JPH074875B2 - Method for producing fiber reinforced thermoplastic resin pipe - Google Patents

Method for producing fiber reinforced thermoplastic resin pipe

Info

Publication number
JPH074875B2
JPH074875B2 JP2040408A JP4040890A JPH074875B2 JP H074875 B2 JPH074875 B2 JP H074875B2 JP 2040408 A JP2040408 A JP 2040408A JP 4040890 A JP4040890 A JP 4040890A JP H074875 B2 JPH074875 B2 JP H074875B2
Authority
JP
Japan
Prior art keywords
inner layer
fiber
tube
fiber composite
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2040408A
Other languages
Japanese (ja)
Other versions
JPH03243333A (en
Inventor
宏 菅原
清康 藤井
和夫 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2040408A priority Critical patent/JPH074875B2/en
Publication of JPH03243333A publication Critical patent/JPH03243333A/en
Publication of JPH074875B2 publication Critical patent/JPH074875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温加圧下で好適に使用される繊維強化熱可
塑性樹脂管及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a fiber-reinforced thermoplastic resin tube preferably used under high temperature and pressure and a method for producing the same.

〔従来の技術〕 従来から合成樹脂管は、金属製管と比較して軽量であっ
て錆びない等の優れた特性を有しており、広く用いられ
ている。しかし、この合成樹脂管は、金属製管に比較し
て耐圧性および耐衝撃性において劣っている。そこで、
これらの合成樹脂管に耐圧性および耐衝撃性を持たせた
ものとして、熱可塑性樹脂から成形された内層管の外周
に繊維で補強した繊維強化熱可塑性樹脂からなる強化層
を設け、更にこの強化層の外周に熱可塑性樹脂層を被覆
してなる繊維強化およびその製造方法が提案されている
(例えば特開昭63−152786号公報参照)。この繊維強化
の製造方法は、芯材となる内層管を表面が溶融する温度
まで加熱しながら内層管の外周にフィラメント間に熱可
塑性樹脂が含浸したストランド状の補強繊維を巻回して
融着する方法や、補強繊維を内層管の外周に巻回した
後、内層管を表面が溶融する温度まで加熱して融着する
等により、強化層を設けた後、この強化層の外周に熱可
塑性樹脂を押出して被覆し加熱するのである。
[Prior Art] Synthetic resin pipes have been widely used since they have excellent properties such as light weight and no rust compared with metal pipes. However, this synthetic resin pipe is inferior in pressure resistance and impact resistance to a metal pipe. Therefore,
As a synthetic resin tube with pressure resistance and impact resistance, an inner layer tube molded from a thermoplastic resin is provided with a reinforced layer of a fiber reinforced thermoplastic resin on the outer periphery of the inner layer tube. Fiber reinforced by coating a thermoplastic resin layer on the outer periphery of the layer and a method for producing the same have been proposed (see, for example, JP-A-63-152786). In this fiber-reinforced manufacturing method, while heating the inner-layer tube to be the core material to a temperature at which the surface melts, the outer periphery of the inner-layer tube is wound and fused with a strand-like reinforcing fiber impregnated with a thermoplastic resin between filaments. Method, or after winding the reinforcing fiber around the outer circumference of the inner layer tube, by heating the inner layer tube to a temperature at which the surface melts and fusing the same, after providing a reinforcing layer, a thermoplastic resin on the outer circumference of this reinforcing layer Is extruded, coated and heated.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし上記従来の製造方法では、熱可塑性樹脂から成形
された内層管の外面に補強繊維を融着させるためには、
内層管の表面が融着する温度になるまで管を加熱する必
要がある。その場合、加熱により軟化した内層管は、巻
回する補強繊維の張力によって変形し易く、そのため寸
法精度の高い繊維強化熱可塑性樹脂管を得ることが困難
であると言う問題がある。
However, in the above conventional manufacturing method, in order to fuse the reinforcing fiber to the outer surface of the inner layer tube molded from the thermoplastic resin,
It is necessary to heat the tube to a temperature at which the surface of the inner layer tube is fused. In that case, the inner layer pipe softened by heating is easily deformed by the tension of the reinforcing fiber wound, and thus there is a problem that it is difficult to obtain a fiber-reinforced thermoplastic resin pipe with high dimensional accuracy.

ところで、塩素化塩化ビニル樹脂管は、金属製管に比較
して耐蝕性に優れるとともに、50〜80℃程度の高温度で
もかなりの耐圧強度を有する上、耐熱変形性にも優れ、
軽量、施工が簡単、安価等の理由で、給水用は言うまで
もなく、給湯用にも広く用いられている。そこで、塩素
化塩化ビニル樹脂を内層管の素材とし、この外周をガラ
ス繊維補強熱硬化性樹脂の補強層で補強するようにすれ
ば、所期のものを得る近道であると考えた。
By the way, the chlorinated vinyl chloride resin pipe has excellent corrosion resistance as compared with metal pipes, has considerable pressure resistance even at a high temperature of about 50 to 80 ° C., and has excellent heat distortion resistance,
It is widely used not only for water supply but also for hot water supply because of its light weight, easy construction, and low cost. Therefore, it was considered to be a shortcut to obtain the desired product by using a chlorinated vinyl chloride resin as a material for the inner layer tube and reinforcing the outer periphery with a reinforcing layer of glass fiber reinforced thermosetting resin.

