JPH0911353A - Manufacture of fiber reinforced thermoplastic resin composite tube - Google Patents

Manufacture of fiber reinforced thermoplastic resin composite tube

Info

Publication number
JPH0911353A
JPH0911353A JP16359395A JP16359395A JPH0911353A JP H0911353 A JPH0911353 A JP H0911353A JP 16359395 A JP16359395 A JP 16359395A JP 16359395 A JP16359395 A JP 16359395A JP H0911353 A JPH0911353 A JP H0911353A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
tubular body
fiber
layer
reinforced thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16359395A
Other languages
Japanese (ja)
Inventor
Koichi Adachi
浩一 足立
Mitsuo Sasakura
満雄 笹倉
Hisao Ikeda
尚夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP16359395A priority Critical patent/JPH0911353A/en
Publication of JPH0911353A publication Critical patent/JPH0911353A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a manufacturing method for a fiber reinforced thermoplastic resin composite tube wherein a tube of same performance as heretofore available can be produced and with improved efficiency of fusion bonding without making a production line longer when the diameter of the tube to be manufactured is larger or the production speed is increased. CONSTITUTION: A manufacturing method comprises the processes of forming a multilayer tubular body Q of two layers or more by laminating fiber reinforced thermoplastic resin layers P2 on the outer peripheral face of a thermoplastic resin tube P1, and then guiding the multilayer tubular body Q into a pressure reducing heating oven 18 and heating under the pressure reducing condition on the outside of the multilayer tubular body Q, and fusion bonding and integrating the thermoplastic resin tube P1 for fusion integrated with the fiber reinforced thermoplastic resin layer P2. The pressure reducing heating oven 18 provided with a high heat radiation rate layer having the heat radiation rate of 0.65 or over on its inner face is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、熱可塑性樹脂
管を内層とし、その外周面に繊維強化熱可塑性樹脂層を
積層して2層以上の多層とされた繊維強化熱可塑性樹脂
複合管の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced thermoplastic resin composite pipe in which a thermoplastic resin pipe is used as an inner layer and a fiber-reinforced thermoplastic resin layer is laminated on the outer peripheral surface of the pipe to form two or more layers. The present invention relates to a manufacturing method of.

【0002】[0002]

【従来の技術】繊維強化樹脂複合管であって、内面に熱
可塑性樹脂よりなる層を有する繊維強化樹脂複合管は、
錆びることがなく、強度的にも優れ、水やガス等の流体
を輸送する配管、電気配線用に用いられる配管、構造用
部材等として広く用いられている。
2. Description of the Related Art A fiber-reinforced resin composite pipe having a layer made of a thermoplastic resin on its inner surface is
It is not rusted and has excellent strength, and is widely used as pipes for transporting fluids such as water and gas, pipes used for electric wiring, structural members and the like.

【0003】従来、繊維強化複合管は、内層である熱可
塑性樹脂管の外面に液状の熱硬化性樹脂を含浸させた強
化繊維をマンドレル上に巻き付け、熱硬化性樹脂を硬化
させた後マンドレルを抜き取る方法(フィラメントワイ
ンディング法)により製造されている(例えば、特公昭
62─773号公報参照)。
Conventionally, in a fiber-reinforced composite pipe, a reinforcing fiber impregnated with a liquid thermosetting resin is wound around a mandrel on the outer surface of a thermoplastic resin pipe as an inner layer, and the mandrel is cured after the thermosetting resin is cured. It is manufactured by a drawing method (filament winding method) (for example, see Japanese Patent Publication No. 62-773).

【0004】この種の繊維強化樹脂複合管は、界面の接
着力が弱く、繊維強化樹脂複合管を冷熱繰り返し条件下
等で使用すると、内層と繊維強化樹脂層との線膨張率の
差により、界面剥離を引き起こすという問題点がある。
This type of fiber-reinforced resin composite pipe has a weak adhesive force at the interface, and when the fiber-reinforced resin composite pipe is used under conditions of repeated heat and cold, due to the difference in linear expansion coefficient between the inner layer and the fiber-reinforced resin layer, There is a problem of causing interfacial peeling.

【0005】この問題点を解決するため、例えば、特開
平6─218841号公報に記載の如く、繊維強化樹脂
層を形成する樹脂として熱可塑性樹脂を用い、更に内層
の熱可塑性樹脂層と繊維強化樹脂層との融着力を強固に
した繊維強化熱可塑性樹脂複合管の製造方法が知られて
いる。
In order to solve this problem, for example, as described in JP-A-6-218841, a thermoplastic resin is used as a resin for forming a fiber reinforced resin layer, and a thermoplastic resin layer as an inner layer and a fiber reinforced resin are used. There is known a method for producing a fiber-reinforced thermoplastic resin composite pipe having a strong fusion force with a resin layer.

【0006】この方法では、内層である熱可塑性樹脂よ
りなる管の外面に繊維強化樹脂複合体よりなる強化層を
巻き付けて積層して多層管状体となし、その多層管状体
を融着する際に、多層管状体の内側雰囲気の加圧もしく
は外側雰囲気の減圧のいずれか、又はその両方雰囲気下
に多層管状体を曝して加熱し、熱可塑性樹脂よりなる管
と繊維強化樹脂複合体とを強固に融着一体化する方法が
提案されている。
According to this method, a reinforcing layer made of a fiber reinforced resin composite is wound around the outer surface of a pipe made of a thermoplastic resin as an inner layer and laminated to form a multilayer tubular body, and the multilayer tubular body is fused. , The inner atmosphere of the multi-layer tubular body, the depressurization of the outer atmosphere, or both, the multi-layer tubular body is exposed to the atmosphere and heated to strengthen the tube made of the thermoplastic resin and the fiber-reinforced resin composite. A method of fusion bonding and integration has been proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、この方
法の場合には、その多層管状体を熱融着する際に、多層
管状体の内側雰囲気の加圧もしくは外側雰囲気の減圧の
いずれか、又はその両方雰囲気下に多層管状体を曝して
加熱するために、従来の加熱方法と比較して、多層管状
体に熱が伝わりにくく、加熱の熱量を多くしても、成形
速度を上げることに限界があり、特に成形すべき複合管
の口径が大きくなるにつれてその傾向が顕著になる。
又、連続成形ラインでは、加熱炉の長さを長くする方法
も考えられるが、生産ラインが長くなり、設備投資が多
くなると同時に、長時間加熱するため、熱可塑性樹脂が
熱分解してしまうという問題点がある。
However, in the case of this method, when the multilayer tubular body is heat-sealed, either the pressurization of the inner atmosphere of the multilayer tubular body or the depressurization of the outer atmosphere thereof, or its Since the multilayer tubular body is exposed to heat in both atmospheres, heat is less likely to be transferred to the multilayer tubular body compared to the conventional heating method, and even if the heating amount is increased, there is a limit to increasing the molding speed. In particular, the tendency becomes remarkable as the diameter of the composite pipe to be molded becomes large.
Further, in the continuous molding line, a method of lengthening the heating furnace can be considered, but the production line becomes long, the facility investment increases, and at the same time, the heating is performed for a long time, so that the thermoplastic resin is thermally decomposed. There is a problem.

