JPH06218841A - Manufacture of fiber reinforced thermoplastic resin composite tube - Google Patents

Manufacture of fiber reinforced thermoplastic resin composite tube

Info

Publication number
JPH06218841A
JPH06218841A JP912193A JP912193A JPH06218841A JP H06218841 A JPH06218841 A JP H06218841A JP 912193 A JP912193 A JP 912193A JP 912193 A JP912193 A JP 912193A JP H06218841 A JPH06218841 A JP H06218841A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
pipe
reinforced thermoplastic
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP912193A
Other languages
Japanese (ja)
Inventor
Koichi Adachi
浩一 足立
Hiroshi Sugawara
宏 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP912193A priority Critical patent/JPH06218841A/en
Publication of JPH06218841A publication Critical patent/JPH06218841A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a composite tube which is entirely bonded by fusing integrally and permanently wherein peeling of the interface does not occur even when it is used under a severe using condition that cooling and heating are repeated. CONSTITUTION:A standard-length matter of a composite tube 14 with a fiber composite body 12 covered with a thermoplastic resin tube 13 is set in a heating furnace B. Both ends of the composite tube 14 are blocked by a blocking plate 15 and an end of a gas passing tube 16 of a pressurizing pump 11 is inserted into a gas inflow port passing through the center of the blocking plate 15 provided in the front (right side in Figure). While the composite tube 14 is being heated, pressure of outside atmosphere is reduced by a pressure reducing pump 10 and pressure of inside atmosphere is increased by the pressurizing pump 11. Thus, the fiber composite body 12 is pressed firmly to the thermoplastic resin tube 13, bonded by fusing, and laminated. Deaeration of the fiber composite body 12 will be also performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性樹脂管を最内
層とし、その外周囲に繊維強化熱可塑性樹脂複合体を積
層して2層以上の多層管とする繊維強化熱可塑性樹脂複
合管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced thermoplastic resin composite pipe having a thermoplastic resin pipe as the innermost layer and a fiber-reinforced thermoplastic resin composite laminated on the outer periphery thereof to form a multilayer pipe having two or more layers. Manufacturing method.

【0002】[0002]

【従来の技術】繊維強化合成樹脂管は、金属管に比べて
軽量で錆びず、また合成樹脂管に比べて高強度であるた
め、配管用部材や構造部材として広く用いられている。
2. Description of the Related Art Fiber-reinforced synthetic resin pipes are widely used as pipe members and structural members because they are lighter in weight than metal pipes and do not rust and have higher strength than synthetic resin pipes.

【0003】従来、この繊維強化合成樹脂管は、液状の
熱硬化性樹脂を含浸させた強化繊維をマンドレル上に巻
付け、そのまま加熱炉で加熱して樹脂を硬化させた後、
マンドレルを抜き取る方法(フィラメントワインディン
グ法)により製造されていたが、この種の複合管は、強
化繊維層のマトリックス樹脂として熱硬化性樹脂を使用
している為に、内層の熱可塑性樹脂管との接着力が弱
く、複合管を冷熱繰り返しの使用条件下で使用すると、
内層と強化繊維層との線膨張率の差により両層の間で界
面剥離が発生するという問題があった。
Conventionally, in this fiber-reinforced synthetic resin pipe, a reinforcing fiber impregnated with a liquid thermosetting resin is wound around a mandrel and heated in a heating furnace as it is to cure the resin.
It was manufactured by the method of taking out the mandrel (filament winding method), but since this type of composite pipe uses a thermosetting resin as the matrix resin of the reinforcing fiber layer, it is different from the thermoplastic resin pipe of the inner layer. The adhesive strength is weak, and when the composite pipe is used under conditions of repeated cold and heat,
There is a problem that interfacial peeling occurs between both layers due to the difference in linear expansion coefficient between the inner layer and the reinforcing fiber layer.

【0004】そこで、この問題を解決するために、本出
願人は強化繊維層を形成するマトリックス樹脂として熱
可塑性樹脂を用いる技術を開発した。(特開平3−15
7591号公報参照)。
Therefore, in order to solve this problem, the present applicant has developed a technique of using a thermoplastic resin as a matrix resin for forming the reinforcing fiber layer. (JP-A-3-15
7591).

【0005】この繊維強化熱可塑性樹脂複合管の製造方
法は、長手方向に配された連続繊維に熱可塑性樹脂が保
持されてなる第1の強化繊維層用シート状繊維複合体か
ら管状体を連続成形する工程、管状体を前進させつつそ
の内面に沿って、内層用熱可塑性樹脂を溶融状態で押し
出して積層し、強化繊維が軸方向に配置された第1強化
繊維層と熱可塑性樹脂内層とからなる2層管を形成する
工程、この2層管に、連続繊維に熱可塑性樹脂が保持さ
れてなる第2強化繊維層用の細幅のシート状または紐状
繊維複合体を加熱しながらスパイラル状に巻付け、これ
を第1強化繊維層に融着積層し、第1強化繊維層の外面
に強化繊維がほぼ周方向に配された第2強化繊維層を有
する3層管からなる繊維強化熱可塑性樹脂複合管を成形
する方法である。
In this method for producing a fiber-reinforced thermoplastic resin composite pipe, a tubular body is continuously formed from a first sheet-shaped fiber composite for a reinforcing fiber layer in which a thermoplastic resin is held by continuous fibers arranged in a longitudinal direction. Molding step, while advancing the tubular body, along the inner surface thereof, the thermoplastic resin for the inner layer is extruded and laminated in a molten state, and the first reinforcing fiber layer in which reinforcing fibers are axially arranged and the thermoplastic resin inner layer A step of forming a two-layered tube consisting of a spiral sheet while heating a narrow sheet-shaped or string-shaped fiber composite for a second reinforcing fiber layer in which a continuous fiber holds a thermoplastic resin. Reinforced with a three-layer tube having a second reinforcing fiber layer in which reinforcing fibers are arranged in the circumferential direction on the outer surface of the first reinforcing fiber layer. This is a method of molding a thermoplastic resin composite pipe.

【0006】[0006]

【本発明が解決しようとする課題】上記複合管は、強化
繊維層のマトリックス樹脂として熱硬化性樹脂を使用し
た従来のものに比べて、内層と強化繊維層との接着力は
かなり改善されたものとなり、冷熱繰り返しの条件下で
の使用期間が比較的短期間の場合、或いは冷熱繰り返し
であっても比較的穏やかな条件下であれば充分使用に耐
えるものである。
In the above composite pipe, the adhesive strength between the inner layer and the reinforcing fiber layer is considerably improved as compared with the conventional one using a thermosetting resin as the matrix resin of the reinforcing fiber layer. Therefore, it can withstand sufficient use if it is used for a relatively short period of time under the condition of repeated cold heat, or under relatively mild conditions even under repeated heat and cold.