本発明は、上述した従来技術の問題点に鑑みてなされた
のであり、その目的とするところは、塩素化塩化ビニル
樹脂製の内層管と繊維複合体との融着が良好で繊維補強
効果が優れ、しかも内層管の変形が起こらない、寸法精
度の高い繊維強化熱可塑性樹脂管を提供しようとするも
のである。
The present invention has been made in view of the above-mentioned problems of the prior art, and the purpose thereof is to achieve good fiber-reinforcing effect by fusing the inner layer pipe made of chlorinated vinyl chloride resin and the fiber composite. An object of the present invention is to provide a fiber-reinforced thermoplastic resin tube which is excellent and has high dimensional accuracy in which deformation of the inner layer tube does not occur.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の繊維強化熱可塑性樹脂管の製造方法は、熱可塑
性樹脂を押出して内層管を成形し、該内層管の外面に多
数のフィラメントよりなる補強繊維に熱可塑性樹脂が保
持されてなる繊維複合体を巻回あるいは囲繞して融着せ
しめる繊維強化熱可塑性樹脂管の製造方法において、前
記内層管を塩素化塩化ビニル樹脂を用いて成形し、前記
繊維複合体を構成する熱可塑性樹脂として、前記内層管
を形成する塩素化塩化ビニル樹脂よも塩素含有率が低い
塩素化塩化ビニル樹脂を用いることを特徴とするもので
ある。
The method for producing a fiber-reinforced thermoplastic resin pipe of the present invention is a fiber composite in which a thermoplastic resin is extruded to form an inner layer pipe, and the outer surface of the inner layer pipe is provided with a reinforcing fiber made of a large number of filaments and the thermoplastic resin is retained therein. In a method for manufacturing a fiber-reinforced thermoplastic resin tube in which a body is wound or wrapped and fused, the inner layer tube is molded using a chlorinated vinyl chloride resin, and as the thermoplastic resin constituting the fiber composite, It is characterized by using a chlorinated vinyl chloride resin having a chlorine content lower than that of the chlorinated vinyl chloride resin forming the inner layer pipe.

一般にこのような繊維強化管で高い補強効果を得るため
には、内層管と補強層との融着を良好にすることが必要
であり、このため内層と補強層とに用いられる樹脂が同
一か、あるいは相溶性の良好な樹脂とすることが好まし
く、熱可塑性樹脂性の内層管に対しては、熱可塑性樹脂
を用いた補強層を配するのが効果的である。従って塩素
化塩化ビニル樹脂製内層管に対しては、塩素化塩化ビニ
ル樹脂を用いた補強層とするのである。
In general, in order to obtain a high reinforcing effect with such a fiber-reinforced pipe, it is necessary to make good fusion between the inner layer pipe and the reinforcing layer, and therefore, whether the resins used for the inner layer and the reinforcing layer are the same. Alternatively, it is preferable to use a resin having good compatibility, and it is effective to dispose a reinforcing layer using a thermoplastic resin for the thermoplastic resin inner layer pipe. Therefore, for the inner layer pipe made of chlorinated vinyl chloride resin, the reinforcing layer is made of chlorinated vinyl chloride resin.

本発明において内層管となる塩素化塩化ビニル樹脂管
は、塩素化塩化ビニル樹脂に、目的に応じて熱安定剤、
滑剤、可塑剤、顔料、充填材、加工助剤、改質剤等の添
加物を配合した組成物を、スクリュー式押出機によって
加熱混練し、金型を通過させて成形する。なお塩素化塩
化ビニル樹脂は、目的に応じて単独あるいはこれと相溶
性の良い樹脂(例えば塩化ビニル樹脂)との混合樹脂で
あってもよい。
The chlorinated vinyl chloride resin pipe to be the inner layer pipe in the present invention is a chlorinated vinyl chloride resin, a heat stabilizer depending on the purpose,
A composition containing additives such as a lubricant, a plasticizer, a pigment, a filler, a processing aid, and a modifier is heated and kneaded by a screw type extruder and passed through a mold to be molded. The chlorinated vinyl chloride resin may be a single resin or a mixed resin with a resin having a good compatibility therewith (for example, vinyl chloride resin) depending on the purpose.

本発明において内層管の外周に巻回される繊維複合体
は、多数のフィラメントからなる補強繊維に、塩素化塩
化ビニル樹脂が含浸され、保持されてなるものである。
繊維複合体の厚さは、薄すぎると補強効果が充分でな
く、厚過ぎると巻回するのが困難となるので0.1〜2mmの
範囲、巾は5〜50mmのものが好適に用いられる。
In the present invention, the fiber composite which is wound around the outer circumference of the inner layer tube is obtained by impregnating and holding a reinforcing fiber composed of a large number of filaments with a chlorinated vinyl chloride resin.
If the thickness of the fiber composite is too thin, the reinforcing effect is not sufficient, and if it is too thick, it becomes difficult to wind the fiber composite, so that the range of 0.1 to 2 mm and the width of 5 to 50 mm are preferably used.

本発明に使用される補強繊維としては、ガラス繊維、炭
素繊維、金属繊維等の無機繊維、アラミド繊維、ビニロ
ン繊維等の有機合成繊維等が挙げられ、直径1〜40μm
のフィラメント数十〜数千本より構成されるロービング
またはヤーンから形成されたひも状、テープ状のものが
一般的に使用される。
Examples of the reinforcing fibers used in the present invention include inorganic fibers such as glass fibers, carbon fibers and metal fibers, organic synthetic fibers such as aramid fibers and vinylon fibers, and the like, having a diameter of 1 to 40 μm.
A string-like or tape-like one formed from rovings or yarns composed of tens to thousands of filaments is generally used.