【0008】本発明は、上記の如き従来の問題点を解消
し、生産ラインを長くすることなく、熱融着の効率を上
げ、製造すべき管の口径が大きくなっても、生産速度を
上げても、従来と変わりのない性能の管を生産効率よく
製造することができる繊維強化熱可塑性樹脂複合管の製
造方法を提供することを目的としてなされたものであ
る。
The present invention solves the above-mentioned conventional problems, improves the efficiency of heat fusion without lengthening the production line, and increases the production speed even if the diameter of the pipe to be produced is large. Even so, the object of the present invention is to provide a method for producing a fiber-reinforced thermoplastic resin composite pipe capable of producing a pipe having the same performance as the conventional one with high production efficiency.

【0009】[0009]

【課題を解決するための手段】本発明は、熱可塑性樹脂
管の外周面に、繊維強化熱可塑性樹脂層を積層して2層
以上の多層管状体を形成した後、その多層管状体を減圧
加熱炉内に導いて多層管状体の外側の減圧条件下にて加
熱し、熱可塑性樹脂管と繊維強化熱可塑性樹脂層とを融
着一体化する工程を包含する繊維強化熱可塑性樹脂複合
管の製造方法であって、前記減圧加熱炉としてその内面
に熱放射率が0.65以上である高熱放射率層を有する
ものを用いる繊維強化熱可塑性樹脂複合管の製造方法で
ある。
According to the present invention, a fiber-reinforced thermoplastic resin layer is laminated on the outer peripheral surface of a thermoplastic resin tube to form a multilayer tubular body having two or more layers, and then the multilayer tubular body is depressurized. Of a fiber-reinforced thermoplastic resin composite tube including a step of introducing into a heating furnace and heating it under a reduced pressure condition outside the multilayer tubular body to fuse and integrate the thermoplastic resin tube and the fiber-reinforced thermoplastic resin layer A method for producing a fiber-reinforced thermoplastic resin composite pipe, wherein the reduced pressure heating furnace has a high thermal emissivity layer having a thermal emissivity of 0.65 or more on its inner surface.

【0010】本発明において用いられる減圧加熱炉は、
内面に熱放射率が、0.65以上である高熱放射率層を
有するものが使用され、0.85以上である高熱放射率
層を有するものが更に効果が大きくなるので好ましい。
The reduced pressure heating furnace used in the present invention is
Those having a high thermal emissivity layer having a thermal emissivity of 0.65 or more on the inner surface are used, and those having a high thermal emissivity layer having a thermal emissivity of 0.85 or more are preferable because the effect is further enhanced.

【0011】ここでいう熱放射率とは、熱輻射率ともい
われ、物体の熱放射の放射発散度と、同温度の黒体(b
lack body)の熱放射の放射発散度の比で表さ
れるもので、黒体の1.0に近いほど熱放射発散度が大
きいものである。熱放射率が0.65未満であると、熱
放射率が小さいため、熱放射量が少なく、減圧雰囲気下
での熱伝達が不十分となり効率的に熱可塑性樹脂管と繊
維強化熱可塑性樹脂層とを熱融着することができない。
The thermal emissivity referred to here is also called thermal emissivity, and is the radiant emittance of thermal radiation of an object and a black body (b) at the same temperature.
It is represented by the ratio of the radiant emittance of the heat radiation of the black body), and the closer the heat radiant emittance is to 1.0 of the black body, the larger the radiant emittance. When the thermal emissivity is less than 0.65, the thermal emissivity is small, the amount of thermal radiation is small, the heat transfer is insufficient under a reduced pressure atmosphere, and the thermoplastic resin pipe and the fiber-reinforced thermoplastic resin layer are efficiently provided. And cannot be heat fused.

【0012】熱放射率が0.65以上の物質としては、
例えば、C(黒鉛)、Fe(酸化膜)、Ni(酸化
膜)、CuO、FeO、NiO、SiO、TiO、Zr
C等が挙げられる。減圧加熱炉の形状としては、多層管
状体を加熱するため、通常は円筒状がよいがこれに限定
されることはない。
As a substance having a thermal emissivity of 0.65 or more,
For example, C (graphite), Fe (oxide film), Ni (oxide film), CuO, FeO, NiO, SiO, TiO, Zr
C etc. are mentioned. The shape of the reduced-pressure heating furnace is preferably a cylindrical shape because it heats the multilayer tubular body, but is not limited thereto.

【0013】減圧加熱炉の内面に熱放射率が0.65以
上の高熱放射率層を設ける方法としては、上記物質成分
を有する塗料等を塗布した後乾燥させることにより高熱
放射率層を設ける方法や、鉄やニッケル等を減圧加熱炉
の内面に焼き付けて、Fe(酸化膜)、Ni(酸化
膜)、FeO、NiO層を設ける方法等が挙げられる。
又、上記層を内面に有する円筒状体等を減圧加熱炉の内
面に積層(接着)してもよい。
As a method for providing a high thermal emissivity layer having a thermal emissivity of 0.65 or more on the inner surface of a vacuum heating furnace, a high thermal emissivity layer is provided by applying a coating material having the above-mentioned substance components and then drying it. Alternatively, a method of baking iron, nickel, or the like on the inner surface of the decompression heating furnace to form an Fe (oxide film), Ni (oxide film), FeO, or NiO layer may be used.
Further, a cylindrical body or the like having the above layer on the inner surface may be laminated (bonded) on the inner surface of the reduced pressure heating furnace.