【0007】しかしながら、上記改良された繊維強化熱
可塑性樹脂複合管の成形方法では、それに用いる繊維複
合体の成形工程の段階で、その中に多数の気泡を包含し
易く、また一方では各層の積層時の積層圧力が充分でな
いので、熱可塑性樹脂管と繊維強化熱可塑性樹脂複合体
との界面、或いは強化繊維層同士の界面に周囲の空気を
巻き込むことがある。そして、これらの気泡や巻き込ん
だ空気は、成形後に所謂“ボイド”となって現れ、強固
な融着界面を得ることができない。
However, in the improved method for molding a fiber-reinforced thermoplastic resin composite tube, a large number of air bubbles are likely to be contained in the fiber-composite molding step used in the method, and on the other hand, each layer is laminated. Since the laminating pressure at that time is not sufficient, ambient air may be entrained in the interface between the thermoplastic resin tube and the fiber-reinforced thermoplastic resin composite or the interface between the reinforcing fiber layers. Then, these bubbles and entrapped air appear as so-called "voids" after molding, and a strong fusion bonding interface cannot be obtained.

【0008】従って、比較的過酷な冷熱繰り返しの使用
条件下、例えば、高温、高圧の高負荷下、或いは長期間
にわたる冷熱繰り返しの場合は、各界面が剥離し易く、
中でも第1強化繊維層と第2強化繊維層との界面におい
ては、界面剥離が発生する傾向が強く、過酷な条件下に
おいて、安心して採用できるところ迄には至っていない
のである。
[0008] Therefore, under relatively harsh conditions of repeated use of cold heat, for example, under high load of high temperature and high pressure, or when repeated cold heat for a long period of time, each interface easily peels off,
Above all, there is a strong tendency for interfacial peeling to occur at the interface between the first reinforcing fiber layer and the second reinforcing fiber layer, and it has not reached the point where it can be adopted with confidence under severe conditions.

【0009】本発明は、上記問題点を解決する為になさ
れたものであり、その目的とするところは、熱可塑性樹
脂管を最内層とし、その外周囲に繊維強化熱可塑性樹脂
複合体からなる強化繊維層を形成することからなる複合
管の製造方法として、熱可塑性樹脂管と強化繊維層との
界面、或いは強化繊維層が複数層からなるときは各強化
繊維層の界面における接着力が強固であり、相当過酷な
使用条件下で使用したり、或いは相当長期間にわたって
使用しても、界面剥離が起こらず、各界面が何時までも
完全に融着一体化した繊維強化熱可塑性樹脂複合管を製
造する方法を提供するところにある。
The present invention has been made in order to solve the above problems, and its object is to use a thermoplastic resin tube as the innermost layer and to form a fiber-reinforced thermoplastic resin composite on the outer periphery thereof. As a method for producing a composite pipe consisting of forming a reinforcing fiber layer, the adhesive strength at the interface between the thermoplastic resin pipe and the reinforcing fiber layer, or when the reinforcing fiber layer is composed of multiple layers, is strong. The fiber-reinforced thermoplastic resin composite pipe in which interface separation does not occur even when used under considerably harsh conditions of use or for a considerably long period of time, and each interface is completely fused and integrated forever. To provide a method of manufacturing.

【0010】[0010]

【課題を解決する為の手段】請求項1記載の発明は、
「熱可塑性樹脂管の外周囲に、繊維強化熱可塑性樹脂複
合体を積層して2層以上の多層管を得る繊維強化熱可塑
性樹脂複合管の製造方法において、熱可塑性樹脂管の外
側に、繊維強化熱可塑性樹脂複合体を被覆して多層管状
体を形成し、該多層管状体の内側雰囲気の加圧もしくは
外側雰囲気の減圧の何れか、又はその両方の雰囲気条件
下に該多層管状体を曝して加熱し、熱可塑性樹脂管と繊
維強化熱可塑性樹脂複合体とを融着一体化することを特
徴とする繊維強化熱可塑性樹脂複合管の製造方法」をそ
の要旨とするものであり、請求項2記載の発明は、「連
続的に一方向に移送しつつある、溶融乃至ほぼ固化状態
の熱可塑性樹脂管の外周囲に、管状、シート状もしくは
紐状の繊維強化熱可塑性樹脂複合体を配設してこれを積
層し、2層以上の多層管を得る繊維強化熱可塑性樹脂複
合管の製造方法において、一旦成形されたほぼ固化状態
にある多層管を引き続き移送しつつ、その外側雰囲気を
減圧するか、或いは該外側雰囲気の減圧と同時に内側雰
囲気を加圧した雰囲気状態下に曝して加熱し、熱可塑性
樹脂管と繊維強化熱可塑性樹脂複合体とを融着一体化す
ることを特徴とする繊維強化熱可塑性樹脂複合管の製造
方法」をその要旨とするものである。
The invention according to claim 1 is
"In the method for producing a fiber-reinforced thermoplastic resin composite pipe, in which a fiber-reinforced thermoplastic resin composite is laminated on the outer periphery of the thermoplastic resin pipe to obtain a multi-layer pipe having two or more layers, a fiber is provided outside the thermoplastic resin pipe. A multilayered tubular body is formed by coating the reinforced thermoplastic resin composite, and the multilayered tubular body is exposed to atmospheric pressure of the internal atmosphere of the multilayer tubular body, depressurization of the external atmosphere, or both of them. The method of manufacturing a fiber-reinforced thermoplastic resin composite pipe is characterized in that the thermoplastic resin pipe and the fiber-reinforced thermoplastic resin composite are fused and integrated with each other. In the invention described in 2, a tubular, sheet-shaped or string-shaped fiber-reinforced thermoplastic resin composite is provided around the outer periphery of a molten or almost solidified thermoplastic resin pipe which is continuously transferred in one direction. Set up and stack this to create two or more layers In the method for producing a fiber-reinforced thermoplastic resin composite pipe for obtaining a layered pipe, while the multi-layered pipe once molded and in a substantially solidified state is continuously transferred, its outer atmosphere is decompressed, or simultaneously with the decompression of the outer atmosphere, A method for producing a fiber-reinforced thermoplastic resin composite pipe, characterized in that the thermoplastic resin pipe and the fiber-reinforced thermoplastic resin composite are fused and integrated by exposing the atmosphere to a pressurized atmosphere and heating. This is the summary.