上記フィラメントに含浸される塩素化塩化ビニル樹脂
は、前記内層管の塩素化塩化ビニル樹脂よりも塩素含有
率が低く、従って内層管の樹脂よりも軟化温度および溶
融温度が低いものであれば特に制限されない。
The chlorinated vinyl chloride resin impregnated into the filament has a chlorine content lower than that of the chlorinated vinyl chloride resin of the inner layer tube, and is therefore particularly limited as long as it has a lower softening temperature and melting temperature than the resin of the inner layer tube. Not done.

補強繊維のフィラメントに塩素化塩化ビニル樹脂を含浸
させて繊維複合体を造るには、フィラメントからなるロ
ービングあるいはヤーン等のストランド状の補強繊維
を、 粉体状の塩素化塩化ビニル樹脂の流動床中を通過さ
せて繊維に樹脂を付着させる、 粉体状の塩素化塩化ビニル樹脂を分散した液体の槽
中を通過させた後に乾燥する、 溶融した塩素化塩化ビニル樹脂の槽中を通過させた
後乾燥し、そのまま繊維複合体とする、あるいは樹脂を
一旦加熱溶融させる、 更に、上記で繊維に付着した樹脂を、加熱ロ
ールを通過させる等の方法で加熱加圧して紐状あるいは
テープ状に成形する、 等の方法で行うことができる。なおのままで使用す
ることも可能であるが、粉状の樹脂が繊維に「まぶされ
ている」状態であり、脱落しやすいので、もしくは
の方法によって造ることが望ましい。
To make a fiber composite by impregnating the filaments of reinforcing fibers with chlorinated vinyl chloride resin, the strand-like reinforcing fibers such as rovings or yarns made of filaments are placed in a fluidized bed of powdered chlorinated vinyl chloride resin. To attach the resin to the fiber, to pass through a tank of liquid in which powdered chlorinated vinyl chloride resin is dispersed, and then to dry, after to pass through a tank of molten chlorinated vinyl chloride resin It is dried to form a fiber composite as it is, or the resin is once heated and melted, and the resin adhered to the fiber is heated and pressed by a method such as passing through a heating roll to be formed into a string shape or a tape shape. , Etc. can be used. Although it is possible to use the resin as it is, it is preferable that the resin is in the state of being “sprinkled” with the powdery resin and easily falls off, or is manufactured by the method.

補強繊維の含有量、繊維複合体中に5〜80容量%とする
のが好適である。補強繊維の量が5容量%未満では補強
効果が充分に得られ難く、80容量%を超えると内層管の
界面との融着が困難となる。なお、ここで言う融着と
は、双方の樹脂を溶融状態になるまで加熱し圧着したも
のが、冷却後にその界面から容易に切断されることのな
い状態を言う。
The content of the reinforcing fiber is preferably 5 to 80% by volume in the fiber composite. When the amount of the reinforcing fibers is less than 5% by volume, it is difficult to obtain a sufficient reinforcing effect, and when it exceeds 80% by volume, it becomes difficult to fuse the inner layer tube with the interface. Note that the fusion bonding here means a state in which both resins are heated and pressure-bonded until they are in a molten state, and are not easily cut from the interface after cooling.

更に本発明の製造方法を図面によって説明する。Further, the manufacturing method of the present invention will be described with reference to the drawings.

第1図は、前記のようにして形成したテープ状の繊維
複合体を用いて、本発明の繊維強化熱可塑性樹脂管を製
造するための製造装置の一例を示す概略説明図である。
FIG. 1 is a schematic explanatory view showing an example of a production apparatus for producing the fiber-reinforced thermoplastic resin pipe of the present invention using the tape-shaped fiber composite formed as described above.

1は塩素化塩化ビニル樹脂を溶融混練して押出す押出機
である。押出機1の先端には、押出機1より押出した溶
融塩素化塩化ビニル樹脂を中空管状の内層管3に成形す
る金型2が取付けられ、金型2の前方には、金型2より
押出した内層管3の周囲を回転し、内層管3の外周にテ
ープ状の繊維複合体4を巻回する2組の巻回装置5,5が
設けられている。各巻回装置5,5上には繊維複合体4を
巻きつけたボビン状の巻出機5a,5aがそれぞれ2個取り
付けられていて、図示されていない駆動装置により内層
管3の周囲を回転し、各巻出機5a,5aからテープ状の繊
維複合体4を巻き出して、内層管3の外周にヘリカル状
に巻回するように構成れている。なお、2組の巻回装置
5,5は互いに反対方向に回転するように構成されてい
る。各巻回装置5の前方近傍には熱風式加熱装置6,6が
設けられていて、内層管3の外周に巻回された繊維複合
体4を加熱可能とされている。更に前方には、内層管3
の外周に繊維複合体4を2層に巻回された管状体11の外
周に、塩素化塩化ビニル樹脂を被覆するためのクロスヘ
ッド金型8が取り付けられた押出機7、水槽等の冷却装
置9、引取機10が設置されている。
Reference numeral 1 is an extruder for melt-kneading a chlorinated vinyl chloride resin and extruding it. A die 2 for molding the molten chlorinated vinyl chloride resin extruded from the extruder 1 into a hollow tubular inner layer tube 3 is attached to the tip of the extruder 1, and the die 2 is extruded from the die 2 in front of the die 2. Two sets of winding devices 5, 5 are provided that rotate around the inner layer tube 3 and wind the tape-shaped fiber composite 4 around the inner layer tube 3. Two bobbin-shaped unwinders 5a, 5a wound with the fiber composite 4 are mounted on each of the winding devices 5, 5, respectively. The tape-shaped fiber composite 4 is unwound from each of the unwinders 5a, 5a and helically wound around the outer circumference of the inner layer tube 3. Two sets of winding device
5, 5 are configured to rotate in opposite directions. Hot air type heating devices 6, 6 are provided near the front of each winding device 5 to heat the fiber composite 4 wound around the outer circumference of the inner layer tube 3. Further ahead, the inner layer tube 3
Extruder 7, in which a crosshead mold 8 for coating a chlorinated vinyl chloride resin is attached to the outer periphery of a tubular body 11 in which the fiber composite 4 is wound in two layers on the outer periphery of a cooling device such as a water tank 9, the take-off machine 10 is installed.