【0014】熱放射率が0.65以上の高熱放射率層の
厚みとしては、5μm以上が好ましい。厚みが0.5μ
mより薄いと、加熱炉に与えられた熱を、多層管状体に
伝えにくい。厚みの上限は特に限定されないが、100
μmを超えると、減圧加熱炉内の熱放射量が増加するこ
とがなく、コストが高くなるだけであるので、100μ
m以下が好ましい。減圧加熱炉本体は、通常の安価な金
属製のものでよく、例えば鉄製のもの等が挙げられる。
The thickness of the high thermal emissivity layer having a thermal emissivity of 0.65 or more is preferably 5 μm or more. 0.5μ thickness
When the thickness is less than m, it is difficult to transfer the heat applied to the heating furnace to the multilayer tubular body. The upper limit of the thickness is not particularly limited, but 100
If it exceeds μm, the amount of heat radiation in the reduced pressure heating furnace does not increase, and only the cost increases.
m or less is preferable. The main body of the reduced pressure heating furnace may be made of an ordinary inexpensive metal, such as iron.

【0015】減圧加熱炉の減圧力としては、通常500
mmHg以上が好ましく、600mmHg以上が更に好
ましい。減圧力が500mmHg未満だと、多層管状体
に十分な積層圧力が与えられない。
The decompression power of the decompression heating furnace is usually 500
mmHg or more is preferable, and 600 mmHg or more is more preferable. If the decompression force is less than 500 mmHg, a sufficient lamination pressure cannot be applied to the multilayer tubular body.

【0016】減圧加熱炉の加熱温度としては、多層管状
体の熱可塑性樹脂管と繊維強化熱可塑性樹脂層の熱可塑
性樹脂のビカット軟化温度〜熱分解温度が好ましく、上
記樹脂の押出、射出成形等における成形温度付近とする
のが更に好ましい。加熱温度が上記樹脂のビカット軟化
温度未満であると、多層管状体外側を500mmHg以
上の減圧力となるような減圧下に加熱しても、多層管状
体の熱可塑性樹脂管と繊維強化熱可塑性樹脂層間が熱融
着せず、熱分解温度を超えると、得られる管の性能が悪
くなる。
The heating temperature of the reduced pressure heating furnace is preferably a Vicat softening temperature to a thermal decomposition temperature of the thermoplastic resin tube of the multilayer tubular body and the thermoplastic resin of the fiber reinforced thermoplastic resin layer, such as extrusion and injection molding of the above resin. It is more preferable that the temperature is around the molding temperature. When the heating temperature is lower than the Vicat softening temperature of the above-mentioned resin, the thermoplastic resin tube and the fiber-reinforced thermoplastic resin of the multilayer tubular body are heated even if the outside of the multilayer tubular body is heated under a reduced pressure of 500 mmHg or more. If the layers are not heat-sealed and the thermal decomposition temperature is exceeded, the performance of the obtained tube deteriorates.

【0017】尚、ビカット軟化点とは、JIS K 7
206に準じて測定したものをいう。熱可塑性樹脂のビ
カット軟化温度は、例えば、ポリ塩化ビニルでは約65
〜85℃、塩素化ポリ塩化ビニルでは約95〜120℃
である。又、熱融着とは、双方の熱可塑性樹脂を溶融状
態になるまで加熱した上で圧着し、冷却後、融着した界
面が容易に破断しないことをいう。
The Vicat softening point is JIS K 7
The value measured according to 206. The Vicat softening temperature of a thermoplastic resin is, for example, about 65 for polyvinyl chloride.
~ 85 ° C, about 95-120 ° C for chlorinated polyvinyl chloride
It is. The term "heat fusion" means that both thermoplastic resins are heated to a molten state and then pressure-bonded, and after cooling, the fused interfaces do not easily break.

【0018】本発明において、熱可塑性樹脂としては、
得られる管の使用目的に適した熱可塑性樹脂が使用され
るが、例えば、ポリ塩化ビニル、塩素化ポリ塩化ビニ
ル、ポリエチレン、ポリプロピレン、ポリスチレン、ポ
リアミド、ポリカーボネート、ポリフェニレンサルファ
イド、ポリスルホン、ポリエーテルエーテルケトン等が
挙げられる。
In the present invention, as the thermoplastic resin,
A thermoplastic resin suitable for the purpose of use of the obtained pipe is used, and examples thereof include polyvinyl chloride, chlorinated polyvinyl chloride, polyethylene, polypropylene, polystyrene, polyamide, polycarbonate, polyphenylene sulfide, polysulfone, polyether ether ketone, etc. Is mentioned.

【0019】これらの熱可塑性樹脂は単独で使用されて
もよいし2種以上併用されてもよい。熱可塑性樹脂中に
は、必要に応じて、熱安定剤、可塑剤、滑剤、酸化防止
剤、紫外線吸収剤、顔料、無機充填剤、強化繊維等の添
加剤、充填剤、加工助剤、改質剤等が添加されてもよ
い。
These thermoplastic resins may be used alone or in combination of two or more kinds. In the thermoplastic resin, if necessary, additives such as heat stabilizers, plasticizers, lubricants, antioxidants, ultraviolet absorbers, pigments, inorganic fillers, reinforcing fibers, fillers, processing aids, A substance or the like may be added.

【0020】本発明において、繊維強化熱可塑性樹脂層
を熱可塑性樹脂管の外周面に積層する際の形態として
は、連続繊維の繊維間に熱可塑性樹脂粉末が付着・融着
された、テープ状、紐状等の帯状体が通常巻き付け易い
ので好ましい。本発明において、繊維強化熱可塑性樹脂
層を形成する連続繊維の材質としては、例えば、ガラス
繊維、カーボン繊維等の無機繊維、アラミド繊維、ビニ
ロン繊維、ポリエステル繊維等の有機繊維などが挙げら
れる。連続繊維の形態としては、例えば、モノフィラメ
ント、ロービング状、ストランド状、クロス状、網状、
ネット状等が挙げられる。
In the present invention, the form of laminating the fiber reinforced thermoplastic resin layer on the outer peripheral surface of the thermoplastic resin tube is a tape-like form in which the thermoplastic resin powder is adhered and fused between the continuous fibers. A band-shaped body such as a cord is preferable because it is usually easy to wind. In the present invention, examples of the material of the continuous fibers forming the fiber-reinforced thermoplastic resin layer include inorganic fibers such as glass fibers and carbon fibers, organic fibers such as aramid fibers, vinylon fibers and polyester fibers. Examples of the form of continuous fiber include monofilament, roving, strand, cloth, net,
Examples include a net shape.