【0011】即ち、請求項1記載の発明は、所定寸法の
熱可塑性樹脂管の外側に、繊維強化熱可塑性樹脂複合体
を被覆して、多層管状体、即ち未だ完全な積層状態に至
らないものを形成し、次に、この管内を加圧したり、或
いは管外の周囲を減圧することにより、管全体に膨張圧
力を加えた状態下に曝して加熱し、該膨張圧力を利用し
て、各界面の融着を確実に行うと共に、含有気泡を除去
することを骨子とするものであり、請求項2記載の発明
は、例えば、押出機より内層用熱可塑性樹脂を溶融状態
で押し出しつつ、その外周面に繊維強化熱可塑性樹脂複
合体を配設してこれを積層し、2層以上の多層管を得る
従来の製造方法において、連続的に成形されて移送され
つつあるその多層管の外周囲を、減圧下で加熱するか、
或いは外周囲を減圧下におくと共に管内を加圧下におい
て加熱し、管全体に膨張圧力を与え、その膨張圧力を利
用して、各界面の融着を確実に行うと共に、含有気泡を
除去することを骨子とするものである。
That is, according to the first aspect of the present invention, a fiber-reinforced thermoplastic resin composite is coated on the outside of a thermoplastic resin tube having a predetermined size so that a multilayer tubular body, that is, a completely laminated state is not reached yet. Then, by pressurizing the inside of the pipe or depressurizing the outside of the pipe, the entire pipe is exposed to a state where expansion pressure is applied and heated, and the expansion pressure is used to While the fusion of the interface is surely performed, the main point is to remove the contained bubbles. The invention according to claim 2 is, for example, extruding the thermoplastic resin for the inner layer in a molten state from an extruder, In the conventional manufacturing method in which a fiber-reinforced thermoplastic resin composite is arranged on the outer peripheral surface and laminated to obtain a multi-layer pipe having two or more layers, the outer periphery of the multi-layer pipe being continuously molded and transferred. Is heated under reduced pressure, or
Alternatively, the outer circumference should be kept under reduced pressure and the inside of the tube should be heated under pressure to give an expansion pressure to the entire tube, and the expansion pressure should be utilized to ensure fusion at each interface and removal of contained bubbles. Is the main point.

【0012】請求項1または2記載の発明において、最
内層である熱可塑性樹脂管に使用するところの熱可塑性
樹脂としては、特に限定されず、管の使用目的に適した
熱可塑性樹脂を適宜選択して採用すればよい。具体的に
は、ポリ塩化ビニル、塩素化ポリ塩化ビニル、ポリエチ
レン、ポリプロピレン、ポリスチレン、ポリアミド、ポ
リカーボネート、ポリフェニレンサルファイド、ポリス
ルホン、ポリエーテル・エーテルケトン等である。
In the invention according to claim 1 or 2, the thermoplastic resin used for the thermoplastic resin tube which is the innermost layer is not particularly limited, and a thermoplastic resin suitable for the purpose of use of the tube is appropriately selected. And adopt it. Specific examples thereof include polyvinyl chloride, chlorinated polyvinyl chloride, polyethylene, polypropylene, polystyrene, polyamide, polycarbonate, polyphenylene sulfide, polysulfone, and polyether / etherketone.

【0013】上記熱可塑性樹脂は、単独で用いる他複数
の混合物として用いてもよい。また、これらの熱可塑性
樹脂には、必要に応じて熱安定剤、可塑剤、酸化防止
剤、紫外線吸収剤、顔料、充填材、加工助剤、改質剤等
が適宜添加される。
The above thermoplastic resins may be used alone or as a mixture of a plurality of them. In addition, a heat stabilizer, a plasticizer, an antioxidant, an ultraviolet absorber, a pigment, a filler, a processing aid, a modifier and the like are appropriately added to these thermoplastic resins.

【0014】請求項1または2記載の発明において、繊
維強化熱可塑性樹脂複合体に用いるマトリックス樹脂と
しての熱可塑性樹脂は、上記内層用として例示した各種
のものがそのまま採用可能である。また、内層用の樹脂
と強化繊維層のマトリックス樹脂、或いは強化繊維層が
複数層の場合は、各強化繊維層のマトリックス樹脂同士
は、必ずしも同一とする必要はないが、積層の手段とし
て融着方法を採る以上、当然相溶性に優れたもの同士を
選択使用する必要がある。
In the invention according to claim 1 or 2, the thermoplastic resin as the matrix resin used in the fiber-reinforced thermoplastic resin composite may be any of the various resins exemplified for the inner layer. Further, when the resin for the inner layer and the matrix resin of the reinforcing fiber layer, or when the reinforcing fiber layer is a plurality of layers, the matrix resins of the respective reinforcing fiber layers do not necessarily have to be the same, but they are fused as a means of lamination. As long as the method is adopted, it is naturally necessary to select and use those having excellent compatibility.

【0015】ここで述べる融着とは、双方の樹脂を溶融
状態になるまで加熱した上で圧着し、冷却後融着した界
面が容易に破断しないことをいう。請求項1又は2記載
の発明において、繊維強化熱可塑性樹脂複合体に用いる
繊維は、直径1〜数十μmの連続フィラメントよりなる
ロービング状またはストランド状のものが用いられる。
この繊維としては、ガラス繊維、炭素繊維、金属繊維等
の無機繊維や、アラミド繊維、ビニロン、レーヨン、
綿、麻等の有機繊維等、合成樹脂の補強繊維として使用
可能な繊維の全てが好適に使用される。
The term "fusion bonding" as used herein means that both resins are heated to a molten state and then pressure-bonded, and after cooling, the fused interface is not easily broken. In the invention of claim 1 or 2, the fiber used in the fiber-reinforced thermoplastic resin composite is a roving-shaped or strand-shaped fiber made of continuous filaments having a diameter of 1 to several tens of μm.
Examples of this fiber include inorganic fibers such as glass fiber, carbon fiber and metal fiber, aramid fiber, vinylon, rayon,
All fibers usable as reinforcing fibers for synthetic resins, such as organic fibers such as cotton and hemp, are preferably used.

【0016】熱可塑性樹脂管に上記繊維複合体を積層し
て複合管を形成する際に、複合体それぞれに使用される
繊維は、同じ種類の繊維であってもよいし、異なる種類
の繊維であってもよい。
When the above-mentioned fiber composite is laminated on a thermoplastic resin tube to form a composite tube, the fibers used for each composite may be the same kind of fibers or different kinds of fibers. It may be.

【0017】請求項1又は2記載の発明において、使用
する繊維強化熱可塑性樹脂複合体の幅、厚みは特に制限
されないが、例えば、紐状の繊維複合体を用いる場合に
は、直径が0.5〜5mm程度のものが好適に用いら
れ、細幅のシート状(テープ状)の繊維複合体を用いる
場合には、厚みが0.1〜10mm程度のものが好適で
あり、0.1〜3mm程度のものがより好適である。
In the invention according to claim 1 or 2, the width and thickness of the fiber-reinforced thermoplastic resin composite used are not particularly limited, but for example, when a string-shaped fiber composite is used, the diameter is 0. A material having a thickness of about 5 to 5 mm is preferably used, and in the case of using a narrow sheet-shaped (tape-shaped) fiber composite, a material having a thickness of about 0.1 to 10 mm is preferable. A thickness of about 3 mm is more suitable.

【0018】また、繊維複合体中の繊維量は、通常、5
〜70容量%である。5容量%未満では充分な補強効果
が得られず、70容量%を越えると充分に熱可塑性樹脂
が含浸せず、積層・融着が困難になり、かえって補強効
果が小さくなる。
The amount of fibers in the fiber composite is usually 5
˜70% by volume. If it is less than 5% by volume, a sufficient reinforcing effect cannot be obtained, and if it exceeds 70% by volume, the thermoplastic resin is not sufficiently impregnated, making lamination and fusion difficult, and conversely the reinforcing effect becomes small.