次に、上記装置を用いて本発明の繊維強化熱可塑性樹脂
管を製造する方法を説明する。
Next, a method for producing the fiber-reinforced thermoplastic resin pipe of the present invention using the above apparatus will be described.

熱安定剤、滑剤、その他必要な添加物を加えた塩素化塩
化ビニル樹脂を押出機1で溶融混練し、金型2を通過さ
せて内層管3を押出成形する。
A chlorinated vinyl chloride resin to which a heat stabilizer, a lubricant, and other necessary additives are added is melt-kneaded in an extruder 1 and passed through a mold 2 to extrude an inner layer tube 3.

金型2から押出された内層管3の外周に、テープ状に形
成された繊維複合体4を第一の巻回装置5の巻出機5a,5
aから巻き出して、隙間および重なりが発生しないよう
にヘリカル状に巻回し、熱風式加熱装置6により熱風を
繊維複合体4の周囲から噴射して繊維複合体4中の塩素
化塩化ビニル樹脂を加熱溶融し、内層管3と融着させ
て、第一層目の補強層を形成する。続いて第二の巻出装
置5によって、第二層目の補強層を第一層と逆方向にヘ
リカル状に巻回し、同様にして管状体11を成形する。こ
のように、第一層目と第二層目の補強層を逆方向に巻回
することによって、同方向に巻回した場合に比べ、管に
応力が働いても繊維のズレが発生し難く、優れた補強効
果を発揮させることができる。
On the outer periphery of the inner layer tube 3 extruded from the mold 2, the tape-shaped fiber composite 4 is unwound by the unwinders 5a, 5 of the first winding device 5.
It is unwound from a and helically wound so that no gaps and overlaps occur, and hot air is heated by the hot air heating device 6 from around the fiber composite 4 to remove the chlorinated vinyl chloride resin in the fiber composite 4. It is heated and melted, and fused with the inner layer pipe 3 to form a first reinforcing layer. Then, by the second unwinding device 5, the second reinforcing layer is helically wound in the opposite direction to the first layer, and the tubular body 11 is formed in the same manner. In this way, by winding the first layer and the second reinforcing layer in opposite directions, it is less likely that the fibers will be displaced even when stress is applied to the pipe, as compared with the case of winding in the same direction. , It is possible to exert an excellent reinforcing effect.

内層管に繊維複合体を巻回、融着し、補強層を形成する
方法としては、円周方向に巻回する方法が簡単且つ合理
的であるが、管軸方向の強度、寸法精度が要求される場
合は、繊維複合体を管軸方向に沿って囲繞した状態で融
着してもよい。
As a method of forming a reinforcing layer by winding and fusing the fiber composite on the inner layer tube, winding in the circumferential direction is simple and rational, but strength and dimensional accuracy in the tube axis direction are required. In that case, the fiber composite may be fused in a state of being surrounded along the tube axis direction.

なお、内層管3の外周に繊維複合体4を巻回、融着する
際、内層管3が変形するのを防止するためには、金型2
の押出方向に突出する延長コアを設け、この延長コア上
で繊維複合体4を巻回する、あるいは、金型2の先端よ
り内層管3の内部に冷却用の空気を吹き込み、内層管3
の内面を冷却しつつ繊維複合体4を巻回する等の変形防
止対策を講じてもよい。
In order to prevent the inner layer tube 3 from being deformed when the fiber composite 4 is wound around and fused to the outer circumference of the inner layer tube 3, the mold 2 is used.
Is provided with an extension core protruding in the extruding direction, and the fiber composite body 4 is wound on the extension core, or cooling air is blown into the inner layer tube 3 from the tip of the mold 2 to form the inner layer tube 3
You may take measures against deformation, such as winding the fiber composite 4 while cooling the inner surface of the.

続いて管状体11を、押出機7に取り付けられたクロスヘ
ッド金型8を通過させて、管状体11の外周に押出機7に
よって加熱混練された塩素化塩化ビニル樹脂を被覆して
外層を形成し、冷却装置9で冷却し、引取機10で引き取
って繊維強化熱可塑性樹脂管12を得る。
Subsequently, the tubular body 11 is passed through a crosshead mold 8 attached to the extruder 7, and the outer periphery of the tubular body 11 is coated with a chlorinated vinyl chloride resin that has been heat-kneaded by the extruder 7 to form an outer layer. Then, the fiber reinforced thermoplastic resin tube 12 is obtained by cooling with the cooling device 9 and withdrawing with the take-up machine 10.