【0021】連続繊維を構成する単繊維の太さは、太す
ぎると繊維間に熱可塑性樹脂が保持されない部分が発生
し、細すぎると切断することがあるので、1〜100μ
mが好ましく、3〜50μmが更に好ましい。
The thickness of the monofilament constituting the continuous fiber is 1 to 100 μm because if the fiber is too thick, a portion where the thermoplastic resin is not retained is generated, and if it is too thin, it may be cut.
m is preferable, and 3 to 50 μm is more preferable.

【0022】帯状体中の連続繊維の量は、多すぎると繊
維間に保持する熱可塑性樹脂の量が少なくなり、少なす
ぎると補強効果が生じないので、3〜70重量%が好ま
しく、10〜50重量%が更に好ましい。
If the amount of continuous fibers in the strip is too large, the amount of the thermoplastic resin held between the fibers will be small, and if it is too small, the reinforcing effect will not occur, so 3 to 70% by weight is preferable, and 10 to 10% by weight is preferable. 50% by weight is more preferable.

【0023】帯状体の製造方法としては、例えば、次の
方法を採用することができる。 多数のフィラメントよりなるロービング状、ストラ
ンド状、クロス状、ネット状、網状等の連続繊維を、粉
体状熱可塑性樹脂の流動床中を順次通過させ、繊維間に
粉体状熱可塑性樹脂を付着させた後、加熱して連続繊維
と熱可塑性樹脂を一体化する方法。
As a method for manufacturing the strip, for example, the following method can be adopted. Continuous fibers such as roving, strand, cloth, net and net made up of many filaments are sequentially passed through a fluidized bed of powdered thermoplastic resin, and the powdered thermoplastic resin is adhered between the fibers. After that, heating is performed to integrate the continuous fiber and the thermoplastic resin.

【0024】 上記同様の連続繊維を熱可塑性樹脂の
エマルジョン中を通過させて、繊維間にエマルジョンを
含浸させ、次いで、熱可塑性樹脂の溶融温度以上に加熱
して、連続繊維と熱可塑性樹脂を一体化する方法。
The same continuous fibers as described above are passed through an emulsion of a thermoplastic resin to impregnate the emulsion with the fibers, and then heated to a temperature equal to or higher than the melting temperature of the thermoplastic resin to integrate the continuous fibers with the thermoplastic resin. How to make.

【0025】 溶融粘度が低い熱可塑性樹脂の場合に
は、溶融熱可塑性樹脂を満たした槽中を上記同様の連続
繊維を浸漬するようにして通過させることにより、繊維
間に熱可塑性樹脂を付着固化さる方法。 上記同様の連続繊維上に熱可塑性樹脂フィルム積層
し、加熱圧着する方法。
In the case of a thermoplastic resin having a low melt viscosity, the same continuous fibers as described above are dipped in and passed through a tank filled with the molten thermoplastic resin to adhere and solidify the thermoplastic resin between the fibers. How to find a monkey. A method of laminating a thermoplastic resin film on the same continuous fibers as above and thermocompression bonding.

【0026】以下、本発明の例を図面を参照して説明す
る。図1は、本発明の一例の工程を製造装置とともに説
明する正面図、図2は減圧加熱炉の部分を示す断面図、
図3は得られる繊維強化熱可塑性樹脂複合管を示す一部
切欠き斜視図である。
An example of the present invention will be described below with reference to the drawings. FIG. 1 is a front view for explaining a process of an example of the present invention together with a manufacturing apparatus, and FIG. 2 is a sectional view showing a portion of a reduced pressure heating furnace,
FIG. 3 is a partially cutaway perspective view showing the fiber-reinforced thermoplastic resin composite pipe obtained.

【0027】まず、製造装置について説明する。製造装
置は、内層となる熱可塑樹脂管を押し出す押出機11
と、押出機11の先端に装着された押出金型12と、押
出金型12の下流側の上下に配設されたシート状帯状体
A1又はA2が装着された巻戻しロール13,14と、
テープ状帯状体B1又はB2が巻かれた巻回装置15,
16と、真空ポンプ17にて減圧可能とされた減圧加熱
炉18と、必要に応じて外層となる熱可塑性樹脂を押出
機19より押し出して外層を被覆するクロスヘッドダイ
20と、第2サイジング装置21と、引取機22とが順
次配列されたものである。
First, the manufacturing apparatus will be described. The manufacturing apparatus is an extruder 11 for extruding a thermoplastic resin tube as an inner layer.
An extrusion die 12 attached to the tip of the extruder 11, and rewinding rolls 13 and 14 to which the sheet-shaped strips A1 or A2 arranged on the upper and lower sides of the extrusion die 12 are attached,
A winding device 15 around which the tape-shaped strip B1 or B2 is wound,
16, a decompression heating furnace 18 capable of decompressing with a vacuum pump 17, a crosshead die 20 for extruding a thermoplastic resin as an outer layer from an extruder 19 to cover the outer layer as necessary, and a second sizing device. 21 and a take-up machine 22 are sequentially arranged.

【0028】減圧加熱炉18には、入口に多層管状体を
通過させる通孔を有するシールゴム181が設けられ、
内面に熱放射率が0.65以上の高熱放射率層182が
設けられ、外周にヒーター183が設けられ、外方から
内部に通じる減圧口184が設けられている。
The depressurizing heating furnace 18 is provided with a seal rubber 181 having a through hole for allowing the multilayer tubular body to pass therethrough.
A high thermal emissivity layer 182 having a thermal emissivity of 0.65 or more is provided on the inner surface, a heater 183 is provided on the outer periphery, and a decompression port 184 communicating from the outside to the inside is provided.

【0029】次に、この製造装置を用いた本発明の一例
の工程を説明する。熱可塑性樹脂を押出機11にて溶融
混練して押出金型12より内層となる熱可塑性樹脂管P
1を連続的に押し出す。
Next, the steps of an example of the present invention using this manufacturing apparatus will be described. A thermoplastic resin pipe P which is an inner layer of the extrusion die 12 by melting and kneading a thermoplastic resin in the extruder 11.
Push 1 continuously.