【0019】フィラメント間に熱可塑性樹脂を含浸させ
て連続繊維に熱可塑性樹脂を保持させる方法は、例え
ば、多数のフィラメントより構成されるロービング状も
しくはストランド状の連続繊維材を、粉体状熱可塑性樹
脂が安定的に浮遊している流動床中を通過させる方法
等、従来から公知のあらゆる方法が採用可能である。
The method of impregnating the thermoplastic resin between the filaments to retain the thermoplastic resin in the continuous fiber is, for example, a roving-like or strand-like continuous fiber material composed of a large number of filaments and a powdery thermoplastic resin. Any conventionally known method such as a method of passing the resin through a fluidized bed in which the resin is stably floating can be adopted.

【0020】請求項1または2記載の発明において、多
層管状体もしくは多層管を加熱する温度は、内層を形成
する熱可塑性樹脂、或いは繊維強化熱可塑性樹脂複合体
のマトリックス樹脂の軟化温度以上が好ましく、使用す
る熱可塑性樹脂によってそれぞれ好適な温度が選択され
る。
In the invention of claim 1 or 2, the temperature at which the multilayer tubular body or the multilayer tube is heated is preferably not lower than the softening temperature of the thermoplastic resin forming the inner layer or the matrix resin of the fiber reinforced thermoplastic resin composite. A suitable temperature is selected depending on the thermoplastic resin used.

【0021】請求項1または2記載の発明において、内
側雰囲気の加圧力は、複合管の寸法によって異なる為一
概には言えないが、通常0.01〜10Kg/cm2
範囲とするのが好ましい。具体的には内径=25mm、
肉厚=3.5mmの場合は、0.01〜3Kg/cm2
であって、0.01Kg/cm2 以下であると、充分な
積層圧力が得られず、3Kg/cm2 以上の場合は、管
が膨れて外径の精度が得られない場合があるので留意す
る必要がある。
In the invention of claim 1 or 2, the applied pressure of the inner atmosphere varies depending on the size of the composite pipe, and therefore cannot be generally stated, but it is usually preferable to set it in the range of 0.01 to 10 kg / cm 2. . Specifically, inner diameter = 25 mm,
When wall thickness = 3.5 mm, 0.01-3 Kg / cm 2
However, if it is 0.01 Kg / cm 2 or less, sufficient lamination pressure cannot be obtained, and if it is 3 Kg / cm 2 or more, the tube may swell and accuracy of the outer diameter may not be obtained. There is a need to.

【0022】一方、外側雰囲気の減圧力についても同じ
く一概には言えないが、通常500mmHg以上が好ま
しく、500mmHgに満たない場合は、充分な積層圧
力や脱気効果が得られない。また、請求項1または2記
載のいずれの発明においても、加圧と減圧との両方の雰
囲気状態下を使用すると、熱可塑性樹脂管と繊維強化熱
可塑性樹脂複合体との融着性により優れたものが得られ
る。
On the other hand, the depressurizing force of the outside atmosphere cannot be unequivocally stated, but it is usually preferably 500 mmHg or more, and when it is less than 500 mmHg, sufficient laminating pressure and deaeration effect cannot be obtained. Further, in any of the first and second aspects of the invention, the use of both pressurized and depressurized atmospheres results in superior fusion bonding between the thermoplastic resin tube and the fiber-reinforced thermoplastic resin composite. Things are obtained.

【0023】[0023]

【作用】請求項1記載の発明では、多層管の内側雰囲気
を加圧又は(及び)外側雰囲気を減圧した状態下に曝し
て加熱し、請求項2記載の発明では外側雰囲気を減圧す
るか、或いは該外側雰囲気の減圧と同時に内側雰囲気を
加圧した雰囲気状態下に曝して加熱するので、熱可塑性
樹脂管と繊維強化熱可塑性樹脂複合体との融着一体化、
或いは強化繊維層同士の融着一体化の段階で、各界面に
強力な積層圧力がかかり、且つこの積層圧力で複合体中
や界面に含まれている気泡も確実に逸散する。
According to the first aspect of the present invention, the inner atmosphere of the multi-layer pipe is exposed to pressure or / and the outer atmosphere is depressurized and heated, and in the second aspect of the invention, the outer atmosphere is depressurized or Alternatively, since the inner atmosphere is exposed to a pressurized atmosphere and heated at the same time when the outer atmosphere is depressurized, the thermoplastic resin tube and the fiber-reinforced thermoplastic resin composite are fused and integrated,
Alternatively, at the stage of fusion-bonding and integrating the reinforcing fiber layers, a strong laminating pressure is applied to each interface, and the air bubbles contained in the composite or at the interface are surely scattered by this laminating pressure.

【0024】[0024]

【実施例】以下、本発明の実施例を図面を参照しながら
詳細に説明する。以下の説明において、前とは、図面に
おいてその右方向を指すものとする。 .内層用熱可塑性樹脂、及び複合体のマトリックス樹脂として用いる樹脂組成 塩素化ポリ塩化ビニル樹脂 (塩素化度67%、重合度1000) 100重量部 錫系熱安定剤 4重量部 ステアリルアルコール 2重量部 ポリエチレンワックス 0.5重量部 .繊維強化熱可塑性樹脂複合体の製造 図4に示すように、直径23μmのフィラメントより構
成されるロービング状のガラス繊維集合束(4400t
ex)1の10本づつ(図面では2本のみ示す)計20
本を、シート状に上下二段に並べ、上記樹脂組成物(粒
子径=約250μ)2が、矢印の方向より圧送されるエ
アー3により、流動化して形成されている流動床4中を
通過させて、ガラス繊維集合束1のフィラメントに組成
物2を付着させた後、ネット状のガラス繊維材7を中に
挟さんで、約200℃に加熱された一対の加熱ロール5
により、加熱・加圧し、上下のフィラメントに付着した
組成物2を溶融させて繊維集合束1やガラス繊維材7と
共に融着一体化し、広幅のガラス繊維複合体6を得た。
このガラス繊維複合体6における樹脂とガラス繊維との
重量割合は、樹脂:ガラス繊維=70:30であった。 .実施例1 本実施例の製造方法は、請求項1記載の発明に係るもの
であって、複合体として、前記ガラス繊維複合体6を切
断し、幅=98mm、長さ=2000mm、厚み=0.
5mmのシート状ガラス繊維複合体としたものを用意し
た。
Embodiments of the present invention will now be described in detail with reference to the drawings. In the following description, the term "front" refers to the right direction in the drawings. . Inner thermoplastic resin, and the resin composition chlorinated polyvinyl chloride resin used as the matrix resin of the composite (chlorination degree of 67%, polymerization degree: 1000) 100 parts by weight of tin-based heat stabilizer 4 parts by weight of stearyl alcohol, 2 parts by weight Polyethylene wax 0.5 parts by weight. Production of Fiber Reinforced Thermoplastic Resin Composite As shown in FIG. 4, a roving-like bundle of glass fibers (4400 t) composed of filaments having a diameter of 23 μm.
ex) 10 in each (only two are shown in the drawing) 20 in total
Books are arranged in a sheet form in two layers, and the resin composition (particle size = about 250 μ) 2 is passed through a fluidized bed 4 formed by being fluidized by air 3 fed in the direction of the arrow. Then, the composition 2 is attached to the filaments of the glass fiber bundle 1, and the net-shaped glass fiber material 7 is sandwiched between the pair of heating rolls 5 heated to about 200 ° C.
Thus, the composition 2 adhered to the upper and lower filaments was heated and pressed, and was melted and fused and integrated with the fiber aggregate bundle 1 and the glass fiber material 7 to obtain a wide glass fiber composite 6.
The weight ratio of the resin to the glass fiber in this glass fiber composite 6 was resin: glass fiber = 70: 30. . Example 1 The manufacturing method according to the present example relates to the invention according to claim 1, wherein the glass fiber composite body 6 is cut as a composite body, and width = 98 mm, length = 2000 mm, thickness = 0. .
A 5 mm sheet-shaped glass fiber composite was prepared.