第2図は、本発明の繊維強化熱可塑性樹脂管を製造する
ための製造装置の他の例を示す概略説明図である。上記
第1図に示す繊維強化熱可塑性樹脂管の製造方法は、テ
ープ状の繊維複合体を用いるものであるが、第2図の製
造方法は、ロービングまたはヤーン等のストランド状の
繊維複合体を用いるものである。
FIG. 2 is a schematic explanatory view showing another example of the manufacturing apparatus for manufacturing the fiber-reinforced thermoplastic resin pipe of the present invention. The fiber-reinforced thermoplastic resin pipe manufacturing method shown in FIG. 1 uses a tape-shaped fiber composite, while the manufacturing method shown in FIG. 2 uses a strand-shaped fiber composite such as roving or yarn. It is used.

第2図において、第1図と共通する設備については、同
一符号を付して説明を省略する。
In FIG. 2, equipment common to FIG. 1 is given the same reference numeral, and description thereof will be omitted.

第2図において、14はロービング状の繊維複合体13を内
層管3の周囲管軸方向に供給する巻回装置で、その上に
は、繊維複合体13を巻きつけた複数のボビン状の巻出機
14a,14a・・・が取りつけられていて、繊維複合体13
を、金型から押出される内層管3上に供給する。15は巻
回装置14のすぐ次に設置され、繊維複合体13を加熱する
ための鼓形の加熱ロール、16は繊維複合体13を内層管3
の周囲に円周方向に巻回する巻回装置で、その上には、
同じく繊維複合体13を巻きつけた複数のボビン状の巻出
機16a,16a・・・が取りつけられていて、図示されてい
ない駆動装置によって内層管3の周囲を回転し、各巻出
機16a,16a・・・から繊維複合体13を巻き出して、内層
管3の外周に巻回するようになされている。
In FIG. 2, 14 is a winding device for supplying the roving-shaped fiber composite 13 in the axial direction of the peripheral tube of the inner layer tube 3, and a plurality of bobbin-shaped windings around which the fiber composite 13 is wound. Start
14a, 14a ... are attached, and the fiber composite 13
Are supplied onto the inner layer tube 3 extruded from the mold. 15 is installed immediately after the winding device 14 and has a drum-shaped heating roll for heating the fiber composite 13, and 16 is the inner wall of the fiber composite 13
It is a winding device that winds around the circumference of
Similarly, a plurality of bobbin-shaped unwinders 16a, 16a ... On which the fiber composite 13 is wound are attached, and the unwinding device rotates the periphery of the inner layer tube 3 to drive each unwinder 16a, 16a. The fiber composite 13 is unwound from 16a ... and wound around the inner layer tube 3.

上記第2図の装置を用いて本発明の繊維強化熱可塑性樹
脂管を製造する方法について説明する。
A method for manufacturing the fiber-reinforced thermoplastic resin pipe of the present invention using the apparatus shown in FIG. 2 will be described.

第1図の場合と同様にして押出成形した内層管3の周囲
管軸方向に、巻回装置14から巻き出したロービング状等
の繊維複合体13を供給し、続いて鼓形の加熱ロール15を
通して繊維複合体13と内層管3との界面とを加熱融着さ
せる。次に巻回装置16から繊維複合体13を巻き出して、
管軸方向に補強された内層管3上に、円周方向に繊維複
合体13を巻回し、熱風式加熱装置6によって該繊維複合
体13を加熱溶融させて、管状体17を得る。更に、第1図
の場合と同様にして管状体17の外周に外層を形成し、繊
維強化熱可塑性樹脂管18を得る。
The roving-shaped fiber composite 13 unwound from the winding device 14 is fed in the axial direction of the peripheral tube of the inner layer tube 3 extruded in the same manner as in the case of FIG. The fiber composite body 13 and the interface between the inner layer tube 3 are heated and fused through. Next, unwind the fiber composite 13 from the winding device 16,
The fiber composite body 13 is wound in the circumferential direction on the inner layer tube 3 reinforced in the tube axis direction, and the fiber composite body 13 is heated and melted by the hot air type heating device 6 to obtain the tubular body 17. Further, as in the case of FIG. 1, an outer layer is formed on the outer periphery of the tubular body 17 to obtain the fiber-reinforced thermoplastic resin tube 18.

巻回した繊維複合体を内層管に融着する方法としては、
金型より押出された直後の高温の内層管に、繊維複合体
を速やかに巻回して融着させてもよいし、あるいは、一
旦内層管を冷却し、その外面および繊維複合体を同時あ
るいは別個に、樹脂が溶融する程度に熱風、赤外線ヒー
ター等で加熱した後に、繊維複合体を内層管の周囲に巻
回、融着させてもよい。内層管の加熱に当たっては、そ
の外面のみが溶融し、管肉内部までは溶融しないよう
に、短時間に急速に行うことが好ましい。
As a method of fusing the wound fiber composite to the inner layer tube,
The fiber composite may be quickly wound and fused on the hot inner layer tube immediately after being extruded from the mold, or the inner layer tube may be cooled once and its outer surface and the fiber composite may be simultaneously or separately separated. Alternatively, the fiber composite may be wound and fused around the inner layer tube after being heated with hot air or an infrared heater to such an extent that the resin is melted. The heating of the inner layer pipe is preferably carried out rapidly in a short time so that only the outer surface of the inner layer pipe is melted and the inside of the pipe meat is not melted.

