熱可塑性樹
脂被覆層を連続的に形成する複合管の製造方法であっ
て、上記溶融熱可塑性樹脂の押出し被覆の際に、管状体
の樹脂被覆面と、押出し溶融樹脂との接触界面付近の雰
囲気を減圧状態とすることを特徴とする、繊維強化熱可
塑性樹脂複合管の製造方法。
1. An inner surface of a fiber-reinforced thermoplastic resin tubular body,
A method for producing a composite pipe by coating a molten thermoplastic resin by extrusion to continuously form a thermoplastic resin coating layer, wherein the extrusion coating of the molten thermoplastic resin, at the time of resin coating surface of the tubular body and A method for producing a fiber-reinforced thermoplastic resin composite pipe, characterized in that the atmosphere in the vicinity of the contact interface with the extruded molten resin is depressurized.
【請求項2】 長手方向に配された連続強化繊維と熱可
塑性樹脂が一体化されてなるシート状繊維複合体を連続
的に管状に賦形して、繊維強化熱可塑性樹脂管状体を形
成し、この管状体を前進させつつ管状体の内面に、溶融
熱可塑性樹脂を押出しにより被覆して、熱可塑性樹脂被
覆層を連続的に形成する複合管の製造方法であって、上
記溶融熱可塑性樹脂の押出し被覆の際に、管状体の樹脂
被覆面と、押出し溶融樹脂との接触界面付近の雰囲気を
減圧状態とすることを特徴とする、繊維強化熱可塑性樹
脂複合管の製造方法。
2. A fiber-reinforced thermoplastic resin tubular body is formed by continuously shaping a sheet-shaped fiber composite in which continuous reinforcing fibers arranged in a longitudinal direction and a thermoplastic resin are integrated into a tubular shape. A method for producing a composite pipe in which the inner surface of the tubular body is coated with the molten thermoplastic resin by extrusion while advancing the tubular body to continuously form a thermoplastic resin coating layer, wherein the molten thermoplastic resin is A method for producing a fiber-reinforced thermoplastic resin composite pipe, characterized in that, during the extrusion coating, the atmosphere in the vicinity of the contact interface between the resin-coated surface of the tubular body and the extruded molten resin is depressurized.
JP5160758A 1993-06-30 1993-06-30 Manufacture of fiber reinforced thermoplastic resin composite tube Pending JPH0716904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5160758A JPH0716904A (en) 1993-06-30 1993-06-30 Manufacture of fiber reinforced thermoplastic resin composite tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5160758A JPH0716904A (en) 1993-06-30 1993-06-30 Manufacture of fiber reinforced thermoplastic resin composite tube

Publications (1)

Publication Number Publication Date
JPH0716904A true JPH0716904A (en) 1995-01-20

Family

ID=15721833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5160758A Pending JPH0716904A (en) 1993-06-30 1993-06-30 Manufacture of fiber reinforced thermoplastic resin composite tube

Country Status (1)

Country Link
JP (1) JPH0716904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100511932B1 (en) * 2003-05-07 2005-09-02 엘에스전선 주식회사 Method and apparatus for producing tube for air blown installation using lubricous film
CN112662070A (en) * 2020-12-31 2021-04-16 广州金发碳纤维新材料发展有限公司 Continuous metal wire reinforced thermoplastic composite material strip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100511932B1 (en) * 2003-05-07 2005-09-02 엘에스전선 주식회사 Method and apparatus for producing tube for air blown installation using lubricous film
CN112662070A (en) * 2020-12-31 2021-04-16 广州金发碳纤维新材料发展有限公司 Continuous metal wire reinforced thermoplastic composite material strip

Similar Documents

Publication Publication Date Title
JP2634184B2 (en) Method for producing thermoplastic polymer profiled section by pultrusion molding, apparatus for carrying out this method and product obtained thereby
EP0271026A2 (en) Pultrasion apparatus, process and product
WO1997003815A1 (en) Improvements in and relating to reinforced hose
JPH0911355A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JP3117492B2 (en) Method for producing fiber reinforced thermoplastic resin tube
JPH0716904A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JP3214892B2 (en) Method for producing hollow cross-section shaped body
JPH0584847A (en) Production of fiber reinforced thermoplastic resin pipe
JPH0911354A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH0531782A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH07132565A (en) Preparation of fiber-reinforced thermoplastic resin composite pipe
JPH07256779A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH08267565A (en) Production of fiber reinforced thermoplastic resin composite pipe
JPH08323882A (en) Manufacture of fiber-reinforced thermosetting resin composite pipe
JPH07117178B2 (en) Composite pipe
JPH06218852A (en) Fiber reinforced synthetic resin composite pipe
JPH07232394A (en) Manufacture of fiber reinforced thermoplastic resin composite pipe
DE2603765A1 (en) Laminated fibre reinforced plastics tubes - made by winding thermoplastic impregnated fibrous sheets around a former
JPH07290591A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH1067052A (en) Continuous production of fiber-reinforced thermoplastic resin foam
JPH0460292A (en) Manufacture of fiber reinforced resin pipe
JPH086847B2 (en) Composite pipe and manufacturing method thereof
JPH08174701A (en) Manufacture of hollow fiber reinforced thermoplastic resin product
JPH06340004A (en) Production of fiber-reinforced complex tube
JP2974582B2 (en) Method for producing fiber-reinforced thermoplastic resin foam