【0025】図1は、請求項1記載の発明に用いて好適
な装置の一例を、その使用態様と共に示す断面図であっ
て、同図において、8は約220℃に加熱された加熱炉
であって、その両端開口部には二枚刃式の環状ゴムシー
ル9、9がネジ(図示しない)により取着されている。
10は減圧ポンプであって、気体流通管により加熱炉8
の空洞内に連通している。また11は加圧ポンプであっ
て、同じく気体流通管により、後述する前側の閉塞板の
中央に貫設された気体流入孔に連通している。
FIG. 1 is a sectional view showing an example of an apparatus suitable for use in the invention according to claim 1 together with its usage mode. In FIG. 1, 8 is a heating furnace heated to about 220.degree. Two-flute type annular rubber seals 9, 9 are attached to the openings at both ends by screws (not shown).
Reference numeral 10 denotes a decompression pump, which is a heating furnace 8 by a gas flow pipe.
It communicates with the inside of the cavity. Reference numeral 11 denotes a pressurizing pump, which is also communicated by a gas flow pipe with a gas inflow hole penetratingly provided in the center of a front side closing plate described later.

【0026】次に、上述のガラス繊維複合体12を、長
さ=2000mm、外径=31mm、肉厚=3.0mm
の塩素化ポリ塩化ビニル樹脂からなる熱可塑性樹脂管1
3の外側に、寿司巻き状に巻付けて端縁同士をきっちり
と突き合わせ、熱風により加熱融着し、多層管状体14
を形成した。そして図1に示すように、この多層管状体
14を加熱炉81に挿入して該加熱炉8内を密閉状態と
した。更に、多層管状体14の両端を、弾性体からなる
円板状の閉塞板15、15により気密にシールして、多
層管状体14内を密閉状態とした。尚、前側に取着した
閉塞板15の中央にある気体流入孔には、上述のとおり
加圧ポンプ11からの気体流通管16の一端が取着され
ている。
Next, the above-mentioned glass fiber composite 12 was made to have a length of 2000 mm, an outer diameter of 31 mm, and a wall thickness of 3.0 mm.
Thermoplastic resin tube made of chlorinated polyvinyl chloride resin 1
3 is wrapped around the outside in a sushi roll shape, the edges are closely abutted against each other, and heat fusion is performed with hot air to form a multilayer tubular body 14
Was formed. Then, as shown in FIG. 1, the multilayer tubular body 14 was inserted into a heating furnace 81 to hermetically seal the inside of the heating furnace 8. Further, both ends of the multilayer tubular body 14 are hermetically sealed by the disk-shaped closing plates 15 made of an elastic body, so that the inside of the multilayer tubular body 14 is sealed. As described above, one end of the gas flow pipe 16 from the pressurizing pump 11 is attached to the gas inlet hole in the center of the closing plate 15 attached to the front side.

【0027】このように準備が整ってから、減圧ポンプ
10を用いて、多層管状体14の外側の雰囲気を700
mmHg減圧して60mmHgにするとともに、加圧ポ
ンプ11を用いて、多層管状体14の内側雰囲気を、
0.3Kg/cm2 の圧力まで加圧し、3分加熱した後
これを取り出し、熱可塑性樹脂管13と繊維複合体12
とが強固に融着一体化したところの、外径=32mm、
肉厚=3.5mmの寸法を有する繊維強化熱可塑性樹脂
複合管を得た。得られた複合管にはボイドは無く、しか
も各界面の融着強度は、冷熱繰り返しの過酷な使用条件
下に長期間耐え得るものであった。 .実施例2 本実施例の製造方法は、請求項2記載の発明に係るもの
であって、繊維複合体として、前記ガラス繊維複合体6
を切断し、幅=20mm、厚み=0.5mmの細幅の長
尺物からなるシート状ガラス繊維複合体を用意した。
After the preparation is completed in this way, the atmosphere outside the multilayer tubular body 14 is set to 700 by using the vacuum pump 10.
mmHg The pressure is reduced to 60 mmHg, and the pressure inside the multi-layer tubular body 14 is adjusted by using the pressure pump 11.
Pressurized to a pressure of 0.3 Kg / cm 2 , heated for 3 minutes, and then taken out to obtain a thermoplastic resin tube 13 and a fiber composite 12
Outer diameter = 32 mm, where and were firmly fused and integrated,
A fiber reinforced thermoplastic resin composite tube having a dimension of wall thickness = 3.5 mm was obtained. The obtained composite pipe had no voids, and the fusion bond strength at each interface was such that it could withstand long-term use under severe conditions of repeated heat and cold. . Example 2 The manufacturing method of this example relates to the invention according to claim 2, wherein the glass fiber composite 6 is used as a fiber composite.
Was cut to prepare a sheet-shaped glass fiber composite composed of a long and narrow product having a width of 20 mm and a thickness of 0.5 mm.

【0028】図2は、請求項2記載の発明に用いて好適
な装置の一例を、その使用態様と共に示す図であって、
図1の装置と同じ装置については、同じ符号を用いた。
同図において、17は押出機であって、その前方には金
型18と冷却金型19とがこの順に取着され、更に、こ
れら金型18と冷却金型19の中には、中央部を気体流
通路20が貫通する内コア21を備えている。またこの
内コア21の前端面には、ワイヤーからなる支承具22
が、後述する引取機の手前まで延設されており、該ワイ
ヤー22の先端にはシール板23が取り付けられてい
て、後述する連続的に成形される熱可塑性樹脂管内を前
方において密閉する。24は上述の繊維複合体25の巻
き付け機であり、26は圧力空気源である。
FIG. 2 is a diagram showing an example of an apparatus suitable for use in the invention described in claim 2 together with its usage mode.
The same reference numerals are used for the same devices as those in FIG.
In the figure, 17 is an extruder, and a die 18 and a cooling die 19 are attached to the front of the extruder in this order. Further, a central portion is provided in the die 18 and the cooling die 19. Is provided with an inner core 21 through which the gas flow passage 20 passes. The front end surface of the inner core 21 has a support member 22 made of a wire.
However, the wire 22 is extended to the front of a take-up machine, which will be described later, and a seal plate 23 is attached to the tip of the wire 22 to seal the inside of a continuously molded thermoplastic resin tube described later on the front side. 24 is a winding machine for the above-mentioned fiber composite 25, and 26 is a pressurized air source.