【0030】この熱可塑性樹脂管P1の外周面に、その
上下より2枚のシート状帯状体A1,A2にて連続繊維
が軸方向に沿うように軸方向強化層P21を積層し、更
にその外周面に長手方向に配された連続繊維に熱可塑性
樹脂が保持されたテープ状帯状体B1,B2を巻回装置
15,16により張力を与えながら相互の傾斜角度が反
対となるように略周方向に巻き付けて周方向強化層P2
2を形成し、軸方向強化層P22と周方向強化層P22
とからなる繊維強化熱可塑性樹脂層P2を積層した多層
管状体Qとする。
An axial reinforcing layer P21 is laminated on the outer peripheral surface of the thermoplastic resin pipe P1 from above and below by two sheet-like strips A1 and A2 so that continuous fibers are along the axial direction, and further the outer periphery thereof. Tape-like strips B1 and B2 in which thermoplastic resin is held by continuous fibers arranged in the longitudinal direction on the surface are applied in tension by the winding devices 15 and 16 and substantially inclined in the circumferential direction so that the mutual inclination angles are opposite to each other. Wrap around and wrap around circumferential reinforcement layer P2
2 to form the axial reinforcing layer P22 and the circumferential reinforcing layer P22.
A multilayer tubular body Q in which a fiber reinforced thermoplastic resin layer P2 composed of

【0031】この多層管状体Qを減圧加熱炉18内に導
入し、真空ポンプ17にて多層管状体Q外側を500m
mHg以上の減圧力となるような減圧状態となし、ヒー
ター183にて熱可塑性樹脂管P1及び繊維強化熱可塑
性樹脂層P2の熱可塑性樹脂のビカット軟化点〜熱分解
温度の温度に加熱する。
This multi-layer tubular body Q is introduced into the reduced pressure heating furnace 18, and the outer side of the multi-layer tubular body Q is 500 m by the vacuum pump 17.
The pressure is reduced to mHg or more, and the heater 183 heats the thermoplastic resin pipe P1 and the fiber-reinforced thermoplastic resin layer P2 to the Vicat softening point to the thermal decomposition temperature of the thermoplastic resin.

【0032】この際、多層管状体Q外側を減圧状態とな
すことにより、多層管状体Q全体に膨張圧力が作用し、
熱可塑性樹脂管P1、軸方向強化層P22及び周方向強
化層P22の各界面が密着状態となる。そして、減圧加
熱炉18の内面には熱放射率が0.65以上の高熱放射
率層182が設けられていることにより、減圧状態下で
も各層の熱可塑性樹脂にヒーター183により加熱した
熱が伝わって、各層の熱可塑性樹脂が溶融一体化する。
At this time, by depressurizing the outside of the multilayer tubular body Q, an expansion pressure acts on the entire multilayer tubular body Q,
The interfaces of the thermoplastic resin pipe P1, the axial reinforcing layer P22, and the circumferential reinforcing layer P22 are in a close contact state. Since the high thermal emissivity layer 182 having a thermal emissivity of 0.65 or more is provided on the inner surface of the reduced pressure heating furnace 18, the heat heated by the heater 183 is transmitted to the thermoplastic resin of each layer even under a reduced pressure. As a result, the thermoplastic resin of each layer is melted and integrated.

【0033】引き続いて、この多層管状体Qを、必要に
応じてクロスヘッドダイ20内に導き、多層管状体Qの
外周面に、熱可塑性樹脂を押出機19にて溶融混練し押
出し被覆して外層P3を形成する。
Subsequently, the multilayer tubular body Q is guided into the crosshead die 20 as required, and the outer peripheral surface of the multilayer tubular body Q is melt-kneaded by the extruder 19 and extrusion-coated. The outer layer P3 is formed.

【0034】この多層管状体をサイジング装置21内を
通過させて冷却を行う。これにより、各層の熱可塑性樹
脂が熱融着する。上記のような上記一連の工程を引取機
22にて引き取りつつ行い、図示しない切断機にて適宜
長さに切断して、図3に示すような繊維強化熱可塑性樹
脂複合管を連続的に製造する。又、本発明の繊維強化熱
可塑性樹脂複合管の製造方法は、上記のような連続製造
だけでなく、バッチ式の製造方法としてもよい。
This multilayer tubular body is passed through the sizing device 21 for cooling. As a result, the thermoplastic resin of each layer is heat-sealed. The above-mentioned series of steps is carried out while being taken by the take-up machine 22, and cut into an appropriate length by a not-shown cutting machine to continuously produce a fiber-reinforced thermoplastic resin composite pipe as shown in FIG. To do. Further, the method for producing the fiber-reinforced thermoplastic resin composite pipe of the present invention may be not only the above continuous production but also a batch type production method.

【0035】[0035]

【作用】本発明の繊維強化熱可塑性樹脂複合管の製造方
法は、減圧加熱炉としてその内面に熱放射率が0.65
以上である高熱放射率層を有するものを用いることによ
り、減圧加熱炉内において、多層管状体全体に膨張圧力
が作用し、熱可塑性樹脂管と繊維強化熱可塑性樹脂層間
が密着状態となるが、減圧状態下でも各層の熱可塑性樹
脂に加熱した熱が伝わって、各層の熱可塑性樹脂が溶融
一体化して、その後冷却工程を経て熱融着することがで
きるので、生産ラインを長くすることなく、熱融着の効
率を上げ、製造すべき管の口径が大きくなっても、生産
速度を上げても、従来と変わりのない界面接着強度が優
れた繊維強化熱可塑性樹脂複合管を製造することができ
る。
The method for producing a fiber-reinforced thermoplastic resin composite pipe of the present invention is a vacuum heating furnace having a thermal emissivity of 0.65 on its inner surface.
By using the one having the high thermal emissivity layer as described above, in the reduced pressure heating furnace, the expansion pressure acts on the entire multilayer tubular body, and the thermoplastic resin tube and the fiber-reinforced thermoplastic resin layer are in a close contact state, Heat that is heated to the thermoplastic resin of each layer is transmitted even under a reduced pressure, the thermoplastic resin of each layer is melted and integrated, and since it can be heat-sealed through a cooling step thereafter, without lengthening the production line, It is possible to produce a fiber-reinforced thermoplastic resin composite tube with excellent interfacial adhesion strength that is the same as before even if the efficiency of heat fusion is increased, the diameter of the tube to be manufactured is increased, and the production speed is increased. it can.