また、上記第1図は、繊維複合体4による円周方向の補
強層が2層と、更にその上に塩素化塩化ビニル樹脂の外
層が1層の例、第2図は、繊維複合体13による管軸方向
の補強層が1層、円周方向の補強層が1層、更にその上
に塩素化塩化ビニル樹脂の外層が1層の例を示したが、
各層の数は特にこれらに限定されることはなく、用途、
要求される強度等に応じて適宜決定することができる。
Further, FIG. 1 shows an example in which two reinforcing layers in the circumferential direction by the fiber composite 4 are provided, and one outer layer of chlorinated vinyl chloride resin is further provided thereon, and FIG. 2 shows the fiber composite 13 An example in which there is one reinforcing layer in the pipe axis direction, one reinforcing layer in the circumferential direction, and one outer layer of chlorinated vinyl chloride resin on the
The number of each layer is not particularly limited to these, applications,
It can be appropriately determined according to the required strength and the like.

上記の繊維強化熱可塑性樹脂管の製造方法においては、
別ラインでフィラメント間に塩素化塩化ビニル樹脂を含
浸させ、ボビン状の巻出機に巻き取って繊維複合体を製
造する繊維強化熱可塑性樹脂管の製造方法について述べ
たが、また更に、繊維複合体を形成しながら内層管の周
囲に連続的に巻回もしくは巻出し、融着させて補強層を
形成する製造方法であってもよい。
In the method for producing the fiber-reinforced thermoplastic resin pipe,
A method for producing a fiber-reinforced thermoplastic resin tube in which a chlorinated vinyl chloride resin is impregnated between filaments on a separate line and wound on a bobbin-shaped unwinder to produce a fiber composite has been described. It may be a manufacturing method in which the reinforcing layer is formed by continuously winding or unwinding around the inner layer tube while forming the body and fusing.

〔作用〕[Action]

加熱溶融した塩素化塩化ビニル樹脂を押出機から金型を
経て押出す等により内層管を成形し、巻回装置もしくは
巻出装置に設置された巻出機から繊維複合体を巻出して
繊維複合体を巻回しもしくは囲繞して、内層管および繊
維複合体を熱風式加熱装置により内層管の表面温度が繊
維複合体を構成する樹脂を融着可能な程度まで加熱し融
着させる。塩素化塩化ビニル樹脂はその塩素含有率、従
って塩素化度が高いほど熱変形温度、溶融温度が高くな
るという性質を有している。このため、繊維複合体中に
含浸させる塩素化塩化ビニル樹脂の塩素含有率を内層管
を構成する塩素化塩化ビニル樹脂の塩素含有率よりも低
くすることによって、内層管の融点あるいは熱変形温度
より低い表面温度であっても、繊維複合体中の塩素化塩
化ビニル樹脂が溶融し、繊維複合体と内層管を強固に融
着させることができる。
An inner layer tube is formed by extruding heat-melted chlorinated vinyl chloride resin from an extruder through a mold, and the fiber composite is unwound from the unwinder installed in the winding device or unwinding device. The body is wound or surrounded, and the inner layer tube and the fiber composite body are heated and fused by a hot air heating device to such an extent that the surface temperature of the inner layer tube can fuse the resin constituting the fiber composite body. The chlorinated vinyl chloride resin has the property that the higher the chlorine content, and thus the higher the degree of chlorination, the higher the heat distortion temperature and the melting temperature. Therefore, by lowering the chlorine content of the chlorinated vinyl chloride resin impregnated in the fiber composite to be lower than the chlorine content of the chlorinated vinyl chloride resin that constitutes the inner layer tube, the melting point or heat distortion temperature of the inner layer tube Even at a low surface temperature, the chlorinated vinyl chloride resin in the fiber composite can be melted, and the fiber composite and the inner layer tube can be firmly fused.

〔実施例〕〔Example〕

本発明の実施例を、図面を参照しながら説明する。 Embodiments of the present invention will be described with reference to the drawings.

実施例1(第1図参照) 押出機1で、熱安定剤、滑剤等を配合した塩素含有率68
重量%の塩素化塩化ビニル樹脂を溶融混練し、温度約20
0℃に熱した金型2によって内径23mm、肉厚約3mmの内層
管3を押出成形後、その外表面温度が下がらないように
熱風式加熱装置6で加熱しながら、巻回装置5により第
1層目の繊維複合体4をヘリカル状に巻回、融着させ、
次いで同様にして、第2層目の繊維複合体4を、第1層
目と逆方向にヘリカル状に巻回、融着させて、管状体11
とした。
Example 1 (see FIG. 1) In the extruder 1, a chlorine content of 68 including a heat stabilizer, a lubricant, etc.
Melt and knead wt% chlorinated vinyl chloride resin and keep the temperature about 20
After the inner layer tube 3 having an inner diameter of 23 mm and a wall thickness of about 3 mm is extrusion-molded by the mold 2 heated to 0 ° C., the inner surface of the inner layer tube 3 is extruded and then heated by the hot air heating device 6 so that the outer surface temperature does not decrease. The first layer of fiber composite 4 is helically wound and fused,
Next, in the same manner, the fiber composite body 4 of the second layer is helically wound in the direction opposite to the direction of the first layer and fused to form a tubular body 11.
And

用いた繊維複合体4は、厚さ約0.5mm、巾約20mmのテー
プ状で、ガラス繊維のロービングを開繊した後、繊維間
に塩素含有率62重量%の塩素化塩化ビニル樹脂をよく含
浸させて成形した。繊維複合体4中のガラス繊維量は30
容量%であった。
The fiber composite 4 used is a tape having a thickness of about 0.5 mm and a width of about 20 mm, and after the roving of the glass fiber is opened, it is well impregnated with a chlorinated vinyl chloride resin having a chlorine content of 62% by weight. And molded. The amount of glass fiber in the fiber composite 4 is 30
It was% by volume.