【0029】上述のような装置を用いて、先ず、押出機
17より塩素化ポリ塩化ビニル樹脂からなる熱可塑性樹
脂を管状に押し出しつつ、一方で圧力空気源26から加
圧空気を圧送して、気体流通路20の、内コア21の側
面に設けられた開口部より噴出させ、内コア21の膨出
部までの熱可塑性樹脂管27を、その内部より加圧し
た。引き続き、熱可塑性樹脂管27の外側を冷却金型1
9の内側に密着させて押し出し冷却した。
Using the apparatus as described above, first, a thermoplastic resin made of chlorinated polyvinyl chloride resin is extruded into a tubular shape from the extruder 17, while pressurized air is pressure-fed from a pressurized air source 26, The thermoplastic resin tube 27 up to the bulging portion of the inner core 21 was pressurized from the inside by being ejected from the opening provided in the side surface of the inner core 21 of the gas flow passage 20. Subsequently, the outside of the thermoplastic resin tube 27 is cooled by the cooling die 1
It was made to adhere to the inside of 9 and extruded and cooled.

【0030】冷却された熱可塑性樹脂管27を前方に導
きつつ、その外周囲に巻き付け機24で繊維複合体25
を水平に対して75度の角度で連続的に巻き付ける。そ
して、引き続き220℃に加熱された加熱炉8に導き、
減圧ポンプ10を用いて700mmHgに維持して連続
的に減圧を行うとともに、上記圧力空気源26からの加
圧空気を、気体流通路20の内コア21の前端面に設け
た開口部より噴出させ、内コア21より前方にある管内
部を0.4Kg/cm2 の圧力で常時加圧した。
While guiding the cooled thermoplastic resin pipe 27 to the front, the fiber composite 25 is wound around the outer periphery thereof by the winding machine 24.
Is continuously wound at an angle of 75 degrees with respect to the horizontal. Then, it is continuously introduced into the heating furnace 8 heated to 220 ° C.,
The decompression pump 10 is used to maintain the pressure at 700 mmHg for continuous decompression, and the pressurized air from the pressure air source 26 is ejected from the opening provided in the front end surface of the inner core 21 of the gas flow passage 20. The inside of the tube located in front of the inner core 21 was constantly pressurized with a pressure of 0.4 Kg / cm 2 .

【0031】そして、加熱炉8内における、外側雰囲気
の減圧と内側雰囲気の加圧下での加熱により、熱可塑性
樹脂管27と繊維複合体25とを融着一体化し、引き続
き前方に配設したところの、内部に冷却媒体が循環する
水路が形成された冷却サイジング台28を通過して、速
度=約2m/分に設定した引取機29で引き取りなが
ら、外径=32.2mm、肉厚=3.5mmの繊維強化
熱可塑性樹脂複合管を得た。得られた複合管にはボイド
は無く、しかも各界面の融着強度は、冷熱繰り返しの過
酷な使用条件下に長期間耐え得るものであった。.実施例3 本実施例の製造方法は、請求項2記載の発明に係るもの
であって、繊維複合体としては、前記ガラス繊維複合体
6を切断し、第1強化層用シート状繊維複合体として、
幅=88mm、厚み=0.5mmの広幅の長尺物を用意
し、また、第2強化層用シート状繊維複合体として、幅
=20mm、厚み=0.5mmの細幅の長尺物を用意し
た。
Then, the thermoplastic resin tube 27 and the fiber composite body 25 are fused and integrated by heating in the heating furnace 8 under a reduced pressure of the outer atmosphere and a pressurized pressure of the inner atmosphere, and subsequently arranged in front. While passing through a cooling sizing table 28 in which a water channel in which a cooling medium circulates is formed and being taken up by a take-up machine 29 set to a speed = about 2 m / min, an outer diameter = 32.2 mm and a wall thickness = 3 A fiber reinforced thermoplastic resin composite tube of 0.5 mm was obtained. The obtained composite pipe had no voids, and the fusion bond strength at each interface was such that it could withstand long-term use under severe conditions of repeated heat and cold. . Example 3 The manufacturing method according to the present example relates to the invention according to claim 2, wherein as the fiber composite, the glass fiber composite 6 is cut to obtain a sheet-shaped fiber composite for the first reinforcing layer. As
A wide long product having a width of 88 mm and a thickness of 0.5 mm is prepared, and a thin long product having a width of 20 mm and a thickness of 0.5 mm is used as the sheet-like fiber composite for the second reinforcing layer. I prepared.

【0032】図3は、装置全体を2つに分割して示す図
であって、同図(イ)は装置全体のほぼ後ろ半分を示す
図であり、同図(ロ)はそのほぼ前半分を示す図である
(一部オーバーラップする箇所有り)。また、図1及び
図2の部材・装置と同じものについては、同じ符号を用
いた。
FIG. 3 is a diagram showing the entire apparatus divided into two parts. FIG. 3A is a diagram showing a substantially rear half of the entire apparatus, and FIG. 3B is a front half thereof. FIG. 7 is a diagram (partially overlapping portions). Further, the same reference numerals are used for the same parts and devices as those in FIGS. 1 and 2.

【0033】図3に示す装置は、第1強化層用シート状
繊維複合体30が卷回されている巻き戻しロール31
と、内層用熱可塑性樹脂を押し出す為の第1押出機32
と、その前方に配置され、先端部が前向き直角に折り曲
げられ、且つ第1強化層用シート状繊維複合体30を円
形に賦形することのできる金型33と、金型33の前部
の軸芯に設けられ、前方の膨出部が2個に分割されると
ともに、中程に括れ部を有してなる内コア34と、金型
33の前部に付設された冷却金型35と、内コア34の
先端から引取機の手前まで伸ばされているワイヤーから
なる支承具22とその先端に取りつけられ、管の内側の
空気を密閉する事のできるシール板23と、第2強化層
用シート状繊維複合体25を巻き付ける巻付機24と、
熱風発生機36と、その前方に配置され、実施例1及び
2で用いたものと同じ加熱炉8と、その前方に配置され
た外層用熱可塑性樹脂を押し出す為の第2押出機37
と、第2押出機37の先端に設けられた外層被覆金型3
8と、その前方に配置された内部に冷却媒体が循環する
水路が形成された冷却サイジング装置39と、冷却サイ
ジング装置39の前方に配置された引取機29とを具備
するものである。
The apparatus shown in FIG. 3 has a rewinding roll 31 in which the sheet-shaped fiber composite 30 for the first reinforcing layer is wound.
And a first extruder 32 for extruding the thermoplastic resin for the inner layer
And a die 33 that is arranged in front of the die, has a tip portion bent forward at a right angle, and is capable of shaping the sheet-shaped fiber composite body 30 for the first reinforcing layer into a circular shape, and a front portion of the die 33. An inner core 34 provided on the shaft core and having a front bulge portion divided into two and having a constricted portion in the middle, and a cooling die 35 attached to the front portion of the die 33. , A support 22 made of a wire extending from the tip of the inner core 34 to the front of the take-up machine, a seal plate 23 attached to the tip of the support 22 and capable of sealing the air inside the pipe, and a second reinforcing layer A winding machine 24 for winding the sheet-shaped fiber composite 25,
The hot air generator 36, the same heating furnace 8 arranged in front of it as the one used in Examples 1 and 2, and the second extruder 37 for extruding the outer layer thermoplastic resin arranged in front of it.
And the outer layer coating die 3 provided at the tip of the second extruder 37.
8, a cooling sizing device 39 having a water channel in which a cooling medium circulates is formed in the front thereof, and a take-up device 29 arranged in front of the cooling sizing device 39.