【0036】[0036]

【実施例】以下、本発明を実施例により説明する。実施例1 (1)シート状帯状体及びテープ状帯状体の製造 直径23μmのフィラメントより構成されるロービング
状のガラス繊維束(4,400tex)を、粉体状のポ
リ塩化ビニル(徳山積水社製、商品名「TS−1000
R」、重合度:1000)の流動床中を通過させて、繊
維間に粉体状のポリ塩化ビニルを付着させ、これを約2
00℃に加熱された一対の加熱ロールにより加熱圧着す
ることにより、長手方向に配された連続繊維に熱可塑性
樹脂が保持された、シート状帯状体A1,A2(厚み:
約0.7mm、幅:約88mm)と、テープ状帯状体B
1,B2(厚み:約0.2mm、幅:約20mm)を作
製した。それらの繊維含有率はいずれも25重量%であ
った。
The present invention will be described below with reference to examples. Example 1 (1) Production of a sheet-shaped strip and a tape-shaped strip A roving-shaped glass fiber bundle (4,400 tex) composed of filaments having a diameter of 23 μm was mixed with powdered polyvinyl chloride (manufactured by Tokuyama Sekisui Co., Ltd.). , Product name "TS-1000
R ", degree of polymerization: 1000) to pass through a fluidized bed to deposit polyvinyl chloride in powder form between the fibers, which is about 2
The thermoplastic resin is held by continuous fibers arranged in the longitudinal direction by thermocompression bonding with a pair of heating rolls heated to 00 ° C (sheet thickness: A1, A2 (thickness:
About 0.7 mm, width: about 88 mm), and tape-shaped band B
1, B2 (thickness: about 0.2 mm, width: about 20 mm) were produced. The fiber content of each of them was 25% by weight.

【0037】(2)繊維強化熱可塑性樹脂複合管の製造 図1を参照して説明した製造工程に準じて繊維強化熱可
塑性樹脂複合管の製造を行った。減圧加熱炉18とし
て、入口に多層管状体を通過させる通孔をそれぞれ有す
る3枚のシールごむ181が設けられ、鉄よりなる本体
の内面に高熱放射率塗料(ウェスターントレーディイグ
社製、商品名「ピロマルク」、黒鉛、酸化クロム及び無
機溶媒等を含む塗料)を約25μmの厚さに塗布して乾
燥させて形成した高熱放射率層(熱放射率:約0.9
4)が設けられたものを使用した。巻戻しロール13,
14にシート状帯状体A1又はA2を装着し、巻回装置
15,16にテープ状帯状体B1又はB2を装着した。
(2) Manufacture of Fiber Reinforced Thermoplastic Resin Composite Pipe A fiber reinforced thermoplastic resin composite pipe was manufactured according to the manufacturing process described with reference to FIG. As the reduced-pressure heating furnace 18, three sealing dusts 181 each having a through hole for allowing a multilayer tubular body to pass therethrough are provided, and a high thermal emissivity paint (manufactured by Western Trading Co., Ltd.) is provided on the inner surface of the main body made of iron. A high thermal emissivity layer (thermal emissivity: approximately 0.9) formed by applying a name "Pyromark", a coating material containing graphite, chromium oxide, an inorganic solvent, etc., to a thickness of about 25 μm and drying it.
4) was used. Rewind roll 13,
The sheet-shaped strip A1 or A2 was attached to 14 and the tape-shaped strip B1 or B2 was attached to the winding devices 15 and 16.

【0038】まず、ポリ塩化ビニル(徳山積水社製、商
品名「TS−1000R」、重合度:1000)を押出
機11にて溶融混練して押出金型12より、内径:約5
1mm、外径:約55mmの熱可塑性樹脂管P1を連続
的に押し出した。
First, polyvinyl chloride (manufactured by Tokuyama Sekisui Co., Ltd., trade name "TS-1000R", degree of polymerization: 1000) is melt-kneaded in an extruder 11 and extruded from an extrusion die 12 with an inner diameter of about 5
A thermoplastic resin pipe P1 having a diameter of 1 mm and an outer diameter of about 55 mm was continuously extruded.

【0039】引き続いて、押出金型12の下流側にて、
熱可塑性樹脂管P1の外周面にその上下より2枚のシー
ト状帯状体A1,A2(厚み:0.7mm、幅:80m
m)にて連続繊維が軸方向に沿うように軸方向強化層P
21を積層し、更にその外周面に長手方向に配された連
続繊維に熱可塑性樹脂が保持されたテープ状帯状体B
1,B2(厚み:0.2mm、幅:20mm)を巻回装
置15,16により張力を与えながら相互の傾斜角度が
反対となるように略周方向に巻き付けて周方向強化層P
22を形成するようにして、軸方向強化層P21と周方
向強化層P22とからなる繊維強化熱可塑性樹脂層P2
を積層した多層管状体Qとした。
Subsequently, on the downstream side of the extrusion die 12,
Two sheet-shaped strips A1 and A2 (thickness: 0.7 mm, width: 80 m) on the outer peripheral surface of the thermoplastic resin pipe P1 from above and below.
m) so that the continuous fiber is along the axial direction, the axial reinforcing layer P
21 is laminated, and the tape-shaped band B in which the thermoplastic resin is held by continuous fibers arranged on the outer peripheral surface in the longitudinal direction.
1, B2 (thickness: 0.2 mm, width: 20 mm) are wound in a substantially circumferential direction while applying tension by the winding devices 15 and 16 so that their inclination angles are opposite to each other.
22 to form a fiber-reinforced thermoplastic resin layer P2 including an axial-direction reinforcing layer P21 and a circumferential-direction reinforcing layer P22.
To form a multilayer tubular body Q.

【0040】この多層管状体Qを減圧加熱炉18(全長
700mm)内に導入し、真空ポンプ17にて多層管状
体Q外側を600mmHg減圧力して160mmHgと
して、ヒーター183(設定温度を230℃)にて多層
管状体を加熱した。このときの多層管状体の外面温度は
170℃であった。
This multi-layered tubular body Q was introduced into the reduced pressure heating furnace 18 (total length 700 mm), the outer side of the multi-layered tubular body Q was reduced by 600 mmHg by the vacuum pump 17 to 160 mmHg, and the heater 183 (set temperature was 230 ° C.). The multi-layer tubular body was heated at. The outer surface temperature of the multilayer tubular body at this time was 170 ° C.