次いで管状体11をクロスヘッド金型8を通過させて、押
出機7で溶融混練して押出した塩素化塩化ビニル樹脂を
管状体11の外周に被覆して外層を形成し、冷却装置9で
冷却し引取機10で引き取り、所定の長さに切断して繊維
強化熱可塑性樹脂管12を得た。
Then, the tubular body 11 is passed through the crosshead mold 8, and the outer periphery of the tubular body 11 is formed by coating the outer periphery of the tubular body 11 with the chlorinated vinyl chloride resin melt-kneaded and extruded by the extruder 7 and cooled by the cooling device 9. Then, the fiber reinforced thermoplastic resin tube 12 was obtained by picking it up with a take-up machine 10 and cutting it into a predetermined length.

以上のようにして得られた3層構造の繊維強化熱可塑性
樹脂管12は、層間の接着性が良好で、管内面の変形はほ
とんどなかった。
The fiber-reinforced thermoplastic resin tube 12 having a three-layer structure obtained as described above had good adhesion between the layers, and the inner surface of the tube was hardly deformed.

実施例2(第2図参照) 塩素含有率67重量%の塩素化塩化ビニル樹脂を用い、実
施例1と同じ押出機、金型を用いて、同寸法の内層管3
を押出成形後、内層管3の周囲に、繊維複合体13を巻回
装置14から巻き出し、予熱して管軸方向に配置し、鼓形
の加熱ロール15で内層管3に押出、融着させ、次いで熱
風式加熱装置6により管表面を加熱しながら巻回装置16
により繊維複合体13を管の外周に巻回、融着させて、管
状体17とした。
Example 2 (see FIG. 2) Using a chlorinated vinyl chloride resin having a chlorine content of 67% by weight, using the same extruder and mold as in Example 1, using the same size inner layer tube 3
After extrusion molding, the fiber composite body 13 is unwound around the inner layer tube 3 from the winding device 14, preheated and arranged in the tube axis direction, and extruded and fused to the inner layer tube 3 with a drum-shaped heating roll 15. Then, while the tube surface is heated by the hot air type heating device 6, the winding device 16
Thus, the fiber composite body 13 was wound around the outer circumference of the tube and fused to form a tubular body 17.

用いた繊維複合体15は、直径約0.5mmのひも状で、ガラ
ス繊維のロービングを開繊した後、繊維間に、塩素含有
率64重量%の塩素化塩化ビニル樹脂と塩素含有率57重量
%の塩素化塩化ビニル樹脂の10:1の混合物をよく含浸さ
せて成形した。繊維複合体15中のガラス繊維量は25容量
%であった。
The fiber composite 15 used is a cord having a diameter of about 0.5 mm, and after the roving of glass fiber is opened, a chlorinated vinyl chloride resin having a chlorine content of 64% by weight and a chlorine content of 57% by weight are provided between the fibers. Was well impregnated with a 10: 1 mixture of chlorinated vinyl chloride resin of 1. The glass fiber amount in the fiber composite 15 was 25% by volume.

次いで実施例1と同様の方法によて、管状体17の外周に
塩素化塩化ビニル樹脂を被覆して外層を形成し、繊維強
化熱可塑性樹脂管18を得た。
Then, in the same manner as in Example 1, the outer periphery of the tubular body 17 was coated with a chlorinated vinyl chloride resin to form an outer layer, and a fiber-reinforced thermoplastic resin tube 18 was obtained.

以上のようにして得られた3層構造の繊維強化熱可塑性
樹脂管19は、層間の接着性が良好で、管内面の変形はほ
とんどなかった。
The fiber-reinforced thermoplastic resin tube 19 having a three-layer structure obtained as described above had good adhesion between the layers, and the tube inner surface was hardly deformed.

〔発明の効果〕〔The invention's effect〕

本発明は上記のように構成されているので、塩素化塩化
ビニル樹脂製の内層管と繊維複合体との融着が良好で繊
維補強効果に優れ、且つ寸法精度の高い繊維強化熱可塑
性樹脂管を得ることができる。
Since the present invention is configured as described above, the inner layer pipe made of chlorinated vinyl chloride resin and the fiber composite are well fused, the fiber reinforcing effect is excellent, and the fiber reinforced thermoplastic resin pipe having high dimensional accuracy is high. Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の繊維強化熱可塑性樹脂管の製造装置の
一例を示す概略説明図、第2図は本発明の繊維強化熱可
塑性樹脂管の製造装置の他の例を示す概略説明図であ
る。 1,7…押出機、2…金型、3…内層管、4,13…繊維複合
体、5,16…巻回装置、6…熱風式加熱装置、8…クロス
ヘッド金型、9…冷却装置、10…引取機、11,17…管状
体、12,18…繊維強化熱可塑性樹脂管、14…巻出装置、1
5…加熱ロール。
FIG. 1 is a schematic explanatory view showing an example of an apparatus for manufacturing a fiber reinforced thermoplastic resin pipe of the present invention, and FIG. 2 is a schematic explanatory view showing another example of an apparatus for manufacturing a fiber reinforced thermoplastic resin tube of the present invention. is there. 1, 7 ... Extruder, 2 ... Mold, 3 ... Inner layer tube, 4, 13 ... Fiber composite, 5, 16 ... Winding device, 6 ... Hot air type heating device, 8 ... Crosshead mold, 9 ... Cooling Equipment, 10 ... Take-up machine, 11, 17 ... Tubular body, 12, 18 ... Fiber reinforced thermoplastic resin tube, 14 ... Unwinding device, 1
5 ... Heating roll.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B29C 53/58 7421−4F B32B 1/08 A 7158−4F B29K 27:06 B29L 23:22 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location // B29C 53/58 7421-4F B32B 1/08 A 7158-4F B29K 27:06 B29L 23:22