【0034】金型33の後方には、第1強化層用シート
状繊維複合体30の挿入できる隙間が設けられており、
該隙間より第1強化層用シート状繊維複合体30を挿入
し、金型33内で、シートを外径=28.8mm、厚み
=0.5mmの管状体に連続的に賦形し、該管状体に賦
形したシート状繊維複合体40の内側に、塩素化ポリ塩
化ビニル樹脂(平均重合度=1000)を押し出して積
層し、同時に内コア34の側面に設けられた気体流通路
20の開口部から内側雰囲気を加圧し、2層管の外面を
冷却金型35に密着させて冷却し、外径=28.8、肉
厚=1.5mmの2層管を得た。連続的に成形された2
層管は前方に導かれ、巻き付け機24によって、第2強
化層用シート状繊維複合体25を熱風発生機36で加熱
しながら、軸方向に対して75°の角度でスパイラル状
に巻き付けて、3層管とした。
At the rear of the mold 33, there is provided a gap into which the sheet-shaped fiber composite 30 for the first reinforcing layer can be inserted.
The sheet-shaped fiber composite body 30 for the first reinforcing layer is inserted through the gap, and the sheet is continuously shaped into a tubular body having an outer diameter of 28.8 mm and a thickness of 0.5 mm in the mold 33. A chlorinated polyvinyl chloride resin (average degree of polymerization = 1000) is extruded and laminated inside the sheet-shaped fiber composite 40 shaped into a tubular body, and at the same time, the gas flow passage 20 provided on the side surface of the inner core 34 is provided. The inner atmosphere was pressurized from the opening, and the outer surface of the two-layer pipe was brought into close contact with the cooling mold 35 to be cooled to obtain a two-layer pipe having an outer diameter of 28.8 and a wall thickness of 1.5 mm. 2 continuously molded
The layer tube is guided forward, and while the second reinforcing layer sheet-shaped fiber composite body 25 is heated by the hot air generator 36 by the winding machine 24, the layer tube is spirally wound at an angle of 75 ° with respect to the axial direction, A three-layer tube was used.

【0035】引き続き、前方の300℃に保たれた加熱
炉8に導き、少なくとも各強化層界面の樹脂温度が溶融
温度になるまで加熱しつつ、3層管の外側を減圧ポンプ
10を用いて700mmHgの減圧状態に維持すると同
時に、管の内側を内コア34の前端面に設けられた開口
部より0.4Kg/cm2 の圧力で加圧し、強化層同士
を融着一体化させた。
Subsequently, the material is introduced into a heating furnace 8 kept at 300 ° C. in front, and at least 700 mmHg of pressure is applied to the outside of the three-layer pipe by using a decompression pump 10 while heating at least the resin temperature at the interface of each reinforcing layer to a melting temperature. While maintaining the reduced pressure state, the inside of the tube was pressed at a pressure of 0.4 Kg / cm 2 from the opening provided in the front end surface of the inner core 34 to fuse and strengthen the reinforcing layers.

【0036】更に、この3層管を外層被覆金型38に導
き、第2押出機37により溶融可塑化された外層用熱可
塑性樹脂を第2強化層の外周に押し出して、これを被覆
した後、サイジング装置39で冷却サイジングを施し、
4層管とした。尚、外層用熱可塑性樹脂としては、塩素
化ポリ塩化ビニル樹脂(平均重合度=1000)を用い
た。上記一連の工程を引取機29で連続的に引き取りつ
つ行い、外径=32.2mm、肉厚=3.5mmの繊維
強化熱可塑性樹脂複合管を連続的に成形した。得られた
複合管にはボイドは無く、しかも各界面の融着強度は、
冷熱繰り返しの過酷な使用条件下に長期間耐え得るもの
であった。
Further, the three-layer pipe is guided to the outer-layer-coated mold 38, and the thermoplastic resin for the outer layer melt-plasticized by the second extruder 37 is extruded to the outer periphery of the second reinforced layer to coat it. Cooling sizing is performed by the sizing device 39,
A four-layer tube was used. A chlorinated polyvinyl chloride resin (average degree of polymerization = 1000) was used as the thermoplastic resin for the outer layer. The above series of steps were carried out while being continuously taken by the take-up machine 29 to continuously form a fiber-reinforced thermoplastic resin composite pipe having an outer diameter of 32.2 mm and a wall thickness of 3.5 mm. The obtained composite pipe has no voids, and the fusion strength at each interface is
It was able to withstand long-term use conditions under repeated cold and heat conditions.

【0037】[0037]

【発明の効果】請求項1記載の発明では、多層管の内側
雰囲気を加圧又は(及び)外側雰囲気を減圧した状態で
加熱し、請求項2記載の発明では外側雰囲気を減圧する
か、或いは該外側雰囲気の減圧と同時に内側雰囲気を加
圧した雰囲気状態下に曝して加熱するので、熱可塑性樹
脂管と繊維強化熱可塑性樹脂複合体との融着一体化、或
いは強化繊維層同士の融着一体化の段階で、各界面に強
力な積層圧力がかかり、且つこの積層圧力で複合体中や
界面に含まれている気泡も確実に逸散する。
According to the first aspect of the present invention, the inner atmosphere of the multi-layer tube is heated under pressure and / or the outer atmosphere is depressurized, and the outer atmosphere is depressurized according to the second aspect of the invention, or Since the inner atmosphere is exposed to the pressurized atmosphere and heated at the same time as the depressurization of the outer atmosphere, the thermoplastic resin tube and the fiber-reinforced thermoplastic resin composite are fused and integrated, or the reinforcing fiber layers are fused to each other. At the stage of integration, a strong stacking pressure is applied to each interface, and the stacking pressure also surely disperses the bubbles contained in the composite and at the interface.

【0038】従って、各積層界面では強固な融着界面を
得ることができ、高温、高圧等の高負荷下や長期での冷
熱繰り返し下でも層間剥離が発生せず、従って又、界面
からの水の侵入もなくなり、各界面が何時までも完全に
融着一体化した繊維強化熱可塑性樹脂複合管を得ること
ができる。
Therefore, a strong fusion-bonding interface can be obtained at each laminated interface, and delamination does not occur even under high load such as high temperature and high pressure or under repeated cold and heat for a long period of time. It is also possible to obtain a fiber-reinforced thermoplastic resin composite tube in which each interface is completely fused and integrated at all times.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1記載の発明に用いて好適な装置の一例
を、その使用態様と共に示す断面図である。
FIG. 1 is a cross-sectional view showing an example of an apparatus suitable for use in the invention according to claim 1 together with its usage.