【0041】引き続いて、この多層管状体Qを、クロス
ヘッドダイ20内に導き、多層管状体Qの外周面に、ポ
リ塩化ビニル(徳山積水社製、商品名「TS−1000
R」、重合度:1000)を押出機19にて溶融混練し
て押出し被覆し(上記減圧力を作用させつつ行う)、外
層P4を形成した。
Subsequently, the multilayer tubular body Q is guided into the crosshead die 20, and polyvinyl chloride (manufactured by Tokuyama Sekisui Co., Ltd., trade name "TS-1000" is attached to the outer peripheral surface of the multilayer tubular body Q.
R ”and the degree of polymerization: 1000) were melt-kneaded in the extruder 19 and extrusion-coated (performed while applying the above depressurizing force) to form the outer layer P4.

【0042】この多層管状体をサイジング装置21内を
通過させて冷却を行った。上記のような上記一連の工程
を引取機22にて0.5m/分の速度にて引き取りつつ
行い、図示しない切断機にて適宜長さに切断して、図3
に示すような内径:約51mm、外径:約60mmの繊
維強化熱可塑性樹脂複合管を連続的に製造した。
This multilayer tubular body was passed through the sizing device 21 for cooling. The above-mentioned series of steps is carried out while being taken by the take-up machine 22 at a speed of 0.5 m / min, and cut into an appropriate length by a cutting machine not shown in FIG.
A fiber-reinforced thermoplastic resin composite pipe having an inner diameter of about 51 mm and an outer diameter of about 60 mm as shown in (4) was continuously manufactured.

【0043】実施例2 成形速度を1m/分としたこと、減圧加熱炉のヒーター
183の設定温度を300℃としたこと以外は実施例1
と同様にして、繊維強化熱可塑性樹脂複合管を連続的に
製造した。このときの加熱炉内の多層管状体の外面温度
は165℃であった。
Example 2 Example 1 except that the molding speed was set to 1 m / min and the set temperature of the heater 183 of the vacuum heating furnace was set to 300 ° C.
A fiber-reinforced thermoplastic resin composite tube was continuously produced in the same manner as in. At this time, the outer surface temperature of the multilayer tubular body in the heating furnace was 165 ° C.

【0044】実施例3 減圧加熱炉18として、鉄よりなる本体の内面にFeO
成分を多く有する約15μmの厚さの高熱放射率層(熱
放射率:約0.95)が設けられたものを使用したこ
と、減圧加熱炉のヒーター183の設定温度を220℃
としたこと、減圧力を700mmHgとしたこと以外は
実施例1と同様にして、繊維強化熱可塑性樹脂複合管を
連続的に製造した。このときの加熱炉内の多層管状体の
外面温度は175℃であった。
Example 3 As the reduced pressure heating furnace 18, FeO was formed on the inner surface of the main body made of iron.
A high thermal emissivity layer (thermal emissivity: approximately 0.95) having a thickness of about 15 μm containing many components was used, and the set temperature of the heater 183 of the vacuum heating furnace was 220 ° C.
The fiber-reinforced thermoplastic resin composite pipe was continuously manufactured in the same manner as in Example 1 except that the depressurizing force was 700 mmHg. At this time, the outer surface temperature of the multilayer tubular body in the heating furnace was 175 ° C.

【0045】実施例4 実施例3と同様の減圧加熱炉を使用したこと、成形速度
を1m/分としたこと、減圧加熱炉のヒーター183の
設定温度を290℃としたこと、減圧力を550mmH
gとしたこと以外は実施例1と同様にして、繊維強化熱
可塑性樹脂複合管を連続的に製造した。このときの加熱
炉内の多層管状体の外面温度は175℃であった。
Example 4 The same reduced pressure heating furnace as in Example 3 was used, the molding speed was 1 m / min, the set temperature of the heater 183 of the reduced pressure heating furnace was 290 ° C., and the reducing pressure was 550 mmH.
A fiber-reinforced thermoplastic resin composite tube was continuously manufactured in the same manner as in Example 1 except that the value was changed to g. At this time, the outer surface temperature of the multilayer tubular body in the heating furnace was 175 ° C.

【0046】比較例1 減圧加熱炉として、内面に高熱放射率層が設けられてい
ないもの(本体が鉄製、熱放射率:約0.4)を使用し
たこと、減圧加熱炉のヒーターの設定温度を300℃と
したこと以外は実施例1と同様にして、繊維強化熱可塑
性樹脂複合管を連続的に製造した。このときの加熱炉内
の多層管状体の外面温度は140℃であった。
Comparative Example 1 A reduced pressure heating furnace having a high thermal emissivity layer on its inner surface (main body made of iron, thermal emissivity: about 0.4) was used, and the set temperature of the heater of the reduced pressure heating furnace was used. A fiber-reinforced thermoplastic resin composite pipe was continuously manufactured in the same manner as in Example 1 except that the temperature was set to 300 ° C. At this time, the outer surface temperature of the multilayer tubular body in the heating furnace was 140 ° C.

【0047】比較例2 減圧加熱炉として、内面に高熱放射率層が設けられてい
ないもの(本体が鉄製、熱放射率:約0.4)を使用し
たこと、成形速度を1m/分としたこと、減圧加熱炉の
ヒーターの設定温度を380℃としたこと以外は実施例
1と同様にして、繊維強化熱可塑性樹脂複合管を連続的
に製造した。このときの加熱炉内の多層管状体の外面温
度は120℃であった。
Comparative Example 2 A reduced pressure heating furnace having a high thermal emissivity layer on its inner surface (main body made of iron, thermal emissivity: about 0.4) was used, and the molding rate was 1 m / min. That is, a fiber-reinforced thermoplastic resin composite pipe was continuously manufactured in the same manner as in Example 1 except that the set temperature of the heater of the vacuum heating furnace was set to 380 ° C. At this time, the outer surface temperature of the multilayer tubular body in the heating furnace was 120 ° C.

【0048】実施例1〜4及び比較例1,2で得られた
繊維強化熱可塑性樹脂複合管について、界面接着強度評
価を行った。その評価は、リング状サンプル(リング幅
2cm)について、水道管硬質塩化ビニルライニング鋼
管に関するJWWA116法を参考としたせん断強度試
験により行った(n=5)。その結果を表1に示した。
The interfacial adhesion strength of the fiber-reinforced thermoplastic resin composite tubes obtained in Examples 1 to 4 and Comparative Examples 1 and 2 was evaluated. The evaluation was performed on a ring-shaped sample (ring width 2 cm) by a shear strength test with reference to the JWWA116 method for a water pipe hard vinyl chloride lining steel pipe (n = 5). The results are shown in Table 1.