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】熱可塑性樹脂を押出して内層管を成形し、
該内層管の外面に多数のフィラメントよりなる補強繊維
に熱可塑性樹脂が保持されてなる繊維複合体を巻回ある
いは囲繞して融着せしめる繊維強化熱可塑性樹脂管の製
造方法において、前記内層管を塩素化塩化ビニル樹脂を
用いて成形し、前記繊維複合体を構成する熱可塑性樹脂
として、前記内層管を形成する塩素化塩化ビニル樹脂よ
も塩素含有率が低い塩素化塩化ビニル樹脂を用いること
を特徴とする繊維強化熱可塑性樹脂管の製造方法。
1. An inner layer tube is molded by extruding a thermoplastic resin,
In the method for producing a fiber-reinforced thermoplastic resin tube in which a fiber composite, in which a thermoplastic resin is held by reinforcing fibers composed of a large number of filaments, is wound or surrounded and fused on the outer surface of the inner layer tube, the inner layer tube is Molding using a chlorinated vinyl chloride resin, as the thermoplastic resin constituting the fiber composite, to use a chlorinated vinyl chloride resin having a lower chlorine content than the chlorinated vinyl chloride resin forming the inner layer tube A method for producing a fiber-reinforced thermoplastic resin tube, which is characterized.
JP2040408A 1990-02-20 1990-02-20 Method for producing fiber reinforced thermoplastic resin pipe Expired - Lifetime JPH074875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2040408A JPH074875B2 (en) 1990-02-20 1990-02-20 Method for producing fiber reinforced thermoplastic resin pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2040408A JPH074875B2 (en) 1990-02-20 1990-02-20 Method for producing fiber reinforced thermoplastic resin pipe

Publications (2)

Publication Number Publication Date
JPH03243333A JPH03243333A (en) 1991-10-30
JPH074875B2 true JPH074875B2 (en) 1995-01-25

Family

ID=12579838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040408A Expired - Lifetime JPH074875B2 (en) 1990-02-20 1990-02-20 Method for producing fiber reinforced thermoplastic resin pipe

Country Status (1)

Country Link
JP (1) JPH074875B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6629547B1 (en) * 1998-10-09 2003-10-07 Sekisui Chemical Co., Ltd. Composite high-pressure pipe and method of joining same
US6302150B1 (en) * 1999-01-29 2001-10-16 Teleflex Fluid Systems Hose assembly / and method for making same
US20030186038A1 (en) * 1999-11-18 2003-10-02 Ashton Larry J. Multi orientation composite material impregnated with non-liquid resin
US20070006961A1 (en) * 2001-01-31 2007-01-11 Kusek Walter W Method of making reinforced PVC plastisol resin and products prepared therewith
FR2873952B1 (en) 2004-08-06 2008-07-04 Fibres Et Carbone Sa Soc D REINFORCED ELONGATED ELEMENTS SUCH AS TUBES, METHOD AND APPARATUS FOR MANUFACTURING
FR2913364A1 (en) * 2007-02-06 2008-09-12 Fibres Et Carbone Sa Soc D REINFORCED ELONGATED ELEMENTS SUCH AS TUBES, PROCESS AND APPARATUS FOR MANUFACTURING THE SAME.
JP5624755B2 (en) * 2009-12-01 2014-11-12 宇部エクシモ株式会社 Filament winding method, fiber reinforced plastic long body manufacturing method, and filament winding apparatus

Also Published As

Publication number Publication date
JPH03243333A (en) 1991-10-30

Similar Documents

Publication Publication Date Title
JPH074875B2 (en) Method for producing fiber reinforced thermoplastic resin pipe
JPH0911355A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JP3117492B2 (en) Method for producing fiber reinforced thermoplastic resin tube
JP2674844B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH07117178B2 (en) Composite pipe
JPH0531782A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JP6791686B2 (en) Manufacturing method and equipment for spiral high-strength fiber composite wire, and manufacturing method for high-strength fiber composite cable
JP2726123B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH044132A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH0735270A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JPH05278126A (en) Forming material of fiber reinforced thermoplastic resin
JPH0460292A (en) Manufacture of fiber reinforced resin pipe
JPH07256779A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH0584847A (en) Production of fiber reinforced thermoplastic resin pipe
US5876829A (en) Composite article and process for manufacturing it
JPH02165930A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JPH086847B2 (en) Composite pipe and manufacturing method thereof
JP3214892B2 (en) Method for producing hollow cross-section shaped body
JPH07290591A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH074877B2 (en) Method for manufacturing fiber-reinforced resin pipe
JPH08174704A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH03146326A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH07266436A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH07144372A (en) Manufacture of fiber reinforced thermoplastic resin composite pipe
JP2874951B2 (en) Eaves gutter manufacturing method