【図2】請求項2記載の発明に用いて好適な装置の一例
を、その使用態様と共に示す概略説明図である。
FIG. 2 is a schematic explanatory view showing an example of an apparatus suitable for use in the invention according to claim 2 together with its usage mode.

【図3】請求項2記載の発明に用いて好適な装置の他の
例を、その使用態様と共に示す概略説明図である。
FIG. 3 is a schematic explanatory view showing another example of an apparatus suitable for use in the invention described in claim 2 together with its usage mode.

【図4】本発明の繊維強化熱可塑性樹脂複合管に用いら
れる繊維強化熱可塑性樹脂複合体の製造装置の一例を示
す概略説明図である。
FIG. 4 is a schematic explanatory view showing an example of an apparatus for producing a fiber-reinforced thermoplastic resin composite used in the fiber-reinforced thermoplastic resin composite pipe of the present invention.

【符号の説明】[Explanation of symbols]

6、12、25 繊維強化熱可塑性樹脂複合体 8 加熱炉 10 減圧ポンプ 11 加圧ポンプ 12、25、30、繊維複合体 13、27 熱可塑性樹脂管 14 多層管状体 15 閉塞板 17 押出機 18、33 金型 19 冷却金型 20 気体流通路 21、34 内コア 22 支承具 23 シール板 26 圧力空気源 29 引取機 32 第1押出機 37 第2押出機 6, 12, 25 Fiber reinforced thermoplastic resin composite 8 Heating furnace 10 Decompression pump 11 Pressure pump 12, 25, 30, Fiber composite 13, 27 Thermoplastic resin pipe 14 Multi-layer tubular body 15 Closure plate 17 Extruder 18, 33 Mold 19 Cooling mold 20 Gas flow passage 21, 34 Inner core 22 Support 23 Seal plate 26 Pressure air source 29 Take-off machine 32 First extruder 37 Second extruder

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29L 9:00 4F 23:22 4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display area B29L 9:00 4F 23:22 4F

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂管の外周囲に、繊維強化熱
可塑性樹脂複合体を積層して2層以上の多層管を得る繊
維強化熱可塑性樹脂複合管の製造方法において、熱可塑
性樹脂管の外側に、繊維強化熱可塑性樹脂複合体を被覆
して多層管状体を形成し、該多層管状体の内側雰囲気の
加圧もしくは外側雰囲気の減圧の何れか、又はその両方
の雰囲気条件下に該多層管状体を曝して加熱し、熱可塑
性樹脂管と繊維強化熱可塑性樹脂複合体とを融着一体化
することを特徴とする繊維強化熱可塑性樹脂複合管の製
造方法。
1. A method for producing a fiber-reinforced thermoplastic resin composite pipe, wherein a fiber-reinforced thermoplastic resin composite is laminated on the outer periphery of a thermoplastic resin pipe to obtain a multilayer pipe having two or more layers. An outer side is coated with a fiber-reinforced thermoplastic resin composite to form a multilayer tubular body, and the multilayered body is subjected to either an internal pressure of the multilayer tubular body or a reduced pressure of the outer atmosphere, or both of them under atmospheric conditions. A method for producing a fiber-reinforced thermoplastic resin composite pipe, which comprises exposing a tubular body to heat to fuse and integrate the thermoplastic resin pipe and the fiber-reinforced thermoplastic resin composite body.
【請求項2】 連続的に一方向に移送しつつある、溶融
乃至ほぼ固化状態の熱可塑性樹脂管の外周囲に、管状、
シート状もしくは紐状の繊維強化熱可塑性樹脂複合体を
配設してこれを積層し、2層以上の多層管を得る繊維強
化熱可塑性樹脂複合管の製造方法において、一旦成形さ
れたほぼ固化状態にある多層管を引き続き移送しつつ、
その外側雰囲気を減圧するか、或いは該外側雰囲気の減
圧と同時に内側雰囲気を加圧した雰囲気状態下に曝して
加熱し、熱可塑性樹脂管と繊維強化熱可塑性樹脂複合体
とを融着一体化することを特徴とする繊維強化熱可塑性
樹脂複合管の製造方法。
2. A tubular member is provided around the outer periphery of a molten or substantially solidified thermoplastic resin pipe which is continuously transferred in one direction.
In a method for producing a fiber-reinforced thermoplastic resin composite pipe, in which a sheet-shaped or string-shaped fiber-reinforced thermoplastic resin composite is arranged and laminated to obtain a multi-layered pipe having two or more layers, a substantially solidified state once molded While continuing to transfer the multi-layer pipe in
The outer atmosphere is decompressed, or the inner atmosphere is exposed to a pressurized atmosphere at the same time as the outer atmosphere is decompressed and heated to fuse and integrate the thermoplastic resin pipe and the fiber-reinforced thermoplastic resin composite. A method for producing a fiber-reinforced thermoplastic resin composite pipe, comprising:
JP912193A 1993-01-22 1993-01-22 Manufacture of fiber reinforced thermoplastic resin composite tube Pending JPH06218841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP912193A JPH06218841A (en) 1993-01-22 1993-01-22 Manufacture of fiber reinforced thermoplastic resin composite tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP912193A JPH06218841A (en) 1993-01-22 1993-01-22 Manufacture of fiber reinforced thermoplastic resin composite tube

Publications (1)

Publication Number Publication Date
JPH06218841A true JPH06218841A (en) 1994-08-09

Family

ID=11711810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP912193A Pending JPH06218841A (en) 1993-01-22 1993-01-22 Manufacture of fiber reinforced thermoplastic resin composite tube

Country Status (1)

Country Link
JP (1) JPH06218841A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781986B1 (en) * 2006-05-15 2007-12-06 동해하이테크산업 주식회사 A fire-hose and it manufacturing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781986B1 (en) * 2006-05-15 2007-12-06 동해하이테크산업 주식회사 A fire-hose and it manufacturing system

Similar Documents

Publication Publication Date Title
JP4076440B2 (en) Composite high-pressure pipe and manufacturing method thereof
CN108032504A (en) A kind of new steel mesh plastic composite pipe processing technology
CN109747189A (en) A kind of gas transmission flexible composite pipe and preparation method thereof
JPS63296926A (en) Manufacture of composite pipe
US5862591A (en) Method for manufacturing paint rollers
JPH0911355A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPS59196225A (en) Method of forming obstructive orthogonal polymer film
JP3119696B2 (en) Method for producing fiber-reinforced thermoplastic composite tube
JPH06218841A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH0911354A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JP3283315B2 (en) Fiber reinforced synthetic resin composite tube
JPH0584847A (en) Production of fiber reinforced thermoplastic resin pipe
JPH07117178B2 (en) Composite pipe
JP3955643B2 (en) Composite tube with great flexibility
JPH06344444A (en) Thermoplastic resin lined metallic pipe
JPH0911353A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JP2674844B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH07256779A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH044132A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH06340004A (en) Production of fiber-reinforced complex tube
JPH08323882A (en) Manufacture of fiber-reinforced thermosetting resin composite pipe
JPH0735270A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JPH07290591A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH07132565A (en) Preparation of fiber-reinforced thermoplastic resin composite pipe
JPH02165930A (en) Manufacture of fiber reinforced thermoplastic resin pipe