【0049】[0049]

【表1】 [Table 1]

【0050】表1からも明らかな如く、本願の実施例の
場合にはいずれも比較例の場合と比べて界面せん断強度
が高い。
As is clear from Table 1, the interface shear strengths of the examples of the present invention are higher than those of the comparative examples.

【0051】[0051]

【発明の効果】本発明の繊維強化熱可塑性樹脂複合管の
製造方法は、上記の如き構成とされているので、生産ラ
インを長くすることなく、熱融着の効率を上げ、製造す
べき管の口径が大きくなっても、生産速度を上げても、
従来と変わりのない界面接着強度が優れた繊維強化熱可
塑性樹脂複合管を製造することができる。
EFFECTS OF THE INVENTION The method for producing a fiber-reinforced thermoplastic resin composite pipe of the present invention is constructed as described above, and therefore the pipe to be produced by increasing the heat fusion efficiency without lengthening the production line. Even if the diameter of the
It is possible to manufacture a fiber-reinforced thermoplastic resin composite pipe excellent in interfacial adhesion strength, which is not different from conventional ones.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例の工程を製造装置とともに説明す
る正面図である。
FIG. 1 is a front view illustrating a process of an example of the present invention together with a manufacturing apparatus.

【図2】本発明において使用される減圧加熱炉の一例を
示す断面図である。
FIG. 2 is a sectional view showing an example of a reduced pressure heating furnace used in the present invention.

【図3】本発明により得られる繊維強化熱可塑性樹脂複
合管の一例を示す一部切欠き斜視図である。
FIG. 3 is a partially cutaway perspective view showing an example of a fiber-reinforced thermoplastic resin composite pipe obtained by the present invention.

【符号の説明】[Explanation of symbols]

18 減圧加熱炉 182 高熱放射率層 P1 熱可塑性樹脂管 P2 繊維強化熱可塑性樹脂層 Q 多層管状体 18 Decompression heating furnace 182 High thermal emissivity layer P1 Thermoplastic resin tube P2 Fiber reinforced thermoplastic resin layer Q Multi-layer tubular body

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 101:12 105:08 B29L 9:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B29K 101: 12 105: 08 B29L 9:00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂管の外周面に、繊維強化熱
可塑性樹脂層を積層して2層以上の多層管状体を形成し
た後、その多層管状体を減圧加熱炉内に導いて多層管状
体の外側の減圧条件下にて加熱し、熱可塑性樹脂管と繊
維強化熱可塑性樹脂層とを融着一体化する工程を包含す
る繊維強化熱可塑性樹脂複合管の製造方法であって、前
記減圧加熱炉としてその内面に熱放射率が0.65以上
である高熱放射率層を有するものを用いることを特徴と
する繊維強化熱可塑性樹脂複合管の製造方法。
1. A multi-layered tubular body is prepared by laminating a fiber-reinforced thermoplastic resin layer on the outer peripheral surface of a thermoplastic resin tube to form a multi-layered tubular body having two or more layers, and then introducing the multi-layered tubular body into a reduced pressure heating furnace. A method for producing a fiber-reinforced thermoplastic resin composite pipe, which comprises heating the thermoplastic resin pipe and a fiber-reinforced thermoplastic resin layer to be fused and integrated under reduced pressure conditions outside the body, wherein the reduced pressure is A method for producing a fiber-reinforced thermoplastic resin composite pipe, characterized in that a heating furnace having a high thermal emissivity layer having a thermal emissivity of 0.65 or more on its inner surface is used.
JP16359395A 1995-06-29 1995-06-29 Manufacture of fiber reinforced thermoplastic resin composite tube Pending JPH0911353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16359395A JPH0911353A (en) 1995-06-29 1995-06-29 Manufacture of fiber reinforced thermoplastic resin composite tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16359395A JPH0911353A (en) 1995-06-29 1995-06-29 Manufacture of fiber reinforced thermoplastic resin composite tube

Publications (1)

Publication Number Publication Date
JPH0911353A true JPH0911353A (en) 1997-01-14

Family

ID=15776873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16359395A Pending JPH0911353A (en) 1995-06-29 1995-06-29 Manufacture of fiber reinforced thermoplastic resin composite tube

Country Status (1)

Country Link
JP (1) JPH0911353A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082661A (en) * 1999-09-16 2001-03-30 Sekisui Chem Co Ltd Connecting structure of split pipe and coupler
KR100781986B1 (en) * 2006-05-15 2007-12-06 동해하이테크산업 주식회사 A fire-hose and it manufacturing system
JP2011158038A (en) * 2010-02-02 2011-08-18 Tigers Polymer Corp Fiber-reinforced hose

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082661A (en) * 1999-09-16 2001-03-30 Sekisui Chem Co Ltd Connecting structure of split pipe and coupler
KR100781986B1 (en) * 2006-05-15 2007-12-06 동해하이테크산업 주식회사 A fire-hose and it manufacturing system
JP2011158038A (en) * 2010-02-02 2011-08-18 Tigers Polymer Corp Fiber-reinforced hose

Similar Documents

Publication Publication Date Title
WO1996000145A1 (en) Tackified fabric material and process for manufacture
JPH0911355A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JP3119696B2 (en) Method for producing fiber-reinforced thermoplastic composite tube
CA1145274A (en) Method of hose production and product
JP3117492B2 (en) Method for producing fiber reinforced thermoplastic resin tube
JPH0911353A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH0911354A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
CN108036118B (en) Fiber reinforced thermoplastic composite material pipe and preparation method thereof
JPH03149485A (en) Multiple-unit tube
JPH0531782A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH08323882A (en) Manufacture of fiber-reinforced thermosetting resin composite pipe
JPH06344444A (en) Thermoplastic resin lined metallic pipe
JP3283315B2 (en) Fiber reinforced synthetic resin composite tube
JPH044132A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH07256779A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH0584847A (en) Production of fiber reinforced thermoplastic resin pipe
JP2674844B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH02165930A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JPH06340004A (en) Production of fiber-reinforced complex tube
JPH0735270A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JPH0460292A (en) Manufacture of fiber reinforced resin pipe
JPH086847B2 (en) Composite pipe and manufacturing method thereof
JP3214892B2 (en) Method for producing hollow cross-section shaped body
JPH07132565A (en) Preparation of fiber-reinforced thermoplastic resin composite pipe
JPH06218841A (en) Manufacture of fiber reinforced thermoplastic resin composite tube